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ABSTRACT 

As the number of mobile technology users in wireless cellular communication 

increases everyday, the quality of service (QoS) concerns are not totally satisfied. 

Mobile users are not limited to a fixed location and can move around to other places. 

Mobility model is a method which is used to predict future location of a mobile user 

using different techniques. Mobility model is one approach for solving the mobility 

problem to guarantee the QoS.  

In this thesis, we compare two different mobility models for pedestrian movements 

through simulation using two actual trajectory datasets in the same area with 

different arrival rates. The first model is called current mobility parameters method, 

which predicts the future position of mobile user based on current parameters such as 

current location information, speed and direction. This information is mostly 

gathered using a positioning system such as GPS. Gauss-Markov mobility model 

predicts next location using current speed, direction and location information of the 

user. The second method is called observation histories method, in which prediction 

is performed based on the historical movement pattern of the user. For this model, a 

simple second order Markov-Mobility model predicts next position using current and 

one previous location information of that user. The simulation result shows that the 

observation histories method has a better performance than the current mobility 

parameters method for pedestrian movement. The precision rate for current mobility 

parameters was 99.74 % for first and second dataset, respectively and 99.88 % and 

99.87% for observation histories method. 
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ÖZ 

Kablosuz hücresel iletişim mobil teknoloji kullanıcılarının sayısı her gün arttıkça, 

hizmet kalitesi (QoS) endişeleri tamamen karşılanamıyor. Öte yandan mobil 

kullanıcılar sabit bir konumla sınırlı değillerdir ve yer değiştirebilirler. Bir hareket 

modeli, mobil kullanıcının farklı teknikler kullanılarak gelecekteki bir konumunun 

tahmin edilmesidir. Hareketlilik modeli, kaliteli servisi güvence altına almak için 

hareketlilik probleminin çözüldüğü bir yaklaşımdır. 

Bu tezde, aynı bölgede olup farklı varış tanımları olan iki gerçek yörüngeli veri 

kümesi kullanarak, iki farklı hareket modelini yaya hareketi simülasyonu aracılığıyla 

karşılaştırdık. İlk model, şimdiki hareketlilik değişkenleri yöntemi, hareketli 

kullanıcının gelecekteki konumunu, konum bilgileri, hız ve yön gibi güncel 

değişkenlere göre tahmin eder. Bu bilgiler genellikle GPS gibi bir konumlandırma 

sistemi kullanılarak toplanır. Gauss-Markov hareketlilik modeli, kullanıcının güncel 

hız, yön ve konum bilgilerini kullanarak bir sonraki konumunu tahmin eder. İkinci 

model ise gözlem geçmişleri yöntemidir, tahmin kullanıcının geçmiş hareket yapısı 

baz alınarak gerçekleştirilir. Bu model için, ikinci dereceden bir basit Markov-

Hareketlilik modeli  kullanıcının şimdiki ve bir önceki konum bilgilerini kullanarak 

bir sonraki konumunu tahmin eder. Simülasyon sonucuna göre yaya hareketi için 

gözlem geçmişleri yöntemi, şimdiki hareketlilik değişkenleri yönteminden daha iyi 

bir performansa sahiptir. Birinci ve ikinci veri kümeleri için doğruluk oranları güncel 

hareketlilik değişkenleri yöntemi için her ikisi için de %99.74 iken gözlem 

geçmişleri yöntemi için birinci oran %99.88 ve ikinci oran %99.87’dir. 
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Chapter 1 

INTRODUCTION 

Wireless communication involves transmission of information between two or more 

nodes that are connected together without using an electronic conductor (such as 

cable, wire etc.). This information can be transmitted over any distance, from a few 

meters (such as television remote control) or a thousand of kilometers (such radio 

communication). Using wireless communication, these days allows more flexible 

communication rather the traditional wired models because the user is not limited to 

a fixed location and is free to move to other places. By increased usage of mobile 

technology, the quality of service (QoS) criteria may not be totally satisfied because 

the nodes are mobile and can move or change their places. User movement patterns 

provide an essential research topic these days for better performance in wireless 

communication. It is important to make a seamless connection for a mobile user in 

the wireless network. This leads to the problem of handoff without disruption in 

communication when moving from one cell to another. Different mobility schemes 

are proposed to track mobile users and predict future paths of them. Mobility 

schemes represent the movement pattern of a mobile user with their location, speed 

and direction, which change over the time.  

1.1 Important tasks in Mobility Models  

The following is the important tasks to be implemented in wireless networks [9]. 



2 

 

1. Handoff management which may happen by disordering in signal transmission as 

the mobile user moves from one cell (i.e., the coverage area of a base station) to the 

adjacent one. 

2. Flow of control which prevents overwhelming a slow receiver by a fast sender. 

3. Resource allocation which allocates available resources (channels) to mobile 

users, hopefully, optimally. 

4. Congestion control that prevents performance degradation by sending too many 

packets to a part of the network. 

5. Call admission control which will try to regulate the traffic volume in voice 

communication. 

6. Quality of service (QoS) provisioning for better performance. 

At the application level, the importance of mobility prediction schemes originates 

from the Mobile Location Service (MLS). Based on the combination of mobile user 

profile and the current or the predicted location, MLS provides an enhanced wireless 

service [9]. Examples for such services are online advertising, local traffic 

information, weather forecast, map adaption and instant messaging for 

communication with people in nearby localities, mapping or routing guidance and 

guiding people to reach their destination.  

There are several types of mobility models used in simulation of cellular networks. 

The most common mobility schemes are prediction based on current mobility 

parameters, prediction based observation histories and prediction based on both 

current mobility parameters and observation histories. In current mobility parameters 

schemes, the future position of the mobile user is predicted based on the current 
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location, speed and direction of that user at current time. This information can be 

collected using a positioning system such as GPS or a sensor.  

In the observation histories model, the next position is predicted based on the 

historical movement pattern of the mobile user. Prediction can be performed using 

frequently visited locations and/or the previous positions of the mobile user or the 

place at which the user spends more time. The information collected this way is 

stored in a database and is used for further prediction.  

The current mobility parameters and observation histories method is a combination 

of the two methods mentioned above. Prediction can be performed using different 

techniques. Some schemes predict the final or the intermediate destination which the 

mobile user will visit in future, such as a road segment, highway, home, shopping 

mall and etc. [13][29][7][23]. Those schemes mostly use the frequently visited 

location by the mobile user and a spatial map to predict next location. Other 

schemes, predict the next cell or the next base station for the mobile user. Those 

schemes are mostly used for the handoff process and for bandwidth reservation in 

adjacent cells [3] [4] [12] [16]. These schemes mostly use the previously visited cells 

in their prediction. Some other schemes predict the future path of the mobile user 

based on coordinate points (longitude and latitude) of the mobile user. This 

information is collected at a regular time intervals, using a positioning system device 

such as GPS, sensor, Wi-Fi or RSSI during the movement of the user. These schemes 

mostly use the previously visited locations information of mobile users, plus speed 

and direction to predict the future locations of the user [9] [28].  
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1.2 Problem Statement 

In this thesis, we discuss the performance of two different mobility schemes, the 

current mobility parameters and observation histories models for pedestrian wireless 

network users with a simulation for both models. We compare the results on two 

actual trajectory datasets with different arrival rates in the Ostermalm area in 

Stockholm [31]. For the current parameters mobility model, we used a Gauss-

Markov approach in which the next position is predicted based on the current 

location information, speed and direction of that user as described in Chapter 3. For 

the observation history mobility model, we used a simple second order Markov-

Chain approach which takes the current and previous positions of the mobile user to 

predict its next position.  

The rest of this thesis is organized in the following manner: Chapter 2 presents a 

review and a classification of the current parameters mobility and observation 

histories schemes. Chapter 3 contains the current parameters and observation 

histories models used in simulation in detail.  In Chapter 4 we present the simulation 

dataset, simulation parameters and simulation results of both models, which is 

performed in Matlab R2011. Chapter 5 concludes the thesis by interpreting the 

numerical results and discussing future work. 
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Chapter 2 

RELATED WORK 

A survey of mobile-oriented channel reservation schemes and their classification is 

proposed in [1] which employs the user mobility model in resource reservation. 

These types of schemes predict the future trajectory of a mobile station (MS) and the 

bandwidth to be reserved for it. Three types of mobility schemes are considered: 

prediction based on current mobility parameters, prediction based on observation 

histories and prediction based on both current mobility parameters and observation 

histories. 

For wireless networks, there are various mobility models that are proposed in the 

literature. Since our study is on pedestrians, we consider two types of popular 

mobility schemes for pedestrian movements. The first scheme is based on current 

mobility parameters of the user such as position, speed, and direction at the current 

time. The second scheme uses the historical movement pattern or the places visited 

by the mobile node. For the current mobility parameters method, we have considered 

the Gauss-Markov Mobility Model [2]. Some previous studies in this area are 

described below. 

The simplest form of current mobility parameters models is the Random Walk 

Mobility Model [24], which is also referred as the Brownian Motion model. In this 

model, the MS moves from its current location to the next location by choosing a 
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random speed and direction in predefined ranges, [minspeed, maxspeed] for the 

speed and [0,2π] for the direction. It is easy to implement such a scheme as it 

requires no information to predict next movements. However, this model may result 

in inaccurate prediction. Figure 2.1 shows the travelling pattern of a MS using the 

Random Walk Mobility model. 

 

Figure 2.1. Random Walk Mobility Model [2] 

In [25], the Random Waypoint (RWP) mobility model is proposed. In the RWP 

model, the MS moves along a zigzag path, consisting of straight legs from one 

waypoint to the next. The RWP includes a pause time between changes in   direction 

and speed. After the pause time expires, the direction is selected randomly in the 

simulation area and a speed value is chosen according to a uniform distribution 

between [minspeed, maxspeed]. Upon arrival at the next location, the MS stops for 

the pause time and the process continues in the same way. 
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In the fluid-flow mobility model [26] the individual mobile movements are 

modulated on a macroscopic level which is representing the aggregate movement 

patterns of the user. This method ignores the individual mobility behavior, instead, 

considering the aggregate mobility behavior of all users. It is assumed that the MS 

direction is uniformly distributed between [0,2π]. This method helps to optimize the 

total network utilization. However the fluid-flow model is not suitable for smaller 

scale and doesn’t provide prediction for any specific user. 

2.1 Mobility Prediction based on current mobility parameters 

In [2] the Gauss-Markov mobility model was described with respect to current speed 

and direction. Gauss-Markov mobility model is suitable for two extreme cases of 

user movements using a tuning parameter which can vary from 0 to 1. It can 

represent both constant velocity fluid-flow and random-walk mobility models. The 

speed and direction of next location in Gauss- Markov-mobility is calculated based 

on the current speed and direction. The initial position, speed and direction are 

chosen for each node according to a uniform distribution. In this method, the 

direction of the MS is calculated probabilistically using a tuning parameter which 

may or may not be in the same direction of MS. This method will calculate the exact 

direction of MS in each location update using equations 2.1 and 2.2. 

sn=αsn-1+(1-α)s̅+√1-α2sx
n-1

 

dn=αdn-1+(1-α)d̅+√1-α2 dx
n-1

 

Then, the next location of MS is calculated based on the current speed and direction 

using equations 2.3 and 2.4: 

 (2.3) 

(2.1) 

(2.2) 
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xn=x
n-1

+ s
n-1

cosd
n-1

  

y
n
=y

n-1
+ s

n-1
sind

n-1
                                                                                                 

The above formula will be explained in Chapter 3. Figure 2.2 shows a sample Gauss-

Morkov Mobility movement pattern for one MS traveling pattern. As illustrated in 

this Figure, this approach can prevent sudden and sharp turns.  

