
Intelligent Multi-Agent Online Examination System

Jane Chioma Anaekwe

Submitted to the

Institute of Graduate Studies and Research

in partial fulfilment of the requirements for the Degree of

Master of Science

in

Computer Engineering

Eastern Mediterranean University

February 2015

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

 Prof. Dr. Serhan Çiftcioğlu

 Acting Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master

of Science in Computer Engineering.

 Prof. Dr. Işık Aybay

 Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quantity as a thesis for the degree of Master of Science in Computer

Engineering.

 Assoc. Prof. Dr. Zeki Bayram

 Supervisor

 Examining Committee

1. Assoc. Prof. Dr. Zeki Bayram

2. Assoc. Prof. Dr. Alexander Chefranov

3. Asst. Prof. Dr. Adnan Acan

iii

ABSTRACT

Examinations are essential tools in an education system and are used to test the

knowledge, learning capabilities, and progress of a student in a specific domain. Due

to its importance in an academic system, it is therefore vital to have an examination

system that is fair and efficient. The traditional paper-based examinations are known

to have various constraints such as, their time consuming nature, delays in declaration

of results, human errors and tedious evaluation/management of large amounts of paper

which are prone to security risks and exam malpractice. Due to these limitations the

paper based systems have received various criticisms about its efficiency and fairness.

This thesis is aimed at solving the problem of the traditional paper-based exams by the

introduction of an intelligent multi-agent online examination system. The system is a

paperless exam integrated with intelligent agents. Each agent introduced in the system

has specific duties that they perform and are capable of communicating with each other

thereby forming an interconnected network. The duties of the agents include

monitoring exams, providing various services during exams e.g. extra time requests,

teacher requests, instant calculation and display of results, performance analysis, speed

analysis, and suggestions to students and teachers on topics students need to improve

in. Simulation exams (practice exams) are also provided to help students improve their

performance and become familiar with the system. This approach provides a fair and

efficient way of handling exams with reduced cost, workload, errors and risks thereby

providing assistance and convenience to both teachers and students.

Keywords: Multi-agent system, online examination system, efficient services.

iv

ÖZ

Sınavlar, bir öğrencinin belli bir alandaki bilgisini, öğrenme becerilerini, ve

ilerlemesini test etmeye yarayan elzem araçlardır. Akademik sistemdeki öneminden

dolayı, adil ve verimli bir sınav sistemi önemlidir. Geleneksel kağıt tabanlı sınavlarda

çeşitli kısıtlamalar olduğu bilinmektedir. Bunlar arasında zamanın boşa harcanması,

sonuçların bildiriminde oluşan gecikmeler, insan hataları, büyük miktarda kağıdın

değerlendirilmesi/idaresi’nin sıkıcı ve güvenlik yönünden riskler taşıması sayılabilir.

Bu sorunlardan ötürü kağıda dayalı sistemler verimlilik ve adaletlilik yönünden

eleştiriler almışlardır.

Bu tezin amacı, akıllı, çok etmenli, çevrimiçi bır sınav sistemi ile geleneksel kağıt

tabanlı sınvaların yol açtığı sorunlara çözüm getirmektir. Sistem akıllı etmenlerle

entegre olmuş kağıtsız sınavlardan oluşur. Sistemdeki her etmenin kendine has

görevleri vardır ve etmenler birbirleri ile konuşabilmeleri sayesinde bağlantılı bir ağ

oluştururlar. Etmenlerin görevleri arasında sınavları gözetleme, sınav esnasında bazı

hizmetler sunma (örneğin ek süre taleplerini değerlendirme), öğretmen talepleri,

sonuçların anında hesaplanıp gösterilmesi, performans analizi, hız analizi, ve

öğrenciler ile öğretmenleri öğrencinin gelişim göstermesi gereken konularda

bilgilendirmesi vardır. Sistemde var olan deneme sınavları da öğrencilerin

perrformansını arttırmaya ve sisteme aşinalık kazanmaya yardımcı olur. Bu yaklaşım

sayesinde sınavların adaletli, verimli, azaltılmış maliyet, iş, hata ve risk ile yapılması

mümkün hale gelmektedir.

Anahtar kelimeler: Çok etmenli sistem, çevrimiçi sınav sistemi, verimli hizmetler

v

DEDICATION

To God Almighty, the

help of my

countenance

vi

ACKNOWLEDGEMENT

I would like to thank God Almighty for His guidance, support, faithfulness and love

throughout my thesis research and course of study. Without Him it would never have

been possible. To Him be all the glory and honour.

I would also like to thank my supervisor Assoc. Prof. Dr. Zeki Bayram for his patient

support and advice which have been a useful guide during the preparation of my thesis.

My gratitude and thanks also goes to my family and friends who have played a very

vital role in all my academic endeavours. Their love, support and care gave me strength

to keep going and has been a great source of encouragement.

vii

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ ... iv

DEDICATION ... v

ACKNOWLEDGEMENT .. vi

LIST OF FIGURES ... x

LIST OF ABBREVIATIONS ... xiv

1 INTRODUCTION .. 1

1.1 Limitations of Paper-based Examinations ... 1

1.2 Online Examination Systems .. 2

1.3 Agent-based Online Examination System ... 3

1.4 Related works and Comparisons ... 4

1.5 Aims and Motivation ... 9

2 INTELLIGENT AGENTS AND MULTI-AGENT SYSTEMS 10

2.1 What is an Agent? ... 10

 Structure and Characteristics of Agents ... 10

2.2 Agent Types... 12

2.3 Agent Environment Types ... 13

2.4 Application of Intelligent Agents in the Real World 15

2.5 What are Multi-agent Systems? ... 15

 Structure of Multi-agent Systems .. 15

 Applications of Multi-agent Systems ... 16

viii

 Advantages of Multi-Agents Systems ... 17

3 INTELLIGENT MULTI-AGENT ONLINE EXAMINATION SYSTEM 18

3.1 System Definition .. 18

3.2 The Term ‘Intelligent’ ... 18

3.3 Why Multi-agent Systems? ... 19

3.4 System Database .. 21

3.5 System Structure .. 36

 Modules of the System ... 37

 Roles of the System Users ... 38

 Roles of Agents on the system ... 40

 Communication between user agents ... 43

3.6 How the System Works ... 46

3.7 Benefits of the System ... 61

4 THE IMPLEMENTATION PROCESS .. 63

4.1 The JADE Platform ... 63

 What is JADE? ... 63

4.2 How are JADE Agents Created? ... 63

4.3 How do JADE Agents communicate? ... 66

4.4 How do JADE agents behave? .. 68

4.5 JADE Agent Internal Structure ... 69

4.6 System Implementation Design ... 70

 Login Phase .. 70

 Starting an examination ... 75

ix

 Handling student exam requests .. 79

 Providing extra time in an examination ... 85

5 DISCUSSIONS ... 91

6 CONCLUSION AND FUTURE WORKS ... 94

7 REFERENCES ... 96

APPENDICES ... 102

Appendix A: Java program for Login agent on the server-side. 103

Appendix B: Java program for Login agent on the server-side. 106

Appendix C: Java program for the Exam monitor agent 109

x

LIST OF FIGURES

Figure 2.1. Structure of an agent .. 11

Figure 2.2. Multi-agent Systems .. 16

Figure 3.1. Examination table .. 21

Figure 3.2. Active_examination table .. 22

Figure 3.3. Inactive_exam table ... 22

Figure 3.4. Administration table .. 23

Figure 3.5. Course table .. 23

Figure 3.6. Course_improvement table .. 24

Figure 3.7. Courses_taken table ... 24

Figure 3.8. Exam_question_answer table .. 25

Figure 3.9. Options table .. 25

Figure 3.10. Exams_taken table ... 26

Figure 3.11. Extra_time table ... 26

Figure 3.12. Selected_log table .. 27

Figure 3.13. Final_select_log table .. 27

Figure 3.14. Sim_selected_log table .. 28

Figure 3.15. Sim_final_select_log table .. 28

Figure 3.16. Sim_student_ans table ... 29

Figure 3.17. Sim_student_category_grade table .. 29

Figure 3.18. Sim_student_grade table.. 30

Figure 3.19. Simexam_q_a table ... 30

Figure 3.20. Simoptions table .. 31

file:///C:/Users/user/Documents/T_work/Thesis_doc/Thesis_msdoc.docx%23_Toc413248167

xi

Figure 3.21. Simulationexam table .. 31

Figure 3.22. Student table .. 32

Figure 3.23. Student_answers table ... 32

Figure 3.24. Student_category_grade table.. 33

Figure 3.25. Student_grade table ... 33

Figure 3.26. Student_requests table ... 34

Figure 3.27. Teacher_courses table.. 34

Figure 3.28. ER. Diagram ... 35

Figure 3.29. System Structure: User-Server relatıonship .. 36

Figure 3.30. Modules of the System .. 37

Figure 3.31. Activity of Teachers on the OES ... 38

Figure 3.32. Student Activities on the OES ... 39

Figure 3.33. Activities of the server ... 40

Figure 3.34. Comunication between Login user and Login agent 43

Figure 3.35. Comunication between Exam monitor and Exam server agent 44

Figure 3.36. Comunication between Simulation monitor and Simulation agent 44

Figure 3.37. Comunication between Student assistant and Info extract agent 45

Figure 3.38. Comunication between Teacher assistant and Admin info agent 45

Figure 3.39. Comunication between Exam monitor and Info extract agent 46

Figure 3.40. Login Portal ... 47

Figure 3.41. Teacher Start Page .. 48

Figure 3.42. Set Examination Questions Page ... 49

Figure 3.43. Student’s grade and performance page .. 50

Figure 3.44. Examination questions ... 51

Figure 3.45. Student total and average performance ... 52

file:///C:/Users/user/Documents/T_work/Thesis_doc/Thesis_msdoc.docx%23_Toc413248202
file:///C:/Users/user/Documents/T_work/Thesis_doc/Thesis_msdoc.docx%23_Toc413248203
file:///C:/Users/user/Documents/T_work/Thesis_doc/Thesis_msdoc.docx%23_Toc413248204
file:///C:/Users/user/Documents/T_work/Thesis_doc/Thesis_msdoc.docx%23_Toc413248205
file:///C:/Users/user/Documents/T_work/Thesis_doc/Thesis_msdoc.docx%23_Toc413248206
file:///C:/Users/user/Documents/T_work/Thesis_doc/Thesis_msdoc.docx%23_Toc413248207

xii

Figure 3.46. Exam Attendance ... 53

Figure 3.47. Agent suggestions for Math teacher .. 54

Figure 3.48. Student requests page .. 55

Figure 3.49. Student Start Page .. 56

Figure 3.50. Examination Page .. 57

Figure 3.51. Overall Performance .. 58

Figure 3.52. Performance by Subject ... 59

Figure 3.53. Agent suggestions to Student .. 60

Figure 3.54. Examination Script .. 61

Figure 4.1. A JADE agent .. 64

Figure 4.2. General JADE Architecture [37] ... 65

Figure 4.3. JADE management console for server agents ... 66

Figure 4.4. Agent Communication: Sending messages ... 67

Figure 4.5. Agent Communication: Receiving messages .. 68

Figure 4.6. JADE Agent behaviour .. 68

Figure 4.7. JADE agent internal structure [14] .. 69

Figure 4.8. Login phase system design .. 71

Figure 4.9. Code for sending authentication request to the server login agent 72

Figure 4.10. Code for the receiving/sending messages for student authentication 73

Figure 4.11. Code for the receiving/sending messages for teacher authentication 74

Figure 4.12. Start examination system design ... 76

Figure 4.13. Code for sending request for exam information 77

Figure 4.14. Code for receiving/responding to exam information request 78

Figure 4.15. Code for sending exam requests .. 79

Figure 4.16. Student exam request design ... 80

file:///C:/Users/user/Documents/T_work/Thesis_doc/Thesis_msdoc.docx%23_Toc413248223
file:///C:/Users/user/Documents/T_work/Thesis_doc/Thesis_msdoc.docx%23_Toc413248226
file:///C:/Users/user/Documents/T_work/Thesis_doc/Thesis_msdoc.docx%23_Toc413248227
file:///C:/Users/user/Documents/T_work/Thesis_doc/Thesis_msdoc.docx%23_Toc413248228
file:///C:/Users/user/Documents/T_work/Thesis_doc/Thesis_msdoc.docx%23_Toc413248229
file:///C:/Users/user/Documents/T_work/Thesis_doc/Thesis_msdoc.docx%23_Toc413248230
file:///C:/Users/user/Documents/T_work/Thesis_doc/Thesis_msdoc.docx%23_Toc413248231
file:///C:/Users/user/Documents/T_work/Thesis_doc/Thesis_msdoc.docx%23_Toc413248232
file:///C:/Users/user/Documents/T_work/Thesis_doc/Thesis_msdoc.docx%23_Toc413248233
file:///C:/Users/user/Documents/T_work/Thesis_doc/Thesis_msdoc.docx%23_Toc413248234
file:///C:/Users/user/Documents/T_work/Thesis_doc/Thesis_msdoc.docx%23_Toc413248235
file:///C:/Users/user/Documents/T_work/Thesis_doc/Thesis_msdoc.docx%23_Toc413248236
file:///C:/Users/user/Documents/T_work/Thesis_doc/Thesis_msdoc.docx%23_Toc413248237
file:///C:/Users/user/Documents/T_work/Thesis_doc/Thesis_msdoc.docx%23_Toc413248238

xiii

Figure 4.17. Code for receiving/sending request response message.......................... 81

Figure 4.18. Viewing student request design ... 82

Figure 4.19. Code for requesting for student exam request 83

Figure 4.20. Code for receiving/responding to request for student exam request 84

Figure 4.21. System design for setting extra time ... 85

Figure 4.22. Code for sending extra time insertion request 86

Figure 4.23. Code for receiving/responding to extra time insertion request.............. 87

Figure 4.24. System design for adding extra time to exam duration 88

Figure 4.25. Code for checking if extra time is available .. 89

Figure 4.26. Code for responding to extra time request... 89

Figure 4.27. Code for adding extra time to exam duration .. 89

file:///C:/Users/user/Documents/T_work/Thesis_doc/Thesis_msdoc.docx%23_Toc413248239
file:///C:/Users/user/Documents/T_work/Thesis_doc/Thesis_msdoc.docx%23_Toc413248240
file:///C:/Users/user/Documents/T_work/Thesis_doc/Thesis_msdoc.docx%23_Toc413248241
file:///C:/Users/user/Documents/T_work/Thesis_doc/Thesis_msdoc.docx%23_Toc413248242
file:///C:/Users/user/Documents/T_work/Thesis_doc/Thesis_msdoc.docx%23_Toc413248243
file:///C:/Users/user/Documents/T_work/Thesis_doc/Thesis_msdoc.docx%23_Toc413248244
file:///C:/Users/user/Documents/T_work/Thesis_doc/Thesis_msdoc.docx%23_Toc413248245
file:///C:/Users/user/Documents/T_work/Thesis_doc/Thesis_msdoc.docx%23_Toc413248246
file:///C:/Users/user/Documents/T_work/Thesis_doc/Thesis_msdoc.docx%23_Toc413248247
file:///C:/Users/user/Documents/T_work/Thesis_doc/Thesis_msdoc.docx%23_Toc413248248
file:///C:/Users/user/Documents/T_work/Thesis_doc/Thesis_msdoc.docx%23_Toc413248249

xiv

LIST OF ABBREVIATIONS

PBE Paper-based Examination

OES Online Examination Systems

PC Personal Computer

FIPA Foundation for Intelligent Physical Agents

JADE Java Agent Development Framework

MAS Multi-agent Systems

 1

Chapter 1

1 INTRODUCTION

 Limitations of Paper-based Examinations

The Paper-based examination (PBE) system has been used for centuries in evaluating

the learning abilities of a person. The introduction of written exams is believed to have

started in China over a thousand years ago [1] and are still in use today. The PBE

system, to some extent, enables one to assess how much a person knows and how well

he or she is able to apply what they know in solving problems [2]. Although the PBE

system has been useful in many ways various shortcomings have been detected which

limits its efficiency. PBEs are to prone to human errors and limitations. Mistakes in

the grading of an exam and delays in declaration of results can occur which raises

suspicions of unfairness [2], [3]. A tedious amount of time goes into co-ordination of

paper-based exams, the distribution and collection of large amounts of papers, and the

manual assessment of these papers can make the whole process inefficient and

monotonous [2], [3], [4]. The rigidity of the exam location and exam time is another

setback in the PBE system, times and locations are usually fixed and can’t be altered

easily [2], [3].

Other limiting factors of PBEs are their cost and security [3], [4], [5]. Printing large

amounts of exam papers, hiring extra hands (e.g. invigilators), and safe guarding of

 2

exam papers are issues which plague the PBE system, and create potential problems

[3], [4], [5].

Since examinations are still of great importance in our society today, a more efficient

way of handling them is needed and as we go on a better alternative is shown.

 Online Examination Systems

With the growing rate of development in Internet and network technologies, many

organizations are now migrating from a manual system of operation to a computer

based system. Academic organisations are not an exception as many academic

institutions are now replacing their PBE systems with online examination systems

(OES) [5].

Online examination systems are paperless testing systems through which students or

individuals can take tests or exercises via a computer with the use of Internet and

network technologies [6], [7], [8]. Examination questions, student answers, exam

results and other necessary information are passed across to system users via a

network, and the operations involved in managing an examination are handled

automatically by the system [6] [8].

With the new developments in online exams, OES is gradually becoming the preferred

choice over PBE systems [3], [4], [5]. Online examination systems provide ease and

convenience by reducing the workload, cost and limitations of the PBE systems. They

reduce the time costs since most functions such as, the distribution of questions,

grading, and display of results are handled instantly [9]. Online examinations can be

 3

taken at different times and in different locations which solves the time-space

constraints of the paper-based system [2], [3], [4], [8], [9] and opens up opportunity

for distance learning.

