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ABSTRACT 

In latest years, Optimization Algorithms have been one of the most interesting 

applications that can be used in order to solve tough real life problems. Real life 

problems could be either single or multi objective. In general Optimization 

techniques try to minimize an objective function for any real life problem. One of the 

most interesting real life problems is Traveling Salesman Problem (TSP) that is NP-

hard which cannot be solved straightforwardly. Swarm Intelligence that is a field of 

Artificial Intelligence, uses the behaviors of real swarms to solve Optimization 

problems. Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), 

and Artificial Bee Colony Algorithm (ABC) are the well-known Swarm Intelligence 

algorithms that are generally used in solving NP-hard problems. 

In this thesis, TSP problems are solved by using ACO algorithm which uses the 

behavior of real ants. For the betterment of the solutions found by ACO, a local 

search, Greate Deluge Algorithm (GDA) is used, also a new type of Ant defined as 

U-Turning Ant (UAnt) which returns back without completing its route guides the 

remainders in finding the shortest route. In this thesis it is shown that by hybridizing 

ACO with local search and using U-Turning Ants in ACO (U-TACO), the solutions 

of the given TSP problems will be improved. 

Keywords: Traveling Salesman Problem (TSP), Ant Colony Optimization (ACO), 

Great Deluge Algorithm (GDA), and U-Turning Ant Colony Algorithm (U-TACO). 
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ÖZ 

Son yıllarda, En iyileme Algoritmaları gerçek hayat problemlerini çözmek için 

kullanılabilecek en ilginç uygulamalarından biri olmuştur. Gerçek hayat problemleri 

tek veya çok amaçlı olabilmektedir. Optimizasyon algoritmaları genellikle verilen 

gerçek hayat problemlerinin amaç fonksiyonlarını en aza indirmeye çalışmaktadır. 

En ilginç gerçek hayat problemlerinden biri polinomsal zamanda kolayca 

çözülemeyen Gezgin Satıcı Problemidir (GSP).   Yapay Zekanın bir parçası olan 

Sürü Zekası gerçek hayat sürü davranışlarını kullanarak Optimizasyon problemlerine 

çözüm üretir. En iyi bilinen Sürü Zeka algoritmalarına örnek olarak, Karınca Koloni 

Optimizasyonu (KKO), Parçacık Sürü Optimizasyonu (PSO), ve Yapay Arı Koloni 

algoritması (YAK) gösterilebilir. 

 

Bu tezde, GSP problemleri gerçek karınca davranışlarını kullanan KKO algoritması 

ile çözülmüşlerdir. Elde edilen çözümlerin iyileştirilmesi için de yerel arama 

algoritması olan Büyük Tufan Algoritması (BTA) kullanıldı. Ayrıca kendi rotasını 

tamamlamadan geri dönen yeni bir tür karınca olan U-Dönüşü yapan karıncalar 

(UKarınca), geriye kalan karıncaların rotalarını enkısa yoldan tamamlamalarına 

yardımcı olmak amacıyle,  tanımlanmıştır. Bu tezde U-Dönüşü yapan karıncaları 

kullanan KKO algoritmsı ile birleştirilen BTA algoritmasının GSP problemlerinin 

çözümlerini iyleştirdiği gösterilmiştir. 

 

Anahtar Kelimeler: Gezgin Satıcı Problemi (GSP), Karınca Koloni Optimizasyonu 

(KKO), Büyük Tufan Algoritması (BTA), ve U-Dönüş yapan Karınca Koloni 

Optimizasyonu (U-TACO). 
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Chapter 1 

INTRODUCTION 

Traveling Salesman Problem (TSP)  is one of the NP-hard problems in which a 

Salesman wants to have a minimum distance (shorter) tour between a given set of 

cities and return to (starting city) his hometown (Laporte, 1992), at the end of TSP 

the Salesman must find the cheapest Hamiltonian cycle (shortest tour) in the given set 

of cities.  Hamiltonian cycle is a tour that each city or node in a graph visited exactly 

once (Patel & Doshi, 2011). TSP is an important problem in developing and testing 

many new optimization techniques, generally TSP problem divided into two category 

Symmetric Traveling Salesman Problem (STSP) and Asymmetric Traveling 

Salesman Problem (ATSP) (Goyal, 2010). 

Due to the difficulty of finding the optimal tour for TSP, which is one of the most 

known NP-hard problems, most of the optimization algorithms use a local search 

algorithm to find the best tour for the salesman. 

In this thesis the Ant Colony Optimization Algorithm (ACO) powered by the Great 

Deluge Algorithm (GDA) will be used to find the optimal solution for STSP 

problems.  