 

Figure 2.2. Gauss-Markov Mobility Model movement pattern [2] 

In [3], a predictive channel reservation (PCR) scheme is proposed, which uses the 

real time position of MS and a movement extrapolation. This scheme also uses the 

current position information and direction of MS to predict the future position, and 

eventually finds the next cell that a MS will enter after later movements. The Current 

position information is gathered using GPS or any other positioning technique. 

Orientation can be measured by obtaining two consecutive position measurements in 

a small time interval. After predicting the neighbor cell (next cell) the base station 

 (2.4) 
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(BS) sends a bandwidth reservation request to that neighbor cell. The time required 

for sending a reservation is calculated based on the threshold distance .Threshold 

distance is the radius of circle which is smaller than the cell’s coverage area and co-

centered with the cell. This method is useful for vehicle movement or pedestrians 

with high speed. If a MS moves with low speed or if it is stationary, the MS may not 

reach the destination after terminating the call, because the MS may pass the 

threshold distance but may still remain in the current cell. The main drawback of this 

method is that it does not consider the speed of MS’s and cannot distinguish the 

pedestrians, vehicles and stationary or mobile MS’s from each other. 

In [4,] the ACR (Adaptive Channel Reservation) scheme is proposed. Similar to PCR 

[3], the information related to the current position is gathered using GPS, and 

orientation is calculated based on two consecutive movements of MS in a small time 

interval. This scheme uses the threshold time instead of the threshold distance and 

considers the speeds of MS’s.  Threshold time is a constant value. Using the MS’s 

current speed, direction and position, BS predicts the time that the MS reach the next 

cell. If this time is less than or equal to the threshold time, the BS sends a reservation 

request to the next cell. The difficult problem in this scheme is to select a correct and 

accurate value for threshold time. 

In [5], a single dimensional (1-D) distance based mobility model is proposed, which 

can predict the future location of a MS using the probability density function of that 

MS, employing Gauss-Markov mobility with velocity and location information of the 

last location update. Location update is performed by searching for the MS from the 

predicted location and outwards, until it is found. In this model, the MS checks its 

position periodically and updates the location information whenever it reaches some 
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threshold distance away from its predicted position. A multidimensional version of 

distance based mobility model is proposed in [6]. This model is suitable when there 

is no real-world map and no additional information about the environment [11].   

In [7], the road topology information is incorporated with mobility prediction for 

better performance. In this scheme, each MS is equipped with a positioning system 

(GPS) that sends location information periodically to the BS (e.g., every second). 

The BS maintains a database containing the road information within its coverage 

area. The roads between two neighboring cells are considered as road segments. The 

database includes information related to the time that MS will reach the neighbor 

cell, neighbor segments and the probability that the MS will select that neighbor as 

the next segment. The calculation of probability for selecting the next segment is 

done using a second-order Markov process. However, this scheme has a limitation 

because it assumes that each BS has complete knowledge about road segments. If 

knowledge of road segments is not available, this model is useless. Also another 

assumption is that a base station has exact geographical knowledge, using digital 

maps, about the road network within its coverage area, which is a rare case [8]. 

Different schemes based on current position parameters and observation histories are 

proposed in [9] and [23]. In [9], the user movement is predicted based on the 

environment and user contextual information such as a real-world map, position 

information, time, user interests, and user’s personal information, employing the 

Damspher Shafer algorithm. The location prediction process is performed in 4 steps. 

The first step is related to information gathering which is divided into two categories: 

environment context and user context. Environment context is related to the 

landscape and environment of MS is represented by the real-world map. The map 
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contains information that describes geographical region information such as 

buildings, roads, streets and highways. It is assumed that the information related to 

the map is available in each base station and can be obtained by the MS with a 

request from BS. User context is related to user contextual information. The second 

step is evidence extraction which applies the Damspher Shafer algorithm to 

information gathered in the previous step. The third step is decision making. The 

result of the second step is a list of locations with degree of support for that location. 

The highest degree of support is considered as the future location of the MS. The last 

step is finding the path based on the map information (orientation) from the current 

position to the predicted location. In one study, the dataset is collected from students 

in and around Ottawa University campuses using GPS with average speed of 5 km/hr 

for each MS considering pedestrian movements.  

The scheme proposed in [23] is called Destination and Mobility Path Prediction 

(DMPM) which predicts the final or intermediate destination of the MS within a time 

period. DMPM consists of two parts. The first part is the Destination Prediction 

Model (DPM) which predicts the user’s destination within the set time period by 

clustering all possible destinations using the history of the mobile user based on: (1) 

frequently visited locations, (2) destination from origin to the current location and (3) 

information related to contextual knowledge (e.g., name, age, position and etc.). The 

second part is the Path Prediction Model (PPM) which is used to predict the path 

using current mobility information such as: (1) user habits, (2) current direction of 

the user to destination, (3) current trajectory/path and (4) spatial conceptual map. The 

methods which are proposed in [9] and [23] have similar drawbacks [7]. These 

methods are useful for the cases where a real world map is available and the BS has 

complete knowledge about roads, streets, and buildings. Supplying BS with complete 
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knowledge about geographical region using spatial map about road network in its 

coverage area is a rare case Also, the information needed for prediction is not easy to 

acquire and may change frequently.   

The key limitation of the current mobility parameters method is that, the MS’s must 

be equipped with a positioning technology (GPS or etc.) and may need complex 

mathematical calculation for prediction. 

2.2 Mobility Prediction based on observation histories 

In [10], a mobile motion prediction algorithm called MMP is proposed which predict 

the future location of the user movement based on the movement history pattern. The 

movement patterns are categorized by two models: The movement circle and 

movement track. In the Movement Circle model, it is assumed that whenever a user 

moves away from its location, finally it will return to his/her first position. Such a 

scheme is used for prediction of long-term regular movements. The Movement Track 

model represents routine movements which include regular and random movements, 

employing a Markov-chain mobility model. Simulation results presented for the 

MMP algorithm reports that the prediction accuracy efficiency of this scheme is 

about 95%. 

In [12], a mobility prediction technique is proposed which predicts the BS the MS 

will visit next, using a simple Markov-mobility model, based on five different 

prediction algorithms. These algorithms are summarized as:  

1. The location criterion: it identifies the previous BS’s that MS visited before 

the current one and stores them in a database. The BS with high probability 

among mostly visited BS by the MS will be predicted as the next BS. 
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2. The direction criterion: using current and previous BS’s of the MS, it 

identifies the direction that MS travels between the two BS’s. 

3. The segment criterion: A segment will start when a MS stays for a long time 

inside a cell. Segments contain all previous movements. If the current point is 

same as the initial point of a segment available inside the database, then the 

next BS is considered by choosing one from the database.   

4. Bayes’ Rule: used to calculate the probability distribution of all possible next 

moves. After calculating probabilities of all next moves, the one with the 

highest value is considered as the next movement. 

5.  Time criterion: calculates the time that a MS will need to cross to another 

cell. 

In this model, the information related to MS is collected using an Active Badge 

location system that sends signals every 15 seconds to nearby sensor. An interval of 

15 seconds is a very large value for movement prediction of a mobile user. Also, this 

model needs a large database as it stores a large number of past movements for each 

MS.   

A clustering approach is proposed in [13] which predicts the future location of the 

MS based on the frequently visited places using a first and second order Markov 

mobility model. An n
th

 order Markov model means that the probability of next state 

(next location) is calculated based on current state and the previous n-1 states. In this 

method, the location information is gathered using a GPS. After collecting locations, 

the coordinates of significant locations are classified as home, work, grocery and etc. 

and the rest are removed. Then a unique ID is assigned to each of these locations and 

they make up a list of locations visited by the user in the past.  
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The state with highest probability from current state is considered as the future 

location of the user. 

An n
th 

order Markov mobility model is proposed in [14] which predicts the future 

location of the MS using an optimal data compression method. In this model, it is 

assumed that the user mobility trajectories have some regularity and they follow 

some routines, so the users have favorite trajectories and habitual movement patterns. 

This method holds the real-time database of each MS. (at a specific time, as a Mobile 

Tree). When a MS makes a call, the predictor sets the current MS as the root of the 

Mobile Tree. The root contains the cell and time information. Afterwards, it 

calculates probabilities of all events for the MS using a data compression algorithm.  

The drawback of this model is that it needs a large amount of database to store 

information related to past movements of MS. Also, a huge amount of data must be 

sent to BS which will verify the feasibility of supporting call over these intervals. 

A variant Markov-mobility model called mixed Markov-chain model (MMM) for 

pedestrian movement is proposed in [15]. This model predicts the future location of 

MS based on a Markov model belonging to individual MS’s with similar behavior, 

using movement histories. The method takes into account a pedestrian’s personality 

as an unobservable parameter and the effect of pedestrian’s previous status. 

Simulation results presented for the MMM algorithm shows that the prediction 

accuracy of the proposed method is about 74 %. 
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The methods proposed in [3] [7] are consider high mobility (vehicular), [9] [14][15] 

consider low mobility (pedestrian) and [4] [12] [13] [23]  consider both for high and 

low mobility MS’s. 

The schemes proposed in [16] [17] use data mining approaches in their prediction. 

The goal of [16] is to predict the next cell of MS using the association rule. It is 

assumed the architecture of the third generation (3G) mobile network contains a set 

of cells managed by a BS. It is also assumed that the network core has personal 

information of MS and BS and a history of the MS movements. The history contains 

MS user id, source cell, destination cell and data for travel history. 

In [18] [19] [20], mobility prediction is performed using neural networks. In [19], a 

multi-layer neural network is used for prediction of the MS movement. This Multi-

layer neural network is based on the back-propagation algorithm which makes 

prediction using the data obtained from the MS movements. The role of the neural 

network is to capture an unknown relation between past and future movement 

patterns of the MS. The prediction accuracy is measured using different movement 

patterns of the MS.  

In [28] a learning automata-based mobility prediction for mobile ad-hoc networks is 

proposed which predicts the future speed and direction of a mobile user based on 

Gauss-Markov random process formula [2]. In this model, it is assumed that the 

mobility prediction parameters (speed, direction and randomness degree) are not 

obvious (unknown), but can be obtained using a continuous action-set learning 

scheme to predict the degree of randomness, mean speed and direction for predicting 

the future speed and direction of the mobile user. The key limitation of the 
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observation histories methods is the overhead to develop and store information which 

is needed for prediction. If the history of MS is not available, this method will be 

useless. 

Table 2.1 gives a summary of mobility schemes classification. 

Table 2.1. Classification of Mobility schemes 
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Chapter 3 

SYSTEM MODELS 

The main task of this thesis is using two different types of mobility models 

(prediction based on current mobility parameters and prediction based on observation 

histories) for pedestrian movement, making a comparison by simulation using a real-

life MS movement trajectory. In this Chapter, we are going to discuss the system 

models for the two techniques considered. 

3.1 Prediction based on current mobility parameters 

In this model, we used the current location, speed and direction of the MS to predict 

its future location. We employed the Gauss-Markov mobility model [2] as discussed 

in the literature. Gauss-Markov mobility is a well-known mobility model. It can 

represent both constant velocity fluid-flow and random-walk models through a 

tuning parameter that varies between 0 and 1.  

We assume that the MS is equipped with a positioning system that updates location 

information, speed and direction over 3 consecutive time intervals. The updated 

values are then used to predict the next two locations using the Gauss-Markov 

mobility formulas for speed, direction and location. The speed and direction of the 

MS is calculated using formulas (2.1) and (2.2) in chapter 2. 

sn=αsn-1+(1-α)s̅+√1-α2sxn-1
 

dn=αdn-1+(1-α)d̅+√1-α2 dxn-1
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In these formulas, sn-1 and dn-1 are the speed and direction of the MS in a time 

interval t. The dataset that we have used in these models collected information every 

0.6 seconds, but by considering that a conventional GPS provides a position update 

every 1 second [23] [30] [7], we assume that our data is collected every 1.2 sec (we 

consider that data is updated after every two observation time intervals of the original 

data set).  

