
Hebb Rule Method in Neural Network  

for Pattern Association 

 

 

 

Hello Ali Hama 

 

 

 

 

 

 

Submitted to the 

Institute of Graduate Studies and Research 

in partial fulfillment of the requirements for the Degree of 

 

 

 

 

 

 

 

Master of Science 

in 

Applied Mathematics and Computer Science 

 

 

 

 

 

 

 

 

 

 

Eastern Mediterranean University 

May 2014 

Gazimağusa, North Cyprus  



Approval of the Institute of Graduate Studies and Research   

            

      

 

 

 

                                                                               Prof. Dr. Elvan Yılmaz 

                                                     Director 

 

 

I certify that this thesis satisfies the requirements as a thesis for the degree of Master 

of Science in Applied Mathematics and Computer Science.     
 

            

     

                                   Prof. Dr. Nazim Mahmudov 

                                                                              Chair, Department of Mathematics 

 

We certify that we have read this thesis and that in our opinion it is fully adequate in 

scope and quality as a thesis for the degree of Master of Science in Applied 

Mathematics and Computer Science.   

 

 

                                            Prof. Dr. Rashad Aliyev  

                                                                 Supervisor        

         

      

 

          

                    Examining Committee 

 

1.  Prof. Dr. Rashad Aliyev        

  

2.  Asst. Prof. Dr. Ersin Kuset Bodur   

3.  Asst. Prof. Dr. Müge Saadetoğlu 



iii 

ABSTRACT 

In the process of the development of intelligent systems the artificial neural network 

plays an important role as a paradigm for pattern recognition, pattern association, 

optimization, prediction, and decision making problems.  

This master thesis focuses on analysis of Hebb rule for performing a pattern 

association task. The application of Hebb rule enables computing optimal weight 

matrix in heteroassociative feedforward neural network consisting of two layers: 

input layer and target output layer.  

The Hebb algorithm is applied to both binary and bipolar data representations.  The 

advantages of bipolar representation of training patterns compared to binary 

representation of training patterns are presented. Two different ways for calculating 

weight matrix are used: the results of application of the Hebb algorithm, and the 

outer products. New input vectors which can be similar and not similar to training 

input vectors are tested. A new input vector differing from the training input vector 

in fewer components should produce the reasonable response as the same output 

vector. 

 

Keywords: Neural network, Hebb rule, pattern association, binary and bipolar 

vectors, outer products 
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ÖZ 

Yapay sinir ağı akıllı sistemlerin oluşumu sürecinde önemli rol alır ve örüntü tanıma, 

örüntü  ilişkilendirme, optimizasyon, öngörü, ve karar verme problemlerinde 

paradigma olarak kullanılır. 

Bu tez Hebb kuralını kullanarak örüntü  ilişkilendirme görevinin incelenmesine 

odaklanır. Hebb kuralını uygulamakla zit ilişkili ileri beslemeli sinir ağında optimal 

ağırlık matrisi hesaplanır. Bu ağ iki katmandan oluşmaktadır: giriş ve hedef çıkış 

katmanları.  

Hebb algoritması ikili ve iki kutuplu veri representasyonu için uygulanır. Eğitim 

örüntülerin iki kutuplu representasyonunun ikili representasyona nazaran daha 

avantajlı olduğu gösterilir. Ağırlık matrisinin hesaplanması iki farklı yöntemle hayata 

geçirilir: Hebb algoritmasının uygulanmasından elde edilen sonuçlar, ve dış 

çarpımlar yöntemi. Eğitim giriş vektörlerine benzer olan ve benzer olmayan yeni 

giriş vektörleri test edilir. Eğitim giriş vektöründen daha az bileşenle farklanan yeni 

giriş vektörü uygun cevap olarak aynı çıkış vektörünü üretmelidir. 