The advanced features in OES improves the quality of teaching and learning [9] and

exposes students to a system that is fast, efficient, and objective [3], [4], [7], [9].

 Agent-based Online Examination System

There are various ways in which online examination systems are implemented and

each have their own method of operation. Ahmad, Khan and Abbas presented a PHP

and MySQL based online examination system with power failure handling and

Dropbox capability [5], Li and Wu Presented an online examination system based on

Browser/Server (B/S) structure [8], Liu and Wang presented an online examination

system based on UML modelling and MVC design pattern [9], Lu and Hu presented

the design and implementation of an online examination system based on J2EE [10],

and Li Jun presented the design of an online examination system based on Web service

and COM [11]. These articles amongst others describe various OES implementations

using different methodologies, each with its own advantages and disadvantages

(described in section 1.4). The focus of this thesis will be on the agent-based

methodology.

Agent technologies have been applied in a wide variety of areas such as, information

retrieval from databases and the internet, information filtering, intelligent user

interfaces, decision making, smart messaging, electronic business etc. [12], [13]. One

 4

of the aims of using agent technology is to introduce autonomy and intelligence into

applications by making the agents perform tasks on behalf of users [12].

In this thesis, intelligent agents will be used in implementing an online examination

system in which agents perform various tasks on the system making it smart and

efficient. The system is divided into various modules with agents performing specific

duties on them. The agents work hand in hand and communicate with one another in

order to accomplish specific goals. Each duty that the agents perform play an important

role in the total performance of the system. The implementation of the agent system

was done using the JADE agent platform [14]. Further details on the implementation

of the system will be discussed later on.

 Related works and Comparisons

Various works on online examination systems have been implemented each with its

own methodology and mode of operation.

 Bhuvaneswari, Sujatha and Deepthi published a proposal on centralized Exam

Assesment Aportion using Mobile agents [15]. The article deals with

implementing an agent-based system for handling centralized exam assessment

with the aim of improving information retrieval in distributed systems and

enhancing the security of data.

Comparison: Although the system has a secure mechanism for protecting data

(Tamper detection framework) and a well-structured architecture, it has little focus

on providing mediums through which students can build up their learning skills

and improve their academic performance. This thesis aims at providing these

mediums through practise exams, agents suggestions that help students analyse

 5

their performance and useful agent assistance offered to students during exams (eg

hurry up reminders, calculating student’s estimated time to finish, enabling

students make request during exams). More on these features can be seen in chapter

3 and 4.

 Gawali and Meshram [2] designed an agent-based autonomous examination

system using Java aglets. The system makes use of main, mobile and stationery

intelligent agents located in its modules (Examination, Authentication, result

calculation) to perform various tasks. One of the aims of the research was use the

idea of agent mobility and agent communication to create a system that increases

network performance and reduces network delays.

Comparison: Although the proposed system reduces certain limitations there is

still little mentioned on building a student/teacher-friendly system that meets he

needs of both teachers and students. This thesis aims at providing a system that

students and teacher can perform various useful activities in. The system provides

useful moodles design particularly for teacher and students. These moodles (e.g.

setting practise/exam questions, viewing agent performance analysis,

viewing/handling student exam requests, taking practise exams) provide a

conducive and convenient environment for students and teachers to perform

various operations effectively, hence improving their performance.

 Ali and Hussain [16] designed a smart electronic examination system using a

Multi-Agent platform. The system was implemented using the JADE environment;

 6

it was targeted at reducing cheating in exams, and setting questions for examinees

according to their performance. The faster the student answers a question the

harder the questions become. In this system, agents installed on the PCs use the

experience gained from interacting with other agents and examinees to detect

cheating and perform its duties.

Comparison: Although the idea of hardening exam questions can help in

evaluating the knowledge level of a student, it can also raise issues of unfairness

when certain students receive harder questions than others. An alternative medium

of assessing students is proposed in this thesis. Student all have a fair and equal

chance of answering similar questions in the exams. In this system, the knowledge

level of students is not determined through the hardening of questions but by

analysing the student’s performance during practise exams and formal exams.

With the help of agents the performace of students can be easily calculated and

their areas of weakness or strength is displayed. With this the students can know

what level thay are in and the areas they need to improve in.

 Khan and Abbas implemented a PHP and MySQL based online examination

system with power failure handling and Dropbox capabilities [5]. The system

enables students resume an examination from where they stopped before power

failure and, solves the problems of online examinations in countries with frequent

power cuts. The system also creates flexibility in the way questions are answered

by introducing Dropbox features which enable students save difficult questions in

Dropbox and answer them at a later time.

 7

Comparison: The system provides a user-friendly and convenient environment

for students to take exams but since some of its features is dependent on Dropbox

it is open to various problems if any Dropbox failure or delay occurs. In this thesis

Dropbox independent flexibility in answering questions is provided. Students can

also skip difficult or ambiguous question and answer them at a later time but this

is not done with the help of Dropbox but through tactical database structuring

(specific tables have been created to determine answered and unanswered

questions) and specific database queries made by agents on the system’s server.

The related work mentioned also does not have features that can introduce

smartness or autonomy. In this thesis agent-technologies is used in order to provide

opportunities through which intelligence can be introduced into the system (details

on intelligence is further described in section 3.2).

 Using the J2EE platform, researchers Xiaoyu and Yunhao presented a research and

implementation of a web-online English testing system [4]. With the same platform

researcher Lu and Hu also designed and implemented an online examination

system [10]. Both researches basically divided the operations of their system into

modules e.g. Exam management and Scores management. Each module has

specific duties they perform and the system was programmed according to these

specifications.

Comparison: Although these systems provide a good alternative to paper-based

systems, there is still room for further improvements by the implementation of

additional features and system functions e.g. providing hurry up reminders during

 8

exams, displaying estimated time to finish, providing opportunities to answer

ambiguous questions later, setting and taking practise exams, sending requests for

extra time or attention to teachers during exams, handling exam requests by

teachers, getting useful agents analysis of performance, amongst others. These

features listed are provided in this thesis.

 Another online examination system based on B/S (Browser/Server) structure was

developed by Li and Wu [8]. The system offers various features that help both the

teachers and students improve their skills. Students are given opportunities to test

themselves and be involved in various academic contests and activities that build

up their knowledge. The system also enhances teaching skills by providing

techniques for analysing students, exam papers and questions.

Comparison: The ideas proposed in this system are creative, but on the other hand,

introducing a certain level of intelligence by assigning functions of the system’s

modules to an intelligent software or agent network will greatly increase the

efficiency of the system. This thesis looks into creating a system where the bulky

and complex tasks of a system is broken down into simpler subtasks handled by

agents in a network. This not only makes the system easier to manage, debug and

maintain but also opens door for various smart features to be added into the system.

 9

 Aims and Motivation

In this section I will discuss what this thesis hopes to achieve. The aim of this thesis is

to:

1. Provide solutions to the limitations of paper-based examination systems.

2. To create an online examination system that is geared towards enhancing the skills

of students and teachers.

3. To offer a flexible, smart and convenient alternative for conducting exams and

assessing students.

4. To provide students with a user-friendly, fun and helpful guide for knowledge

enhancement.

5. To improve the quality of teaching and learning, and the general standard of

education by enhancing academic evaluation methods.

This thesis is motivated by the need to satisfy the aims stated and the desire to offer

better solutions that will make a positive impact on education in the future.

 10

Chapter 2

2 INTELLIGENT AGENTS AND MULTI-AGENT

SYSTEMS

 What is an Agent?

Over the years there have been varyıng definitions for an agent; this due to the fact

that the different characteristics of an agent can vary in its importance in different

fields or domains [17]. Agents are generally described as computational entities,

software components or computer systems that are capable of performing autonomous

actions on behalf of their users [2], [12], [17], [14]. Due to their independent and social

abilities, agents have been used in wide variety of complex applications [2], [13].

 Structure and Characteristics of Agents

Agents perform actions according to the information they perceive from their

environment [2], [17]. With the use of physical sensors (used by agents situated in the

real world) or software sensors (used by software agents), agents gather information

from their environment; they use this information to perform certain actions on their

environment with the help of effectors or actuators [17], [18], [19]. The general aim of

agents is to satisfy certain goals or objectives they are designed to achieve [2], [17],

[18].

 11

Intelligent agents exhibit certain characteristics; they are reactive, autonomous,

proactive, social, and cognitive, amongst others.

Autonomous: Agents are able to operate without the guidance or intervention of

human beings [12], [14]. They are able to take control over their actions and take

decisive steps to achieve their goals [14], [20].

Reactive: Agents have the ability to perceive their environment and respond promptly

to the changes that occur in their environment [17], [14].

Proactive: Agents do not only act reactively in response to their environment but can

also exhibit proactive behaviour i.e. they are able to take the initiative in their quest to

satisfy their goals rather than simply responding to their environment [12], [17], [14],

[20].

EFFECTORS SENSORS

ENVIRONMENT

AGENT

Actions Percepts
(Sensory inputs)

Figure 2.1. Structure of an agent [17]

 12

Social: Agents are social entities that are able to interact with other agents or humans

in order to accomplish their goals [17], [14], [20]. Agents can communicate with the

use of an agent communication language which will be discussed further as we go on

[14].

Other characteristics of agents include flexibility, mobility, rationality, learning

capabilities [2], [14] etc. All these characteristics assists agents in achieving their goals

which is the main aim of an agent.

 Agent Types

Intelligent agents can be classified into various types. Some of them are:

Local or Interface Agents: This type of agent can only access the local resources in

its environment and serves mainly as an assistant to users [12], [13]. Local agents help

to simplify the complex tasks of users [12], [13]. They have the ability to learn about

a user’s mannerisms or preferences through observations and can act on behalf of the

users [12]. They can also advise, train or teach users in various ways [13].

Networked Agents: This agent makes use of both local and remote resources unlike

local agents [13]. Apart from providing services to the user, a networked agent makes

use of services available on the network to perform its duties on behalf of users [13].

One of the main uses of networked agents is for information retrieval since the agents

can access a wide range of information in a network [12], [13].

DAI (Distributed Artificial Intelligence based) based or collaborative Agents:

This type of agent unlike the previously defined ones have the ability to communicate

 13

with one another [12], [13]. A DAI-based agent collaborates or works hand in hand

with other agents to perform tasks on behalf of a user [12]. Using this interconnected

form of communication, agents are able to assist one another or jointly take actions

with the aim of achieving their goals [13]. This type of system was used in the

implementation of this thesis and will be described in further details as we go on.

Mobile Agents: Mobile agents are intelligent agents that are capable of migrating from

one computer to another. They are capable of stopping execution on one PC and

transporting themselves to another PC to continue execution. The mobility of agents

is very useful in large computer networks with a wide range of sophisticated services.

They help in reducing network load and they also solve host problems e.g. an agent

can migrate from a faulty or corrupt system to another one and continue execution.

Other types of agent classifications are learning agents, Utility-based agents,

Emotional agents, Simple reflex agents, Goal-based agents, Model-based agents etc.

 Agent Environment Types

As mentioned previously, agents gather information from the environment they

perceive and also perform actions on their environment. There are various

environments that an agent can work in. Some of them are given below.

Deterministic vs. Non-deterministic: An environment is deterministic if the next

state of the environment or the resulting effect of actions taken on an environment can

be determined by its current state i.e. there is no uncertainty about the state of the

environment after an action has been performed on it [17], [19]. A non-deterministic

 14

environment is the opposite; there are uncertainties about the state of the environment

and the resulting effect cannot be determined by its current state.

Accessible vs. Inaccessible: An environment is accessible if an agent can obtain all

the information about the environment [17], [19]. If agent’s sensors can perceive or

gain access to all relevant parts of its environment then the environment is said to be

accessible to the agent [19]; an inaccessible environment on the other hand is vice

versa.

Static vs. Dynamic: An environment is said to be static if and only if it remains

unchanged except by actions performed on it by an agent [17]. In a dynamic

environment, other factors other than the actions of an agent can cause changes in the

environment, and these changes can sometimes be beyond the control of the agent [17].

Episodic vs. Non-episodic: An episodic environment is an environment in which an

agent’s experience is divided into episodes [19]. Each episode is independent of the

previous ones [17], [19]. Agents can independently perceive and act in an episode

without being affected by previous episodes [19]. The main focus of agents in this

environment is its current episode [17], [19]. Non-episodic environment are not so;

previous actions can affect future ones.

Discrete vs. Continuous: An environment is said to be discrete if it has a fixed number

of possible precepts and actions in it; a continuous environment is the opposite (no

fixed number or percepts and actions) [17], [19].

 15

 Application of Intelligent Agents in the Real World

Agents have been applied in many areas in the real world. They can be used in

information retrieval, information filtering, smart messaging, ecommerce, email

management, network management, system management, business operations,

telecommunications and entertainment [12], [13], [21]. Agents have been used in

implementing a wide range of applications such as Personal assistants, Advisory

assistants, teaching assistants or eLearning assistants, smart mail boxes, intelligent

user interfaces, meeting scheduler, customer help desk, personal shopping assistants,

mobile applications and so much more [12], [13], [21], [22], [23].

 What are Multi-agent Systems?

A multi-agent system (MAS) is an interconnected network of intelligent agents that

are capable of interacting with one another [24], [25]. The agents work together to

achieve common goals and are capable of performing distributed tasks concurrently

[26]. One of the main aims of a MAS is to find solutions to complex system problems

and to handle tasks that are beyond the ability of a single agent [27], [28].

 Structure of Multi-agent Systems

Figure 2.2 shows a multi-agent system with agents communicating with one another.

The agents observe things in their environment and make use of or perform actions on

the resources in their environment.

 16

Figure 2.2. Multi-agent Systems [29]

 Applications of Multi-agent Systems

Due to their ability to solve complex problems, multi-agent systems have been

applied in so many areas, some of which are:

 Aircraft Management or maintenance [25]

 Distributed vehicle monitoring [30]

 Military defence systems [25]

 Wireless communications [25]

 Telecommunications [14]

 E-learning [31]

 Online Examination Systems [16]

 Multi-robotic systems [14]

 Health care management [14]

 17

 Advantages of Multi-Agents Systems

Multi-agent systems have a wide range of advantages:

 They are capable of handling the problems of large complex distributed systems

that may be difficult for humans or a single agent to handle [25], [27], [28].

 Due to the collaborative nature of MAS, computerized systems in which multi-

agent systems are incorporated, significantly improve in performance especially in

the area of flexibility, efficiency, reliability, extensibility, robustness amongst

others [25].

 MAS are efficient in filtering, retrieving and organising information from widely

distributed sources [25].

 In MAS, resources and information are efficiently distributed over a network of

agents i.e. Agents do not experience limitations in accessing the necessary

resources that they need in the system [25].

 18

Chapter 3

3 INTELLIGENT MULTI-AGENT ONLINE

EXAMINATION SYSTEM

 System Definition

Intelligent multi-agent online examination system as the name implies is an

examination system handled by multiple agents in a network. Each agent in the system

has duties that it performs and can communicate with other agents to get the

information that it needs to accomplish its personal goals. Although each agent has

individual goals it aims at satisfying, agents as a whole also have a common goal,

which is to improve the efficiency, smartness and flexibility of the examination

system. The system was implemented for use in a university environment but can be

extended to other areas as well.

 The Term ‘Intelligent’

The attribute or characteristics that make an agent ‘intelligent’ varies across field and

domains. In general an agent is deemed intelligent if it portrays the following

characteristics:

 Reactive: The ability to perceive its environment and respond promptly to the

changes that occur in its environment [17], [32], [33].

 Proactive: Ability to take the initiative to satisfy its goals (goal-oriented) [17], [32],

[33].

 19

 Autonomous: Ability to perform tasks independently without the intervention of

humans [32].

 Collaborative or social: ability to work with and interact with other agents or

humans [17], [32], [33].

 Ability to learn/Adaption: Ability to learn from experience and improve its

performance over time [32], [33].

These characteristics amongst others, (e.g. mobility, rationality) are the terms used by

many to determine if an agent is intelligent or not. In this thesis however, the agents

do not exhibit all the characteristics specified above. The ‘intelligence’ of the OES

agents in this thesis is restricted to the following characteristics:

 They perform various tasks on behalf of users (autonomous)

 They are goal-oriented i.e. they are capable of satisfying goals or duties they are

designed to accomplish.

 They have the ability to communicate with other agents in their quest to satisfy

their goals (communicative and collaborative).

It is on the basis of the attributes listed above that the OES agents are classified as

‘intelligent’.

 Why Multi-agent Systems?

The question ‘why multi-agent systems over other alternatives?’ can be answered with

the follows points:

 Parallelism: The tasks of multi-agent based systems are distributed to various

agents that can perform their work in parallel [34]. This helps in improving the

speed and performance of the system [34].

 20

 Fault tolerance: Multi-agent systems are fault tolerant [34]. If the task and duties

of a system are adequately distributed among agents, failure that may occur in one

or more agents may not affect the entire system [34].

 Simplified programming: Multi-agent systems are generally modular in nature

i.e. the system functions or operations of the system are divided into different

modules [34]. Due to its modular nature the system is generally easier to program

since the large complex task of the system is broken down into simpler parts that

are assigned to different agents [34].

 Scalability: Another good feature of multi-agent systems is its scalability. Due to

its modular nature, it’s easier to make changes to the system [34] i.e. new agents

or features can be easily added to the system whenever necessary [34].

 Intelligence: Using multi-agent system opens up opportunities for intelligence to

be introduced into a system [34]. Agents on the system are able to perform certain

tasks on behalf of users; they are able to reason and make decisions on how their

goals can be achieved [34].

 Multi-agent systems are ideal for companies or organizations who need a system

that can satisfy the different goals or objectives of the diverse departments in the

firm [34].

 21

 System Database

All the information needed in running the examination system is stored in a database

called “OnlineExamination”. The MySQL Workbench environment was used in

creating the database and its tables. The tables used the system are as follows:

1. Examination table: Used for storing information about an exam. The table

contains the following fields: the examination number, exam type, exam date,

exam points, course id, duration, and semester.