In our simulation model, location information is updated every 3.6 seconds (each 3 

time intervals of length 1.2 seconds).α is the tuning parameter which varies between 

0 and 1. If it is 0, this indicates the MS follows a random movement (Brownian 

motion) and when it is 1, the user follows a linear motion. The degree of randomness 

is obtained by varying α between 0 and 1. s̅ and d̅ are the mean speed and direction 

as n  goes to  ∞. sx
n-1

 and  dx
n-1

 have a random Gaussian distribution with mean equal 

to zero and standard deviation equal to one. 

In this method, the direction of the MS is calculated probabilistically which in most 

cases will not be the same direction as the actual direction. For this purpose, we have 

calculated the direction of the MS in each location update in a small time interval 

(0.6 sec) between two consecutive movement measurements. The formula for 

calculating the direction between two points is described as follows: [21] 

 d=arctangent (y/x)                                                                                             

In formula 3.1, 𝑦 and 𝑥 are the coordinate difference values between two 

consecutive points, and arctangent function is the inverse of the tangent function. 

The MS will follow the same direction until the next location update. 

(3.1) 
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The next location coordinates of the MS is calculated using formulas (2.3) and (2.4): 

xn=x
n-1

+ s
n-1

cosd
n-1

  

y
n
=y

n-1
+ s

n-1
sind

n-1
                             

Where (xn, yn) and (xn-1, yn-1) are the x and y coordinates of MS in n
th

 and (n-1)
st
 time 

intervals, respectively. 

3.2 Prediction based on Observation histories 

In this model, we have used the current and the previously visited position 

coordinates information of the MS to predict its future position. A simple second-

order Markov mobility model is used to predict the future position. This means the 

next position is calculated based on the current and the previous positions.  

We limited our model to second–order because using higher order degrees need more 

space and time requirements (a very large database to store the previous positions 

information and needs more time for collecting the information).  

A sliding window is used to ensure that only the most recent data (the current one 

and the previous one) are involved for prediction and older data are discarded.  For 

this purpose, we store the first two movement coordinates information of the MS, 

which are: P1(x1, y1), P2(x2, y2). Then we subtract the first coordinate position from 

second position to find the difference between these two points. In the third step we 

added the extracted difference to the second position P2(x2, y2) and we predict the 

next position of the MS as P3(x3, y3). The step is described in the formula given 

below: 
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Diffx =x2-x1  

Diffy= y2-y1 

In this model, similar to the previous one, the time interval (t) is equal to 1.2 seconds, 

which means that we are going to predict the next position of the MS after every two 

observations.      

 

 

 

 

 

 

 

 

 

x3=x2+Diffx 

y3=y2+Diffy 

(3.2) 
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Chapter 4 

SIMULATION AND PERFORMANCE EVALUATION 

We constructed a simulation model to evaluate the performance for both mobility 

schemes discussed in Chapter 3. These schemes are implemented in Matlab R2011a 

program.  

4.1 Simulation Dataset 

Prediction accuracy of the two mobility models considered was compared using two 

types of dataset [31] for pedestrian movement. These datasets were collected over an 

802.11 ad hoc wireless network from a micro-simulation in an urban area of 

Stockholm, Sweden called “Ostermalm”. Ostermalm consists of a grid of 

interconnected streets with 14 passages that connected this area to the other parts of 

the city. Figure 3.1 shows Ostermalm area map which is shown by yellow color 

segments. The red dots show passages to outside of this area. The area is 5872 m
2
.  

In the first dataset, the nodes entered the observed area according to a Poisson 

process with an arrival rate λ=0.01nodes/s. In the second dataset, the arrival rate was 

λ=0.05nodes/s. The position of all observed nodes are recorded every 0.6 seconds, 

but since our models predict future position after 1.2 seconds as mentioned before, 

we have updated data after every two observations (0.6 + 0.6 sec).  
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Figure 4.1. Ostermalm Area Map [from Google Maps] 

4.1.1 When an MS makes a call 

We activate a node with [create, Timestamp, NodeID, X coordinate, Y coordinate, 

speed] when an MS starts a call. Here, create means that a user starts a call, 

Timestamp is the current time which is updated every 0.6 sec, NodeID is the ID of 

MS, Xcoordinate and Ycoordinate are the coordinates of MS at current time instance, 

and speed is the current movement speed of the MS. 

4.1.2 After making a call (after first 0.6 sec)  

We record the data set: [Timestamp, NodeID , X coordinate , Y coordinate , Speed] 

for the MS. 

4.2 Simulation Parameters 

The simulation time is taken as 10 minutes and the call holding time for each node is 

3 minutes. In the first dataset with arrival rate of λ=0.01nodes/s, 72 nodes are 

observed in the Ostermalm area. In the second dataset with arrival rate of 
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λ=0.05nodes/s, 360 nodes are observed. Table 4.1 shows the simulation parameters 

for the λ=0.01nodes/s and Table 4.2 shows the parameters for λ=0.05nodes/s. 

Table 4.1. Simulation parameters for first dataset [31] [4] 

Parameters Value 

Number of Nodes 72 

Area 5872m
2
 

Simulation time 600 sec 

Location Update time 1.2 s 

Call holding time for each node 180 sec 

Arrival rate λ=0.01nodes/s 

Table 4.2. Simulation parameters for second dataset [31] [4] 

Parameters Value 

Number of Nodes 360 

Area 5872m
2
 

Simulation time 600 sec 

Location Update time 1.2 s 

Call holding time for each node 180 sec 

Arrival rate λ=0.05nodes/s 

4.3 Simulation Models in Matlab 

The Current parameters mobility scheme is implemented using a Gauss-Markov 

approach, as described in Chapter 3. Table 4.3 shows the parameter values used in 

implementing the Gauss-Markov model. A counter is used to check if the MS 

exceeds 180 seconds (3 minutes) call time and if exceeds, the program will switch to 

the next node automatically and sets the counter equal to 1. The nodeID is checked in 

each step. If the MS finishes the call or leaves the area before 3 minutes, the program 
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will switch to the next node automatically and sets the counter equal to 1.  For 

location update, whenever the MS passes over 3 time intervals, the program will 

assign the MS actual value from the Matlab database and performs the rest of 

processing. Figure 4.2 shows the flowchart of the current mobility parameters 

simulation model. 

Table 4.3. Simulation parameters for simulating Gauss-Markov model 

Parameter Value 

α 1 

Min speed 0.6 m/s 

Max speed 2 m/s 

Mean speed 1.3 m/s 

direction 0-2π 

Mean direction π 
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Figure 4.2. Simulation model of Current Mobility Parameters 
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In the first step of the observation history model, we take the first two movement 

position coordinates information of the MS, and using the technique which is 

described in 3.2 in Chapter 3, we predict the next position for the MS. After that, the 

first movement coordinate of the MS will be discarded and the second coordinate 

information will assigned as the first coordinate value. We then take the third 

position information and assign it as the second coordinate value, and calculate the 

next position information. The procedure continues in this manner until the MS 

finishes the call or leaves the area. In this method, a counter is also used whenever 

the user exceeds the call holding time (3 minutes), we assume he/she terminates 

his/her call and switch to the next node. If he/she leaves the area before 3 minutes, 

the system will automatically switch to the next node and sets the counter equal to 1. 

Figure 4.3 shows the flowchart of the observation history simulation model. 
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Figure 4.3. Simulation model of Observation histories 
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4.4 Performance Evaluation 

There are several approaches to measuring precision. We have measured precision 

using the Mean Absolute Error (MAE) approach [22]. Mean Absolute Error is a 

quality to measure how close a prediction or forecast is to the eventual outcome. It is 

an average of absolute error over the number of samples. We have used Mean 

Absolute Error because it is simple, it is fast to compute and shows average error of 

all nodes in the experiment. Mean Absolute Error is defined as: 

1

M
 ∑ absolute(Actual value - Predicted value)M

i=1    

In this formula, M is the number of samples (number of position coordinates for each 

user) until the call terminates. Since the maximum call holding time for a user is 180 

sec, and the location information is collected every 1.2 sec, the maximum value for 

M will be 150 because in 180 sec there are 150, 1.2 sec intervals. 

To calculate the difference between two points, we have used the Euclidian distance 

formula: 

Difference =√(x(i+1)-x(i))
2
+(y(i+1)-y(i))

2
                

In this formula, (xi+1, yi+1) and (xi, yi) are the coordinates of the mobile user in 

(i+1)
st
 and (i)

th
 time intervals, respectively. By combining (4.1) and (4.2) we can 

conclude: 

MAE = 
1

M
 ∑ √(x(i+1)-x(i))

2
+(y(i+1)-y(i))

2M-1

i=1                      

(4.1) 

(4.2) 

(4.3) 
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Figure 4.4 and Figure 4.6 show the Mean Absolute Error for the Current Mobility 

Parameters method and Figure 4.5 and Figure 4.7 show the Mean Absolute Error for 

the Observation History for the first and second dataset, respectively. 

 
Figure 4.4. Mean Absolute Error for the current mobility parameters method 

(dataset1) 

The average Mean Absolute Error for 72 nodes in Figure 4.4 is calculated as: 

∑ MAE(i)72
i=1

72
= 

20.2165

72
=0.280785 
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Figure 4.5. Mean Absolute Error calculation for the Observation History method 

(dataset1) 

The average Mean Absolute Error for Figure 4.5 for 72 nodes is calculated as: 

∑ MAE(i)72
i=1

72
= 

7.2694

72
=0.100964 
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Figure 4.6. Mean Absolute Error calculation for the current mobility parameters 

method (dataset 2) 

The average Mean Absolute Error for 360 nodes in Figure 4.6 is calculated as: 

∑ MAE(i)360
i=1

360
= 

102.8613

360
=0.282446 

 

        Node ID 
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Figure 4.7. Mean Absolute Error calculation for Observation History method 

(dataset2)
 

The average Mean Absolute Error for 360 nodes in Figure 4.7 is calculated as: 

∑ MAE(i)360
i=1

360
= 

41.6775

360
=0.115771 

By comparing Mean Absolute Error in both datasets outlined in Figure 4.4 to Figure 

4.7, we observe that the observation histories method has a better performance than 

the current mobility parameters method. The observation history method is suitable 

for movements that have some regularity in their trajectory. The performance of such 

schemes can be decrease as the speed goes through changes or as there are sharp 

turns in movement directions (MS changing its speed or direction frequently). Since 

most pedestrians follow some regularity in their movements, this scheme has a better 

performance than the current mobility parameters method. There are some variations 

in the nodes’ performance for example: Node 48 in Figure 4.4 has the highest error 

in the current mobility parameters method (≈ 0.47). In our analysis we found that this 

Node ID 

Observation Histories 
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is caused by the high speed of node 48 (with an average speed ≈ 1.94 m/s), which is 

much greater than the mean speed value (Mean speed = 1.3 m/s). Node 54 has the 

lowest amount of Mean Absolute Error (=0.12) in Figure 4.4. This node moves with 

a low speed (average speed ≈ 0.72m/s). In Figure 4.5, node 72 has the highest value 

of error in observation histories method. This is caused by changes in its direction, 

much more frequently than other nodes. Node 48 also has a high value of error 

because of frequent changes in the user speed. Nodes 65 and 53 have low Mean 

Absolute Error value because node 65 didn’t changed its directions until terminating 

the call and node 53 has changed its speed rarely without too much difference 

between previous speeds.  

Similar patterns were observed in Figure 4.6 and Figure 4.7 for the second dataset. 

Node 68 in Figure 4.6 has the highest value of error (≈0.50) with an average speed = 

2.032 m/s and node 345 has the lowest error (≈ 0.10) with an  average speed ≈ 0.7 

m/s in the current mobility parameters method. In Figure 4.7, node 358 has the 

highest value of error (≈0.46) as the speed goes through changes and direction has 

sharp turns.  Node 353 has the lowest value of error (≈0.03) because the speed is not 

too much changed during movement period and the direction was constant until 

terminating the call.  