 

Anahtar Kelimeler: Sinir ağı, Hebb kuralı, örüntü  ilişkilendirme, ikili ve iki 

kutuplu vektörler, dış çarpımlar 
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Chapter 1 

INTRODUCTION 

Neural network is one of the most powerful techniques of artificial intelligence 

which is also called artificial neural network (ANN). Neural networks are the 

systems that are able to acquire and to use human knowledge available from the 

experience.  

The history of neural network begins from 1943 in USA by the physiologists 

McCulloch and Pitts. They showed the first sample of a neuron. In the very first 

paper in neural network published by above scientists the modeling of a neural 

network was performed on the base of electrical circuits. 

 

In 1955 Allen Newell and Herbert A. Simon tried to simulate human thinking 

(making mind). At the same time B. Widrow worked on modeling the brain to design 

the electronic system simulating human brain. 

 

In 1969 Marvin Minsky and Seymour Papert published the book “Perceptrons”, in 

which it was proven that the neural systems can use XOR logical function.  
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Another scientist Rosenblatt designed the first neural network called perceptron. In 

1977 associative memory model was developed by Finnish scientist Kohonen. In 

1982, Hopfield applied a simulation of the physical energy to a neural network. 

In 1986 the multi layer perceptron was proposed. Since that time the neural systems 

achieved impressive results in many different fields such as shape identification, 

signal analysis, pattern recognition, image compression and many other civil and 

military applications. 

The researchers in artificial neural networks have been creating algorithms and 

theory for the basics of the brain action. 

Why is a neural network an important technique? What kind of advantages does a 

neural network provide? The following characteristics of a neural network show the 

importance of its implementation for different problems: 

- Adaptability to learn performing some tasks on the base of data available from the 

experience; 

- Ability of a self-organization while learning process; 

- Capability of the realization of computations in a parallel form like human brain 

does it, i.e. the neural network is not programmable; 

- Powerful capability for pattern recognition and pattern classification; 
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- Ability for approximation of a universal function; 

- Handling the information with probabilistic and fuzzy natures; 

- Ability to produce the output of the neural network for the classification problems 

if there is no information about how should this output look like;   

- Possibility of the implementation of the neural network for the problems where the 

relationship between dependent and independent variables is non-linear. If non-linear 

data should be modeled, the classical linear network can’t perform this task, and that 

is why an implementation of a non-linear neural network is more advantageous 

compared to classical one. Non-linear modeling of data for defining relationship 

between dependent and independent variables can provide a motivation for a neural 

network to be an excellent forecasting technique. A neural network is an appropriate 

technique for optimization problems. 

The neural networks can be classified into the following types:  

- Feedforward neural network. 

The processing units in feedforward network will connect where the information is 

flowing in one direction, i.e. the information always goes forward but never 

backward. This type of neural network is well suited for forecasting problems. The 

feedforward neural network can be used for modeling the dynamic systems, but this 
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network doesn't have a dynamic memory, for example, the backpropagation neural 

network; 

- Recurrent neural network. 

In this type of a neural network the connection between the units are performed in a 

form of direction cycle (forward and backward directions).  

There are three types of training techniques in neural networks: supervised, 

unsupervised, and hybrid learning. 

Supervised learning encompasses technicality of supplying network with the inputs 

and outputs. In supervised learning the inputs and outputs are supplied as a training 

set, and a comparison between the output result and the direction output is performed 

by defining  the mean-squared error between them, and a system propagates back the 

errors, after that the system regulates the weights.  This process happens many times 

by learning function until the best result will be available. One of the popular 

supervised neural networks is backpropagation algorithm, and the different 

modifications of this algorithm are used to decrease the time needed for the training 

process in the neural network. 

 

In unsupervised learning the network has inputs but running out of any output, i.e. in 

unsupervised type of learning, the network is supplied with inputs but not with 

desirable outputs, and the desired output is unknown. In other words, the teacher 

signal is absent in unsupervised neural network. Unsupervised neural networks 

mostly consist of input and output layers, and the hidden layer is absent.  This kind 
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of network has an ability to find the distinctive features for the inputs through the 

other outputs, and it works without any previous knowledge which means that a 

neural network has an ability to organize itself after the weights are correlated.  