Ant Colony Optimization Algorithm uses the real ants behaviors to obtain a solution 

for TSP. Dorigo and his colleagues were the first who applied the idea of Ant Colony 

Optimization Algorithm to Traveling Salesman Problem (TSP) (Colorni, Dorigo, 
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Maniezzo, 1991, 1996). In Ant colony algorithms, artificial ants make their choice to 

add cities to the tour by measuring the amount of pheromone trail in the edge 

connecting cities. Great Deluge Algorithm (GDA) is adapted to TSP problem and 

hybridized with Ant Colony Optimization Algorithm (ACO) to improve the 

efficiency of ACO algorithm. 

Great Deluge Algorithm (GDA) is a local search method for solving optimization 

problems, and it was introduced by Dueck (Dueck, 1993). GDA, like simulated 

annealing (SA) (Bykov, 2003) and other local search techniques, depends on 

iteratively replacement of a current solution by a neighborhood solution, until a 

stopping condition is satisfied. In this thesis 2-opt algorithm is used to find 

neighborhood solution which increase performance of Great Deluge Algorithm. 

U-Turning Ant Colony Optimization (U-TACO) strategy is used for further 

improving the ACO algorithm to converge best solutions. U-TACO makes random 

partial tour of a specific length for the ants, and initializes the pheromone trail value 

of the visited cities in the partial tour. This pheromone initialization used by ACO in 

construction of the whole tour, at each ACOs iteration U-TACO‟s agent update a 

specific length of the best tour.  

In the beginning of this chapter we gave a general introduction to the principles will 

be used in this thesis, the rest of the chapter contains a general description of NP-

hard problems, TSP and the methods used to solve TSP problem including ACO, 

GDA, and 2-Opt. Other chapters of this thesis are organized as follows: in Chapter 2 

we propose the methods used for the solution of TSP which illustrate the mechanism 

of using 2-Opt inside GDA, ACO used with GDA and 2-Opt (ACO&GDA ),  and  



3 

U-Turning Ant Colony Optimization (U-TACO). Chapter 3 presents Experimental 

results of all proposed methods and a comparison between them. Finally Conclusion 

is given in Chapter 4.  

1.1 Combinatorial Optimization  

Combinatorial Optimization (CO) problems involve computing a good solution for 

discrete variables such as finding an optimal solution for a problem with respect to a 

given objective function (Schrijver, 2003). In theoretical computer science fields the 

Combinatorial optimization is either a minimization or a maximization of a problem 

(Iwr.uni-heidelberg.de, 2014), it arises in many optimization problems such as 

finding shortest path, planning, scheduling, time-tabling, finding models of 

propositional formulae, internet data packet routing, finding a minimum cost plan for 

a customers and many other important real-world problems (Schrijver, 2005). 

1.2 NP-hard Problem 

Non-deterministic Polynomial-time hard (NP-hard) problems are those problems 

which are strongly believed that their optimal solution cannot be found within a 

polynomial bounded computation time (Hochbaum, 1997).  

Generally there are two types of methods for solving real-life optimization problems 

either complete approach or approximate approach. Complete approach requires 

exponential computing time for solving NP-hard optimization problems, whereas 

approximate approach which is divided in to two search approaches, single-based 

search and population-based search, focuses on obtaining  a good solutions in 

relatively less time instead of finding optimal solutions which are hard to compute 

(Blum, 2005).  
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For most NP-hard problems using exact algorithms are not preferable, because they 

takes unbounded time, that is why most of the research often use approximate 

methods, which obtain a near optimal solution for NP-hard problems in a 

significantly short bounded time, and which are broadly known as heuristic methods 

(Sahni & Gonzalez, 1976).   

1.3 Travelling Salesman Problem 

Traveling salesman problem (TSP) is one of the widely studied problems in 

Mathematics and Computer Science fields. Due to its difficulty many mathematical 

scientists studied it, going back to 1920, when the mathematician Karl Menger first 

issued TSP with his colleagues in Vienna (LaLer, Lenstra, Rinnooy Kan &  Shmoys, 

1985), at that time TSP problem was called "Messenger Problem" by Karl Menger 

(Theorsociety.com, 2014). Later in 1930, mathematical community of Princeton 

sighted to the problem (AppleGate, Bixby, Chvatal & Cook, 1998). In 1940 the 

scientist mathematician Merrill Meeks Flood discusses TSP through random 

selection of locations in the Euclidean plane (Mahalanobis, 1940). In 1948 Flood 

publicized the traveling salesman problem in RAND Corporation, in 1949 the first 

reference containing the term “traveling salesman problem (TSP)” was reported by 

Julia Robinson under the name “On the Hamiltonian game (a traveling salesman 

problem)” (AppleGate et al., 1998). In 1954 Ray Fulkerson, Selmer Johnson, and 

George Dantzig descript a method for solving the TSP, they have found an optimal 

tour to a TSP problem of 49 cities (Wikipedia, 2014). In 1956 some heuristic 

methods was described by Flood including the 2-opt and nearest-neighbour 

algorithm which are used for finding a good tour for TSP (Theorsociety.com, 2014). 