One problem with observation histories method is when the user changes its speed 

and direction frequently. For example, if a node passes 2 movements without 

changing its direction and after that because of some physical restrictions or barrier 

such as a wall, he/ she changes its direction or speed, the scheme follows the 

previous direction until the next update. In such cases, the current mobility 

parameters method has better performance since it works with direction and speed at 
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the current instance of time. However, this scheme needs more mathematical 

calculation which is also more complex than the observation histories method. The 

problem of Gauss-Markov mobility approach is when the user moves with a speed 

much more above the mean speed. In this situation, the error will increase rapidly. 

We present some actual and predicted paths graphs for some selected nodes below. 

 
Figure 4.8. Actual trajectory versus predicted trajectories of node 26 (52-62 time 

intervals)  
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Figure 4.9. Actual trajectory versus predicted trajectories of node 52 (130-142 time 

intervals) 

 
Figure 4.10. Actual trajectory versus predicted trajectories of node 1(1-13 time 

intervals) 
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Figure 4.11. Actual trajectory versus predicted trajectories of node 32 (88-104 time 

intervals) 

 
Figure 4.12. Actual trajectory versus predicted trajectories of node 132(50-64 time 

intervals) 

678 680 682 684 686 688 690 692 694
1655

1660

1665

1670

1675

1680

1685

X axis (meters)

Y
 a

x
is

 (
m

e
te

rs
)

 

 

Observation Histories

Current Mobility Parameters

Actual path

600 601 602 603 604 605 606 607
1540

1545

1550

1555

1560

1565

X axis (meters)

Y
 a

x
is

 (
m

e
te

rs
)

 

 

Observation Histories

Current Mobility Parameters

Actual path



38 

 

 
Figure 4.13. Actual trajectory versus predicted trajectories of node 8 (1-13 time 

intervals) 

 
Figure 4.14. Actual trajectory versus predicted trajectories of node 229 (81-98 time 

intervals) 
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Figure 4.15. Actual trajectory versus predicted trajectories of node 63 (87-106 time 

intervals) 

Figure 4.8 to Figure 4.11 consider an arrival rate = 0.01 nodes/sec and Figure 4.12 to 

Figure 4.15 consider an arrival rate = 0.05 nodes/sec for the first and second datasets 

respectively. These figures indicate a comparison between the actual trajectory and 

the trajectories predicted of several selected nodes in Ostermalm area using current 

mobility parameters and observation histories methods. The solid red lines represent 

the actual trajectory. Black dashed and green dotted lines show predicted trajectories 

belonging to observation histories and current parameters mobility methods, 

respectively and         indicates the starting point of the node trajectory. As seen in 

these figures, when the direction of the MS is changed slightly during the movement 

pattern (Figures 4.8, 4.9 and 4.12) both methods have almost the same trajectory with 

the actual path. When there is a sharp turn in the MS movement (for example turns 

by 90 degrees or more) (Figures 4.10, 4.11, 4.13, 4.14, 4.15) the performance of 

observation histories is lower than the current mobility parameters method.  
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For the observation histories method, as it is depends on the current and the previous 

position, the MS will continue in the same direction but will start following the 

correct direction after some movements. For the current mobility parameters method, 

if the turn occurs just after the location update, the MS will continue with the same 

direction without turning until the next location update (Figure 4.11). If turning 

occurs one or two movements before location update of the MS (Figures 4.10, 4.13, 

4.14, 4.15) the method can realized it and turns immediately after the MS turns. The 

percentage precision of our model is measured using a formula described in [9] 

which calculates the ratio between Mean Absolute Error and the length of actual 

trajectory: 

P =  (1- MAE

 ∑ ||ai+1-ai||
n
i=1

 ) x 100 

Table 4.4 gives the precision percentage rate of above figures at the intervals 

calculated using formula 4.4. 

Table 4.4. Precision rate of mobility prediction schemes 

 

Node # 

 

Distance 

(m) 

Precision Percentage 

Current Mobility 

Parameters (%) 

Precision Percentage 

Observation 

Histories (%) 

26 19.7338  98.15 99.39  

52 25.5108  98.34  99.40  

1 14.4959  98.48  98.33  

32 37.0946  98.50  99.41  

132 24.4854  98.53  99.13  

(4.4) 
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8 10.3315  98.12  97.91 

229 27.4914  98.50  99.23  

63 36.5057  98.99  99.26 

  

We have reached an average of 99.74 % and 99.89 % accuracy for current mobility 

parameters and observation histories methods for the first dataset and 99.74 % and 

99.88 % for the second dataset.  
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Chapter 5 

CONCLUSION 

Mobility prediction using a certain mobility model is an approach to predict the 

future location of a mobile user. In this technique, we use the location, speed and 

distance of a mobile user over a period of time to predict its next location, speed, and 

direction. Mobility model techniques may be used to make an effective means of 

quality service guarantees and may be used to decrease the amount of call dropping 

and call blocking probabilities for a seamless communication for mobile users.  

In this thesis, we presented two types of popular mobility models for the   prediction 

of the future position of mobile user in pedestrian movements. We compared the 

result of both methods through a simulation study, which is conducted in Matlab 

R2011 program.  

The first model considered is the mobility prediction based on current mobility 

parameters model, which predicts the future location of mobile user based on the 

current speed, direction and location information at the current instance. We have 

used a Gauss-Markov mobility approach, which is useful for both random walk and 

fluid-flow patterns using a tuning parameter.  

The second model is prediction based on observation histories of mobile user. This 

model uses the historical movement pattern of mobile user to predict the future 
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position of that user. In this case, we used a simple second order Markov-Mobility 

model.  

We compared these models with two actual trajectories datasets of pedestrian 

movement in the Ostermalm area of Stockholm, Sweden, with arrival rates of 0.01 

nodes/sec and 0.05 nodes/sec, respectively. Simulation results indicate that the 

observation histories model has better performance than the current mobility 

parameters model, with an average Mean Absolute Error equal to 0.1 and 0.11 and 

percentage error equal to 99.89 % and 99.88 % for the first and second datasets.  

The observation histories model is suitable for movements that have some regularity 

in their travelling patterns and the accuracy of this model decreases as the direction 

or speed constantly goes through changes. For such a situation, the current mobility 

parameters model will be more effective than the observation histories since it works 

with the current speed and direction of the mobile user.  

The observation histories method also has overheads as it needs a large database to 

store the previous position information of mobile user for prediction purposes. When 

the history of movements for a mobile user is not available, this model will be 

useless. Since pedestrian nodes usually follow some regularity in their movements 

without too much change in their speed and directions, with real-time data, this 

method has better performance than the current mobility parameters method. Also, 

implementation of this model is easier than the current mobility parameters scheme 

as the current mobility parameters model needs more mathematical calculation to 

calculate the future speed, direction and the position of the mobile user. Also we may 

expect that when the arrival rate increases (higher arrival rate) the prediction 



44 

 

performance in both models may decrease as the users will be constantly forced to 

change their location due to crowdedness. 

Both methods can be combined to predict the future location of a user based on: 1) 

the displacement of the user between the first and second coordinate movements 

using the observation histories method and 2) the direction of the user which is 

calculated at each location update using the current mobility parameters method. 

However, as our results show very high (99%) performance for individual methods, 

the combination of these two methods can be considered to be unnecessary from 

practical point of view.  

As future work, we are planning to investigate in more detail the role of proposed 

approaches in enhancing network resource reservation and providing better QoS. 

Later work may consider MS movements not just limited to pedestrians, but also 

vehicle speeds may be considered. The results we have reached in this study were for 

the pedestrian dataset in the Ostermalm area, which is rectangular with 90 degree 

turns, mostly containing regular movements. We have in mind to implement our 

models for other areas with more irregular changes in MS movement patterns. 
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Appendix A: Simulation results for both Mobility Models 

A1. Current Mobility parameters method for first dataset 

Node # 

 

 

Number of 

Movements( 

Each 1.2 sec) 

 

Sum of all 

differences 

 

 

Mean Absolute 

Error(∑ diff/nn
i=1 ) 

Distance 

 

 

Accuracy 

% 

 

1 150 29.0673 0.1938 187.796 99.9 

2 144 33.7228 0.2342 161.528 99.86 

3 150 32.6768 0.2178 158.047 99.86 

4 75 25.6684 0.3422 123.623 99.72 

5 68 23.7148 0.3487 122.666 99.72 

6 150 30.528 0.2035 171.857 99.88 

7 150 48.6023 0.324 308.445 99.89 

8 101 21.7602 0.2154 135.296 99.84 

9 150 62.977 0.4198 347.25 99.88 

10 67 18.5232 0.2765 121.744 99.77 

11 150 48.6486 0.3243 293.278 99.89 

12 150 58.8248 0.3922 350.067 99.89 

13 124 45.4136 0.3662 257.866 99.86 

14 150 31.2735 0.2085 155.126 99.87 

15 150 52.8357 0.3522 268.595 99.87 

16 37 14.5767 0.394 65.6595 99.4 

17 113 29.6915 0.2628 163.004 99.84 

18 150 18.7675 0.1251 105.747 99.88 

19 142 43.4566 0.306 277.946 99.89 

20 51 15.73 0.3084 77.7284 99.6 

21 39 14.3631 0.3683 67.5841 99.46 

22 46 14.3544 0.3121 68.8103 99.55 

23 150 29.2742 0.1952 187.191 99.9 

24 150 33.7003 0.2247 189.427 99.88 

25 150 44.0841 0.2939 235.88 99.88 

26 112 41.0018 0.3661 220.292 99.83 

27 150 29.2057 0.1947 162.46 99.88 

28 121 22.109 0.1827 132.871 99.86 

29 150 39.1273 0.2608 225.726 99.88 

30 150 27.8576 0.1857 188.711 99.9 

31 150 46.635 0.3109 269.274 99.88 

32 128 51.6727 0.4037 281.026 99.86 

33 124 56.7876 0.458 281.536 99.84 

34 150 48.4844 0.3232 287.222 99.89 

35 150 52.0872 0.3472 294.84 99.88 



52 

 

36 102 21.8283 0.214 132.867 99.84 

37 150 31.9749 0.2132 208.355 99.9 

38 150 31.0071 0.2067 199.579 99.9 

39 90 22.7961 0.2533 123.172 99.79 

40 150 30.1129 0.2008 189.362 99.89 

41 150 26.8385 0.1789 191.234 99.91 

42 150 35.3 0.2353 164 99.86 

43 121 44.4893 0.3677 250.11 99.85 

44 150 43.2369 0.2882 264.449 99.89 

45 107 25.7296 0.2405 131.994 99.82 

46 50 13.0569 0.2611 67.3598 99.61 

47 85 26.0538 0.3065 134.52 99.77 

48 59 27.8338 0.4718 135.61 99.65 

49 81 27.2029 0.3358 134.665 99.75 

50 150 31.8577 0.2124 171.01 99.88 

51 150 34.585 0.2306 220.807 99.9 

52 150 60.5027 0.4034 319.555 99.87 

53 145 21.6 0.149 130.407 99.89 

54 132 15.7 0.1189 111.518 99.89 

55 130 52.4912 0.4038 275.624 99.85 

56 60 15.0033 0.2501 73.5614 99.66 

57 102 20.2571 0.1986 135.828 99.85 

58 116 42.7135 0.3682 247.181 99.85 

59 112 13.7024 0.1223 80.5742 99.85 

60 106 24.5655 0.2317 123.39 99.81 

61 102 20.3 0.199 120.8 99.84 

62 49 14.4184 0.2943 68.9663 99.57 

63 78 28.1081 0.3604 141.916 99.75 

64 65 11.9226 0.1834 75.1294 99.76 

65 63 21.2 0.3365 117.7 99.71 

66 58 17.6328 0.304 100.903 99.7 

67 49 16.1713 0.33 77.0726 99.57 

68 37 13.486 0.3645 61.5902 99.41 

69 33 5.1 0.1545 29.6246 99.48 

70 33 13.544 0.4104 69.3235 99.41 

71 22 6.3704 0.2896 24.1571 98.8 

72 8 2.2741 0.2843 10.2057 97.21 
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A2. Observation Histories method for first dataset 