The hybrid learning uses the combination of both supervised and unsupervised 

learning techniques. 

Tuevo Kohonen is one of the best researchers in unsupervised neural networks, who 

developed the self-organizing map also called Kohonen SOM. The competitive 

learning process is realized in this kind of networks. Some characteristics of input 

data should be known.  This network can also recognize and classify the inputs 

which were not used whenever before. This classification is done for the values of 

input data apart from input space of data.    

Hebb theory was introduced in 1949 by Donald Olding Hebb in his book “The 

Organization of Behavior”. This theory is also called Hebb's postulate or Hebb's rule. 

This rule was intended to connect statistical methods to neurophysiological 

experiments on plasticity.  

Hebb’s rule’s implementation is easy and takes a few number of steps. 

Implementation of Hebb’s rule considers at first the input values and expected output 

values, then the activation function is used, and finally the Hebb’s algorithm is 

implemented. 
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The Hebbian algorithm is used in many areas, and especially in speech and image 

processing.  

The question whether the neural networks can fully simulate the human brain in 

optimal form is still actual. Neural networks are very useful for applications in 

combination with other components such as genetic algorithms, fuzzy logic, expert 

systems etc. All the existing technologies of neural networks can be improved in 

integration with above components for pattern recognition, stock market analysis and 

prediction problems, medical diagnosis of patients, transformation of handwritten 

documents to other appropriate formats, and in other areas where people deal with a 

large quantity of data. 
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Chapter 2  

REVIEW OF EXISTING LITERATURE ON 

APPLICATION OF THE HEBB RULE  

In [1] the unsupervised Hebbian learning algorithm is discussed, and both the content 

addressability and saving capacity of the learned networks are considered. The 

observed dynamical results show that the learning process increases the dimension of 

the possibility attractors, but less chaoticity compare to supervised neural network is 

obtained.  

The paper [2] describes the classical neuroscience model of Hebbian learning. It is 

hard to achieve the efficient associative memory storage using Hebbian synaptic 

learning. In the result it is proposed that associative learning by Hebbian synaptic 

learning should be accompanied by continuous remodeling of regulator processes in 

the brain. 

In [3] the Generalized Hebbian Algorithm equivalent to Latent Semantic Analysis 

(LSA) is studied, and the possibility of application of Generalized Hebbian 

Algorithm for the tasks of LSA as well as for very large datasets is defined.  

In [4] a learning rule for oscillators that prepare their frequency to the frequency of 

any periodic or pseudo-periodic input signal is shown. The important feature of this 

model is being comfortably generalizable for a big category of oscillators. The main 
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advantage of the learning rule is that the oscillators enable to prepare their frequency 

and don’t need any signal processing.  

In [5] the Generalized Hebbian Algorithm is proposed that allows the singular value 

decomposition of datasets to learn. This algorithm is very useful for large datasets in 

which data are normally intractable. The experimental results are discussed on the 

task of modeling some letter bigram pairs. 

Using weighted Hebb rule in the presence of noise confirms that the structure of the 

minima of the free energy at finite temperatures is differed from the using of a usual 

Hebb rule [6]. If there is a single extra pattern stored with appropriate weight, then 

the temperature of the free energy is lower than the network without extra pattern. 

The convergence time can be significantly improved. 

The error-driven rules are preferred to pure Hebb rule when the correct output of the 

neural network is specified [7]. In the unsupervised learning rules the Hebb rule is 

more appropriate in combination with normalization in order to stop increasing the 

number of synapses.  

The idea of [8] is to develop the algorithms for the metadata extraction in a digital 

library. This matrix of association is used to recommend the documents which are 

more convenient to user’s interest profile. The matrix is also used for calculation of 

document similarity values, and clustering the similar documents. The data are 

extracted to create a documentation system.  
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The paper [9] introduces the unsupervised learning algorithm based on weights 

update and connections of the Hebbian rule. The presented algorithm is applied for 

reliable classification of the handwritten digits. 