In 1972 Richard M. Karp showed that TSP is one of NP-hard problems, in 1977 the 

optimal tour of West Germany which composed of 120 cities were found by 
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Groetschel (Theorsociety.com, 2014). The progress continued during the 1980s, 

when the exact solutions of the TSP problems up to 2392 cities were found by 

scientists Grötschel, Padberg, Rinaldi and others (Wikipedia, 2014). In 1991, the 

researcher of the University of Augsburg Gerhard Reinelt published a collection of 

84 varying difficulty TSP problems under the name TSPLIB. In 2006, Cook and 

other researchers found an optimal tour for 85,900 city TSP problem (Wikipedia, 

2014). 

Travelling Salesman Problem (TSP) is an NP-hard problem in combinatorial 

optimization (Laporte, 1992; Johnson & McGeoch, 2002), which has a huge search 

space that it cannot be solve easily (Garey & Johnson, 1979; Louis & Gong, 2000). 

Given a set of cities {C1, C2, C3, …., Cn} in which every city must be visited once 

only and return to the starting city for completing a tour such that the length of the 

tour is the shortest among all possible tours. For each pair of cities {Ci, Cj} the 

distance of arc connecting those cities denoted by d(Ci, Cj), the best tour for a 

salesman specified by an order permutation ( ) of cities that have minimum tour 

length.  

Generally there are two different kinds of TSP problems, Symmetric TSP (STSP) 

and Asymmetric TSP (ATSP). For the STSP the distance d(Ci,Cj) = d(Cj, Ci), for n 

cities the number of possible tours is  (n-1)!/2, whereas for ATSP, where the distance 

d(Ci,Cj) ≠ d(Cj, Ci), for n cities the number of possible tours is (n-1)!,  for large 

number (n) of cities it is very difficult to find the exact best tours in both ATSP  (n-

1)! and STSP (n-1)!/2,  that is why TSP considers one of the NP-hard problems 

(Johnson & Papadimitriou, 1985). 

http://www.wikipedia.org/wiki/NP-hard
http://www.wikipedia.org/wiki/Combinatorial_optimization
http://www.wikipedia.org/wiki/Combinatorial_optimization
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Formally, the TSP is a complete weighted graph G (N, A) where N is the set of cities 

which must be visited, and A (i, j) is the set of arcs connecting the city (i) and city (j). 

The length between city Ai and Aj can be represented as dij (Dorigo, 2004). Thus the 

tour length to the given TSP problems can be found by finding the summation of the 

length between the cities of a permutation list as shown in formula (1.1) (Denis, 

2004-2005).  

                                               (∑   ( )  (   )

   

   

)    ( )  ( )                         (   ) 

Where π is the permutation list of cities. 

1.4 Swarm Intelligence  

In computer sciences, Swarm Intelligence (SI) is the field of studying and designing 

efficient computational methods to solve problems using the behavior of real swarms 

such as birds, fish, and ants (Bonabeau et al., 1999; Kennedy et al, 2001). SI is a part 

of Artificial Intelligence introduced in the global optimization framework in 1989 by 

Jing Wang and Gerardo Beni as a collection of algorithms for controlling robotic 

swarm (Beni & Wang, 1989).  

Swarm Intelligence issued a number of homogenous agents which interacts with each 

other either directly or indirectly, they communicate directly with each other by 

using audio or visual tools, as the honey bees communicate by waggle dance; 

indirect communication refers to as stigmergy (Dorigo, Bonabeau, & Theraulaz, 

2000). Grasse first introduced the concepts stigmergy to the processes when an insect 

makes change in the. environment around it, and the other insects respond to that 

change and adapt themselves. to the new environment, such as in ant colonies when 

an ant deposit pheromone in its way to the food, leads other ants to follow that way 
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(Grasse, 1959). Examples of swarm intelligence methods are Ant Colony 

Optimization (ACO), Artificial Bee Colony (ABC), Particle Swarm Optimization 

(PSO), Bacterial Foraging, Artificial Immune System, Stochastic diffusion search, 

Cat Swarm Optimization, Gravitational search algorithm, Bat algorithm, and 

Glowworm Swarm Optimization (Merkle & Middendorf, 2008). 

1.5 Ant Colony Optimization (ACO)  

Ant Colony Optimization algorithms (ACO) belongs to swarm intelligence (SI) field 

methods. Ant System (AS) was first represented in 1992 by Marco Dorigo in his PhD 

thesis as a nature-inspired metaheuristics for solving hard combinatorial optimization 

(CO) problems (Dorigo, 1992). Later in 1997 developed algorithms of Ant Colony 

System (ACS) were published by Dorigo and Gambardella (Dorigo & Gambardella, 

1997). The progress continued when one year later, in 1998, Dorigo introduced Ant 

Colony Optimization algorithms (ACO) for the first time in a conference (Dorigo, 

1998; Dorigo, Maniezzo, & Colomi, 1991; Dorigo, 1992; Dorigo & Di Caro, 1999; 

Dorigo & Stützle 2004).  