Node # 

 

 

Number of 

Movements( 

Each 1.2 sec) 

 

Sum of all 

differences 

 

 

Mean Absolute 

Error(∑ diff/nn
i=1 ) 

Distance 

 

 

Accuracy 

% 

 

1 148 11.8662 0.0802 185.264 99.96 

2 142 12.4004 0.0873 161.5284 99.95 

3 148 13.2603 0.0896 155.947 99.94 

4 73 9.5876 0.1313 123.6234 99.89 

5 66 9.4127 0.1426 122.6656 99.88 

6 148 12.206 0.0825 169.5574 99.95 

7 148 11.7375 0.0793 304.3445 99.97 

8 99 9.759 0.0986 135.2959 99.93 

9 148 12.1705 0.0822 342.65 99.98 

10 65 8.6297 0.1328 121.744 99.89 

11 148 16.1685 0.1092 289.1781 99.96 

12 148 13.5207 0.0914 345.3669 99.97 

13 122 12.785 0.1048 257.8664 99.96 

14 148 11.8303 0.0799 153.0261 99.95 

15 148 12.3421 0.0834 264.8947 99.97 

16 35 6.5563 0.1873 65.6595 99.71 

17 111 10.5381 0.0949 163.004 99.94 

18 148 9.5064 0.0642 104.2467 99.94 

19 140 11.5948 0.0828 277.9455 99.97 

20 49 7.8175 0.1595 77.7284 99.79 

21 37 7.019 0.1897 67.5841 99.72 

22 44 5.7131 0.1298 68.8103 99.81 

23 148 10.989 0.0743 184.7744 99.96 

24 148 11.7858 0.0796 186.8266 99.96 

25 148 13.1965 0.0892 232.7799 99.96 

26 110 15.511 0.141 220.2916 99.94 

27 148 8.1752 0.0552 160.2599 99.97 

28 119 9.2169 0.0775 132.8712 99.94 

29 148 9.498 0.0642 222.6264 99.97 

30 148 10.3548 0.07 186.1113 99.96 

31 148 8.5583 0.0578 265.7743 99.98 

32 126 16.7857 0.1332 281.0259 99.95 

33 122 14.7197 0.1207 281.5362 99.96 

34 148 18.0784 0.1222 283.2223 99.96 

35 148 22.3345 0.1509 290.8404 99.95 

36 100 7.6629 0.0766 132.8669 99.94 

37 148 11.3624 0.0768 205.5546 99.96 

38 148 12.305 0.0831 196.8788 99.96 

39 88 9.359 0.1064 123.172 99.91 
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40 148 13.2973 0.0898 186.8621 99.95 

41 148 10.3447 0.0699 188.6337 99.96 

42 148 7.1 0.048 161.8 99.97 

43 119 12.3105 0.1034 250.1096 99.96 

44 148 13.2149 0.0893 260.9487 99.97 

45 105 9.3317 0.0889 131.9939 99.93 

46 48 6.7104 0.1398 67.3598 99.79 

47 83 9.5954 0.1156 134.5203 99.91 

48 57 10.5032 0.1843 135.6098 99.86 

49 79 14.1433 0.179 134.6648 99.87 

50 148 11.6442 0.0787 168.8095 99.95 

51 148 10.7035 0.0723 218.1033 99.97 

52 148 19.2401 0.13 315.1867 99.96 

53 143 7.4472 0.0521 130.4071 99.96 

54 130 11.1521 0.0858 111.518 99.92 

55 128 16.801 0.1313 275.6235 99.95 

56 58 7.0623 0.1218 73.5614 99.83 

57 100 9.8049 0.098 135.8282 99.93 

58 114 13.6097 0.1194 247.1808 99.95 

59 110 7.1307 0.0648 80.5742 99.92 

60 104 8.3265 0.0801 123.3895 99.94 

61 100 5.7 0.057 120.8 99.95 

62 47 6.4991 0.1383 68.9663 99.8 

63 76 7.4332 0.0978 141.9164 99.93 

64 63 3.9243 0.0623 75.1294 99.92 

65 61 2.9 0.0475 117.7 99.96 

66 56 3.9236 0.0701 100.9029 99.93 

67 47 4.1042 0.0873 77.0726 99.89 

68 35 2.6621 0.0761 61.5902 99.88 

69 31 3.1236 0.1008 29.6246 99.66 

70 31 3.7203 0.12 69.3235 99.83 

71 20 2.117 0.1059 24.1571 99.56 

72 6 1.2119 0.202 10.2057 98.02 
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A3. Current Mobility parameters method for second dataset 

Node # 

 

 

Number of 

Movements( 

Each 1.2 sec) 

 

Sum of all 

differences 

 

 

Mean Absolute 

Error(∑ diff/nn
i=1 ) 

Distance 

 

 

Accuracy 

% 

 

1 96 32.0439 0.3338 157.6633 99.79 

2 59 21.6636 0.3672 144.3938 99.75 

3 150 34.4187 0.2295 214.4421 99.89 

4 150 33.1611 0.2211 208.7783 99.89 

5 150 32.6691 0.2178 159.5065 99.86 

6 150 37.3323 0.2489 210.2022 99.88 

7 40 17.1068 0.4277 66.5113 99.36 

8 150 21.8899 0.1459 131.7597 99.89 

9 150 31.9947 0.2133 191.1274 99.89 

10 150 56.9174 0.3794 317.9367 99.88 

11 144 19.0594 0.1324 123.6941 99.89 

12 150 40.9456 0.273 221.3428 99.88 

13 67 13.9186 0.2077 66.9286 99.69 

14 150 48.2561 0.3217 300.426 99.89 

15 135 36.8635 0.2731 199.6642 99.86 

16 59 10.9401 0.1854 67.3701 99.72 

17 150 39.1582 0.2611 224.2227 99.88 

18 150 32.8122 0.2187 164.4934 99.87 

19 150 32.9099 0.2194 207.1788 99.89 

20 150 37.6911 0.2513 222.7578 99.89 

21 150 54.2073 0.3614 293.1753 99.88 

22 150 20.0924 0.1339 120.1184 99.89 

23 150 49.2896 0.3286 272.2408 99.88 

24 150 66.437 0.4429 328.8075 99.87 

25 150 47.3428 0.3156 239.7392 99.87 

26 150 46.3157 0.3088 244.0052 99.87 

27 150 33.4591 0.2231 145.0232 99.85 

28 116 27.4255 0.2364 162.7412 99.85 

29 150 45.3015 0.302 272.1473 99.89 

30 150 47.9841 0.3199 240.6538 99.87 

31 67 24.9774 0.3728 135.3988 99.72 

32 150 51.5278 0.3435 251.8133 99.86 

33 57 16.4859 0.2892 81.2287 99.64 

34 150 34.4233 0.2295 212.4532 99.89 

35 150 47.8345 0.3189 268.7029 99.88 

36 150 63.6317 0.4242 325.5822 99.87 

37 150 26.1612 0.1744 141.0312 99.88 

38 119 37.0745 0.3116 222.5803 99.86 

39 150 27.1561 0.181 143.4054 99.87 
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40 150 44.4823 0.2965 252.3774 99.88 

41 150 29.1 0.194 205.1 99.91 

42 122 41.2159 0.3378 220.5496 99.85 

43 150 42.1716 0.2811 216.925 99.87 

44 76 24.952 0.3283 132.6966 99.75 

45 150 34.1105 0.2274 201.9172 99.89 

46 100 21.2928 0.2129 136.5232 99.84 

47 150 46.0396 0.3069 298.2382 99.9 

48 150 54.2228 0.3615 318.2471 99.89 

49 131 28.5679 0.2181 158.1263 99.86 

50 150 32.9921 0.2199 179.0722 99.88 

51 50 15.6935 0.3139 73.363 99.57 

52 150 32.7028 0.218 187.9507 99.88 

53 150 20.3873 0.1359 127.9102 99.89 

54 120 36.2915 0.3024 179.5369 99.83 

55 150 61.6964 0.4113 323.6373 99.87 

56 150 59.888 0.3993 321.0374 99.88 

57 150 34.392 0.2293 213.4763 99.89 

58 150 32.9893 0.2199 169.9162 99.87 

59 150 30.4872 0.2032 150.0494 99.86 

60 150 31.5604 0.2104 188.5918 99.89 

61 150 41.6421 0.2776 254.737 99.89 

62 150 48.0882 0.3206 258.7002 99.88 

63 150 60.6284 0.4042 315.566 99.87 

64 150 67.0613 0.4471 366.2853 99.88 

65 150 28.7651 0.1918 154.1531 99.88 

66 150 29.2 0.1947 197.2 99.9 

67 150 41.8974 0.2793 220.3998 99.87 

68 150 75.4133 0.5028 364.8435 99.86 

69 150 44.9634 0.2998 283.0627 99.89 

70 150 56.9353 0.3796 305.0937 99.88 

71 115 37.5849 0.3268 219.8248 99.85 

72 150 50.6488 0.3377 294.7983 99.89 

73 150 50.7949 0.3386 267.3058 99.87 

74 150 32.9755 0.2198 181.0921 99.88 

75 150 51.3523 0.3423 275.2152 99.88 

76 48 17.2527 0.3594 79.16 99.55 

77 150 46.6107 0.3107 273.3758 99.89 

78 150 46.0502 0.307 269.3155 99.89 

79 41 14.0157 0.3418 67.0265 99.49 

80 56 23.9508 0.4277 134.7288 99.68 

81 150 28.4912 0.1899 164.6814 99.88 

82 86 25.9259 0.3015 158.8699 99.81 

83 150 32.7762 0.2185 180.2013 99.88 

84 150 45.1425 0.301 242.3381 99.88 
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85 150 33.7864 0.2252 169.7544 99.87 

86 150 30.5778 0.2039 200.0476 99.9 

87 150 34.4147 0.2294 152.9622 99.85 

88 150 30.8977 0.206 150.722 99.86 

89 150 58.1274 0.3875 311.7125 99.88 

90 150 62.3862 0.4159 323.4532 99.87 

91 38 9.419 0.2479 65.5172 99.62 

92 150 64.1209 0.4275 330.6641 99.87 

93 51 16.3994 0.3216 73.0537 99.56 

94 94 31.7568 0.3378 144.3665 99.77 

95 150 16.0243 0.1068 121.4125 99.91 

96 101 36.3088 0.3595 209.5256 99.83 

97 150 34.6445 0.231 217.0642 99.89 

98 64 10.6421 0.1663 69.1902 99.76 

99 150 43.4877 0.2899 258.0163 99.89 

100 150 37.3022 0.2487 222.9889 99.89 

101 140 27.4436 0.196 135.4584 99.86 

102 150 40.8074 0.272 222.2444 99.88 

103 150 32.5732 0.2172 182.1139 99.88 

104 54 15.55 0.288 80.5895 99.64 

105 94 30.0262 0.3194 162.9084 99.8 

106 81 27.2685 0.3366 136.3468 99.75 

107 150 44.8424 0.2989 247.7481 99.88 

108 150 50.6645 0.3378 263.1339 99.87 

109 89 28.5772 0.3211 135.3119 99.76 

110 150 48.2833 0.3219 294.7354 99.89 

111 150 50.44 0.3363 248.5085 99.86 

112 150 45.887 0.3059 256.6734 99.88 

113 150 45.779 0.3052 269.4533 99.89 

114 150 37.0641 0.2471 220.4562 99.89 

115 150 39.8184 0.2655 248.9455 99.89 

116 65 23.5039 0.3616 134.8323 99.73 

117 150 41.6588 0.2777 225.6841 99.88 

118 150 45.0071 0.3 234.7529 99.87 

119 150 52.4377 0.3496 241.4071 99.86 

120 150 57.1172 0.3808 303.9565 99.87 

121 150 45.1782 0.3012 283.9578 99.89 

122 150 31.826 0.2122 205.7844 99.9 

123 84 30.168 0.3591 158.1611 99.77 

124 150 56.0624 0.3737 292.9619 99.87 

125 117 24.3856 0.2084 158.5892 99.87 

126 150 48.1346 0.3209 263.0361 99.88 

127 100 30.5086 0.3051 161.9884 99.81 

128 72 24.3163 0.3377 122.9434 99.73 

129 63 15.6989 0.2492 81.8955 99.7 
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130 78 29.6627 0.3803 162.8012 99.77 