In [10] the adaptive reasoning theory and Hebb rule are used to develop the neural 

network and pattern recognization with the aim of precise classification of network 

on unseen test data. The experiments show that the learning process can be improved 

by considering the accuracy of the outcome feedback. 

Hebb rule based learning algorithm for studying the unspecific reinforcement is 

proposed in [11]. The asymptotic convergence for learning parameters may be 

sometimes as fast as Hebbian learning, but may be also slower. The initial conditions 

can define the regime of asymptotically perfect generalization or the state of poor 

generalization.   

The application of the contrastive Hebbian algorithm to continuous Hopfield network 

is represented in [12]. The five different training regimes are analyzed. The 

implementation instructions of contrastive Hebbian learning in competition models 

are presented. 

In [13] the back-propagation learning rule as supervised neural network, and the 

Hebbian learning rule as unsupervised learning are presented, and the filtering 

aspects of  Hebbian network for the recognition of the anomalous patterns in data are 

discussed. The ability of storing information by Hebbian network is discussed. The 



10 

parallels between the emergence phenomena of Hebbian neural network and human 

intelligence are drawn. 

In [14] the learning capability of Hebbian unsupervised rule is discussed that makes a 

probabilistic associative memory (PAM) a good functional model for hierarchical 

pattern recognition problem. The strength of the synapse is related with the outputs 

of the presynaptic and postsynaptic neurons; if the outputs of the neurons are 

identical, then the strength increases, and decreases otherwise. 

The recursive auto-associative memory (RAAM) learning is used for training of 

auto-associative networks for representing structured information. The use of 

Hebbian learning rule to represent the structured information is given in [15]. This 

information is represented in terms of vector graphic. 

In [16] the models having energy function from the Hebb rule is presented. The 

networks with static synaptic noise and synapses which are nonlinear functions are 

discussed.  

In [17] the extension of some learning rules in a Principal Component Analysis 

network is performed for deriving optimality for the family of probability density 

functions. The probability density functions are used to perform Exploratory 

Projection Pursuit.  
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The application of Soft Computing techniques is important for modeling systems. In 

[18] the Fuzzy Cognitive map (FCM) consisting of neural network and fuzzy logic 

components is discussed. For the improvement of efficiency and robustness, and 

training FCM, the unsupervised learning method based on nonlinear Hebbian rule is 

practically applied. The process control is performed by defining the desired 

convergence regions for FCM. 
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Chapter 3  

BINARY DATA REPRESENTATION OF A 

HETEROASSOCIATIVE NET 

3.1 Pattern association  

Learning is the operation of formalization in associations between the patterns. In 

associative neural network the weights are determined, and the network can store a 

set of patterns [19]. 

We will assume some simple single-layer neural networks with ability to learn a set 

of associations. The associative memory network can act in the form of a very 

simplified human brain.  

The purpose of using an associative neural network is to find the appropriate output 

vector corresponding to an input vector which can be one of the stored patterns or a 

new pattern [19]. 

Every association is a pair of vectors of an input-output    , where   is the input 

vector, and   is the target vector. If both the vectors   and   are the same, then we 

call it an autoassociative memory neural network. If the vectors   and   are 

different, then it is called a heteroassociative memory neural network. In each of 
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these cases, the learning is not only for particular pattern pairs that were used for 

training, but likewise has ability to recall response pattern. 

3.2 Training algorithm for pattern association. Hebb algorithm 

Hebb rule is common and simple method for specifying the weights for an 

associative memory neural network. The Hebb rule can be used with either binary or 

bipolar patterns. The algorithm will iterate for input and target (output) training 

vectors, and in order to find the weights, the outer product is used as the general 

procedure. We consider the training pair of vectors    , and afterwards the testing 

input vector   is considered. 