Figure 3.1. Examination table

2. Active_examination table: Stores active exams (exam currently being taken).

When the date an time of an exam is reached the exams are activated and stored in

the Active_examination table. This table contains the following fields:

examination number and course id.

 22

 Figure 3.2. Active_examination table

3. Inactive_examination table: Stores deactivated exams (exam already taken).

When the duration time of an exam elapses, the exam is deactivated and inserted

into the inactive_exam table. This table contains the following fields: examination

number and course id.

 Figure 3.3. Inactive_exam table

4. Administration table: Used for storing information about teacher. This

information is used for authenticating the teacher during login. The table contains

the following fields: admin username, admin password, role, admin name, and

admin surname.

 23

Figure 3.4. Administration table

5. Course table: Used for storing information about semester courses. The course

ID, course name and course credit are all stored in this table. These courses are

assigned to the appropriate students and teachers during the semester and activities

relating to these courses are performed on the system.

Figure 3.5. Course table

6. Course_improvement table: Used for storing the improvement percentage of

students. As students take practise exams on the system their improvement

percentage is stored in the Course_improvement table and displayed to students

when necessary. The table contains the following fields: improvement number

(No), student ID, improvement (Percentage out of 100%), and course ID.

 24

Figure 3.6. Course_improvement table

7. Courses_taken table: Used for storing courses taken by students during the

semester. This table displays the courses assigned to students in a particular

semester. The table contains the following fields: student ID and course ID.

 Figure 3.7. Courses_taken table

8. Exam_question_answer table and Options table: Used for Storing exam

questions, answers and options. When teachers set exam questions the questions

and options are automatically inserted into the Exam_question_answer table and

Options table. These questions are later displayed to students during an exam. The

Exam_question_answer table contains the following fields: question ID,

examination number, question, answer, points, category. The Options table

contains the following fields: question ID, examination number, and options

A,B,C,D,E respectively.

 25

Figure 3.8. Exam_question_answer table

Figure 3.9. Options table

9. Exams_taken table: Stores exam already taken by students. Once an exam has

been completed by a student, information about the exam and the student who took

the exam is stored in this table. This table contains the followimg fields: student

ID and examination number.

 26

Figure 3.10. Exams_taken table

10. Extra_time table: Stores the extra time given by teachers in a particular exam.

When a teacher decides to give extra time for an exam, the extra time given is

inserted into this table with the corresponding course ID, exam type, and time of

addition.

Figure 3.11. Extra_time table

11. Selected_log table: Stores exam questions already viewed/attempted by students

during an exam. This prevents students from viewing or answering questions

previously displayed. The table contains the following fields: examination number,

question ID, question number, and student ID.

 27

Figure 3.12. Selected_log table

12. Final_select_log table: Students are given the opportunity to skip ambiguous

questions and answer them later. After all questions have been attempted, a student

can start answering his/her previously unanswered questions. Once these questions

are answered they are immediately inserted into the Final_select_log table. This

helps to determine the answered/unanswered questions of a student i.e. questions

whose ids are not found in this table can still be answered by students. The table

contains the following fields: examination number, question ID, question number,

and student ID.

Figure 3.13. Final_select_log table

13. Sim_selected_log table: Stores exam questions already viewed/attempted by

students during a simulation exam. This prevents students from viewing or

answering questions previously displayed. The table contains the following fields:

simulation examination number, simulation question ID, and student ID.

 28

Figure 3.14. Sim_selected_log table

14. Sim_final_select_log table:. Students are given the opportunity to skip ambiguous

questions and answer them later. After all questions have been attempted, a student

can start answering his/her previously unanswered questions. Once these questions

are answered they are immediately inserted into the Sim_final_select_log table.

This helps to determine the answered/unanswered questions of a student i.e.

questions whose ids are not found in this table can still be answered by students.

The table contains the following fields: simulation examination number,

simulation question ID, and student ID.

 Figure 3.15. Sim_final_select_log table

15. Sim_student_ans table: Stores answers selected by students in a simulation exam

and is used for calculating the student’s grades. The table contains the following

fields: simulation examination number, simulation question ID, student answer,

category, and student ID.

 29

Figure 3.16. Sim_student_ans table

16. Sim_student_category_grade table: Stores the grades (practice exams grades) of

students in the different topics of a course and is used for displaying the topics a

student is good or bad in. The table contains the following fields: student ID,

simulation exam number, category, category grade, number of correct answers in

a category (No_correct_ans), and course ID.

Figure 3.17. Sim_student_category_grade table

17. Sim_student_grade table: Used for storing the practice exam grades of students

in various courses. The grades are displayed to students after each exam. The table

contains the following fields: student ID, simulation exam number, student

simulation exam points, grade, and course ID.

 30

Figure 3.18. Sim_student_grade table

18. Simexam_q_a table and Simoptions table: Used for Storing exam questions,

answers and options. When teachers set practise exam questions, the questions and

options are automatically inserted into the Simexam_q_a table and Simoptions

table. These questions are later displayed to students during a practise exam. The

Simexam_q_a table contains the following fields: simulation question ID,

simulation examination number, simulation question, simulation answer, points,

category. The Simoptions table contains the following fields: simulation question

ID, simulation examination number, and options A,B,C,D,E respectively.

Figure 3.19. Simexam_q_a table

 31

Figure 3.20. Simoptions table

19. Simulationexam table: Used for storing information about a simulation or

practise exam. The table contains the following fields: simulation examination

number, course id, duration, and semester.

Figure 3.21. Simulationexam table

20. Student table: Used for storing information about students. The student’s ID,

name, surname, department, password are all stored in this table. The information

in this table is used for logining in students, assigning courses to students,

assigning grades, amongst others.

 32

Figure 3.22. Student table

21. Student_answers table: Stores answers selected by students in an exam and is

used for calculating the student’s grades. The table contains the following fields:

examination number, question ID, student answer, category, and student ID.

Figure 3.23. Student_answers table

22. Student_category_grade table: Stores the exam grades of students in the

different topics of a course and is used for displaying the topics a student is good

or bad in. The table contains the following fields: student ID, exam number,

category, category grade, and the number of correct answers in a category

(No_correct_ans).

 33

Figure 3.24. Student_category_grade table

23. Student_grade table: Used for storing the exam grades of students in various

courses. The grades are displayed to students after each exam. The table contains

the following fields: student ID, exam number, student exam points, grade, and

exam type.

Figure 3.25. Student_grade table

24. Student_requests table: Used for storing the exam requests made by students in

an exam. Students can either make a request for extra time or for the teacher’s

attention which is stored in the ‘request’ column of the table. The table contains

the following fields: student ID, student name, student surname, course ID, request,

time of request, and exam type.

 34

Figure 3.26. Student_requests table

25. Teacher_courses table: Used for storing courses assign to teachers for a particular

semester. Activities related to these courses are performed by teachers on the

system. The table contains the following fields: admin username, course ID.

 Figure 3.27. Teacher_courses table

Figure 3.28 shows the ER diagram of the database with the respective relationships

and connections between tables.

Figure 3.28. ER Diagram

 36

 System Structure

The multi-agent examination system is split into two parts: the user side and the server

side. There are five agents located on each side of the system. On the server side we

have the following agents: Login agent, Info extract agent, Admin info extract agent,

Exam server agent and Simulation agent. On the user’s side we have the following:

Login user agent, student assistant agent, teacher assistant agent, exam monitor agent,

and simulation monitor agent. Each agent has roles to play on the system and will be

discussed later in section 3.5.2.

Figure 3.29 shows the structure of the system and user-server communication between

agents on the user side and agents on the server side.

Figure 3.29. System Structure: User-Server relatıonship

PC1

PC1

•Login UserAgent

•Student Assistant Agent

•Teacher Assistant Agent

•Exam Monitor Agent

•Simulation Monitor Agent

PC2

PC2

•Login User Agent

•Student Assistant Agent

•Teacher Assistant Agent

•Exam Monitor Agent

•Simulation Monitor Agent

PC3

•Login User Agent

•Student Assistant Agent

•Teacher Assistant Agent

•Exam Monitor Agent

•Simulation Monitor Agent

Agents on the Server

 Login Agent

 Info Extract Agent

 Admin Info Extract Agent

 Exam Server Agent

 Simulation Agent

Agents on User PC1

Agents on User PC2

Agents on User PC3

PCPC3

Request

Response

 37

 Modules of the System

The system is divided into various parts. The three major parts of the system are:

Teacher activity module: This is the part that deals with the operations performed by

teachers.

Student activity module: This part deals with the activities done by students.

Server activity module: This deals with the operation done by the server.

A detailed description of the operations of each module is given in sections 3.5.2 and

3.5.3. Figure 3.30 shows the various parts of the system. To increase the efficiency of

the system, agents were assigned to each module and perform specific duties in them.

Figure 3.30. Modules of the System

ACTIVITIES DONE BY
USERS AND THE

SERVER

USERS OF THE
SYSTEM

AUTHENTICATION

OES

LOGIN

TEACHERS

OES OPTIONS
FOR TEACHERS

STUDENTS

OES OPTIONS
FOR STUDENTS

SERVER

ACTIVITIES

 38

 Roles of the System Users

As shown previously the two major users of the multi-agent OES are teachers and

students. There are several activities that users can perform on the multi-agent OES.

Figure 3.31 gives a descriptive illustration of the activities of teachers on the system.

Figure 3.31. Activity of Teachers on the OES

With the help of agents teachers can perform the activities described in Figure 3.31.

 Teachers can view suggestions by agents on which topics students need to improve

on in a particular course.

 They can view requests (Extra time requests and requests for teacher’s attention)

sent by students (via agents) in the exam hall.

 They can set examinations questions or practice questions for students to solve.

OES OPTIONS FOR
TEACHERS

Set
Examination

View Grades
and

Performance
Percentage

View
Examination

Questions

View Total
and

Performance
Percentage

View Exam
attendance

View Agent

Suggestions

View Student

Exam Requests

Set Simulation

Examination

View Simulation

Examination

Questions

 39

 Teachers can view grades, performance percentages, totals and exam scripts all

provided to them by the agents on the system.

Figure 3.32. Student Activities on the OES

Figure 3.32 give a descriptive illustration of the activities of students on the system.

With the help agents students can perform the following activities on the system:

 They can take exams in various courses. During the exam, agents assists students

in sending requests for extra time or attention.

 Students can get suggestions from agents on topics they should improve on.

 They can view their grades, totals and performance percentages in various courses.

 Students can also take practice or simulation exams to improve their knowledge in

a particular course and also get accustomed to the OES environment.

OES OPTIONS
FOR

STUDENTS

Start
Examination

Exam
Simulation

View Overall
Performance

View
Performance

by Subject

View Agent
Suggestions

 40

Figure 3.33. Activities of the server

The operations the server performs is a very important part of the system. Without the

services provides by the server, the users will be unable to perform their tasks. Vital

information needed by the user-side of the system is provided by the server and stored

in the server. The server is responsible for the activating exams at the appointed time,

without this activation students will be unable to take their exams.

 Roles of Agents on the system

As mentioned in section 3.5, there are five agents on both the user and server side of

the system. In this section the functions of the agent will be described in detail. The

functions of agents on the user-side are as follows:

Login user agent: This agent is responsible for authenticating users and providing

access into the system. The login agent sends the information entered by users to the

login user agent on server who then assists in validating users of the system on the

server side.

Exam Monitor agent: Monitors and coordinates exams taken by students. It is

responsible for displaying exam questions, remaining time, extra time, hurry up

reminders, estimated time to finish, grades, exam scripts and performance statistics to

the students. It also send student exam requests (request for attention or extra time) to

SERVER
ACTIVITIES

Exam Activation
at Appointed

Time

Service Provision
to Teachers upon

Request

Service Provision
to Students upon

Request

Information
storage and

retrieval from
database

 41

the Info extract agent, student answers to the Exam server agent, and deactivates exams

on the user-side when the remaining time is exhausted.

Simulation Monitor agent: Monitors and coordinates practice or simulation exams

taken by students. It is responsible for displaying exam questions, remaining time,

estimated time to finish grades, exam scripts and performance statistics to the students.

It also sends student answers to the Simulation agent on the server-side, and

deactivates exams on the user-side when the remaining time is exhausted.

Student Assistant agent: Provides assistance to the students with the help of the info

extract agent on the server-side. It displays student performance statistics, agent

suggestions, student grades and totals to the students.

Teacher Assistant agent: Provides assistance to the teachers with the help of the

Admin Info Extract agent on the server-side. It displays student performance statistics,

agent suggestions, exam questions, student grades, student total, student exam

requests, and student attendance to teachers. This agent also helps teachers in setting

exam/practice questions, and providing extra time information entered by the teacher

on the user side.

 42

The functions of agents on the server-side is as follows:

Login agent: Using the information provided by the login agent on the user-side the

login agent on the server side compares the data sent with the user data stored in the

database. If the user information stored in the database corresponds with the one sent,

the login agent sends a message to the login user agent, successfully validating the

user. If both data do not correspond then the login agent sends an invalid user message.

Admin Info Extract agent: The admin info Extract extracts information about student

attendance, student exam requests, agent suggestions, exam questions, student grades,

total and performance for use by the teacher assistant agent. It also assists the teacher

in inserting extra time and exam questions into the database.

Exam Server agent: This agent works together with the Exam Monitor Agent in

handling exams by providing the necessary information and services needed. It sends

exam questions and options to the exam monitor agent, sends exam duration and

deactivation time, inserts student’s exam answers into the database, calculates student

grades, displays exam scripts and activates or deactivates an exam at the appropriate

time.

Info Extract agent: This agent is responsible for providing information and services

to the student assistant agent and the exam monitor agent. The info extract agent

extracts information about agent suggestions, student performance and extra time

provided by teachers. It also stores information about the requests student made during

exams and sends extra time information to the exam monitor agent.

 43

Simulation agent: Works together with the Simulation Monitor Agent in handling

exams by providing the necessary information and services needed. The Simulation

agent sends the exam questions and options to the Simulation monitor agent, inserts

student’s exam answers into the database, calculates student grades, displays exam

scripts, displays student improvement percentage (increase or decrease) and

activates/deactivates an exam at the appropriate time.

 Communication between user agents

In this section descriptive illustrations of how agents function/communicate (as

explained in section 3.5.3) are shown to give further understanding on how the agents

work, and to show the database tables queried by server agents for information

retrieval.

Sends authentication request

with the login information

entered by users

Send authentication response.

A ‘User valid’ or ‘User

invalid’ message is sent

Login user agent Login agent

USER AGENT SERVER AGENT

Figure 3.34. Comunication between Login user and Login agent

queries

Database tables

Administration table

Student table

 44

USER AGENT SERVER AGENT

Exam monitor

agent

Exam server

agent

Sends exam related request

e.g request for exam

questions, exam duration,

exam grades etc.

Sends responses according to

request sent.eg exam questions,

student grade exam duration and

time etc.

USER AGENT SERVER AGENT Sends practice exam related

request e.g request for exam

questions, exam duration, exam

grades etc.

Sends responses according to

request sent.eg exam questions,

student exam grade exam duration

and time etc.

Simulation

monitor agent
Simulation agent

Figure 3.35. Comunication between Exam monitor and Exam server agent

Figure 3.36. Comunication between Simulation monitor and Simulation agent

queries

Database tables: examination,

selected_log,

final_selected_log,

student_answers,

exam_question_answer,

student_category_grade,

active_examination,

inactive_examination,

Options,student_grade,

extra_time, exams taken.

queries

Database tables

simulationexam,

sim_selected_log,

sim_final_selected_log,

sim_student_ans, simexam_q_a,

sim_student_category_grade,

simoptions, sim_student_grade.

 45

USER AGENT SERVER AGENT

Sends student related requests e.g

request for student performance

analysis, agent suggestions,

students grades, students total etc.

Sends responses eg

information about student

performance analysis, agent

suggestions, students grades/

total, etc

USER AGENT SERVER AGENT

Sends teacher related requests e.g

request for student

performance,grades/total, exam

attendance, agent suggestions, etc.

Sends responses according to

request sent.eg information about

student performance, grades and

total, exam attendance, agent

suggestions,etc.

Student assistant

agent

Info extract

agent

Teacher

assistant agent Admin info

extract agent

Figure 3.37. Comunication between Student assistant and Info extract agent

Figure 3.38. Comunication between Teacher assistant and Admin info agent

queries

Database tables

simulationexam, courses_taken,

examination,

course_improvement,

sim_student_grade,

sim_student_category_grade,

student_grade.

Student_category_grade.

queries

Database tables

simulationexam, examination,

selected_log,

exam_question_answer,

student_category_grade,

options, student_grade,

extra_time, simexam_q_a,

simoptions, teacher_courses,

student, student_requests.

 46

 How the System Works

In this section an illustrative step by step approach will be taken to explain how the

system works and to describe the features of the system.

The Login portal: Users login to the system using their username and password. If

they are valid users, access to the start page of the system is given to them. Access is

denied to invalid users or users who enter incorrect information. Figure 3.40 shows the

login portal.

USER AGENT SERVER AGENT

Sends student exam

requests information.

Sends cyclic (repetıtive)

requests for extra time

Sends responses on student

exam request sent and extra time

is sent if provided by the

teacher.

Exam monitor

agent

Info extract

agent

Figure 3.39. Comunication between Exam monitor and Info extract agent

queries

Database tables

student_requests,

extra_time

 47

Figure 3.40. Login Portal

Teacher’s Start Page: Upon successful login by teachers, the teacher’s start page is

displayed. Teachers can see the courses they are handle and can select operations they

want to perform from the “Options” dropdown button. Figure 3.41 shows the teachers

start page.

 48

Figure 3.41. Teacher Start Page

Setting Examination questions: Teachers can set exam questions using the “Set

Examination Questions Page”. Once the necessary data is inserted, the “Set Questions”

button is clicked; the questions are automatically inserted into the database. Figure

3.42 show the design structure of the “Set Examination Questions Page”.