131 150 31.728 0.2115 165.8301 99.87 

132 150 49.2455 0.3283 271.2949 99.88 

133 115 44.3228 0.3854 223.0133 99.83 

134 36 11.131 0.3092 67.7527 99.54 

135 136 41.6456 0.3062 210.9449 99.85 

136 130 40.9041 0.3146 222.1098 99.86 

137 150 29.0828 0.1939 185.2461 99.9 

138 42 12.9007 0.3072 67.5777 99.55 

139 150 30.3518 0.2023 198.3436 99.9 

140 104 29.2341 0.2811 158.7265 99.82 

141 115 34.2242 0.2976 181.1047 99.84 

142 65 15.5344 0.239 77.818 99.69 

143 150 49.2294 0.3282 248.2058 99.87 

144 150 49.5217 0.3301 267.1511 99.88 

145 150 45.3761 0.3025 256.2915 99.88 

146 150 36.784 0.2452 175.3396 99.86 

147 150 29.5145 0.1968 186.5069 99.89 

148 142 31.192 0.2197 180.6357 99.88 

149 33 15.5677 0.4717 73.903 99.36 

150 135 35.2391 0.261 194.4824 99.87 

151 150 40.5043 0.27 225.9276 99.88 

152 150 40.2402 0.2683 206.2924 99.87 

153 150 40.7423 0.2716 229.7765 99.88 

154 150 44.537 0.2969 237.4878 99.87 

155 150 30.7019 0.2047 139.0161 99.85 

156 150 44.1579 0.2944 260.2568 99.89 

157 150 18.9897 0.1266 115.9436 99.89 

158 150 37.2319 0.2482 210.4892 99.88 

159 150 42.0896 0.2806 223.933 99.87 

160 75 31.8806 0.4251 163.0889 99.74 

161 150 42.7195 0.2848 232.6015 99.88 

162 124 35.9045 0.2896 219.8372 99.87 

163 150 31.6505 0.211 188.8984 99.89 

164 150 29.7099 0.1981 149.805 99.87 

165 143 47.1062 0.3294 220.7172 99.85 

166 80 28.5462 0.3568 134.4345 99.73 

167 33 13.8183 0.4187 66.7678 99.37 

168 133 32.0894 0.2413 180.5704 99.87 

169 35 12.427 0.3551 62.1567 99.43 

170 114 44.2499 0.3882 219.078 99.82 

171 141 25.1634 0.1785 159.1079 99.89 

172 150 36 0.24 213.4849 99.89 

173 150 16.8 0.112 115.1 99.9 

174 150 31.4517 0.2097 174.6677 99.88 
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175 150 24.304 0.162 130.3551 99.88 

176 150 58.4758 0.3898 363.4498 99.89 

177 138 43.8487 0.3177 257.8267 99.88 

178 150 46.0325 0.3069 240.9586 99.87 

179 150 34.1996 0.228 191.7483 99.88 

180 150 43.2353 0.2882 229.2125 99.87 

181 122 24.5391 0.2011 132.7525 99.85 

182 150 28.0614 0.1871 137.8293 99.86 

183 150 44.1943 0.2946 252.997 99.88 

184 150 34.8518 0.2323 162.5045 99.86 

185 29 11.8121 0.4073 66.4709 99.39 

186 150 48.6644 0.3244 278.2457 99.88 

187 80 30.2997 0.3787 134.7408 99.72 

188 150 52.9477 0.353 283.0232 99.88 

189 150 33.514 0.2234 208.8939 99.89 

190 73 21.8082 0.2987 122.5692 99.76 

191 150 17.0619 0.1137 108.1069 99.89 

192 56 14.2612 0.2547 74.5687 99.66 

193 89 29.0246 0.3261 163.119 99.8 

194 44 15.6138 0.3549 69.8272 99.49 

195 150 36.3234 0.2422 212.3326 99.89 

196 150 34.6289 0.2309 207.5311 99.89 

197 128 27.4876 0.2147 181.2781 99.88 

198 150 23.9494 0.1597 135.5667 99.88 

199 52 11.5277 0.2217 68.065 99.67 

200 150 48.8565 0.3257 283.7292 99.89 

201 65 24.7319 0.3805 132.0596 99.71 

202 150 35.7323 0.2382 213.905 99.89 

203 150 31.9254 0.2128 162.8294 99.87 

204 150 18.8037 0.1254 120.0407 99.9 

205 150 34.5673 0.2304 154.9893 99.85 

206 150 49.4207 0.3295 278.1509 99.88 

207 150 45.0705 0.3005 260.5567 99.88 

208 150 54.4548 0.363 300.5627 99.88 

209 150 30.456 0.203 147.6713 99.86 

210 150 25.8464 0.1723 141.0077 99.88 

211 32 13.1111 0.4097 68.2092 99.4 

212 101 43.1874 0.4276 220.5608 99.81 

213 150 22.7519 0.1517 129.7 99.88 

214 150 38.9577 0.2597 193.6197 99.87 

215 150 37.923 0.2528 160.0178 99.84 

216 88 38.2892 0.4351 181.2866 99.76 

217 150 54.3363 0.3622 299.751 99.88 

218 150 44.5484 0.297 263.3836 99.89 

219 150 33.5249 0.2235 151.2058 99.85 
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220 78 30.2246 0.3875 132.1414 99.71 

221 150 30.5182 0.2035 198.6568 99.9 

222 150 24.2638 0.1618 136.0365 99.88 

223 100 31.9612 0.3196 162.4137 99.8 

224 150 49.0247 0.3268 293.7881 99.89 

225 101 38.5561 0.3817 210.6362 99.82 

226 150 49.5165 0.3301 250.0097 99.87 

227 123 28.5007 0.2317 161.6651 99.86 

228 150 39.7617 0.2651 219.3893 99.88 

229 150 49.5731 0.3305 229.5333 99.86 

230 150 48.3185 0.3221 268.7351 99.88 

231 99 23.469 0.2371 124.5226 99.81 

232 94 21.9222 0.2332 135.1692 99.83 

233 150 45.8419 0.3056 256.9891 99.88 

234 150 53.9778 0.3599 306.3907 99.88 

235 150 46.0721 0.3071 280.6472 99.89 

236 150 44.6709 0.2978 262.8052 99.89 

237 150 64.0898 0.4273 357.0802 99.88 

238 150 66.6172 0.4441 364.7075 99.88 

239 150 56.4135 0.3761 264.4747 99.86 

240 150 33.435 0.2229 189.2168 99.88 

241 150 30.3479 0.2023 182.2481 99.89 

242 150 27.6315 0.1842 139.3801 99.87 

243 150 31.5416 0.2103 204.5458 99.9 

244 150 44.9777 0.2999 268.7448 99.89 

245 150 31.1075 0.2074 169.8743 99.88 

246 150 46.0323 0.3069 208.0035 99.85 

247 150 36.1768 0.2412 217.7425 99.89 

248 92 22.0296 0.2395 123.6036 99.81 

249 52 16.0736 0.3091 82.197 99.62 

250 54 10.5842 0.196 68.3707 99.71 

251 129 26.348 0.2042 158.6236 99.87 

252 149 34.4701 0.2313 211.8013 99.89 

253 148 50.4776 0.3411 207.7804 99.84 

254 93 40.0564 0.4307 219.4255 99.8 

255 147 47.7088 0.3245 269.8569 99.88 

256 143 45.2442 0.3164 230.2475 99.86 

257 143 49.4437 0.3458 281.8741 99.88 

258 131 40.4265 0.3086 209.4189 99.85 

259 141 28.1831 0.1999 175.8478 99.89 

260 141 27.8 0.1972 137.322 99.86 

261 97 30.8187 0.3177 181.175 99.82 

262 139 56.8126 0.4087 325.1362 99.87 

263 139 57.4055 0.413 309.3557 99.87 

264 138 18.3696 0.1331 106.3383 99.87 
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265 137 35.8011 0.2613 188.8576 99.86 

266 136 29.5651 0.2174 156.0894 99.86 

267 134 53.5801 0.3999 312.8216 99.87 

268 108 41.1046 0.3806 220.3041 99.83 

269 133 40.1974 0.3022 217.7457 99.86 

270 105 42.3592 0.4034 223.3109 99.82 

271 126 36.3075 0.2882 191.6177 99.85 

272 126 30.2653 0.2402 154.6214 99.84 

273 126 55.122 0.4375 281.2801 99.84 

274 126 28.4262 0.2256 149.9103 99.85 

275 124 25.9979 0.2097 163.7857 99.87 

276 122 29.9556 0.2455 155.5613 99.84 

277 120 25.116 0.2093 116.3626 99.82 

278 118 20.7062 0.1755 110.9143 99.84 

279 62 21.2789 0.3432 123.1456 99.72 

280 118 23.5178 0.1993 147.4042 99.86 

281 116 19.9551 0.172 103.002 99.83 

282 116 38.8639 0.335 206.5469 99.84 

283 114 24.5479 0.2153 154.627 99.86 

284 111 39.6635 0.3573 196.2154 99.82 

285 111 26.0086 0.2343 124.7505 99.81 

286 109 33.7446 0.3096 191.7861 99.84 

287 108 33.3846 0.3091 169.5473 99.82 

288 105 33.9763 0.3236 169.4134 99.81 

289 105 44.3088 0.422 209.6166 99.8 

290 103 30.7585 0.2986 170.2503 99.82 

291 102 23.1 0.2265 111.8 99.8 

292 100 25.6222 0.2562 144.2759 99.82 

293 100 39.9927 0.3999 206.6612 99.81 

294 99 19.4974 0.1969 103.5016 99.81 

295 98 33.7174 0.3441 165.6177 99.79 

296 96 17.921 0.1867 97.485 99.81 

297 63 28.1557 0.4469 136.9048 99.67 

298 95 12.7658 0.1344 74.8906 99.82 

299 94 19.6 0.2085 104.4 99.8 

300 92 16.9613 0.1844 87.3621 99.79 

301 61 12.1305 0.1989 63.0779 99.68 

302 89 13.5822 0.1526 74.563 99.8 

303 89 20.6 0.2315 111.1166 99.79 

304 88 10.3667 0.1178 69.4898 99.83 

305 87 33.2108 0.3817 153.3413 99.75 

306 84 19.8316 0.2361 112.7257 99.79 

307 78 16.5755 0.2125 107.4154 99.8 

308 78 24.5416 0.3146 124.0825 99.75 

309 78 16.4361 0.2107 97.78 99.78 
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310 77 19.12 0.2483 96.2402 99.74 