Over years, many algorithm designed that depend on Ant behaviors, such us Ant 

System (AS), Ant colony Optimization (ACO), Ant-Q, and Ant Colony System 

(ACS) (Dorigo, Caro and Gambardella, 1999).  Generally  the algorithms that depend 

on ant behaviors  and specifically Ant colony optimization, over years ago has been 

adapted to solve many optimization problems in real life such as Mobile and 

Wireless Sensor Networks (WSNs), vehicle routing problem, Network Security, 

Computer Architecture, Data Mining and many other problems (Geetha & Srikanth, 

2012).  
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1.5.1 Ant Colony Optimization (ACO) Metaheuristic  

Ant Colony Optimization (ACO) is a metaheuristic algorithm for solving 

combinatorial optimization (CO) problem (Dorigo & Di Caro, 1999). 

Metaheuristic algorithms uses some basic heuristics in the nature to escape from 

local optimal to build an optimal solution for a real life problem (Denis, 2004-2005), 

some metaheuristic algorithms start from an empty solution then add nodes 

(elements) to build a solution, which is called constructive heuristics, when other 

algorithms start from a weak complete solution and modify it iteratively to obtain a 

better solution, it is called local search heuristics (Blum & Roli, 2003).  

ACO is a constructive heuristic algorithm, its metaheuristics is an inspiration of real 

ant‟s behaviors in the nature, which use the intelligence and strong attraction of 

swarms in finding food (Deneubourg, Aron, Goss, & Pasteels, 1990). It basically 

depends on pheromone trail updating and the following of other ants to the 

pheromone smell: ants deposit pheromones in their way to the food source which 

takes attention of other swarm ants to the food source, and the way that they should 

take to the food. Artificial ants update pheromone forwarding to the food, the 

increasing of pheromone in one path and the pheromone evaporation process which 

decrease pheromone intensity in other paths avoids unlimited trails accumulation 

over some components (Mute-net.sourceforge.net, 2015). 

1.5.2 Real Ant Behavior and Capabilities  

In the nature real ants which are „almost blind’ insects are capable to figure out the 

shortest path connecting their nest with a source of food Figure 1. Ants communicate 

to each other without using any visual indication (Hölldobler & Wilson, 1990) they 

indirectly communicate by pheromone trails, which is an odorous chemical substance 
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that ants may deposit and smell (Goss, Aron, Deneubourg & Pasteels, 1989). The 

term "pheromone" was first introduced in 1959 by P. Karlson and M. Lüscher, that 

comes from Greek word “pherein”  which means “to transport” and “hormone” 

which means “to stimulate” (Karlson & Lüscher, 1959). 

Ants lay pheromone in the way that takes them to the food, which make other ants 

follow that path. The amounts of pheromone on a single path depends on the length 

between food source and ant‟s nest, in which the way having greatest pheromone 

density is the shortest way to the food, pheromone directly increases with the number 

of ants following that path (Mute-net.sourceforge.net, 2015). 

The behavior of real ants searching for food in nature Figure 1 (Mute-

net.sourceforge.net, 2015): 

 First, each ant randomly lays down a pheromone trail in their path searching 

for food source. 

 If any of the ants finds a food, it returns to the nest laying down a pheromone 

trail 

 If in any path pheromone is increased, the other ants follow that path. 

 
Figure 1: Behavior of real ants (Mute-net.sourceforge.net, 2015) 
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Ants can find a new short path in the case of absence of the old one after inserting an 

obstacle (Beckers, Deneubourg & Goss, 1992). Consider Figure (2A) a straight way 

of ants from nest to food source, in Figure (2B) an obstacle inserted in their way, 

here ants arrive at a decision point and must make a choice whether to turn left or 

right, in Figure (2C) half of ants takes one side of the obstacle and other ants takes 

the other side of the obstacle, all ants move with approximately same speed and 

approximately the same amount of pheromone deposit which lead to accumulate a 

greater amount of pheromone trail in the shorter path per unit time, as the results 

showen in Figure (2D). Ants make their decision according to the amount of 

pheromone and choose a shortest way between food source and the nest (Dorigo, 

Maniezzo, & Colomi, 1991). 

 
Figure 2: Ants are capable of finding new path (Dorigo, Maniezzo, & Colomi, 1991) 

1.5.3 ACO and TSP 

The traveling salesman problem (TSP) has an important role in Ant System (AS) 

algorithms in general. The first appearance of Ant System was tested on the 

travelling salesman problem in 1992 by Marco Dorigo (Dorigo, 1992). 

The Ant Colony Optimization Algorithm agents (Artificial Ants) move from one city 

to another city until completing their tours and then return back to the starting city on 
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TSP graph, they iteratively construct solutions and deposit pheromone on the arc 

connecting cities one by one. 