 49

Figure 3.42. Set Examination Questions Page

Viewing Grades and Performance Percentage: Teachers can view student grades

and performance percentage by selecting “View student’s Grades and Performance”

from the start page dropdown options. The teacher assistant agent also displays a

comment on what its thinks about the performance of the students at the bottom of the

page. Figure 3.43 shows the student’s grade and performance page.

 50

 Figure 3.43. Student’s grade and performance page

Viewing Exam Questions: Teachers also have the option of viewing and editing the

examination questions that they set. Questions can be deleted using the “Delete

Questions” button. The page also displays the course name, number of question set,

exam duration, exam date, exam points and exam type. Figure 3.44 gives an illustration

of the “View examination Questions” page.

 51

Figure 3.44. Examination questions

Viewing Student Total and Performance: Teachers can view student’s total and

average performance by selecting “View Student’s total and Performance” from the

start page dropdown options. The teacher assistant agent and the Admin Info Extract

agent help in providing this information. Figure 3.45 shows the student’s total and

performance page. The average performance is displayed at the bottom of the page.

 52

Figure 3.45. Student total and average performance

Viewing Exam Attendance: The system automatically keeps track of students who

attended the exam, eliminating the need for manual collection of exam attendance

signature from students. With this teachers can know which student attended the exam

and how many they are. Figure 3.46 gives a description of the exam attendance page.

The total number of attendees is displayed at the bottom of the page.

 53

Figure 3.46. Exam Attendance

Viewing Agent Suggestions: Teachers can view suggestions given by agents

concerning the areas students need to improve in. By viewing this suggestions

teachers, can have an idea about the weak point of students and try to bring up solutions

to the problem. In Figure 3.47 the teacher assistant agent shows a math teacher the

performance percentage of his student in the various math topics and tells him that his

student need to improve in addition and subtraction.

 54

Figure 3.47. Agent suggestions for Math teacher

Viewing Student Exam Requests: Students are given the opportunity to make request

during an examination; they can either request for the teachers attention or request for

extra time. Once the teacher accesses the system, he/she can view student requests

from the student requests page and take necessary actions. The teacher can give extra

time to student from the student requests page and the extra time is automatically added

to students remaining time by the exam monitor agent. Figure 3.48 shows the student

request page.

 55

Figure 3.48. Student requests page

Student’s Start Page: Upon successful login by students, the student’s start page is

displayed. Student can view their semester courses and can select operations they want

to perform from the “Options” dropdown button. Figure 3.49 shows the student start

page.

 56

Figure 3.49. Student Start Page

Taking an Exam: As soon as an exam is activated by the exam server agent, students

can freely take exams on the system. If the exam is not activated or if the exam has

already been taken an “Exam has already been taken or is not available” message will

be displayed on the exam page. During an exam students can see the number of

answered questions, number of unanswered questions, remaining minutes and

estimated time to finish. Students can request for the teacher’s attention by clicking on

the “Request for teacher” button or they can request for extra time by clicking on the

“Request for extra time” button. The “Request for Extra time“ button is only enabled

at a certain time and can only be clicked once; the button is disabled once it is clicked.

Students also have an opportunity to answer questions they skipped by clicking on the

“unanswered questions” button after going through all the examination questions. This

gives students the opportunity to answer easy questions first and then attempt the

 57

difficult one later; this saves student’s time in the exam hall. The “unanswered

questions” button is only activated after students have gone through all the exam

questions. The exam monitor agents also provides “hurry up” reminders to the students

when they are running out of time (as shown in Figure 3.50 on the right bottom corner).

Student can also take practice exams in order to improve their skills and get familiar

with the system. The outlook of practice exams is similar to that of figure 3.50 except

for the request buttons.

Figure 3.50. Examination Page

Viewing Overall Performance: Student can view student their overall performance

by selecting “View Overall Performance” from the start page dropdown options. The

points for each exam taken is displayed together with the points gotten by the student.

The total of the student is also displayed at the bottom of the page as shown in figure

3.51.

 58

Figure 3.51. Overall Performance

Viewing Performance by Subject: Students can view the grades gotten in the various

topics covered in an exam. For example, Figure 3.52 show the Mathematics exam

grades gotten by a student in addition, subtraction, algebra and multiplication. In this

way the student can discover which topics they performed good or bad in.

 59

Figure 3.52. Performance by Subject

Viewing Agent suggestion: Students can view suggestions given by agents

concerning the areas they students need to improve in. By viewing this suggestions,

students can have an idea about their weak points and work towards improving. In

Figure 3.53 the student assistant agent shows a student her performance percentage in

various math topics and tells her that she needs to improve in addition and algebra.

 60

Figure 3.53. Agent suggestions to Student

View Exam Script: Students can view their exam script immediately after an exam.

They can view the questions they answered and compare their answers with the correct

answers. The total number of questions, number of correct, incorrect answers and the

number of questions answered are all displayed to the student on the exam script page

by the exam monitor agent.

 61

Figure 3.54. Examination Script

 Benefits of the System

The intelligent online multi-agent system has a lot of advantages. Some of them are:

 It provides a smart efficient way of handling examination as compared to the paper-

based examinations discussed in section 1.1.

 It is an online system that provides flexibility and convenience to students and

teachers, e.g. students can request for the teacher’s attention just by the click of a

button. Students can request for extra time in the exam halls and if given by the

teacher time information is automatically updated on the system. Teachers can

handle this extra time requests without being present in the exam hall.

 It reduces the workload that comes with handling exams e.g. distribution and

grading of large amount of papers, taking exam attendance manually which causes

delays and distractions in examples.

 62

 It eliminates delays in declaration of exam results and creates an atmosphere of

fairness.

 The agents introduce intelligence into the system by providing fun and helpful

features such as the hurry-up reminders when time is running out, extra time or

attention requests, estimated time to finish calculations, agent suggestions and

performance analysis. The suggestions given by agents help students and teachers

to easily analyse the weak points of students and address them. These features,

help in making the system a conducive environment for knowledge evaluation.

 Practice exams provided help students improve their knowledge and learning

skills.

 Functions of the system is distributed over a multi-agent framework which make

it easier to handle.

 It improves the quality of teaching and learning by providing services that satisfy

the needs of both teachers and students.

 63

Chapter 4

4 THE IMPLEMENTATION PROCESS

 The JADE Platform

The Jade Platform [14] together with the Net beans IDE was used in implementing this

thesis. In this chapter the implementation process of the thesis will be discussed in

detail.

 What is JADE?

JADE (Java Agent Development Framework) is a middleware or software framework

used for developing multi-agents systems in accordance with FIPA (Foundation for

İntelligent Physical Agents) specifications [20], [35], [36]. JADE applications have

peer-to-peer architecture that enable agents to interact and interoperate concurrently

[20].

 How are JADE Agents Created?

Agents as described in section 2.1 are software components or programs that are

capable of performing function autonomously on behalf of users. JADE agents are

basically Java programs that are simply created by defining java classes with the

jade.core.Agent extension [35]. A code sample of how Agents are created is shown in

figure 4.1.

 64

The setup method shown in figure 4.1 is used for specifying agent initializations when

an agent is created [35], [14]. The takedown method is used for performing clean-up

operations just before an agent is terminated [14]. The behaviour of agents are

implemented in the action method. The action method is used for defining what

operations should be performed when the behaviour of an agent is executing [14], [35].

In order for the JADE agents to be executed the JADE runtime environment must be

started using the Jade.Boot command. JADE runtime environments are known as

containers in which JADE agents live [35]. A collection of one or more containers is

known as a platform [37]. Agents in one container or platform can communicate with

agents in other containers or platforms in a network [37].

Every JADE container has two default agents: AMS (Agent Management System) and

DF (Directory Facilitator) [35], [37]. The AMS agent performs Platform management

import jade.core.Agent;

public class LoginAgent extends Agent {

 protected void setup() {

public Behaviour send = new Behaviour() {

 System.out.println("Agent created....");

 public void action() {

 System.out.println("Agent working...."); }}

 protected void takeDown() {

 System.out.println("Agent terminating....") }}}

Figure 4.1. A JADE agent

 65

operations such as shutting down agent platforms or starting and killing agents [37].

The DF agent provides a yellow pages service through which agents can publish the

services they provide, and also find other agents that provide the services they need

[35], [37]. Figure 4.2 show the general architecture of a JADE multi-agent system. The

symbols A1-A5 represent agents living in containers.

Figure 4.2. General JADE Architecture [37]

Agents in a container can be managed by developers using the JADE Management

Console [37]. Figure 4.3 shows the JADE management console for the agents on the

server-side of the multi-agent OES system.

 66

Figure 4.3. JADE management console for server agents

 How do JADE Agents communicate?

JADE agents communicate with the use of ACL (Agent Communication language)

languages defined by FIPA [14], [20], [35], [37]. An ACL message consist of a number

of fields such as:

 The message sender [37]

 The receivers [37]

 The performative or communicative act: This describes the intention of the sender.

The communicative intention could be a REQUEST, INFORM, PROPOSE, or

CFP (Call for proposal) [14], [35], [37].

 The content: The actual information contain in a message. For example, a

INFORM message could contain information about the grade of a student [14],

[35], [37].

 67

 The content language: This is the language or syntax used to express the message

content. This language must be understandable to both the sending and receiving

agent in order to communicate effectively [14], [35].

 The ontology: Used in indicating the vocabulary of characters or symbols used in

a message. For effective communication, the meaning of these characters and

symbols must be the same for communicating agents [14], [35].

The figure 4.4 below shows a code snippet of how the Login user agent sends a request

message to the login agent on the server. Messages are sent by agents using the send

method [14]. As shown in figure 4.4. Other examples of agent communication can be

found in the appendix.

Messages are received by JADE agents using the receive or blockingReceive method

[35]. Figure 4.5 shows a simple sample code of how agents receive messages.

ACLMessage request = new ACLMessage(ACLMessage.REQUEST);

AID aid = new AID("LoginAgent@192.168.5.35:1099/JADE", AID.ISGUID);

aid.addAddresses("http://192.168.5.35:7778/acc");

request.addReceiver(aid);

request.setOntology("Login");

request.setContent(LoginGui.username);

send(request);

Figure 4.4. Agent Communication: Sending messages

 68

 How do JADE agents behave?

The functions or job of an agent is described by its behaviour [35]. JADE has many

predefined behaviours e.g. One-shot behaviour (actions are executed only once),

Cyclic behaviour (actions are performed repetitively) [35]. JADE agent behaviours are

implemented as objects of agent classes that extends jade.core.behaviours.Behaviour

[14], [35]. The action method of an agent behaviour can be programmed according to

the desires of the developer. Figure 4.6 shows the behaviour of an agent whose job is

to show a hello message just once. Other example of agent behaviours can be found in

the appendix.

 ACLMessage msg = myAgent.receive(template);

 if (msg != null) {

 message = msg.getContent();

 }

Figure 4.5. Agent Communication: Receiving messages

Behaviour openAcess = new OneShotBehaviour() {

 public void action() {

 System.out.println("Hello I’m an agent);

 }

Figure 4.6. JADE Agent behaviour

 69

 JADE Agent Internal Structure

Once an agent is created and executed, it begins by performing the initial operations

in it’s setup method. After initialization and initial actions are completed, it begins

performing the behaviour actions specified in its agent class. One behaviour is

performed after another; the done method is used to check if the behaviour has been

completed or not. Once completed, it is removed from the pool of agent behaviour.

When an agent is terminated, the takedown method is called to execute clean-up

operations before termination.

Setup()

Agent

terminated?

Get next behaviour from pool of behaviours

action() (Peform behaviour actions)

done()?
(check if behaviour

actions are done)

Remove behaviour from pool of behaviours

takedown()

Yes

Yes

No

No

 Figure 4.7. JADE agent internal structure [14]

 70

 System Implementation Design

In this section a general descriptive illustration of how the system was designed will

be shown. For deeper understanding of how the system works the implementation and

design of some parts of the system will be described. As mentioned before in section

3.5, there are five agents on the user ansd server side of the system. The agents on the

server are constantly running and waiting for requests from user agents or for changes

in their environment (the OES system). On the other hand the agents on the server side

only start running when the OES system is started by a user.

 Login Phase

Once the OES system is started by a student or teacher and the user agents are properly

running on the user PC (as depicted in figure 3.29, section 3.5), the activities on the

system are now ready to be performed. The first action performed when the system is

started is the login operation. Once a user enters his/her username and password and

clicks the login button, the login user agent immediately sends an authentication

request to the login agent on the server side takes with the information entered by the

user. The server login agent receives the information sent by login user agent, queries

the system database (the student table, and admistration table, section 3.4) for

information about users and compares the results from the database with the

information sent by the login user agent. If the database information matches the data

sent, a message successfully validating the user is sent back to the login user agent. If

there is no match a ‘invalid’ message is sent back and system access is denied. Figure

4.8 shows the login phase system design.

 71

Login user agent
Login agent

Database

Tables

Administration table

Student table

Data

Match?
Login user agent

Login user agent

Yes No

Sends authentication request with user data

Queries

database for

information

Compares

user data with

database data

User logs in

User access provided

User access is denied

Sends

‘Valid‘message

Sends

‘invalid‘message

Figure 4.8. Login phase system design

 72

The figure 4.9 shows a code snippet of how the login agent on the user-side send an

authentication request to the server login agent. The behaviour object ‘send’ defines

how the login user agent behaves. The actions of the agent is defined within the action

methods and contains all the operations done by the agent’s send behaviour.

public Behaviour send = new Behaviour() {

public void action() {// actions of the login user agent is defined below

System.out.println("Agent " + getLocalName() + ": sending REQUEST message...");

//creating a request message

ACLMessage request = new ACLMessage(ACLMessage.REQUEST);

//creating message receiver

AID aid = new AID("LoginAgent@192.168.5.35:1099/JADE", AID.ISGUID);

//setting receiver address

aid.addAddresses("http://192.168.5.35:7778/acc");+

//adding receiver

request.addReceiver(aid);

//setting the message ontology

request.setOntology("Login");

//Setting message content information entered by user

request.setContent(LoginGui.username + "~" + LoginGui.Pswd + "~" +

LoginGui.userType);

//sending message

send(request);

System.out.println("Agent " + getLocalName() + ": sent REQUEST message..." +

LoginGui.username + "-" + LoginGui.Pswd + "-" + LoginGui.userType);

//adding behaviour for recieving message response

myAgent.addBehaviour(receive);

}

Figure 4.9. Code for sending authentication request to the server login agent

 73

addBehaviour(new CyclicBehaviour(this) {

public void action() {// actions of the login user agent is defined below

ACLMessage msg = myAgent.receive(template); // receives message

if (msg != null) {

String message = msg.getContent();// saves message content in message string

System.out.println("Agent " + getLocalName() + " recieved REQUEST message");

messageArray = new String[3];

messageArray = message.split("~");// splits message and saves it in a message array

try {// creating db connection

Class.forName("com.mysql.jdbc.Driver");

Connection con = (Connection)

DriverManager.getConnection("jdbc:mysql://localhost:3306/onlineexamination",

"root", "ghsm4/24/7/*");

Statement stmt = con.createStatement();

if (messageArray[2].equals("Student")) {// student authentication

// Query for getting student information from database

String sql = "Select student_id,student_name,"

+ "student_surname,student_password "

+ "from student where student_id='" + messageArray[0]

+ "'and student_password='" + messageArray[1] + "'";

// executing sql query

ResultSet rs = stmt.executeQuery(sql);

if (rs.first()) {// Extracting the Query results

String sid = rs.getString("student_id");

String spswd = rs.getString("student_password");

String sn = rs.getString("student_name");

String ssn = rs.getString("student_surname");

if (sid.equals(messageArray[0]) && spswd.equals(messageArray[1])) {

ACLMessage reply = new ACLMessage(ACLMessage.INFORM);

reply.addReceiver(msg.getSender());// setting message receiver

//setting the message ontology

reply.setOntology("Login");

//Setting 'valid user' message content

reply.setContent("Valid~" + sid + "~" + sn + "~" + ssn);

send(reply);//sending valid message

}} else {ACLMessage reply = new ACLMessage(ACLMessage.INFORM);

reply.addReceiver(msg.getSender());

reply.setOntology("Login");

//Setting 'invalid user' message content

reply.setContent("Invalid~Invalid~Invalid~Invalid");

System.out.println("Agent " + getLocalName() + " sending INFORM message");

send(reply);//sending invalid message}}

Database query

for authenticating

students

Extracting

database

information

Figure 4.10. Code for the receiving/sending messages for student authentication

 74

if (messageArray[2].equals("Admin")) {

// Query for getting teacher information from database

String sql = "Select

Admin_username,Admin_name,Admin_password,Admin_surname "

+ "from administration where Admin_username='" + messageArray[0]

+ "'and Admin_password='" + messageArray[1] + "'";

ResultSet rs = stmt.executeQuery(sql);

if (rs.first()) {// Extracting the Query results

String ausid = rs.getString("Admin_username");

String spswd = rs.getString("Admin_password");

String aname = rs.getString("Admin_name");

String asname = rs.getString("Admin_surname");

if (ausid.equals(messageArray[0]) && spswd.equals(messageArray[1])) {

ACLMessage reply = new ACLMessage(ACLMessage.INFORM);

reply.addReceiver(msg.getSender());

reply.setOntology("Login");

//Setting 'valid user' message content

reply.setContent("Valid~" + ausid + "~" + aname + "~" + asname);

System.out.println("Agent " + getLocalName() + " sending INFORM message"

+ "Valid~" + ausid + "~" + aname + "~" + asname);

send(reply);//sending valid message}

} else {ACLMessage reply = new ACLMessage(ACLMessage.INFORM);

reply.addReceiver(msg.getSender());

reply.setOntology("Login");

//Setting 'invalid user' message content

reply.setContent("Invalid~Invalid~Invalid~Invalid");

System.out.println("Agent " + getLocalName() + " sending INFORM message");

send(reply);//sending invalid message}}} catch (Exception e)

{JOptionPane.showMessageDialog(null, e.getMessage());}

} else {block();}}});

Figure 4.11. Code for the receiving/sending messages for teacher authentication

Database

Query and

Data

extraction

 75

 Starting an examination

One of the major activities done on the OES system is taking an exam. There are three

agents involved in the exam process; Exam monitor agent, Exam server agent and Info

extract agent. When a student is successfully authenticated, the student start up page

is displayed. If the student selects the ‘Start Examination’ option for a particular

course, the exam monitor agent immediately sents a request for exam information

(exam questions, options, duration, deactivation time) to the Exam server agent. The

Exam server agent first checks if the examination is activated or deactivated (i.e. if the

time for the examination is due or has elapsed) and it also checks if the exam has

already been taken. This is carried out by querying the system database (examination,

active_examination, inactive_examination, exam _question_answer, and selected_log

table section 3.4). If the examination is activated the necessary exam information is

sent to the exam monitor agent and student can begin the exam (depicted in section

3.6). If the exam is not activated or has already been taken an ‘exam unavailable or

exam already taken’ message is sent to the Exam monitor agent and the message is

displayed to the user

 76

Exam monitor agent Exam server agent

Database

Tables

Examination,

Active_examination

Inactive_examination,

Exam_question_answer

Selected_log

Queries

database for

information

Exam

activated?