The Hebb algorithm can be represented in the following form: 

- Set all the initial weights equal to 0: 

                         ; 

- For each input-output training case set the following activations: for input units to 

the current input   

                  

and for output units to the current target output: 

               ; 

- Adjust the weights using the following formula: 

                                           ; 

- Set the activation of the output units: 
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   (for binary targets) 

     

            

            

              

  (for bipolar targets) 

where  

             

 

 

is a computation of the net input to the output unit.  

3.3 Outer products  

Sometimes the weights of a net are computed from the training set by using the outer 

product instead of iterative updating of weights used in algorithm for Hebb rule.  We 

write the training vector of the matrix product as a column represented as      

matrix, and the target vector represented as a row vector with     matrix. If 

                    and                  , we have: 

       

  
 
  
 

  

                

 
 
 
 

 

    
 
     

 

     
 

    
 
     

 

     
 

               
 
 
 

 

Using the Hebb rule we can find the weight matrix to store the association      

We store association set               where  

                               

and 
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The weight matrix         is given by  

            

 

   

      

which means the summation of the outer product matrices. 

The general preceding formula (vector-matrix form) is 

             

 

   

 

The appropriateness of the Hebb rule in different problems is up to the correlation 

between the input training vectors. In case the input vectors are orthogonal (if their 

dot product is equal to 0), the correct weights will be produced using Hebb rule. 

Afterwards in the process of testing one of the given training vectors, the response of 

the network will be perfect recall of the target associated with given input vector. 

Otherwise, the response will contain a portion of target values, if the input vectors 

are not orthogonal, and this is called cross talk. 

We show the case when cross talk occurs, and two vectors      and            

are considered to be orthogonal, if their dot product is 0. 

 In other words, we can write it as: 

              

or 

             

 

   

 



16 

The weight matrix is  , and the response of the net is     . If          the 

input is the kth training input vector, then the net response is  

                     

 

   

 

                              

   

  

If      is not orthogonal to the other   - vectors, it is necessary to know which      

is not orthogonal. In case the input vectors are not orthogonal, but they are related to 

the same target values, the cross talk between these input vectors does not cause any 

problem to accomplish the training process of the network. 

3.4 Heteroassociative and autoassociative memory neural networks  

Neural networks in which weights can store a set of associations of P pattern are 

called associative memory neural networks. A pair of vectors     ,     , with 

          is an association. Every vector      is n-tuples (n components), and 

every vector      is m-tuples (m components). By using Hebb rule the weights can 

be calculated. The Hebb rule is used in examples in this section. An appropriate 

output vector that identifies an input vector   can be either one of the stored patterns 

     or a new pattern which is found by the network. 

 The architecture of the heteroassociative memory neural network is shown in Figure 

1. 

 

 



17 

 

 

 

 

 

 

 

 

  

Figure 1: Architecture of the heteroassociative neural network 

The feedforward autoassociative network is a private case of heteroassociative neural 

network. In autoassociative network the input (training) and output (target) are 

identical. The training process is referred to the vectors storing either binary or 

bipolar targets. If the input is enough similar to the stored vector, it may be restored 

from noisy (deformed or partial) input. The ability to copy a stored pattern from 

partial (noisy) input is the judgment of the performance of the net. In general the 

bipolar vector is better than the binary vector in different applications.   

The architecture of the autoassociative memory neural network is shown in Figure 2. 
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A general form is used in the bidirectional associative memory (BAM), when a 

threshold is   , then 

     

              
               
                

  

Let’s assume that the input vectors are                       , and the output row 

vectors are           . In the following example we use the Hebb rule for training 

a heteroassociative neural network. 

Suppose a neural network is trained to store the mapping from input row vectors with 

five components to output (target) row vectors with two components, and these 

vectors are used for pattern classification problem.  

 

   

 

    

    

    

    

   

   

    

 

    

 

    

 

      

 

    

  

    

  

   

   

   

Figure 2: Architecture of the autoassociative memory neural network 
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First input                                 ,   first output                  

Second input                            ),   second output              

Third input                               ,   third output                 

Fourth input                             ,   fourth output               

We observe that the first and second input vectors, and also the third and fourth input 

vectors are not mutually orthogonal, and the cross talk between first and second input 

vectors, and also between third and fourth input vectors does not create any problem, 

since their target values are the same.   