ACO algorithm follows many steps iteratively to construct best solutions for TSP 

problems, (i) each ant randomly chooses a city at the beginning, (ii) For each ant: ant 

chooses the next city according to the heuristic information and pheromone value on 

the edge between current city and the next one, and then pheromone update on the 

edges used, (iii) After all ants construct their path (solution) a general pheromone 

trail updates, (iv) A path, which has the best pheromone amount is the best solution 

for the TSP problem (Dorigo & Gambardella, 1997). Figure 3, shows the steps of 

ACO algorithm that solves TSP problem. 



12 

 
Figure 3: Flowchart of ACO algorithm for TSP (Samaiya & Samaiya, 2012) 

Practically ACO algorithm used for TSP problems agents (Artificial ants) are equal 

to the number of cities of a TSP problem (M ==N, M number of ants and N number 

of cities). Each ant makes a solution tour, initially all ants locate in cities randomly, 

then every ant chooses the next city upon a probability based function depending on 

both pheromone trail accumulated on edge and heuristic value. The formula used for 

choosing next city called random proportional rule (1.2), shows the probability of 

ant (k) that locate in the city (i) to visit city (j) (Denis, 2004-2005).  
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∑                  
 

    , if j     
                                                                           (1.2) 

Where   and   are variables that determine the influence of pheromone trail and 

heuristic information, where   is a parameter to regulate the influence of pheromone 

trail (   ) and   is a parameter to regulate the influence of heuristic value (   ),   

and   effects in the process of choosing next city as shown below. 

  <   The closest city is more likely to be chosen. 

     The arcs that have more pheromone intensity are more likely to be 

used. 

    , heuristic value is used for the choosing without pheromone. 

    , pheromone is used for the choosing without heuristic value, which 

may cause poor result. 

 ηij= 1/dij, is a priori available heuristic value, (dij) is the distance between cities (i 

and j), (   ) is the pheromone trail matrix, and (   
 ) is the set of the neighborhood 

that ant (k) has not visited yet (Denis, 2004-2005). 

The probability that ant (k) choose arc (i, j) increases with the value of pheromone 

trail (   ) and heuristic value (   ).  

In this thesis ACO uses             in the case of 20 ACO iterations, and it 

uses             in the case of 100 ACO iterations, the initial value of 

pheromone matrix usually set to a small value which is greater than zero (1.3). 

  (   )                                                                                             (1.3) 
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Ants choose the city, which contains larger amounts of pheromone on the connecting 

edges between the current city and the next one.  

Each ant after adding new city to its tour makes a local pheromone update (1.4), by 

adding the   i  to the old  i   

                                                                                                                    (1.4) 

Where the value of   i  can be found as shown in (1.5),   i   changes according to the 

length (  ) tour (1.6) 

     ∑     
  

                                                                                                             (1.5) 

Where  i  is the pheromone trail on the arc (ij), m is number of ants, and   i  is the 

summation of change in the   i 
 
, which is equal to a constant value (Q) over current 

length of the tour constructed by ant (k), in this thesis we use value (Q=1). 

The process of pheromone trail update continues until all ants complete their tour by 

visiting all cities and returning to the start city, after all ants terminate the 

construction of tour it is followed by pheromone evaporation (1.7) and a global 

pheromone update (1.4) for the shortest tour. The shortest tour will have the greatest 

amount of pheromone (Denis, 2004-2005). 

Pheromone evaporation reduces the amount of pheromone in arcs which leads to 

gradually disappears of pheromone trail in the unused arc which makes the ants to 

follow one path. 

    
      {      

 

  
                    (  )  

             
                                                                      (1.6) 
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       (   )                                                                                               (1.7) 

Whereas (     ) is a constant quantity used for reducing pheromone trail, here 

we used (     ) that decrease     value by 0.5 which iteratively lead to disappear 

pheromone trail in unused arc. Figure 7, shows the ACO Pseudo-code.  

1. {Initialization} 

Initialize           

Initialize     

Initialize     (1.3) 

2. {Construction} 

For each ant k (currently in state i) do 

 Chose next city (state j) (1.2) and append it to the tour 

3. {Pheromone Trail update} 

{  

 Calculate   i 
    (1.6) for calculating      (1.5) 

 

 Update pheromone      (1.4) 

 } 

 

4. {Pheromone evaporation} 

 

 Decreasing pheromone intensity by   value  (1.7) 

5. {End}  

Figure 4: ACO Pseudo-code (Denis, 2004-2005). 
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1.6 Local Search Methods  

Local search metaheuristics are the most successful approaches and the most used 

methods for solving combinatorial optimization problems over the last few years.  

Local search refers to a group of methods which depend on a neighborhood 

(Johnson, 1990), which are a set of candidate states, that are connected directly to the 

current state and can be reached by a single move for finding a best solution for 

computationally hard optimization problems. Its  methods are iteratively improve the 

ordering of  current solution states by performing simple modifications on the current 

solutions to obtain a new solution, the improvement continues until some stopping 

conditions has been satisfied or when there is no better solution in the given 

neighborhood (Russell & Norvig, 2003). 