Yes No

Exam

taken?

Yes

No

Exam

monitor agent

Exam monitor agent

Sends request for exam information

Sends exam

unavailable

message

Sends exam

unavailable

message

Student selects start

examination

Sends exam

information

Examination started

Figure 4.12. Start examination system design

 77

//Creating request message

ACLMessage request = new ACLMessage(ACLMessage.REQUEST);

//Creating message receiver (ExamServerAgent)

AID aid = new AID("ExamServerAgent@192.168.5.35:1099/JADE",

AID.ISGUID);

//Setting address of receiver

aid.addAddresses("http://192.168.5.35:7778/acc");

request.addReceiver(aid);

request.setOntology("GetExamQuestions");

Question_number++;

ExamPage.questionNoLabel.setVisible(true);

ExamPage.questionNoLabel.setText(Question_number + ".");

// setting message content

request.setContent(LoginUserAgent.UserId + "~" + StartPage.Course + "~" +

Question_number);

//sending message request

send(request);

 Figure 4.13. Code for sending request for exam information

 78

ACLMessage requestMessage2 = myAgent.receive(requestTemplate2); //recieving message sent

if (requestMessage2 != null) {

System.out.println("Agent " + getLocalName() + " recieved REQUEST message ");

String message = requestMessage2.getContent();

messageArray2 = new String[3];

messageArray2 = message.split("~");// splitting message into different parts

try {Class.forName("com.mysql.jdbc.Driver");

//SQL query for extracting informatıon

String sql = " SELECT exam_question_answer.Examination_no,Question_ID,Duration,

Question,category "+ " FROM examination,exam_question_answer "

+ " where examination.Examination_No = exam_question_answer.Examination_No "

+ " and exam_question_answer.question_id not in (select Question_ID from selected_log where

student_id='" + messageArray2[0] + "') "+ " and examination.Examination_No in (select

Examination_No from active_examination)"

+ " and examination.Examination_No not in (select Examination_No from

inactive_examination)"+ " and examination.Examination_No not in (select Examination_No

from exams_taken where Student_ID= '" + messageArray2[0] + "') "

+ " and Course_ID= '" + messageArray2[1] + "'";

Connection con = (Connection) //creating SQL connection

DriverManager.getConnection("jdbc:mysql://localhost:3306/onlineexamination",

"root", "ghsm4/24/7/*"); Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery(sql);

if (rs.first()) {// extracting data and creating reply message

ACLMessage reply = new ACLMessage(ACLMessage.INFORM);

reply.addReceiver(requestMessage2.getSender());

reply.setOntology("ExamQuestions");

String ENo = rs.getString("Examination_No");

String Qid = rs.getString("Question_ID");

String Question = rs.getString("Question");

String Category = rs.getString("Category");

reply.setContent("Valid~" + ENo + "~" + Qid + "~" + Question + "~" + Category);// setting

message content with information extracted

System.out.println("Agent " + getLocalName() + " sending INFORM message Valid-" + ENo +

"-" + Qid + "-" + Question + "-" + Category);

send(reply);// sending response if available

sql = "insert into selected_log (Examination_no,Question_ID,Question_No,Student_ID) "+ "

values ('" + ENo + "','" + Qid + "'," + messageArray2[2] + ",'" + messageArray2[0] + "')";// SQL

for inserting questions sent to student

stmt.executeUpdate(sql);

} else {ACLMessage reply = new ACLMessage(ACLMessage.INFORM);

reply.addReceiver(requestMessage2.getSender());

reply.setOntology("ExamQuestions");

reply.setContent("Invalid~Invalid~Invalid~Invalid~Invalid");

System.out.println("Agent " + getLocalName() + " sending INFORM message Valid");

send(reply);// sending invalid message when questions are unavailable}

} catch (Exception e) {JOptionPane.showMessageDialog(null, e.getMessage());}} else{block();}

Query

execution

and data

extraction

Figure 4.14. Code for receiving/responding to exam information request

 79

 Handling student exam requests

As mentioned previously in section 3.5.2 and 3.6, students can make request during an

exam. They can either request for the teacher’s attention in the exam hall by clicking

the ‘Request for teacher button’ or they can request for extra time by clicking the

‘request for extra time’ button. If the student clicks the ‘Request for teacher’ button

the Exam monitor agent immediately send the request to the info extract agent on the

server. The Info extract agent inserts this request into the database (Student_requests

table, section 3.4) and responds by sending a ‘request was successfully sent’ message

which is displayed to the student by the Exam monitor agent.

System.out.println("Agent " + getLocalName() + ": sending REQUEST message...");

//Creating request message

ACLMessage request = new ACLMessage(ACLMessage.REQUEST);

//Creating message receiver (InfoExtractAgent)

AID aid = new AID("InfoExtractAgent@192.168.5.35:1099/JADE", AID.ISGUID);

aid.addAddresses("http://192.168.5.35:7778/acc");//Setting address of receiver

request.addReceiver(aid);

request.setOntology("InsertStudentRequest");

request.setContent(LoginUserAgent.UserId + "~" + LoginUserAgent.name_of_user +

"~" + LoginUserAgent.surname_of_user + "~" + StartPage.Course

+ "~" + ExamPage.requestType + "~" + Exam_type); // setting message content

send(request); //sending message request

myAgent.addBehaviour(recieveStudentRequestResponse);

Figure 4.15. Code for sending exam requests

 80

Database

Table

Student_requests

Data

inserted

sucessfully?

?

Sends student exam request

Inserts exam

student requests

into the database

Yes No

Sends

‘request successful’

message

Sends

‘request unsuccessful’

message

Exam monitor agent

Exam monitor agent

Exam monitor agent

Info extract agent

Figure 4.16. Student exam request design

 81

if (msg.getOntology().equals("InsertStudentRequest")) {

String message = msg.getContent();// getting message content

messageArray = new String[6];

messageArray = message.split("~");// splitting message into parts

System.out.println("Agent " + getLocalName() + " recieved REQUEST message " +

message);

try {Class.forName("com.mysql.jdbc.Driver");

Connection con = (Connection) //creating SQL connection

DriverManager.getConnection("jdbc:mysql://localhost:3306/onlineexamination",

"root", "ghsm4/24/7/*");

Statement stmt = con.createStatement();

DateFormat dtform = new SimpleDateFormat("yyyy/MM/dd HH:mm:ss");

Date dtobj = new Date();

//SQL query for extracting information

String sql = "insert into student_requests values('" + messageArray[0] + "','" +

messageArray[1] + "','" + messageArray[2] + "','" + messageArray[3] + "','" +

messageArray[4] + "','" + dtform.format(dtobj) + "','" + messageArray[5] + "');";

stmt.executeUpdate(sql);

if (messageArray[4].equals("Attention")) {

ACLMessage reply = new ACLMessage(ACLMessage.INFORM);

reply.addReceiver(msg.getSender());// adding receiver

reply.setOntology("StudentRequestResponse");

reply.setContent("Attention~A request for attention has been sent to the Teacher");

System.out.println("Agent " + getLocalName() + " sending INFORM message " +

reply.getContent());

send(reply);}// sending response for attention request

if (messageArray[4].equals("Extra time")) {

ACLMessage reply = new ACLMessage(ACLMessage.INFORM);// creating rply

reply.addReceiver(msg.getSender());

reply.setOntology("StudentRequestResponse");

reply.setContent("Extra time~A request for extra time has been sent to the Teacher");

System.out.println("Agent " + getLocalName() + " sending INFORM message " +

reply.getContent());

send(reply);}} // sending response for extra time request

catch (Exception e) {JOptionPane.showMessageDialog(null, e.getMessage());

ACLMessage reply = new ACLMessage(ACLMessage.INFORM);

reply.addReceiver(msg.getSender());

reply.setOntology("StudentRequestResponse");

reply.setContent("Error: Could not send Request there seems to be a Problem");

System.out.println("Agent " + getLocalName() + " sending INFORM message " +

reply.getContent());

send(reply);}}// sending response if failure occurs

Figure 4.17. Code for receiving/sending request response message

 82

When a teacher select the ‘view students request’ option from the teacher start up page,

the Teacher assistant agent sends a message to the Admin info extract agent on the

server requesting for information about student exam request page. The Admin info

extract agent responds by quering the database (Student_requests table, section 3.4).

If any request is available the Admin info sends it to the teacher assistant agent who

displays this information on the ‘view student request’ page (depicted in section 3.6).

Database

Table

Student_requests

Student

request

available?

?

Sends message asking for student request

Sends

Student request

information

Queries

database for

information

Yes No

Sends

null information

Admin Info extract agent Teacher assistant agent

Teacher assistant agent

Teacher assistant agent

Teacher clicks

on ‘view student

request’

Student request

information

displayed

Figure 4.18. Viewing student request design

 83

//behaviour for getting student request

public Behaviour getStudentRequests = new OneShotBehaviour() {

public void action() {

System.out.println("Agent " + getLocalName() + ": sending STUDENT

REQUEST message...");

// creating request message

ACLMessage request = new ACLMessage(ACLMessage.REQUEST);

AID aid = new AID("AdminInfoExtractAgent@192.168.5.35:1099/JADE",

AID.ISGUID);

aid.addAddresses("http://192.168.5.35:7778/acc");// setting receiver address

request.addReceiver(aid);//adding receiver

request.setOntology("GetStudentRequests"); // setting ontology

request.setContent(TeacherOptions.Course + "~" + TeacherOptions.eType);

send(request);// sending request message

System.out.println("Agent " + getLocalName() + ": sent REQUEST

message...");}};

Figure 4.19. Code for requesting for student exam request

 84

if (msg.getOntology().equals("GetStudentRequests")) {String message = msg.getContent();

messageArray = new String[2];nmessageArray = message.split("~");

System.out.println("Agent " + getLocalName() + " recieved REQUEST message " +

message);

String sql = "select Request,count(distinct(student_ID)) as cnt\n"

+ " from student_requests\n"// sql quesry for getting number of requests

+ " where Course_ID= '" + messageArray[0] + "'\n"

+ " and ExamType='" + messageArray[1] + "'\n"

+ " group by Request;";

try {Class.forName("com.mysql.jdbc.Driver"); Connection con = (Connection)

DriverManager.getConnection("jdbc:mysql://localhost:3306/onlineexamination",

"root", "ghsm4/24/7/*");

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery(sql);

ACLMessage reply = new ACLMessage(ACLMessage.INFORM);// creating message

reply.addReceiver(msg.getSender());

reply.setOntology("StudentRequests");

String requestTypes = "";int itemsLength = 0;

while (rs.next()) {String request = rs.getString("Request"); int cnt = rs.getInt("cnt");

requestTypes = requestTypes + "~" + request + "~ Students (listed below) require " + request

+ " in the Examination hall (No of Students : " + cnt + ")";

itemsLength = itemsLength + 2;}

int itemCheck = itemsLength;

sql = "select Student_ID,Student_Name,Student_Surname,Request,Time_of_request\n"

+ " from student_requests\n"// SQL query getting student requests

+ " where Course_ID= '" + messageArray[0] + "'\n"

+ " and ExamType='" + messageArray[1] + "';";

rs = stmt.executeQuery(sql);

while (rs.next()) {String sid = rs.getString("Student_ID");

String stdname = rs.getString("Student_Name");

String stdsname = rs.getString("Student_Surname");

String request = rs.getString("Request");

Date Time_or_request = rs.getDate("Time_of_request");

Time tm = rs.getTime("Time_of_request");

requestTypes = requestTypes + "~" + sid + "~" + stdname + "~" + stdsname + "~" + request +

"~" + Time_or_request + " " + tm;

itemsLength = itemsLength + 5;}

if (requestTypes.equals("")) {itemsLength++;

requestTypes = itemsLength + "~0~0~0~0~0~0~0~0~0";} else {

requestTypes = itemCheck + "" + requestTypes; itemsLength = itemsLength++;

requestTypes = itemsLength + "~" + requestTypes;}

reply.setContent(requestTypes);// setting message content

System.out.println("Agent " + getLocalName() + " sending INFORM message " +

requestTypes);

send(reply);//sending message response

} catch (Exception e) {JOptionPane.showMessageDialog(null, e.getMessage());}}

Figure 4.20. Code for receiving/responding to request for student exam request

Query

execution

and data

extraction

 85

 Providing extra time in an examination

Teacher gives extra time for an examination via the ‘view student request’ page. Once

extra time is given by the teacher, the teacher assistant agent sends this information to

the Admin info extract agent on the server who then inserts the information (extra time

given, time of issue etc) into the database (Extra_time table, section 3.4).

Database

Table

Extra time

Sends extra time information

Teacher assistant agent

Teacher assistant agent

Admin Info extract agent

İnserts information

into database

Sends

‘Extra time added’

message

Teacher gives

 extra time

Figure 4.21. System design for setting extra time

 86

System.out.println("Agent " + getLocalName() + ": sending REQUEST

message...");

ACLMessage request = new ACLMessage(ACLMessage.REQUEST);

AID aid = new AID("AdminInfoExtractAgent@192.168.5.35:1099/JADE",

AID.ISGUID); message receiver (AdminInfoExtractAgent)

aid.addAddresses("http://192.168.5.35:7778/acc");// receiver address

request.addReceiver(aid);

request.setOntology("InsertExtratime");

request.setContent(TeacherOptions.Course + "~" + TeacherOptions.eType +

"~" + TeacherOptions.rqust.extraTime);// message content(extra time info)

send(request);// sending request message for inserting extra time

System.out.println("Agent sent message " + request.getContent());

myAgent.addBehaviour(recieveinsertExtratimeRequestResponse);

 Figure 4.22. Code for sending extra time insertion request

 87

Once a student sends an extra time request and receives an ‘extra time request was

successfully sent’ message, the Exam monitor agent periodically checks (every 10

seconds) if the teacher has responded to the student’s request by sending a message to

the Info extract agent asking if the time has been given. The Info extract agent then

queries the database (Extra time table, section 3.4) to determine if extra time has been

given.

if (msg.getOntology().equals("InsertExtratime")) {

String message = msg.getContent();// getting message content

messageArray = new String[3];

messageArray = message.split("~");// splitting message into different parts

System.out.println("Agent " + getLocalName() + " recieved REQUEST message " + message);

try {Class.forName("com.mysql.jdbc.Driver");

Connection con = (Connection) //creating database connection

DriverManager.getConnection("jdbc:mysql://localhost:3306/onlineexamination",

"root", "ghsm4/24/7/*");

Statement stmt = con.createStatement();

DateFormat dtform = new SimpleDateFormat("yyyy/MM/dd HH:mm:ss");

java.util.Date dtobj = new java.util.Date();

String sql = "insert into extra_time values('" + messageArray[0] + "','" + messageArray[1] + "',"

+ Integer.parseInt(messageArray[2]) + ",'" + dtform.format(dtobj) + "')"; // extra time DB

insertion

stmt.executeUpdate(sql);

ACLMessage reply = new ACLMessage(ACLMessage.INFORM);

reply.addReceiver(msg.getSender());

reply.setOntology("ExtratimeResponse");

reply.setContent("Extra Time was added Sucessfully"); // setting message content

System.out.println("Agent " + getLocalName() + " sending INFORM message " +

reply.getContent());

send(reply);// sending ‘reply successful’ message

} catch (Exception e) {ACLMessage reply = new ACLMessage(ACLMessage.INFORM);

reply.addReceiver(msg.getSender());

reply.setOntology("ExtratimeResponse");

reply.setContent("Extra Time has already been added for this course!");// setting message

content

System.out.println("Agent " + getLocalName() + " sending INFORM message " +

reply.getContent());

send(reply);// sending reply when extra time has alredy been given}}

Figure 4.23. Code for receiving/responding to extra time insertion request

 88

If extra time has been granted by the teacher, the information is passed across to the

Exam monitor agent who then adds this extra time to the remaining minutes of the

exam and displays how many minutes has been added to the student.

Extra time

available?

?