311 74 23.8451 0.3222 144.7582 99.78 

312 48 13.0184 0.2712 66.3077 99.59 

313 74 22.2473 0.3006 116.3658 99.74 

314 73 21.8105 0.2988 114.0641 99.74 

315 73 19.0233 0.2606 109.9083 99.76 

316 72 14.9926 0.2082 94.3595 99.78 

317 72 32.1344 0.4463 149.6364 99.7 

318 71 14.8242 0.2088 74.9853 99.72 

319 66 17.3242 0.2625 99.9956 99.74 

320 65 17.6368 0.2713 97.2397 99.72 

321 63 17.5424 0.2785 98.6 99.72 

322 62 18.9929 0.3063 113.143 99.73 

323 58 20.115 0.3468 89.0983 99.61 

324 55 17.6507 0.3209 91.4316 99.65 

325 53 15.6571 0.2954 81.9031 99.64 

326 49 13.0385 0.2661 68.2074 99.61 

327 48 9.8 0.2042 66.4 99.69 

328 47 12.4356 0.2646 63.6651 99.58 

329 46 15.5252 0.3375 69.2555 99.51 

330 43 14.0431 0.3266 72.7619 99.55 

331 43 15.4356 0.359 75.1226 99.52 

332 41 8.7 0.2122 45 99.53 

333 40 11.8322 0.2958 59.6962 99.5 

334 38 9.0916 0.2393 42.7572 99.44 

335 33 11.1503 0.3379 48.9777 99.31 

336 33 12.8438 0.3892 59.3329 99.34 

337 32 8.6515 0.2704 46.2345 99.42 

338 31 9.4 0.3032 60.4 99.5 

339 29 9.053 0.3122 43.7585 99.29 

340 28 11 0.3929 63.2 99.38 

341 28 7.0981 0.2535 36.1307 99.3 

342 27 4.458 0.1651 22.2557 99.26 

343 26 7.9885 0.3072 37.0264 99.17 

344 25 8.4068 0.3363 49.3909 99.32 

345 23 2.365 0.1028 17.0449 99.4 

346 23 7.7934 0.3388 33.5663 98.99 

347 22 10.899 0.4954 37.1548 98.67 

348 22 5.9619 0.271 24.3443 98.89 

349 18 6.1502 0.3417 35.2925 99.03 

350 18 8.5723 0.4762 43.4835 98.9 

351 17 6.6 0.3882 35.2 98.9 

352 17 3.7484 0.2205 16.1662 98.64 

353 15 3.6 0.24 16.4 98.54 

354 13 4.235 0.3258 21.0737 98.45 
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355 12 3.0472 0.2539 13.118 98.06 

356 11 3.4214 0.311 13.3708 97.67 

357 10 4.9 0.49 22.1 97.78 

358 9 3.5293 0.3921 17.2255 97.72 

359 9 3.2243 0.3583 15.8161 97.73 

360 8 2.4767 0.3096 7.0369 95.6 
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A4. Observation Histories method for second dataset 

Node # 

 

 

Number of 

Movements( 

Each 1.2 sec) 

 

Sum of all 

differences 

 

 

Mean Absolute 

Error(∑ diff/nn
i=1 ) 

Distance 

 

 

Accuracy 

% 

 

1 94 9.1428 0.0973 154.3391 99.94 

2 57 10.0035 0.1755 144.3938 99.88 

3 148 13.7364 0.0928 211.9178 99.96 

4 148 14.3354 0.0969 205.9783 99.95 

5 148 12.3824 0.0837 157.4065 99.95 

6 148 14.167 0.0957 207.3022 99.95 

7 38 6.8488 0.1802 66.5113 99.73 

8 148 11.9775 0.0809 129.9597 99.94 

9 148 17.7104 0.1197 188.5303 99.94 

10 148 13.8472 0.0936 313.6367 99.97 

11 142 12.4823 0.0879 123.6941 99.93 

12 148 13.6351 0.0921 218.4428 99.96 

13 65 8.3628 0.1287 66.9286 99.81 

14 148 7.3886 0.0499 296.426 99.98 

15 133 13.1672 0.099 199.6642 99.95 

16 57 7.05 0.1237 67.3701 99.82 

17 148 12.8143 0.0866 221.2227 99.96 

18 148 11.6498 0.0787 162.2934 99.95 

19 148 7.6831 0.0519 204.8 99.97 

20 148 9.5988 0.0649 219.8578 99.97 

21 148 16.1454 0.1091 289.2753 99.96 

22 148 10.6893 0.0722 118.4184 99.94 

23 148 23.767 0.1606 269.438 99.94 

24 148 13.6779 0.0924 324.5028 99.97 

25 148 16.7205 0.113 236.4392 99.95 

26 148 12.8126 0.0866 240.8528 99.96 

27 148 12.1506 0.0821 143.0232 99.94 

28 114 11.7079 0.1027 162.7412 99.94 

29 148 10.9595 0.0741 268.5473 99.97 

30 148 14.5375 0.0982 237.4538 99.96 

31 65 8.0582 0.124 135.3988 99.91 

32 148 16.6332 0.1124 248.4133 99.95 

33 55 7.324 0.1332 81.2287 99.84 

34 148 15.8449 0.1071 209.6532 99.95 

35 148 10.8223 0.0731 265.0029 99.97 

36 148 19.0115 0.1285 320.9822 99.96 

37 148 14.5057 0.098 139.1312 99.93 

38 117 9.5965 0.082 222.5803 99.96 

39 148 14.0152 0.0947 141.6054 99.93 
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40 148 18.3308 0.1239 249.0774 99.95 

41 148 12.3 0.0831 202.5 99.96 

42 120 17.6501 0.1471 220.5496 99.93 

43 148 15.3259 0.1036 213.925 99.95 

44 74 10.3265 0.1395 132.6966 99.89 

45 148 12.1546 0.0821 199.1172 99.96 

46 98 9.7741 0.0997 136.5232 99.93 

47 148 10.1758 0.0688 294.2382 99.98 

48 148 21.4381 0.1449 314.8471 99.95 

49 129 10.4086 0.0807 158.1263 99.95 

50 148 9.6567 0.0652 176.6722 99.96 

51 48 7.9789 0.1662 73.363 99.77 

52 148 14.6806 0.0992 185.4507 99.95 

53 148 13.3844 0.0904 126.2102 99.93 

54 118 11.3318 0.096 179.5369 99.95 

55 148 16.5956 0.1121 319.3373 99.96 

56 148 20.2855 0.1371 316.6374 99.96 

57 148 13.5547 0.0916 210.5763 99.96 

58 148 13.5021 0.0912 167.6162 99.95 

59 148 9.5196 0.0643 148.0494 99.96 

60 148 12.9743 0.0877 186.0918 99.95 

61 148 17.4454 0.1179 251.337 99.95 

62 148 16.9411 0.1145 255.6002 99.96 

63 148 20.0952 0.1358 311.4021 99.96 

64 148 23.8997 0.1615 361.2638 99.96 

65 148 10.6349 0.0719 152.2987 99.95 

66 148 8.3 0.0561 194.5 99.97 

67 148 16.8184 0.1136 217.4998 99.95 

68 148 23.4539 0.1585 360.441 99.96 

69 148 18.1142 0.1224 279.1627 99.96 

70 148 21.3656 0.1444 301.041 99.95 

71 113 12.4283 0.11 219.8248 99.95 

72 148 23.4856 0.1587 290.9983 99.95 

73 148 15.2917 0.1033 263.7058 99.96 

74 148 16.3811 0.1107 178.6871 99.94 

75 148 14.5745 0.0985 271.5993 99.96 

76 46 8.2146 0.1786 79.16 99.77 

77 148 14.5761 0.0985 269.6758 99.96 

78 148 19.4626 0.1315 265.7155 99.95 

79 39 6.44 0.1651 67.0265 99.75 

80 54 8.1062 0.1501 134.7288 99.89 

81 148 8.7476 0.0591 162.4011 99.96 

82 84 10.0594 0.1198 158.8699 99.92 

83 148 13.1532 0.0889 177.7013 99.95 

84 148 14.4984 0.098 240.0381 99.96 
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85 148 11.6044 0.0784 167.474 99.95 

86 148 13.3858 0.0904 197.2476 99.95 

87 148 17.231 0.1164 150.9962 99.92 

88 148 11.4453 0.0773 148.622 99.95 

89 148 24.5808 0.1661 307.5125 99.95 

90 148 27.5932 0.1864 319.0532 99.94 

91 36 7.8493 0.218 65.5172 99.67 

92 148 22.6844 0.1533 326.1641 99.95 

93 49 6.8557 0.1399 73.0537 99.81 

94 92 15.7681 0.1714 144.3665 99.88 

95 148 11.2828 0.0762 119.8125 99.94 

96 99 10.1395 0.1024 209.5256 99.95 

97 148 15.3726 0.1039 214.1642 99.95 

98 62 5.0672 0.0817 69.1902 99.88 

99 148 15.8582 0.1072 254.6163 99.96 

100 148 11.0552 0.0747 219.9889 99.97 

101 138 10.0977 0.0732 135.4584 99.95 

102 148 16.1342 0.109 219.2444 99.95 

103 148 11.8175 0.0798 179.5139 99.96 

104 52 7.1889 0.1382 80.5895 99.83 

105 92 10.8497 0.1179 162.9084 99.93 

106 79 8.0679 0.1021 136.3468 99.93 

107 148 14.1584 0.0957 244.4481 99.96 

108 148 23.9908 0.1621 260.439 99.94 

109 87 10.5947 0.1218 135.3119 99.91 

110 148 14.8454 0.1003 290.6354 99.97 

111 148 16.6832 0.1127 245.2085 99.95 

112 148 15.5576 0.1051 253.2734 99.96 

113 148 12.8785 0.087 265.8533 99.97 

114 148 13.6895 0.0925 218.1092 99.96 

115 148 11.7759 0.0796 245.6455 99.97 

116 63 8.873 0.1408 134.8323 99.9 

117 148 13.1991 0.0892 222.5841 99.96 

118 148 16.3435 0.1104 231.5529 99.95 

119 148 15.6184 0.1055 238.1071 99.96 

120 148 22.2602 0.1504 300.5505 99.95 

121 148 17.087 0.1155 280.1578 99.96 

122 148 11.1911 0.0756 203.2308 99.96 

123 82 9.9398 0.1212 158.1611 99.92 

124 148 18.2237 0.1231 288.9619 99.96 

125 115 11.4842 0.0999 158.5892 99.94 

126 148 14.6155 0.0988 259.5361 99.96 

127 98 9.8059 0.1001 161.9884 99.94 

128 70 9.5819 0.1369 122.9434 99.89 

129 61 6.1915 0.1015 81.8955 99.88 
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130 76 9.6461 0.1269 162.8012 99.92 

131 148 9.4719 0.064 163.6301 99.96 

132 148 16.9065 0.1142 267.6949 99.96 

133 113 14.458 0.1279 223.0133 99.94 

134 34 7.1002 0.2088 67.7527 99.69 

135 134 14.2731 0.1065 210.9449 99.95 

136 128 13.6992 0.107 222.1098 99.95 

137 148 11.1773 0.0755 182.7461 99.96 

138 40 6.4329 0.1608 67.5777 99.76 

139 148 12.0289 0.0813 195.9256 99.96 

140 102 11.0136 0.108 158.7265 99.93 

141 113 9.1615 0.0811 181.1047 99.96 

142 63 8.3423 0.1324 77.818 99.83 

143 148 18.1342 0.1225 244.8058 99.95 

144 148 20.3652 0.1376 263.5109 99.95 

145 148 17.6115 0.119 252.7915 99.95 

146 148 14.2856 0.0965 172.9396 99.94 

147 148 16.6125 0.1122 184.0051 99.94 

148 140 14.2816 0.102 180.6357 99.94 

149 31 7.4082 0.239 73.903 99.68 

150 133 15.5372 0.1168 194.4824 99.94 

151 148 15.807 0.1068 222.9276 99.95 

152 148 31.4342 0.2124 203.4762 99.9 

153 148 16.694 0.1128 226.5765 99.95 

154 148 9.2341 0.0624 234.2878 99.97 

155 148 17.4329 0.1178 137.1942 99.91 

156 148 13.9882 0.0945 257.3568 99.96 

157 148 8.6831 0.0587 114.6436 99.95 

158 148 11.4506 0.0774 207.5892 99.96 

159 148 14.6741 0.0991 220.933 99.96 

160 73 10.1611 0.1392 163.0889 99.91 

161 148 14.2271 0.0961 229.5015 99.96 

162 122 13.8174 0.1133 219.8372 99.95 

163 148 13.5425 0.0915 186.3984 99.95 

164 148 7.7828 0.0526 147.805 99.96 

165 141 16.6974 0.1184 220.7172 99.95 

166 78 9.5432 0.1223 134.4345 99.91 

167 31 6.3327 0.2043 66.7678 99.69 

168 131 11.3314 0.0865 180.5704 99.95 

169 33 6.5857 0.1996 62.1567 99.68 

170 112 13.6137 0.1216 219.078 99.94 

171 139 13.8896 0.0999 159.1079 99.94 

172 148 11.1541 0.0754 210.5849 99.96 

173 148 10.3 0.0696 113.5 99.94 

174 148 13.4658 0.091 172.3677 99.95 
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175 148 10.6494 0.072 128.5551 99.94 