The most famous and widely used Local search algorithms is k-opt which takes an 

initial tour and improves it by making flips in the tour to obtain a better tour 

(Chandra, Karloff, & Tovey, 1994), it is the basics of 2-opt (Croes, 1958), 3-opt (Lin, 

1965) and Lin-Kernighan (LK) (Lin, & Kernighan, 1973). A more complicated local 

search method that could have other Local search method imbedded inside it, is 

called Great Deluge Algorithm (GDA), its procedure is finding a better solution from 

the neighborhood of the initial solution, and then it iteratively improving solution 

(Dueck, 1993). Another local search method which is based on Hill-Climbing, 

includes some kind of intelligent in it, and is known as Tabu Search (TS), its 

procedure based on saving the previous moves in a list called „tabu list‟ which is 

used to avoid cycling (Glover,1986). Many other local search algorithms are used in 

computer field to escape from local optimality which take unbounded time, one of 

http://en.wikipedia.org/wiki/Mathematical_optimization
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the most known algorithms is Simulated annealing (SA), a local search algorithms 

which tries to improve a solution tour iteratively, using a temperature (T) factor, thus, 

before each iteration T value decreases. SA uses another random parameter (i), if 

(i>T), SA uses a heuristic in choosing the next solution node, otherwise it makes a 

random choice (Mitra, Romeo & Sangiovanni-Vincentelli, 1985). 

1.6.1 Great Deluge Algorithm  

Great Deluge Algorithm (GDA) is a single-based approximate approaches using 

neighbors strategies for solving optimization problems, was first introduced by 

Dueck in 1993 as an alternative enhanced method of the Simulated Annealing, 

similarly to the simulated annealing and hill-climbing algorithms. It depends on 

replacing the current best solution by a new solution from set of neighborhoods, 

replacing process continues until the solution values become equal or better than the 

Level (L) value, which bounds the feasible region of the search space (Dueck, 1993). 

Great Deluge Algorithm (GDA) controls the search space using a boundary Level (L) 

which does not depend directly on the current best solution, at the beginning the level 

(L) value equal to the initial value of function evaluation (cost function), then in each 

iterations it monotonically increases or decreases (according to optimization 

problem: maximization or minimization) by the  L.  L value is the only input 

parameter for GDA. This decreasing/increasing process controlling the search 

processes in the Great Deluge Algorithm, which drive the algorithm to word is the 

best optimal solution (Bykov, 2003).  

During the processing GDA accepts best solution in the case of obtaining an 

improvement in the function evaluation value of a neighborhood solution which is 

better than current best solution, or it may accept a worse solution in some cases if 
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the neighborhood solution is worse than the current solution but better than level (L). 

GDA algorithm has been used to solve many optimization problems with relatively 

high performance, such as for Examination Timetabling (Abdullah & Burke, 2006; 

Landa-Silva & Obit, 2009). Figure 5, Shows a Detailed description of Great Deluge 

Algorithm (GDA) steps. 
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Figure 5: Flowchart of Great Deluge Algorithm (GDA) (Jaddi & Abdullah, 2013) 
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1.6.2 2-OPT Algorithm 

2-opt is among the simplest and best known local search algorithms which was one 

of the first successful algorithms used to improve a solution tour of TSP (Croes, 

1958). It easily takes the current tour then improves it by iteratively removing two 

arcs (edge) from the tour, which divides the tour into two parts, then reconnects the 

two parts of the tour in an opposed direction; the new tour is accepted if its fitness is 

less or equal to the current tour; this continues until all possible tours are being tested 

(Laporte, 1992; Bentley, 1992).  

Figure 6, below shows an example of selected edges for deleting and reconnecting it, 

the initial tour on the right {1,2,3,4,5,6,7,8} after applying 2-opt algorithm by 

removing two blue edges in the right figure, and the reconnected tour by two red 

edges in the left figure obtaining a new tour{ 1,2,6,5,4,3,7,8,} (Devx.com, 2015).  

 
Figure 6: 2-opt example (Devx.com, 2015) 
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Figure 7, Shows 2-Opt algorithm steps in details. 

 

 
Figure 7: 2-opt flowchart (Misevičius et al., 2007) 
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The algorithm depends on iteratively removing long edges and applying changes to 

the tour, the improving process continues in such a manner that each removing and 

reversing operations reduces the length of the current tour, until a tour is reached for 

which no removing and reversing operation can proceed any improvement in the 

tour. 

The removing and reversing operations depend on the length of edges, such as if the 

current tour contains two edges (first connecting city A with city B and the other 

connecting city C and D), the removing and reconnection of edges depend on a 

mathematical formula (1.8). 

                (   )       (   )         (   )        (   )   (1.8) 

If the neLength value is negative, it means that the length of new edges (AD and 

BC) is less than the length of old edges (AB and CD), the new connection 

edges accepted and applied the changes to current best tour; otherwise, if neLength is 

positive, it means that the new tour have a length longer than the current tour, the 

new connection is neglected and the algorithm continues testing other edges until 

stopping condition is satisfied as shown in Figure 8 (Panyam, 2011). 