The figure 3 shows the architecture of the heteroassociative neural network 

consisting of input vector with five components, and output vector with two 

components. The Hebb rule is used to perform the training process using  

                                          

Training algorithm: 

-      Set all the initial weights equal to 0. 

-      For the first input-target pair                     

-                                 

-                  

-                                        

                                                                     

 (All other weights remain unchanged). 
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-        For the second input-target pair                    

-                                  

-                   

-                                           

                                  

(All other weights remain unchanged). 

   

   

   

   

   

   

   

    

    

    

    

    

    

    

    

    

    

Figure 3: Architecture of the heteroassociative neural network consisting of 

input vector with five components and output vector with two components 
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-        For the third input-target pair                    

-                                  

-                   

-                                         

                                  

(All other weights remain unchanged). 

-        For the last fourth input-target pair                  : 

-                                  

-                   

-                                        

(All other weights remain unchanged). 

The final weight matrix is  

W = 

 
 
 
 
 
  
  
 
 
 

 
 
  
 
 
 
 

  

Let’s now use outer products instead of the algorithm of the Hebb rule. Using outer 

product leads to the same weights which were found by the application of the Hebb 

rule. For the first input-target pair  

                  

 
 
 
 
 
 
 
 
  
 
 
 

      = 
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We do the same process to store the second pair: 

                  

 
 
 
 
 
 
 
 
  
 
 
 

      = 

 
 
 
 
 
  
  
 
 
 

 
 
  
 
 
 
 

 

For the third pair we have: 

                  

 
 
 
 
 
 
 
 
  
 
 
 

       = 

 
 
 
 
 
  
  
 
 
 

 
 
  
 
 
 
 

 

For the last fourth pair we define: 

                  

 
 
 
 
 
 
 
 
  
 
 
 

      = 

 
 
 
 
 
  
  
 
 
 

 
 
  
 
 
 
 

  

The sum of all the weight matrices to store all pattern pairs is: 

W = 

 
 
 
 
 
  
  
 
 
 

 
 
  
 
 
 
 

  + 

 
 
 
 
 
  
  
 
 
 

 
 
  
 
 
 
 

 + 

 
 
 
 
 
  
  
 
 
 

 
 
  
 
 
 
 

 + 

 
 
 
 
 
  
  
 
 
 

 
 
  
 
 
 
 

 = 

 
 
 
 
 
  
  
 
 
 

 
 
  
 
 
 
 

 

Now we use the training input to test the heteroassociative network. 

To produce the correct output for all the training inputs we test the ability of the net 

by using the activation function 
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The weight matrix found is   

W = 

 
 
 
 
 
  
  
 
 
 

 
 
  
 
 
 
 

 

For the first input pattern               

                                    

                              

 

                                     

                             

                                                        

This is the correct response. 

For the second input pattern                    

                                     

                              

                                    

                             

                                                        

This is the correct response. 
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For the third input pattern              

                                     

                              

                                    

                             

                                                        

This is the correct response. 

For the last fourth input pattern              

                                     

                              

                                    

                             

                                                        

This is also the correct response. So the weights obtained to store input-output pairs 

were found correctly. 

The vector-matrix notation can better represent the above process. We will use the 

application procedure for the input vectors.  

- The weight matrix is: 
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  = 

 
 
 
 
 
  
  
 
 
 

 
 
  
 
 
 
 

 

-                 , and for the first input vector                   we have: 

                   =                  

 
 
 
 
 
  
  
 
 
 

 
 
  
 
 
 
 

 = (      

Since                   we have        . 

For the other input vectors we can apply the same algorithm. For the second input 

vector we have: 

                                  

 
 
 
 
 
  
  
 
 
 

 
 
  
 
 
 
 

        

Since                   we have        . 

For the third input vector we have: 

                                  

 
 
 
 
 
  
  
 
 
 

 
 
  
 
 
 
 

        

Since                    we have        . 