Sends

‘request successful’

message

Database

Table

Extra time

Exam monitor agent Info extract agent

Yes No

Sends request to check if extra time is available

Sends request again after 10 seconds

Figure 4.24. System design for adding extra time to exam duration

 89

public Behaviour extratimeRequest = new TickerBehaviour(this, 10000) {

protected void onTick() {

ACLMessage request = new ACLMessage(ACLMessage.REQUEST);// request message

AID aid = new AID("InfoExtractAgent@192.168.5.35:1099/JADE", AID.ISGUID);//receiver

aid.addAddresses("http://192.168.5.35:7778/acc");// receiver’s address

request.addReceiver(aid);// adding receiver

request.setOntology("GetExtratimeRequest");

request.setContent(StartPage.Course + "~" + Exam_type);// setting message content

System.out.println("Agent " + getLocalName() + ": sending Extra Time REQUEST

message... " + StartPage.Course + "~" + Exam_type);

send(request);// sending request

if (addChecker == 0) {// flag checking if extra time has been received before

myAgent.addBehaviour(receiveExtratime);

addChecker = 1;}}}; // flag for ensuring that extra time is received only once

ACLMessage reply = new ACLMessage(ACLMessage.INFORM);// response message

reply.addReceiver(msg.getSender());// adding sender

reply.setOntology("Extratime");

try {Class.forName("com.mysql.jdbc.Driver");Connection con = (Connection)

DriverManager.getConnection("jdbc:mysql://localhost:3306/onlineexamination",

"root", "ghsm4/24/7/*");// creating database connection

Statement stmt = con.createStatement();

String sql = "select Extra_time_added \n"

+ " from extra_time\n" + " where Course_ID = '" + messageArray[0] + "'\n"

+ " and ExamType = '" + messageArray[1] + "'";// query for getting extra time

ResultSet rs = stmt.executeQuery(sql);// executing query

int extratime = 0;

while (rs.next()) {extratime = rs.getInt("Extra_time_added");}

if (extratime > 0) {reply.setContent(""+extratime); // setting message content

System.out.println("Agent " + getLocalName() + " sending INFORM message Extra Time :"

+ extratime);

send(reply);}} catch (Exception e){JOptionPane.showMessageDialog(null,e.getMessage());}}

Figure 4.25. Code for checking if extra time is available

Figure 4.26. Code for responding to extra time request

if (extra_timeChecker == 1) {// flag for checking if extra time has been added

deactivation_Minutes = deactivation_Minutes + extra_time;

ExamPage.extratimeAddedLabel.setForeground(Color.red);

ExamPage.extratimeAddedLabel.setText("Extra Time (" + extra_time + "

mins) has been added");

ExamPage.extratimeAddedLabel.setVisible(true);

extra_timeChecker = 2;}//flag to prevent extra time from being added again

Figure 4.27. Code for adding extra time to exam duration

 90

The various illustrations depicted in this section helps to give an idea of how the system

was designed and implemented, how the agents work/communicate together and how

information from the database is queried and extracted by agents.

 91

Chapter 5

5 DISCUSSIONS

In this section the issues and challenges encountered while implementing this thesis

and the measures taken to solve them is discussed. Some of the challenges faced are

listed as follows:

a) Defining, Structuring and Programming the Modules of the System: For the

system to perform its functions in the most efficient way the modules of the system

have to be well defined, well-structured and properly programmed. To solve the

issues behind this, the problem that the system is aimed at solving was first of all

defined. Secondly, the various steps and operations that can be taken to solve this

problem was also defined and the best alternative was selected. The steps are then

divided into different interconnected modules and the structure of the system is

finally constructed. Once the structure of the system is put in place a great deal was

put into programming the system. Various test and trials were done at each level

of programming and unnecessary parts were eliminated to produce the final results.

b) Creating a Structured Database: When handling important information such as

that related to student exams and results it is very important to carefully design a

database where the necessary information can be adequately stored and easily

retrieved when queried. The challenges in designing a well-structured database

was resolved by analysing the system functions, the users of the system and the

 92

type of data that requires storage. With this information the adequate tables were

created and connected accordingly.

c) Defining the Behaviour of the Agents: The behaviour of an agent plays a very

important role in the functionality of the system. It is important to properly define

how agents should react in different situations and what they should do with the

information they receive. The issues behind designing agent behaviour was solved

by properly defining the goal of each agent. Once the goals were defined, the

behaviour of the agents was then carefully programmed and designed to meet these

goals in the most effective and efficient way possible.

d) Agent Communication: In the system, agents assist one another in performing

various duties by communicating with one another through messages. The

structure of agent messages, and the medium of date transfer between agents are

very important factors in agent communication. It is also important to ensure that

the messages sent are properly received by the recipient agent in its proper order.

To solve this problem, agents were designed to send series of messages as a single

string of data. This data is then collected by the receiving agent and divided into

its different parts. These parts are then used by the agent to perform its duties. For

example, an examination monitor agent can send the performance statistics of a

student as a single line of data. The receiving agent on the student’s PC takes the

data, breaks it down into different parts and uses the resulting information to design

a performance chart which is displayed to the student.

 93

e) Defining the Proper Variables: In order for agents and the system as a whole to

function efficiently, the proper parameters have to be initialized. It is important to

define which variable should be public, private, static etc.; what types these

variables should be (double, char, float etc.), and how they should be used.

Determining the right variables to use was achieved by analysing the type of

operations performed on the system and the type of data handled by the system.

f) Creating a User-riendly System: A user-friendly system can be quite tasking to

create since the preferences of various users differ. The best solution found to

tackle this problem was to simplify the outlook of the system as much as possible

and provide features that are useful to the users of the system.

 94

 Chapter 6

6 CONCLUSION AND FUTURE WORKS

Examinations are an important part of our society and creating an evaluation system

with smart, helpful, user-friendly features will greatly impact people’s learning

capabilities. This thesis aims at providing these features with use of intelligent multi-

agent systems.

The paper-based examination (PBE) system is the most common medium of

evaluation and useful in many ways but limitations that inhibit its efficiency have been

detected. It is prone to human errors, human limitations, and delays, it is bulky tedious

and time consuming, it is costly with high security risks, and there is rigidity in exam

time and location. With the growing rate of internet and computer technologies an

online agent-based alternative was proposed in this thesis.

Using Netbeans and JADE multi-agent framework the exam system was implemented.

The complex tasks of the system was broken down into modules/subtasks handled by

specific agents designed to achieve certain goals. The system eliminates the delays and

limitations of the PBE system by providing automated services such as instantaneous

display of results, monitory and handling of exams by agents (agents activate and

deactivate exams , calculate estimated time to finish, displays exam questions and

exam scripts , provides extra time if given by teachers etc.), providing detailed analysis

 95

of a student performance (weak points and strong points) and displaying improvement

percentage. The use of a mult-agent framework opens doors for intelligence or

smartness to be introduced or added into the system; simplifies and improves the way

online exam systems are handled and enhances the efficiency of online.

The major limitation of the system is the security of the agents and the data passed

across between agents i.e. providing mediums for preventing security attacks on agents

or illegal interceptions of data during agent communication. This limitation will be

dealt with as further work is done on the system. Other future works to be done on this

thesis is to broaden the scope of the thesis from standard university exams to distance

learning exams; improve the security and safety of the system; increase interactions

between users and agents; improve the outlook of the system, and provide more helpful

features such as bulk loading of data (e.g. exam questions when setting exams) and

exporting of data (e.g. exam results and attendance) into files for storage or printing.

 96

7 REFERENCES

[1] C. P. Newhouse, “Computer-based Exams in Schools: Freedom from the

Limitations of Paper?,” Research and Practice in Technology Enhanced

Learning, vol. 8, no. 3, pp. 431-444, 2013.

[2] R. D. Gawali and B. B. Meshram, “Agent-based Autonomous Examination

Systems,” in Intelligent Agent & Multi-Agent Systems, 2009.

[3] B. Hang, “The Design and Implementation of Online Examination System,”

in Computer Science and Society (ISCCS), 2011 International Symposium,

2011.

[4] D. Xiaoyu and L. Yunhao, “Research and Implementation of Web-Online

English Testing System,” in Information Science and Engineering (ISISE),

2010 International Symposium, 2010.

[5] A. Ahmad, N. U. Khan and A. W. Abbas, “PHP+MySQL based Online

Examination System with Power Failure Handling and Dropbox

Capability,” in Software Security and Reliability-Companion (SERE-C),

2013 IEEE 7th International Conference, 2013.

 97

[6] P. Guo, H.-f. Yu and Q. Yao, “The Research and Application of Online

Examination and Monitoring system,” in IT in Medicine and Education,

ITME 2008., 2008.

[7] S. Wei-feng, H. Meng and L. Jun, “An Online Examination System

Supporting User-defined Question Type,” in Education Technology and

Computer (ICETC), 2010 2nd International Conference, 2010.

[8] X. Li and Y. Wu, “Design and Development of the Online Examination and

Evaluation System Based on B/S Structure,” in Wireless Communications,

Networking and Mobile Computing, WiCom 2007, 2007.

[9] C. Liu and K. Wang, “An Online Examination System based on UML

Modeling and MVC Design Pattern,” in Control Engineering and

Communication Technology (ICCECT), 2012 International Conference,

2012.

[10] H. Lu and Y. Hu, “The Design and Implementation of Online Examination

System based on J2EE,” in Industrial Control and Electronics Engineering

(ICICEE), 2012 International Conference, 2012.

 98

[11] L. Jun, “Design of Online Examination System Based on Web Service and

COM,” in Information Science and Engineering (ICISE), 2009 1st

International Conference, 2009.

[12] S. Murugesan, “Intelligent Agents on the Internet and Web,” in 1998 IEEE

Region 10 International Conference on Global Connectivity in Energy,

Computer, Communication and Control, 1998.

[13] T. Magedanz, K. Rothermel and S. Krause, “Intelligent Agents: An

Emerging Technology for Next Generation Telecommunications?,” in

Networking the Next Generation. Fifteenth Annual Joint Conference of the

IEEE Computer Societies., 1996.

[14] F. L. Bellifemine, G. Caire and D. Greenwood, Developing Multi-Agent

Systems with JADE, John Wiley & Sons, 2007.

[15] N. S. Bhuvaneswari, S. Sujatha and C. Deepthi, “Proposal on Centralized

Exam Assessment Apportion Using Mobile Agents,” in Communication

and Computational Intelligence (INCOCCI), 2010 International

Conference, 2010.

 99

[16] Y. H. Ali and Z. F. Hussain, “Smart Electronic Examination System using

Multi-Agent Platform,” International Journal of Emerging Trends &

Technology in Computer Science (IJETTCS), vol. 3, no. 1, pp. 42-46, 2014.

[17] M. Wooldridge, “Intelligent Agents,” in Multiagent Systems, G. Weiss, Ed.,

The MIT Press, 2000, pp. 27-73.

[18] “Wikipedia,” Wikimedia Foundation, 20 December 2014. [Online].

Available: http://en.wikipedia.org/wiki/Intelligent_agent. [Accessed 7

February 2015].

[19] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,

Prentice Hall, 2003.

[20] G. Caire, F. Bellifemine, A. Poggi and G. Rimassa, “JADE: A White

Paper,” 2003.

[21] B. Hermans, “Intelligent Software Agents on the Internet,” 11 July 2000.

[Online]. Available: http://www.hermans.org/agents/index.html. [Accessed

8 February 2015].

[22] D. Gilbert, Intelligent Agents: The Right Information at the Right Time,

IBM Intelligent Agent White Paper, 1997.

 100

[23] H. Tran and T. Tran , “Intelligent Agent,” [Online]. Available:

http://groups.engin.umd.umich.edu/CIS/course.des/cis479/projects/agent/Int

elligent_agent.html.

[24] “Wikipedia,” Wikimedia Foundation, 21 January 2015. [Online]. Available:

http://en.wikipedia.org/wiki/Multi-agent_system.

[25] “Multi-Agent Systems,” The Robotics Institute - Carnegie Mellon

University, 2006 - 2012. [Online]. Available:

http://www.cs.cmu.edu/~softagents/multi.html. [Accessed 2015 February

8].

[26] K. J. Mackin and E. Tazaki, “Evolving Intelligent Multiagent Systems using

Unsupervised Agent Communication,” in Systems, Man, and Cybernetics,

2000 IEEE International Conference, 2000.

[27] Z. Guessoum, “Adaptive Agents and Multiagent Systems,” 2004.

[28] D. Weyns and M. Georgeff, “Self-Adaptation Using Multiagent Systems,”

2010.

[29] “JaCaMo Project,” WordPress, [Online]. Available:

http://jacamo.sourceforge.net/?page_id=40. [Accessed February 2014].

 101

[30] K. P. Sycara, “Multiagent,” AI Magazine, vol. 19, pp. 79-92, 1998.

[31] C.-i. Peña, J.-l. Marzo and J.-l. Rosa, “Intelligent Agents in a Teaching and

Learning Environment on the Web,” in International Conference on

Advanced Learning Technologies, 2002.

[32] “Cougaar Software Inc.,” Cougaar Software Inc., [Online]. Available:

http://www.cougaarsoftware.com/agents/agents-1.htm.

[33] I. Rudowsky, “Intelligent Agents,” in The Americas Conference on

Information Systems, 2004.

[34] P. Stone, “Why Multiagent Systems?,” 1996.

[35] G. Caire, “JADE Programming for Beginners,” 2009.

[36] F. Bellifemine, A. Poggi and G. Rimassa, “JADE: A FIPA Compliant

Agent Framework”.

[37] D. Grimshaw, “JADE Administration Tutorial,” 26 March 2010. [Online].

Available: http://jade.tilab.com/documentation/tutorials-guides/jade-

administration-tutorial/.

 102

APPENDICES

 103

Appendix A: Java program for Login agent on the server-side.

package my.onlineexam;

import jade.core.AID;

import jade.core.Agent;

import jade.core.behaviours.CyclicBehaviour;

import jade.lang.acl.ACLMessage;

import jade.lang.acl.MessageTemplate;

import java.nio.charset.Charset;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.Statement;

import java.util.ArrayList;

import javax.swing.JOptionPane;

public class LoginAgent extends Agent {

String[] messageArray;

//Message template for sending message to login agent

private final MessageTemplate template = MessageTemplate.and(

MessageTemplate.MatchPerformative(ACLMessage.REQUEST),

MessageTemplate.MatchOntology("Login"));

protected void setup() { // Agent startup activities

System.out.println("Agent " + getLocalName() + " is ready.");

 // Cyclic behaviour of login user agent

addBehaviour(new CyclicBehaviour(this) {

public void action() {// actions of the login user agent is defined below

ACLMessage msg = myAgent.receive(template); // receives message

if (msg != null) {

String message = msg.getContent();// saves message content in message string

System.out.println("Agent " + getLocalName() + " recieved REQUEST message");

System.out.println("The message is " + message);

messageArray = new String[3];

messageArray = message.split("~");// splits message and saves it in a message array

try {Class.forName("com.mysql.jdbc.Driver");// creatating db connection

Connection con = (Connection)

DriverManager.getConnection("jdbc:mysql://localhost:3306/onlineexamination",

"root", "ghsm4/24/7/*");

Statement stmt = con.createStatement();

if (messageArray[2].equals("Student")) {

// Query for getting student information from database

String sql = "Select student_id,student_name,"

+ "student_surname,student_password "+ "from student where student_id='" +

messageArray[0] + "'and student_password='" + messageArray[1] + "'";

ResultSet rs = stmt.executeQuery(sql);

 104

if (rs.first()) {// Extracting the Query results

String sid = rs.getString("student_id");

String spswd = rs.getString("student_password");

String sn = rs.getString("student_name");

String ssn = rs.getString("student_surname");

if (sid.equals(messageArray[0]) && spswd.equals(messageArray[1])) {

ACLMessage reply = new ACLMessage(ACLMessage.INFORM);

reply.addReceiver(msg.getSender());

System.out.println("Agent " + getLocalName() + " sending INFORM message."

+ "Valid~" + sid + "~" + sn + "~" + ssn);

reply.setOntology("Login");

//Setting 'valid user' message content

reply.setContent("Valid~" + sid + "~" + sn + "~" + ssn);

send(reply);//sending valid message }

} else {ACLMessage reply = new ACLMessage(ACLMessage.INFORM);

reply.addReceiver(msg.getSender());// setting message receiver

reply.setOntology("Login");

//Setting 'invalid user' message content

reply.setContent("Invalid~Invalid~Invalid~Invalid");

System.out.println("Agent " + getLocalName() + " sending INFORM message");

send(reply);//sending invalid message}}

if (messageArray[2].equals("Admin")) {

// Query for getting teacher information from database

Stringsql="SelectAdmin_username,Admin_name,Admin_password,Admin_surnam"

+ "from administration where Admin_username='" + messageArray[0]

+ "'and Admin_password='" + messageArray[1] + "'";

ResultSet rs = stmt.executeQuery(sql);

if (rs.first()) {// Extracting the Query results

String ausid = rs.getString("Admin_username");

String spswd = rs.getString("Admin_password");

String aname = rs.getString("Admin_name");

String asname = rs.getString("Admin_surname");

if (ausid.equals(messageArray[0]) && spswd.equals(messageArray[1])) {

ACLMessage reply = new ACLMessage(ACLMessage.INFORM);

reply.addReceiver(msg.getSender());

reply.setOntology("Login");

//Setting 'valid user' message content

reply.setContent("Valid~" + ausid + "~" + aname + "~" + asname);

System.out.println("Agent " + getLocalName() + " sending INFORM message"

+ "Valid~" + ausid + "~" + aname + "~" + asname);

send(reply);//sending valid message}

} else {ACLMessage reply = new ACLMessage(ACLMessage.INFORM);

reply.addReceiver(msg.getSender());

reply.setOntology("Login");

 105

//Setting 'invalid user' message content

reply.setContent("Invalid~Invalid~Invalid~Invalid");

System.out.println("Agent " + getLocalName() + " sending INFORM message");

send(reply);//sending invalid message}}

} catch (Exception e) {JOptionPane.showMessageDialog(null, e.getMessage());}

} else {block();}}});}

protected void takeDown() {

System.out.println("Agent terminating....");}}

 106

Appendix B: Java program for Login agent on the server-side.

package my.onlineexam;

import jade.core.AID;

import jade.core.Agent;

import jade.core.behaviours.Behaviour;

import jade.core.behaviours.OneShotBehaviour;

import jade.core.behaviours.TickerBehaviour;

import jade.lang.acl.ACLMessage;

import jade.lang.acl.MessageTemplate;

import java.awt.Color;

public class LoginUserAgent extends Agent {

public static LoginPort LoginGui;

public static SplashScreen splash; public static String UserId;

public static String name_of_user; public static String surname_of_user;

public static int loadValue = 0;