 
Figure 8: 2-Opt tour construction (Panyam, 2011) 
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Figure 9, shows the pseudo code of 2-Opt Algorithm  

1. {Initialization} 

Initialize current tour 

2. {Improving} 

 Loop (stop condition) 

{ 

 Find two edges (AB) and (CD) for removing and reversing. 

 Calculate neLength       (1.8) 

 if neLength <0 

  {Apply changes to current tour} removing  

  (AB) and    (CD) and revers the tour (AD and BC) 

3. {End} 

Figure 9: 2-Opt Pseudo-code (Misevičius et al., 2007) 
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Chapter 2   

METHODS USED FOR THE SOLUTION OF TSP 

2.1 Great Deluge Algorithm (GDA) and 2-Opt Algorithm  

Great Deluge Algorithm (GDA) procedure finds a better solution from the 

neighborhood of the initial solution, then it iteratively finds a new solution by using 

2-Opt local search algorithm, and compares the new solution fitness (f(NewTour)) 

with the fitness of a current best tour ( f(BestTour)), and the level (L) value.  L is 

value initially equal to the initial best tour fitness (L=f(initial BestTour)) then it 

increases or decreases according to applied problem. GDA accepts new solution in 

two cases: 

Case 1:  If f(NewTour)< f(BestTour), the new Tour is accepted, the current best tour 

will be changed with the new tour (BestTour=NewTour), and the level (L) 

will be updated (increased for maximization /decreased for minimization) 

(2.1). 

L=L± L                                                                                          (2.1) 

                  L= (f(BestTour)-Optimalrate)/(NumOfIteGDA)               (2.2) 

Where  L can be found (2.2), it changes according to the f(BestTour), 

number of GDA iteration (NumOfIteGD) and Optimal rate (Optimalrate), 

which refers to as the optimal tour fitness of various problems (TSP tours). 

Case 2: If  f(NewTour)< L), the new Tour is accepted, the current best tour will be 

changed with the new tour (BestTour=NewTour) without updating level (L). 
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Figure 10, shows the pseudo code for GDA that uses 2-Opt. 

1. {Initialization} 

Initialize initial tour  

Initialize L, Optimalrate, NumOfIteGD 

 Initialize  L    (2.2) 

2. {Improving} 

 Loop (stop condition) 

{ 

 Finding neighborhood solution by (2-Opt algorithm) 

 Calculate f(NewTour) 

   If f(NewTour)< f(BestTour) 

   { 

    BestTour=NewTour 

    L=L±ΔL                                                                                          

   } 

  If f(NewTour)< L 

   BestTour=NewTour  

} 

3. {End} 

Figure 10: GDA Pseudo-code (AL-MILLI, 2014) 
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2.2 Ant Colony Optimization and Great Deluge Algorithm with 2-Opt  

(ACO & GDA) 

ACO uses GDA to improve its current tour. Every ACO iterations, ACO construct a 

best tour by Ants, the current best tour is used by GDA as an initial tour, GDA which 

uses 2-Opt Algorithm inside it, further improves the tour, and then it is followed by 

an updating of pheromone trail on the ACO tour which has been improved by GDA. 

1. {Initialization} 

Initialize      ,    , and     (1.3) 

LOOP 

{ 

2. {Construction} 

   For each ant k (currently in state i) do 

   Chose next city (state j)  (1.2) and append it to the tour 

3. {Improving} 

 Improving ACO current best tour by GDA (explained in (2.1)) 

4. {Pheromone Trail update} 

 Calculate   i 
    (1.6) for calculating      (1.5) 

 Update pheromone      (1.4) 

5. {Pheromone evaporation} 

 Decreasing pheromone intensity by   value  (1.7) 

6. {End} 

            } END LOOP  

Figure 11: ACO & GDA Pseudo-code 
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2.3 U-Turning Ant Colony Optimization (U-TACO) Powered by GDA 

U-Turning ACO is a simplified version of ACO algorithm which is applied to ACO 

as a prefix method to obtain a better solution. 

Generally U-TACO has a procedure exactly the same to ACO in construction of 

tours, pheromone updates, and pheromone evaporations. The only difference is that 

in U-TACO artificial ants (UAnt) instead of visiting all cities in the TSP graph, 

which takes long time, make a specific number of iteration, visit a limited number of 

cities, and return to their starting city feedback on the same way as shown in Figure 

12. 

 
Figure 12: Ant and UAnt tour 

The UAnts mission is not to find the best optimal tour, it is used just to initialize the 

pheromone trail matrix, which is later used by Ants to specify their required mission 

(finding optimal TSP tour).  
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At the beginning U-TACO should determine the number of iteration and the length 

of tour that U-Turning artificial ants (UAnt) should take, it can take any length (1< 

U-TACO tour length< number of cities). In this thesis, we have tried three different 

values for the U-TACO tour length 1/4 of number of cities , 1/2 of number of cities , 

and 3/4 of number of cities. 