For the last fourth input vector we have: 
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Since                    we have        . 

3.5 Testing new input vectors with binary representation  

Let’s test the heteroassociative network with a new input vector (unseen input 

vector). Firstly we consider the new input vector                 It is important to 

know whether a reasonable response is available. For this purpose the Hamming 

distance is used. The Hamming distance can be used for both binary and bipolar 

representations. The Hamming distance obtains in how many positions two strings of 

same length mismatch (disagree). A new input vector is compared with all the four 

training input vectors: 

                                                                                   

                                                 Hamming distance = 1 

                                                 Hamming distance = 1 

                                                 Hamming distance = 3 

                                                 Hamming distance = 2 

The new input vector                 is closer to the first and second training input 

vectors (since the Hamming distance is minimum), and is differed from them in just 

one component, and we check which output is produced after the calculation of   : 
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Since                   we have the same output of the first and second training 

pairs      , which is a desirable result. 

Let’s test another new input vector                , and consider the Hamming 

distance.  

                                                                                  

                                                 Hamming distance = 3 

                                                 Hamming distance = 3 

                                                 Hamming distance = 1 

                                                 Hamming distance = 2 

The output of the new input vector should be same with the output of the third 

training pair (minimum Hamming distance). Let’s check it: 

                

 
 
 
 
 
  
  
 
 
 

 
 
  
 
 
 
 

        

Since                  the output is desirable. 

For the testing the last new input vector                , we apply the similar 

procedure.  

                                                                                 

                                                 Hamming distance = 3 

                                                 Hamming distance = 3 

                                                Hamming distance = 3 

                                                 Hamming distance = 4 
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But                  and the output is       which is not similar with the output 

of any training input vector. So the output is considered as unknown. 
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Chapter 4  

BIPOLAR DATA REPRESENTATION OF A 

HETEROASSOCIATIVE NET 

4.1 Advantages of bipolar vectors compared to binary vectors in 

data representation 

In a training process of a neural network, both binary and bipolar representations of 

training patterns can be used. Some advantages of a bipolar representation of patterns 

compared to a binary representation of patterns are given below: 

- Bipolar representation is more robust in the presence of noise [19]; 

- Bipolar representation is better in terms of strength and sign of correction 

coefficients [20]; 

- Less training time is required for bipolar vectors in pattern association and 

classification, i.e. learning process in a neural network using binary vectors takes 

longer time compare to bipolar vectors;   

- In comparison with the binary vectors, the bipolar vectors have greater probability 

of being orthogonal. If bipolar vectors are selected randomly, the probability to be 

pairwise orthogonal is higher compared to that randomly selected binary vectors can 
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be pairwise orthogonal. So not many bipolar vectors should be selected to be sure 

that pairwise orthogonality exists; 

- The bipolar vectors perform greater accuracy than binary vectors while using outer 

product encoding; 

- In the computation of the weight change in Hebbian learning rule, if the training 

input vector or the target vector is binary, then in updating the weight the result is 0. 

In other words, it is impossible to distinguish which of the following conditions are 

met by the input-target pair, if: 

- input is 1, and target is 0;  

- both input and target are 0.   

A pair of bipolar vectors                   for a heteroassociative net is stored, 

where  

                                 

and 

                                  

The weight matrix         is calculated as [19]: 
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4.2 Using bipolar vectors in a heteroassociative network   

We should represent binary input and target output vectors given in chapter 3 in the 

form of bipolar input – output pairs. After the mapping binary vectors onto bipolar 

vectors, we get the following input-output pairs: 

                                               

                                            

                                            

                                          

The outer products are used to find the weights in this example. 

By using the outer product the first pattern pair for the vectors is stored, and the 

weight matrix is obtained as follows:  

                                               

 
 
 
 
 
    
  
    
  
   

 
 
 
 

        = 

 
 
 
 
 
      
      
     
   
   

  
     
      

 
 
 
 

. 