//TeacherOptions Topts = new TeacherOptions();

public static String message; String[] messageArray;

//Message template for sending message to login user agent

private final MessageTemplate template = MessageTemplate.and(

MessageTemplate.MatchPerformative(ACLMessage.INFORM),

MessageTemplate.MatchOntology("Login"));

//user-defined agent behaviour

public Behaviour send = new Behaviour() {

public void action() {// actions of the login user agent is defined below

System.out.println("Agent " + getLocalName() + ": sending REQUEST message...");

//creating a request message

ACLMessage request = new ACLMessage(ACLMessage.REQUEST);

//creating message receiver

AID aid = new AID("LoginAgent@192.168.5.35:1099/JADE", AID.ISGUID);

//setting receiver address

aid.addAddresses("http://192.168.5.35:7778/acc");

//adding receiver

request.addReceiver(aid);

//setting the message ontology

request.setOntology("Login");

//Setting message content information entered by user

request.setContent(LoginGui.username+"~"+LoginGui.Pswd+"~"+LoginGui.userTy

pe);

//sending message

send(request);

System.out.println("Agent " + getLocalName() + ": sent REQUEST message..." +

LoginGui.username + "-" + LoginGui.Pswd + "-" + LoginGui.userType);

//adding behaviour for recieving message response

 107

myAgent.addBehaviour(receive);}

public boolean done() {return true;// returns when actions are completed}};

//behaviour for receiving message response

public Behaviour receive = new OneShotBehaviour() {

public void action() {

ACLMessage msg = myAgent.blockingReceive(template);//receiving messge

if (msg != null) {message = msg.getContent();// saving message content in message

string

System.out.println(" Agent " + msg.getSender().getName() + " message is " +

message);

messageArray = new String[4];

messageArray = message.split("~");// splits message and saves it in a message array

//adding behaviour for giving access to users

myAgent.addBehaviour(openAcess);

} else {block();}} };

//behaviour for giving access to users

Behaviour openAcess = new OneShotBehaviour() {

public void action() {

// granting access to students when sucessfully validated

if (messageArray[0].equals("Valid") && LoginGui.userType.equals("Student")) {

UserId = messageArray[1];

name_of_user = messageArray[2];

surname_of_user = messageArray[3];

LoginGui.setVisible(false);

StudentAssistantAgent.Stp.jLabel1.setText("Welcome " + name_of_user + " " +

surname_of_user + "!");

StudentAssistantAgent.Stp.CourseCombo.removeAllItems();

StudentAssistantAgent.Stp.FillCombo();

StudentAssistantAgent.Stp.setVisible(true);}

//denying access to invalid users

if (messageArray[0].equals("Invalid")) {

LoginGui.loginMessageText.setText("Invalid Username and/or Password and/or

Usertype");

LoginGui.loginMessageText.setVisible(true);}

// granting access to teachers when sucessfully validated

if (messageArray[0].equals("Valid") && LoginGui.userType.equals("Admin")) {

UserId = messageArray[1];

name_of_user = messageArray[2];

surname_of_user = messageArray[3];

LoginGui.setVisible(false);

TeacherAssistantAgent.tops.jLabel3.setText("Welcome " + name_of_user

+ " " + surname_of_user + "!");

TeacherAssistantAgent.tops.courseCombo.removeAllItems();

TeacherAssistantAgent.tops.FillCourseCombo();

 108

TeacherAssistantAgent.tops.setVisible(true);}}};

// behaviour for displaying splashscreen at the start of the system

public Behaviour splashScreenTimer = new TickerBehaviour(this, 200) {

protected void onTick() {

if (loadValue == 101) {

splash.close();

LoginGui.setVisible(true);

myAgent.removeBehaviour(splashScreenTimer);}

if (loadValue < 101) {SplashScreen.splashScreenProgressBar.setValue(loadValue);

loadValue = loadValue + 1;}}};

protected void setup() {// Agent startup activities

splash = new SplashScreen();

this.addBehaviour(splashScreenTimer);

splash.setVisible(true);

LoginGui = new LoginPort(this);

System.out.println("Online Exam System Started....");

System.out.println("LoginUserAgent is ready");

}protected void takeDown() {System.out.println("Agent terminating....");}}

 109

Appendix C: Java program for the Exam monitor agent

package my.onlineexam;

import jade.core.AID;

import jade.core.Agent;

import jade.core.behaviours.Behaviour;

import jade.core.behaviours.CyclicBehaviour;

import jade.core.behaviours.OneShotBehaviour;

import jade.core.behaviours.TickerBehaviour;

import jade.lang.acl.ACLMessage;

import jade.lang.acl.MessageTemplate;

import java.awt.Color;

import java.text.DateFormat;

import java.text.DecimalFormat;

import java.text.SimpleDateFormat;

import java.util.Date;

import org.jfree.chart.ChartFactory;

import org.jfree.chart.ChartFrame;

import org.jfree.chart.JFreeChart;

import org.jfree.chart.plot.CategoryPlot;

import org.jfree.chart.plot.PlotOrientation;

import org.jfree.data.category.DefaultCategoryDataset;

public class ExamMonitorAgent extends Agent {

//variable declarations

public static ExamPage Exp;public static ResultPerformancePage resultPage;

public static String message; public static int Duration; public static double

estimated_Time; public static int halfTime; public static int littleTime;

public static int Question_number = 0; public static int extra_time;

public static int extra_timeChecker = 0; public static int addChecker = 0;

public static String Exam_number; public static String Exam_type;public static

String Question_ID;public static String Category;public static String[]

messageArray;public static String[] optionsArray;public static String[]

StatsArray;public static int grade;public static double initial_Minutes;public static

double current_Minutes;public static int deactivation_Minutes;

//Message templates for sending messages

private final MessageTemplate initExamTemplate = MessageTemplate.and(

MessageTemplate.MatchPerformative(ACLMessage.INFORM),

MessageTemplate.MatchOntology("InitExamQuestions"));

private final MessageTemplate examTemplate = MessageTemplate.and(

MessageTemplate.MatchPerformative(ACLMessage.INFORM),

MessageTemplate.MatchOntology("ExamQuestions"));

private final MessageTemplate optionsTemplate = MessageTemplate.and(

MessageTemplate.MatchPerformative(ACLMessage.INFORM),

MessageTemplate.MatchOntology("Options"));

 110

private final MessageTemplate unansTemplate = MessageTemplate.and(

MessageTemplate.MatchPerformative(ACLMessage.INFORM),

MessageTemplate.MatchOntology("UnansInfo"));

private final MessageTemplate gradeTemplate = MessageTemplate.and(

MessageTemplate.MatchPerformative(ACLMessage.INFORM),

MessageTemplate.MatchOntology("GradeInfo"));

private final MessageTemplate statTemplate = MessageTemplate.and(

MessageTemplate.MatchPerformative(ACLMessage.INFORM),

MessageTemplate.MatchOntology("StatInfo"));

private final MessageTemplate extraTime = MessageTemplate.and(

MessageTemplate.MatchPerformative(ACLMessage.INFORM),

MessageTemplate.MatchOntology("Extratime"));

private final MessageTemplate noOfQuestionsTemplate = MessageTemplate.and(

MessageTemplate.MatchPerformative(ACLMessage.INFORM),

MessageTemplate.MatchOntology("QuestionsStatistics"));

private final MessageTemplate StudentRequestResponse = MessageTemplate.and(

MessageTemplate.MatchPerformative(ACLMessage.INFORM),

MessageTemplate.MatchOntology("StudentRequestResponse"));

private final MessageTemplate examScriptTemplate = MessageTemplate.and(

MessageTemplate.MatchPerformative(ACLMessage.INFORM),

MessageTemplate.MatchOntology("ExamScript"));

//behavior for sending initial exam information request

public Behaviour init_sendExamRequest = new OneShotBehaviour() {

public void action() {

//System.out.println("Agent " + getLocalName() + ": sending REQUEST

message...");

ACLMessage request = new ACLMessage(ACLMessage.REQUEST);

AID aid = new AID("ExamServerAgent@192.168.5.35:1099/JADE", AID.ISGUID);

aid.addAddresses("http://192.168.5.35:7778/acc");

request.addReceiver(aid);

request.setOntology("GetInitExamQuestions");

Question_number++;// setting question number

ExamPage.questionNoLabel.setVisible(true);

ExamPage.questionNoLabel.setText(Question_number + ".");

request.setContent(LoginUserAgent.UserId + "~" + StartPage.Course + "~" +

Question_number);

send(request);// sending request

System.out.println("Agent " + getLocalName()

+ ": sent REQUEST message..." + LoginUserAgent.UserId + "~"

+ StartPage.Course + "~" + Question_number);

myAgent.addBehaviour(init_recieveExamInfo);}};

//behavior for receiving initial exam information

public Behaviour init_recieveExamInfo = new CyclicBehaviour() {

public void action() {// action method for agent behaviour

 111

int i;

ACLMessage msg = myAgent.receive(initExamTemplate);

if (msg != null) {

message = msg.getContent();

System.out.println(" Agent " + msg.getSender().getName() + " INIT RECIEVE

message is " + message);

messageArray = new String[7];

messageArray = message.split("~");

if (messageArray[0].equals("Valid")) {

//current time gotten to calculate initial remaining time

DateFormat dtform1 = new SimpleDateFormat("HH:mm:ss");

Date dtobj1 = new Date();

String dateStr1 = dtform1.format(dtobj1);

System.out.println("Length: " + dateStr1.length() + " Initial Hour: " +

dateStr1.substring(0, 2) + " Minutes: " + dateStr1.substring(3, 5) + " Seconds: " +

dateStr1.substring(6, 8));

int chour = Integer.parseInt(dateStr1.substring(0, 2));

int cmin = Integer.parseInt(dateStr1.substring(3, 5));

int cseconds = Integer.parseInt(dateStr1.substring(6, 8));

deactivation_Minutes = Integer.parseInt(messageArray[3]);

current_Minutes = (chour * 60) + (cmin) + ((1 / (double) 60) * cseconds);

double initial_Time = deactivation_Minutes - current_Minutes;

DecimalFormat dff = new DecimalFormat("#");

String initial_TimeStr = dff.format(initial_Time);

System.out.println("The initial current time in mins: " + current_Minutes +

"Deactivation mins: " + deactivation_Minutes);

ExamPage.checker = 0;

ExamPage.QuestionLabel.setText(messageArray[4]);

ExamPage.TimeLabel.setText(initial_TimeStr);

ExamPage.QuestionLabel.setVisible(true);

ExamPage.TimeLabel.setVisible(true);

ExamPage.minsLabel.setVisible(true);

ExamPage.NextButton.setVisible(true);

ExamPage.NextButton.setEnabled(true);

ExamPage.SubmitButton.setVisible(true);

ExamPage.requestTeacher.setVisible(true);

ExamPage.UnansweredButton.setVisible(true);

ExamPage.unAnsNext.setVisible(true);

ExamPage.requestExtratime.setVisible(true);

ExamPage.qUnansLAbel.setVisible(true);

ExamPage.noOfUnansLabel.setVisible(true);

ExamPage.qAnsLabel.setVisible(true);

ExamPage.QuestAnsLabel.setVisible(true);

ExamPage.estimateLabel.setVisible(true);

 112

ExamPage.estimatedTimeLabel.setVisible(true);

Exam_number = messageArray[1];

Exam_type = messageArray[6];

Duration = Integer.parseInt(initial_TimeStr);

// initial_Duration = Duration;

ExamPage.estimatedTimeLabel.setText("" + Duration);

DecimalFormat df = new DecimalFormat("#");

String halfTimeStr = df.format(Duration * 0.7);

halfTime = Integer.parseInt(halfTimeStr);

littleTime = Duration - (int) (Duration * 0.8);

System.out.println("Halftime: " + halfTime);

Question_ID = messageArray[2];

Category = messageArray[5];

myAgent.addBehaviour(sendOptionsRequest);

myAgent.addBehaviour(sendQuestionsStatistics);

myAgent.addBehaviour(Timekeeper);

DateFormat dtform = new SimpleDateFormat("HH:mm:ss");

Date dtobj = new Date();

String dateStr = dtform.format(dtobj);

System.out.println("Length: " + dateStr.length() + " Initial Hour: " +

dateStr.substring(0, 2) + " Minutes: " + dateStr.substring(3, 5) + " Seconds: " +

dateStr.substring(6, 8));

int hour = Integer.parseInt(dateStr.substring(0, 2));

int min = Integer.parseInt(dateStr.substring(3, 5));

int seconds = Integer.parseInt(dateStr.substring(6, 8));

/*Initial min for estimated time(Has to be after options have been sent and recived

and time has been set that's why with used two different initial mins instead of using

just one)*/

initial_Minutes = (hour * 60) + (min) + ((1 / (double) 60) * seconds);

System.out.println("The time in mins: " + initial_Minutes);}

if (messageArray[0].equals("Invalid")) {

ExamPage.QuestionLabel.setVisible(true);

ExamPage.QuestionLabel.setText(" YOU HAVE ALREADY TAKEN THIS EXAM

OR EXAMINATION IS NOT AVAILABLE");

ExamPage.UnansweredButton.setVisible(false);

ExamPage.unAnsNext.setVisible(false);

ExamPage.NextButton.setVisible(false);

ExamPage.OptionA.setVisible(false);

ExamPage.OptionB.setVisible(false);

ExamPage.OptionC.setVisible(false);

ExamPage.OptionD.setVisible(false);

ExamPage.OptionE.setVisible(false);

ExamPage.SubmitButton.setVisible(false);

ExamPage.requestExtratime.setVisible(false);

 113

ExamPage.requestTeacher.setVisible(false);

ExamPage.questionNoLabel.setVisible(false);

ExamPage.outOfTimeImage.setVisible(false);

ExamPage.outOfTimeLabel.setVisible(false);

ExamPage.qUnansLAbel.setVisible(false);

ExamPage.noOfUnansLabel.setVisible(false);

ExamPage.qAnsLabel.setVisible(false);

ExamPage.QuestAnsLabel.setVisible(false);

ExamPage.estimateLabel.setVisible(false);

ExamPage.estimatedTimeLabel.setVisible(false);

ExamPage.TimeLabel.setVisible(false);

ExamPage.minsLabel.setVisible(false);

ExamPage.checker = 1;}

} else {block();}}};

//behaviour for sending exam information request

public Behaviour sendExamRequest = new OneShotBehaviour() {

public void action() {

ACLMessage request = new ACLMessage(ACLMessage.REQUEST);

AID aid = new AID("ExamServerAgent@192.168.5.35:1099/JADE", AID.ISGUID);

aid.addAddresses("http://192.168.5.35:7778/acc");

request.addReceiver(aid);

request.setOntology("GetExamQuestions");

Question_number++;

ExamPage.questionNoLabel.setVisible(true);

ExamPage.questionNoLabel.setText(Question_number + ".");

request.setContent(LoginUserAgent.UserId + "~" + StartPage.Course + "~" +

Question_number);

send(request);

System.out.println("Agent " + getLocalName() + ": sent REQUEST message..." +

LoginUserAgent.UserId + "~" + StartPage.Course + "~" + Question_number);

myAgent.addBehaviour(recieveExamInfo); }};

// behaviour for receiving exam information

public Behaviour recieveExamInfo = new CyclicBehaviour() {

public void action() {int i;

ACLMessage msg = myAgent.receive(examTemplate);

if (msg != null) {message = msg.getContent();

System.out.println(" Agent " + msg.getSender().getName() + " message is " +

message);

messageArray = new String[5];

messageArray = message.split("~");

if (messageArray[0].equals("Valid")) {

ExamPage.QuestionLabel.setText(messageArray[3]);

Question_ID = messageArray[2];

Category = messageArray[4];

 114

ExamPage.NextButton.setVisible(true);

ExamPage.SubmitButton.setVisible(true);

ExamPage.NextButton.setEnabled(true);

myAgent.addBehaviour(sendOptionsRequest);}

if (messageArray[0].equals("Invalid")) {

ExamPage.QuestionLabel.setVisible(true);

ExamPage.QuestionLabel.setText("There are no Further Questions "

+ "pls click the \"Unanswered questions\" button to complete unanswered questions

"+ "or click Submit to Finish Exam");

ExamPage.UnansweredButton.setEnabled(true);

ExamPage.NextButton.setEnabled(false);

ExamPage.OptionA.setVisible(false);

ExamPage.OptionB.setVisible(false);

ExamPage.OptionC.setVisible(false);

ExamPage.OptionD.setVisible(false);

ExamPage.OptionE.setVisible(false);

ExamPage.questionNoLabel.setVisible(false);

ExamPage.outOfTimeImage.setVisible(false);

ExamPage.outOfTimeLabel.setVisible(false);}

} else {block();}}};

// behaviour for sending request for exam question options

public Behaviour sendOptionsRequest = new OneShotBehaviour() {

public void action() {System.out.println("Agent " + getLocalName() + ": sending

OPTIONS REQUEST message...");

ACLMessage request = new ACLMessage(ACLMessage.REQUEST);

AID aid = new AID("ExamServerAgent@192.168.5.35:1099/JADE", AID.ISGUID);

aid.addAddresses("http://192.168.5.35:7778/acc");

request.addReceiver(aid);

request.setOntology("GetOptions");

request.setContent(Question_ID);

send(request);

System.out.println("Agent " + getLocalName() + ": sent OPTIONS REQUEST

message...");

myAgent.addBehaviour(recieveOptionsInfo);}};

// behaviour for receiving exam question options

public Behaviour recieveOptionsInfo = new CyclicBehaviour() {

public void action() {

int i;

ACLMessage msg = myAgent.receive(optionsTemplate);

if (msg != null) {

message = msg.getContent();

System.out.println(" Agent " + msg.getSender().getName() + " message is " +

message);

optionsArray = new String[5];

 115

optionsArray = message.split("~");

ExamPage.OptionA.setText(optionsArray[0]);

ExamPage.OptionA.setVisible(true);