176 148 25.3177 0.1711 358.7571 99.95 

177 136 15.5574 0.1144 257.8267 99.96 

178 148 10.6982 0.0723 237.7586 99.97 

179 148 12.3125 0.0832 189.1483 99.96 

180 148 16.556 0.1119 226.1125 99.95 

181 120 10.2006 0.085 132.7525 99.94 

182 148 12.8324 0.0867 136.0293 99.94 

183 148 13.1891 0.0891 249.797 99.96 

184 148 8.8 0.0595 160.4045 99.96 

185 27 6.6056 0.2447 66.4709 99.63 

186 148 17.6359 0.1192 274.7457 99.96 

187 78 9.5676 0.1227 134.7408 99.91 

188 148 20.0265 0.1353 279.2232 99.95 

189 148 12.6026 0.0852 206.0939 99.96 

190 71 12.2936 0.1731 122.5692 99.86 

191 148 10.081 0.0681 106.6069 99.94 

192 54 8.947 0.1657 74.5687 99.78 

193 87 11.6985 0.1345 163.119 99.92 

194 42 6.1888 0.1474 69.8272 99.79 

195 148 13.7084 0.0926 209.5326 99.96 

196 148 12.1053 0.0818 204.7311 99.96 

197 126 10.4467 0.0829 181.2781 99.95 

198 148 9.9195 0.067 133.8667 99.95 

199 50 6.2765 0.1255 68.065 99.82 

200 148 14.7204 0.0995 279.9265 99.96 

201 63 14.6917 0.2332 132.0596 99.82 

202 148 14.5345 0.0982 210.9732 99.95 

203 148 11.5586 0.0781 160.7294 99.95 

204 148 8.3064 0.0561 118.4407 99.95 

205 148 13.1472 0.0888 152.9893 99.94 

206 148 17.2349 0.1165 275.0392 99.96 

207 148 23.2664 0.1572 257.0567 99.94 

208 148 21.5043 0.1453 296.5627 99.95 

209 148 9.9405 0.0672 145.6713 99.95 

210 148 11.9893 0.081 139.1077 99.94 

211 30 8.8237 0.2941 68.2092 99.57 

212 99 18.0975 0.1828 220.5608 99.92 

213 148 9.1 0.0615 127.9 99.95 

214 148 18.2576 0.1234 191.7197 99.94 

215 148 13.335 0.0901 157.954 99.94 

216 86 10.9592 0.1274 181.2866 99.93 

217 148 23.7561 0.1605 295.451 99.95 

218 148 15.2353 0.1029 259.8652 99.96 

219 148 14.3528 0.097 149.1058 99.93 
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220 76 12.6521 0.1665 132.1414 99.87 

221 148 15.7277 0.1063 196.0568 99.95 

222 148 10.4378 0.0705 134.2365 99.95 

223 98 11.8289 0.1207 162.4137 99.93 

224 148 19.2723 0.1302 289.6881 99.96 

225 99 16.2137 0.1638 210.6362 99.92 

226 148 14.4794 0.0978 246.6097 99.96 

227 121 10.4805 0.0866 161.6651 99.95 

228 148 16.659 0.1126 216.4893 99.95 

229 148 24.1934 0.1635 226.3333 99.93 

230 148 12.4868 0.0844 265.2351 99.97 

231 97 8.8775 0.0915 124.5226 99.93 

232 92 9.7903 0.1064 135.1692 99.92 

233 148 14.1905 0.0959 253.4891 99.96 

234 148 17.8549 0.1206 302.2907 99.96 

235 148 14.51 0.098 276.8472 99.96 

236 148 19.9274 0.1346 259.3052 99.95 

237 148 23.6624 0.1599 352.3244 99.95 

238 148 25.4341 0.1719 359.9075 99.95 

239 148 20.971 0.1417 260.8747 99.95 

240 148 17.4217 0.1177 186.7429 99.94 

241 148 12.3495 0.0834 179.9316 99.95 

242 148 10.6115 0.0717 137.5801 99.95 

243 148 14.0295 0.0948 202.2236 99.95 

244 148 21.9113 0.148 265.0448 99.94 

245 148 14.7044 0.0994 167.5743 99.94 

246 148 26.5492 0.1794 204.8035 99.91 

247 148 16.4131 0.1109 214.8425 99.95 

248 90 9.1229 0.1014 123.6036 99.92 

249 50 7.8818 0.1576 82.197 99.81 

250 52 5.7658 0.1109 68.3707 99.84 

251 127 12.2514 0.0965 158.6236 99.94 

252 147 13.2528 0.0902 210.4013 99.96 

253 146 33.2995 0.2281 207.7804 99.89 

254 91 16.9884 0.1867 219.4255 99.91 

255 145 21.4109 0.1477 269.8569 99.95 

256 141 15.7175 0.1115 230.2475 99.95 

257 141 35.9817 0.2552 281.8741 99.91 

258 129 15.1298 0.1173 209.4189 99.94 

259 139 12.3752 0.089 175.8478 99.95 

260 139 9.4532 0.068 137.322 99.95 

261 95 10.9453 0.1152 181.175 99.94 

262 137 21.41 0.1563 325.1362 99.95 

263 137 24.1181 0.176 309.3557 99.94 

264 136 9.1249 0.0671 106.3383 99.94 
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265 135 17.0073 0.126 188.8576 99.93 

266 134 12.0973 0.0903 156.0894 99.94 

267 132 15.7506 0.1193 312.8216 99.96 

268 106 13.1754 0.1243 220.3041 99.94 

269 131 13.7904 0.1053 217.7457 99.95 

270 103 13.6097 0.1321 223.3109 99.94 

271 124 13.4638 0.1086 191.6177 99.94 

272 124 11.4359 0.0922 154.6214 99.94 

273 124 17 0.1371 281.2801 99.95 

274 124 6.8218 0.055 149.9103 99.96 

275 122 14.4996 0.1188 163.7857 99.93 

276 120 10.4664 0.0872 155.5613 99.94 

277 118 9.3147 0.0789 116.3626 99.93 

278 116 10.9767 0.0946 110.9143 99.91 

279 60 10.3787 0.173 123.1456 99.86 

280 116 8.0414 0.0693 147.4042 99.95 

281 114 8.7339 0.0766 103.002 99.93 

282 114 11.2923 0.0991 206.5469 99.95 

283 112 8.1414 0.0727 154.627 99.95 

284 109 18.4593 0.1694 196.2154 99.91 

285 109 15.7363 0.1444 124.7505 99.88 

286 107 14.2077 0.1328 191.7861 99.93 

287 106 11.7934 0.1113 169.5473 99.93 

288 103 17.5408 0.1703 169.4134 99.9 

289 103 22.9141 0.2225 209.6166 99.89 

290 101 13.7763 0.1364 170.2503 99.92 

291 100 7.9 0.079 111.8 99.93 

292 98 8.3303 0.085 144.2759 99.94 

293 98 19.1628 0.1955 206.6612 99.91 

294 97 9.4182 0.0971 103.5016 99.91 

295 96 11.1027 0.1157 165.6177 99.93 

296 94 6.365 0.0677 97.485 99.93 

297 61 11.247 0.1844 136.9048 99.87 

298 93 10.2795 0.1105 74.8906 99.85 

299 92 5.7 0.062 104.4 99.94 

300 90 9.1563 0.1017 87.3621 99.88 

301 59 7.9675 0.135 63.0779 99.79 

302 87 7.7867 0.0895 74.563 99.88 

303 87 6 0.069 111.1166 99.94 

304 86 6.0877 0.0708 69.4898 99.9 

305 85 11.6022 0.1365 153.3413 99.91 

306 82 5.8657 0.0715 112.7257 99.94 

307 76 5.8991 0.0776 107.4154 99.93 

308 76 4.3245 0.0569 124.0825 99.95 

309 76 5.8848 0.0774 97.78 99.92 
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310 75 6.7175 0.0896 96.2402 99.91 

311 72 8.6795 0.1205 144.7582 99.92 

312 46 7.697 0.1673 66.3077 99.75 

313 72 5.74 0.0797 116.3658 99.93 

314 71 5.6593 0.0797 114.0641 99.93 

315 71 7.3799 0.1039 109.9083 99.91 

316 70 5.8485 0.0836 94.3595 99.91 

317 70 15.8565 0.2265 149.6364 99.85 

318 69 6.7142 0.0973 74.9853 99.87 

319 64 7.5999 0.1187 99.9956 99.88 

320 63 5.0259 0.0798 97.2397 99.92 

321 61 8.2526 0.1353 98.6 99.86 

322 60 7.0924 0.1182 113.143 99.9 

323 56 6.1509 0.1098 89.0983 99.88 

324 53 7.6792 0.1449 91.4316 99.84 

325 51 3.8414 0.0753 81.9031 99.91 

326 47 4.9349 0.105 68.2074 99.85 

327 46 3.3 0.0717 66.4 99.89 

328 45 6.4471 0.1433 63.6651 99.77 

329 44 6.7899 0.1543 69.2555 99.78 

330 41 6.7043 0.1635 72.7619 99.78 

331 41 4.5372 0.1107 75.1226 99.85 

332 39 1.4 0.0359 45 99.92 

333 38 3.8515 0.1014 59.6962 99.83 

334 36 3.1162 0.0866 42.7572 99.8 

335 31 4.2909 0.1384 48.9777 99.72 

336 31 4.6363 0.1496 59.3329 99.75 

337 30 2.9915 0.0997 46.2345 99.78 

338 29 2.2 0.0759 60.4 99.87 

339 27 4.0303 0.1493 43.7585 99.66 

340 26 1.6 0.0615 63.2 99.9 

341 26 1.9194 0.0738 36.1307 99.8 

342 25 1.665 0.0666 22.2557 99.7 

343 24 3.8889 0.162 37.0264 99.56 

344 23 4.3285 0.1882 49.3909 99.62 

345 21 1.5472 0.0737 17.0449 99.57 

346 21 2.3262 0.1108 33.5663 99.67 

347 20 5.9153 0.2958 37.1548 99.2 

348 20 2.5402 0.127 24.3443 99.48 

349 16 3.6391 0.2274 35.2925 99.36 

350 16 3.2164 0.201 43.4835 99.54 

351 15 0.5 0.0333 35.2 99.91 

352 15 2.5363 0.1691 16.1662 98.95 

353 13 0.4 0.0308 16.4 99.81 

354 11 3.287 0.2988 21.0737 98.58 



72 

 

355 10 0.9828 0.0983 13.118 99.25 

356 9 1.5646 0.1738 13.3708 98.7 

357 8 0.4 0.05 22.1 99.77 

358 7 3.2521 0.4646 17.2255 97.3 

359 7 0.8768 0.1253 15.8161 99.21 

360 6 1.5187 0.2531 7.0369 96.4 
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Appendix B: Traveling pattern of all MS 

B.1. Traveling pattern for first dataset with arrival rate 0.01nodes/sec for 72 

nodes 
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B.1. Traveling pattern for second dataset with arrival rate 0.05nodes/sec for 360 

nodes 
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