To store the second pattern pair for the vectors by using the same process, we have 

the following weight matrix: 

                                             

 
 
 
 
 
   
     
     
   
    

 
 
 
 

        = 

 
 
 
 
 
       
       
     
   
   

  
    
     

 
 
 
 

 

The weight matrix for the third pattern pair for the vectors is stored using the same 

procedure, and the weight matrix is obtained as 
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The similar process is used for the last fourth pattern pair for the vectors to be stored, 

and the weight matrix is obtained as 
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To store all four pattern pairs, the final weight matrix is obtained by the sum of the 

weight matrices obtained above: 
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So the final weight matrix is  

W = 

 
 
 
 
 
      
      
    
  
  

  
    
     

 
 
 
 

 

Let’s test the network using training inputs. For the first training input 

vector                   , we have the following result for   : 

                    

 
 
 
 
 
      
      
    
  
  

  
    
     

 
 
 
 

 =           →        
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For the second training input vector                     we have the following 

result for   : 

                   

 
 
 
 
 
      
      
    
  
  

  
    
     

 
 
 
 

 =           →        

For the third training input vector                     we have the following result 

for   : 

                   

 
 
 
 
 
      
      
    
  
  

  
    
     

 
 
 
 

 =           →        

For the last fourth training input vector                       we have the 

following result for   : 

                    

 
 
 
 
 
      
      
    
  
  

  
    
     

 
 
 
 

 =           →        

So a net always has correct responses (desirable outputs) for the given input vectors.  

4.3 Testing new input vectors with bipolar representation  

Firstly we consider the new input vector                  , and measure the 

Hamming distance: 

                                                                                     

                                            Hamming distance = 1 

                                            Hamming distance = 1 

                                           Hamming distance = 5 

                                          Hamming distance = 4 
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The new input vector                   is closer to the first and second training 

input vectors (since the Hamming distance is minimum), and is differed from them in 

just one component, and we check which output is produced after the calculation of 

  :  

                 

 
 
 
 
 
      
      
    
  
  

  
    
     

 
 
 
 

 =           →         

One can see that the output of the new input vector                   is same with 

the output (target) of the first and second training pairs which is (1, -1), and this is a 

desirable result. 

Another new input vector                     to be considered for testing 

disagrees with the third input vector in just one component. It is found out in 

comparisons of Hamming distances given below:  

                                                                                       

                                            Hamming distance = 3 

                                            Hamming distance = 3 

                                            Hamming distance = 1 

                                          Hamming distance = 2 

So the desirable output for the new input vector                     should be 

same with the output of the third training pair (since the Hamming distance is 

minimum). The calculation carried out is   
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 =         →        

We again get the desirable output, since the new input vector                      

and the third training input vector produce the same output.  
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Chapter 5 

CONCLUSION 

Neural network is a branch of computer science, in particular artificial intelligence, 

and used for modeling human brain. In neural networks the computation of 

components are performed in a parallel form. A performance improvement of a 

neural network is achieved through learning process. 

One of the important advantages of an artificial neural network is its implementation 

for accomplishing a task of a pattern association in which an association between 

input and target output vectors is learned. There exist different learning algorithms 

for a pattern association.  

This master thesis investigates the Hebb rule for a feedforward heteroassociative 

neural network by determining the optimal weight matrix. The weights are updated 

after training of each input-output pair by using Hebb algorithm. The updating of 

weights can be also performed by the outer product learning rule which is simple and 

useful scheme. The sum of outer products of all the input-output training pairs 

defines the final weight matrix of a heteroassociative neural network.  

A neural network uses both binary and bipolar data representations. Compare to a 

binary representation of patterns, a bipolar representation provides better 
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performance. The advantages of bipolar vectors in data representation are also 

discussed in this thesis. 

After testing new unseen input vectors it is concluded that a neural network correctly 

responses to each training pattern by producing desirable output vector when the 

Hamming distance between testing and stored input vectors is minimum. The 

Hamming distance is the number of “mistake” components of two vectors of same 

length.   
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