ExamPage.OptionB.setText(optionsArray[1]);

ExamPage.OptionB.setVisible(true);

ExamPage.OptionC.setText(optionsArray[2]);

ExamPage.OptionC.setVisible(true);

ExamPage.OptionD.setText(optionsArray[3]);

ExamPage.OptionD.setVisible(true);

ExamPage.OptionE.setText(optionsArray[4]);

ExamPage.OptionE.setVisible(true);

} else {block();}} };

// behaviour for sending request for unanswered questions

public Behaviour sendUnansRequest = new OneShotBehaviour() {

public void action() {

System.out.println("Agent " + getLocalName() + ": sending UNANS REQUEST

message...");

ACLMessage request = new ACLMessage(ACLMessage.REQUEST);

AID aid = new AID("ExamServerAgent@192.168.5.35:1099/JADE", AID.ISGUID);

aid.addAddresses("http://192.168.5.35:7778/acc");

request.addReceiver(aid);

request.setOntology("GetUnansExamQuestions");

request.setContent(LoginUserAgent.UserId + "~" + Exam_number);

send(request);

System.out.println("Agent " + getLocalName() + ": sent REQUEST message..." +

LoginUserAgent.UserId + "~" + Exam_number);

myAgent.addBehaviour(recieveUnansInfo);}};

// behaviour for receiving unanswered question information

public Behaviour recieveUnansInfo = new CyclicBehaviour() {

public void action() {

int i;

ACLMessage msg = myAgent.receive(unansTemplate);

if (msg != null) {

message = msg.getContent();

System.out.println(" Agent " + msg.getSender().getName() + " message is " +

message);

messageArray = new String[5];

messageArray = message.split("~");

if (messageArray[0].equals("Valid")) {

ExamPage.unAnsNext.setEnabled(true);

ExamPage.QuestionLabel.setText(messageArray[1]);

ExamPage.QuestionLabel.setVisible(true);

Question_ID = messageArray[2];

Category = messageArray[4];

 116

ExamPage.questionNoLabel.setVisible(true);

ExamPage.questionNoLabel.setText(messageArray[3]);

myAgent.addBehaviour(sendOptionsRequest);}

if (messageArray[0].equals("Invalid")) {

ExamPage.QuestionLabel.setVisible(true);

ExamPage.QuestionLabel.setText("There are no Further Questions pls Click Submit

to Finish Exam");

ExamPage.UnansweredButton.setEnabled(false);

ExamPage.unAnsNext.setEnabled(false);

ExamPage.OptionA.setVisible(false);

ExamPage.OptionB.setVisible(false);

ExamPage.OptionC.setVisible(false);

ExamPage.OptionD.setVisible(false);

ExamPage.OptionE.setVisible(false);

ExamPage.requestExtratime.setEnabled(false);

ExamPage.requestTeacher.setEnabled(false);

ExamPage.questionNoLabel.setVisible(false);

ExamPage.outOfTimeImage.setVisible(false);

ExamPage.outOfTimeLabel.setVisible(false);

ExamPage.extratimeAddedLabel.setVisible(false);}

} else {block();}}};

// behaviour for sending student selected answerz

public Behaviour sendAnalyseInfo = new OneShotBehaviour() {

public void action() {

System.out.println("Agent " + getLocalName() + ": sending INFORM message...");

ACLMessage inform = new ACLMessage(ACLMessage.INFORM);

AID aid = new AID("ExamServerAgent@192.168.5.35:1099/JADE", AID.ISGUID);

aid.addAddresses("http://192.168.5.35:7778/acc");

inform.addReceiver(aid);

inform.setOntology("AnswerInformation");

inform.setContent(Exam_number + "~" + LoginUserAgent.UserId + "~" +

Question_ID + "~" + ExamPage.Letter + "~" + Category);

send(inform);}};

// behaviour for sending exam grade request

public Behaviour sendGradeRequest = new OneShotBehaviour() {

public void action() {

System.out.println("Agent " + getLocalName() + ": sending GRADE REQUEST

message...");

ACLMessage request = new ACLMessage(ACLMessage.REQUEST);

AID aid = new AID("ExamServerAgent@192.168.5.35:1099/JADE", AID.ISGUID);

aid.addAddresses("http://192.168.5.35:7778/acc");

request.addReceiver(aid);

request.setOntology("GetExamGrade");

request.setContent(Exam_number + "~" + LoginUserAgent.UserId);

 117

send(request);

System.out.println("Agent " + getLocalName() + ": sent REQUEST message..." +

StartPage.Course + "~" + LoginUserAgent.UserId);

myAgent.addBehaviour(recieveGradeInfo);}};

// behaviour for receiving exam grade

public Behaviour recieveGradeInfo = new CyclicBehaviour() {

public void action() {

ACLMessage msg = myAgent.receive(gradeTemplate);

if (msg != null) {

message = msg.getContent();

System.out.println(" Agent " + msg.getSender().getName() + " message is " +

message);

messageArray = new String[1];

messageArray = message.split("~");

grade = Integer.parseInt(messageArray[0]);

if (ExamPage.checker == 2) {

ExamPage.Rp.ExamFinishedLabel.setText("Examination Time has Elapsed " +

StartPage.Course + " Exam is Over");}

if (ExamPage.checker == 0) {

ExamPage.Rp.ExamFinishedLabel.setText("You have sucessfully finished " +

StartPage.Course);}

ExamPage.Rp.PStatButton.setVisible(true);

ExamPage.Rp.ExamGradeLabel.setText("Your score is " + grade);

ExamPage.Rp.ExamFinishedLabel.setVisible(true);

ExamPage.Rp.ExamGradeLabel.setVisible(true);

myAgent.removeBehaviour(Timekeeper);

} else {block();

}} };

// behaviour for sending exam performance statistics request

public Behaviour sendStatisticsRequest = new OneShotBehaviour() {

public void action() {

System.out.println("Agent " + getLocalName() + ": sending STATISTICS

REQUEST message...");

ACLMessage request = new ACLMessage(ACLMessage.REQUEST);

AID aid = new AID("ExamServerAgent@192.168.5.35:1099/JADE", AID.ISGUID);

aid.addAddresses("http://192.168.5.35:7778/acc");

request.addReceiver(aid);

request.setOntology("GetExamStats");

request.setContent(LoginUserAgent.UserId + "~" + Exam_number);

send(request);

System.out.println("Agent " + getLocalName() + ": sent REQUEST message..." +

LoginUserAgent.UserId + "~" + Exam_number);

myAgent.addBehaviour(recieveStatInfo);} };

 // behaviour for receiving exam performance statistics information

 118

public Behaviour recieveStatInfo = new CyclicBehaviour() {

public void action() {

ACLMessage msg = myAgent.receive(statTemplate);

if (msg != null) {

message = msg.getContent();

System.out.println(" Agent " + msg.getSender().getName() + " message is " +

message);

String length = message.substring(0, message.indexOf('~'));

message = message.substring(message.indexOf('~') + 1);

StatsArray = new String[Integer.parseInt(length)];

StatsArray = message.split("~");

DefaultCategoryDataset dataset = new DefaultCategoryDataset();

int i;

for (i = 0; i < StatsArray.length; i = i + 2) {

dataset.setValue(Integer.parseInt(StatsArray[i + 1]), "grade", StatsArray[i]);}

JFreeChart chart = ChartFactory.createBarChart3D("Performance Statistics",

"Category", "Grade(%)", dataset, PlotOrientation.VERTICAL, false, true, false);

//chart.setBackgroundPaint(Color.BLUE);

chart.getTitle().setPaint(Color.BLUE);

CategoryPlot P = chart.getCategoryPlot();

P. (Color.BLACK);

ChartFrame cFrame = new ChartFrame("Performance Statistics Chart", chart);

cFrame.setVisible(true);

cFrame.setSize(700, 500);

cFrame.setLocationRelativeTo(null);

} else {block();} }};

// behaviour for sending student request

public Behaviour sendStudentRequest = new OneShotBehaviour() {

public void action() {

System.out.println("Agent " + getLocalName() + ": sending REQUEST message...");

ACLMessage request = new ACLMessage(ACLMessage.REQUEST);

AID aid = new AID("InfoExtractAgent@192.168.5.35:1099/JADE", AID.ISGUID);

aid.addAddresses("http://192.168.5.35:7778/acc");

request.addReceiver(aid);

request.setOntology("InsertStudentRequest");

request.setContent(LoginUserAgent.UserId + "~" + LoginUserAgent.name_of_user

+ "~" + LoginUserAgent.surname_of_user + "~" + StartPage.Course

+ "~" + ExamPage.requestType + "~" + Exam_type);

send(request);

myAgent.addBehaviour(recieveStudentRequestResponse);}};

// behaviour for receiving student request

public Behaviour recieveStudentRequestResponse = new CyclicBehaviour() {

public void action() {

ACLMessage msg = myAgent.receive(StudentRequestResponse);

 119

if (msg != null) {

message = msg.getContent();

System.out.println(" Agent " + msg.getSender().getName() + " message is " +

message);

messageArray = new String[2];

messageArray = message.split("~");

if (messageArray[0].equals("Attention")) {

ExamPage.examAttentionInfoLabel.setText(messageArray[1]);

ExamPage.examAttentionInfoLabel.setVisible(true);}

if (messageArray[0].equals("Extra time")) {

ExamPage.examExtratimeInfoLabel.setText(messageArray[1]);

ExamPage.examExtratimeInfoLabel.setVisible(true);

myAgent.addBehaviour(extratimeRequest);}} else {block();}}};

// behaviour for sending extratime request

public Behaviour extratimeRequest = new TickerBehaviour(this, 10000) {

protected void onTick() {

ACLMessage request = new ACLMessage(ACLMessage.REQUEST);

AID aid = new AID("InfoExtractAgent@192.168.5.35:1099/JADE", AID.ISGUID);

aid.addAddresses("http://192.168.5.35:7778/acc");

request.addReceiver(aid);

request.setOntology("GetExtratimeRequest");

request.setContent(StartPage.Course + "~" + Exam_type);

System.out.println("Agent " + getLocalName() + ": sending Extra Time REQUEST

message... " + StartPage.Course + "~" + Exam_type);

send(request);

if (addChecker == 0) {

myAgent.addBehaviour(receiveExtratime);

addChecker = 1;}}};

// behaviour for recieving extra time request

public Behaviour receiveExtratime = new CyclicBehaviour() {

 public void action() {

ACLMessage msg = myAgent.receive(extraTime);

if (msg != null) {

myAgent.removeBehaviour(extratimeRequest);

message = msg.getContent();

extra_time = Integer.parseInt(message);

System.out.println(" Agent " + msg.getSender().getName() + " message is Extra

Time : " + message);

extra_timeChecker = 1;

myAgent.removeBehaviour(receiveExtratime);

} else {block();}}};

/* behaviour for sending requests about the statistics of the exam questions

no of questions answered, no of unanswered questions etc*/

public Behaviour sendQuestionsStatistics = new OneShotBehaviour() {

 120

public void action() {

//System.out.println("Agent " + getLocalName() + ": sending REQUEST

message...");

ACLMessage request = new ACLMessage(ACLMessage.REQUEST);

AID aid = new AID("ExamServerAgent@192.168.5.35:1099/JADE", AID.ISGUID);

aid.addAddresses("http://192.168.5.35:7778/acc");

request.addReceiver(aid);

request.setOntology("SendNoOfQuestions");

request.setContent(LoginUserAgent.UserId + "~" + StartPage.Course + "~" +

Exam_number);

send(request);

System.out.println("Agent " + getLocalName() + ": sent No of Questions REQUEST

message..." + LoginUserAgent.UserId + "~" + StartPage.Course);

myAgent.addBehaviour(receiveQuestionsStatistics);}};

// behaviour for receiving exam questions statistics

public Behaviour receiveQuestionsStatistics = new CyclicBehaviour() {

public void action() {

ACLMessage msg = myAgent.receive(noOfQuestionsTemplate);

if (msg != null) {

message = msg.getContent();

System.out.println(" Agent " + msg.getSender().getName() + " message is " +

message);

messageArray = new String[4];

messageArray = message.split("~");

ExamPage.QuestAnsLabel.setText(messageArray[2] + " of " + messageArray[3]);

ExamPage.noOfUnansLabel.setText(messageArray[1] + " of " + messageArray[3]);

if (Integer.parseInt(messageArray[2]) > 0) {

DateFormat dtform = new SimpleDateFormat("HH:mm:ss");

Date dtobj = new Date();

String dateStr = dtform.format(dtobj);

System.out.println("Length: " + dateStr.length() + " Hour: " + dateStr.substring(0, 2)

+ " Mınutes: " + dateStr.substring(3, 5) + " Seconds: " + dateStr.substring(6, 8));

int hour = Integer.parseInt(dateStr.substring(0, 2));

int min = Integer.parseInt(dateStr.substring(3, 5));

int seconds = Integer.parseInt(dateStr.substring(6, 8));

double current_Minutes = (hour * 60) + (min) + ((1 / (double) 60) * seconds);

System.out.println("The time in mins: " + current_Minutes);

double minutes_Spent = current_Minutes - initial_Minutes;

estimated_Time = (minutes_Spent / (double) Integer.parseInt(messageArray[2])) *

(double) Integer.parseInt(messageArray[1]);

DecimalFormat df = new DecimalFormat("#.##");

String estimatedStr = df.format(estimated_Time);

ExamPage.estimatedTimeLabel.setText(estimatedStr + " mins");

System.out.println("estimated time " + estimated_Time);

 121

}} else {block();}}};

// behaviour for sending exam script request

public Behaviour sendScriptRequest = new OneShotBehaviour() {

public void action() {

//System.out.println("Agent " + getLocalName() + ": sending REQUEST

message...");

ACLMessage request = new ACLMessage(ACLMessage.REQUEST);

AID aid = new AID("ExamServerAgent@192.168.5.35:1099/JADE", AID.ISGUID);

aid.addAddresses("http://192.168.5.35:7778/acc");

request.addReceiver(aid);

request.setOntology("SendExamScript");

request.setContent(LoginUserAgent.UserId + "~" + Exam_number);

send(request);

System.out.println("Agent " + getLocalName() + ": SCRIPT REQUEST message..."

+ LoginUserAgent.UserId + "~" + Exam_number);

myAgent.addBehaviour(receiveExamScript);}};

// behaviour for receiving exam script request

public Behaviour receiveExamScript = new CyclicBehaviour() {

public void action() {

ACLMessage msg = myAgent.receive(examScriptTemplate);

if (msg != null) {message = msg.getContent();

System.out.println(" Agent " + msg.getSender().getName() + " message is " +

message);

String length = message.substring(0, message.indexOf('~'));

message = message.substring(message.indexOf('~') + 1);

messageArray = new String[Integer.parseInt(length)];

messageArray = message.split("~");

ResultPerformancePage.eScpt.model.setNumRows(0);

for (int i = 4; i < messageArray.length; i = i + 9) {

ResultPerformancePage.eScpt.model.addRow(new Object[]{messageArray[i],

messageArray[i + 1],messageArray[i + 2], messageArray[i + 3], messageArray[i +

4], messageArray[i + 5],messageArray[i + 6], messageArray[i + 7], messageArray[i

+ 8]});

ResultPerformancePage.eScpt.totalQuestionsLabel.setText(messageArray[0]);

ResultPerformancePage.eScpt.questionsAnsweredLabel.setText(messageArray[1]);

ResultPerformancePage.eScpt.correctLabel.setText(messageArray[2]);

ResultPerformancePage.eScpt.wrongLabel.setText(messageArray[3]);}} else

{block();}}};

/*behaviour for keeping track of remaining time, displaying hurry up reminder,

adding extra time to remaining minutes keeping tack of deactivated time

and other time related fuctions */

public Behaviour Timekeeper = new TickerBehaviour(this, 60000) {

protected void onTick() {

DateFormat dtform1 = new SimpleDateFormat("HH:mm:ss");

 122

Date dtobj1 = new Date();

String dateStr1 = dtform1.format(dtobj1);

System.out.println("Length: " + dateStr1.length() + " Initial Hour: " +

dateStr1.substring(0, 2) + " Minutes: " + dateStr1.substring(3, 5) + " Seconds: " +

dateStr1.substring(6, 8));

int chour = Integer.parseInt(dateStr1.substring(0, 2));

int cmin = Integer.parseInt(dateStr1.substring(3, 5));

int cseconds = Integer.parseInt(dateStr1.substring(6, 8));

if (extra_timeChecker == 1) {

deactivation_Minutes = deactivation_Minutes + extra_time;

.extratimeAddedLabel.setForeground(Color.red);

ExamPage.extratimeAddedLabel.setText("Extra Time (" + extra_time + " mins) has

been added");

ExamPage.extratimeAddedLabel.setVisible(true);

extra_timeChecker = 2;}

current_Minutes = (chour * 60) + (cmin) + ((1 / (double) 60) * cseconds);

double remaining_Minutes = deactivation_Minutes - current_Minutes;

DecimalFormat dff = new DecimalFormat("#");

String remaining_MinutesStr = dff.format(remaining_Minutes);

System.out.println("The time in mins: " + current_Minutes);

Duration = Integer.parseInt(remaining_MinutesStr);

ExamPage.TimeLabel.setText("" + Duration);

if (Duration == halfTime && extra_timeChecker == 0) {

ExamPage.requestExtratime.setEnabled(true);}

if (Duration == (int) halfTime / 2) {

ExamPage.TimeLabel.setForeground(Color.RED);

ExamPage.minsLabel.setForeground(Color.RED);}

if (Duration <= littleTime) {

ExamPage.outOfTimeImage.setVisible(true);

ExamPage.outOfTimeLabel.setVisible(true);}

if (Duration == 0) {

ExamPage.checker = 2;

Exp.close();}}};

protected void setup() {

Exp = new ExamPage(this);

System.out.println("Exam Monitor Agent is ready....");

Exp.setVisible(false);}

protected void takeDown() {

System.out.println("Agent terminating....");}}