UAnts construct their tours based on random proportional rule (1.2), it can have 

various value for (α, β), it may take values different from the values used by Ant, we 

use values that is equal to Ant values (α=1, β=2).  

UAnt use the same pheromone trail update formula (1.4) that is used by Ant in ACO, 

here we use a value for (Q=3), which is used in updating formulas that are explained 

before in formula (1.6)    

The difference in (Q) value leads to changes in both                   … (1.4), and 

     ∑     
  

    … (1.5), this difference in the updating value makes the pheromone 

deposit more quickly on the best tour, and leads the other UAnt to follow it. 

After UAnt make their tour of specific length, they return to their starting city by the 

same path (feedback), making a further updating in pheromone trail matrix, then 

there is a final process ending UAnts mission – pheromone evaporation (1.7). 

After UAnt finish their mission (making partial tour, and initializing pheromone trail 

matrix (    )) Ants mission starts to make a complete tour and finding optimal tour or 

best tour in ACO explained before in (1.5.3). Ants make their choice based on the 

pheromone matrix (    ) obtained by UAnts, then Ant make changes on the (    ) 
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matrix, and in every ACO iterations UAnt make further pheromone trail update to a 

specific length of ACO best tour. 

1. {Making partial tour by UAnt} 

         a. {Initialization UAnt} 

Initialize      ,    , and     (1.3) 

         Loop 

 { 

b. {Construction partial tour} 

For each ant k (currently in state i) do 

 Chose next city (state j)  (1.2) and append it to the tour 

c. {Pheromone Trail update} 

 With Q=3, Calculate Δ ij
k    (1.6) and      (1.5) 

 Update pheromone      (1.4) 

d. {Pheromone evaporation} 

 Decreasing pheromone intensity by   value (1.7) 

e. {End}  

} END LOOP 

2. {Construction} 

 Construct complete tour by ACO & GDA (explained in (2.2)) 

 UAnt update pheromone of a specific length of ACO tour 

3. {End} 

Figure 13: U-TACO Pseudo-code 
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Chapter 3  

EXPERIMENTAL RESULTS 

This section presents the experimental results obtained from Ant colony optimization 

(ACO), Ant colony optimization (ACO) powered by Great Deluge algorithm 

(ACO&GDA) and U-Turning Ant colony optimization (U-TACO) algorithms, for 

different symmetric traveling salesman problems (STSP) selected from (TSPLIB95). 

3.1 Experimental Results with 20 ACO Iterations 

This section shows the results of ACO, ACO&GDA, and U-TACO for different 

symmetric traveling salesman problems (STSP) selected from (TSPLIB95). All 

problems were solved with 20 ACO iterations and the parameter that determine the 

influence of pheromone trail     and heuristic information    , for each TSP 

problem number of ants equal to number of cities. 

3.1.1 ACO Results 

Table 3.1 shows the results of ACO algorithms with 20 ACO iterations. It can be 

seen from this table that it is not possible to find any optimal solution for the given 

TSP problem from (TSPLIB95). 
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Table 3.1: ACO results with 20 iterations 
TSP 

problem 

Optimal 

Tour 

ACO Time # of 

function 

evaluations 

Optimal 

foundation 

att48 10628 12012 8.751971s 960 Not 

att532 27686 32589 2057.607684s 10640 Not 

berlin52 7542  8092 11.532953s 1040 Not 

Lin105 14379 16213 37.226899s 2100 Not 

Ch150 6528 6871 77.035097 s 3000 Not 

Eil51 426 472 14.233584s 1020 Not 

Eil76 538 580 21.822042 s 1520 Not 

Eil101 629 746 36.084189s 2020 Not 

fl417 11861 13443 1044.515205s 8340 Not 

kroA100 21282 24698 33.873039s 2000 Not 

kroA150 26524 30669 84.927355s 3000 Not 

kroA200 29368 34543 157.599577s 4000 Not 

kroB100 22141 25856 37.269276s 2000 Not 

kroB150 26130 30320 82.397767s 3000 Not 

kroC100 20749 23342 33.827723s 2000 Not 

kroD100 21294 24465 35.068680s 2000 Not 

Lin318 42029 48250 503.068268s 6360 Not 

Pr76 108159 124032 20.916123s 1520 Not 

Pr107 44303 46389 40.363483s 2140 Not 

Pr124 59030 65145 53.535056s 2480 Not 

Pr136 96772 111739 65.715502s 2720 Not 

Pr144 58537 59553 75.360905s 2880 Not 

Pr152 73682 78784 82.526424s 3040 Not 

Rat99 1211 1437 33.232457s 1980 Not 

Rd100 7910 9386 37.157033s 2000 Not 

St70 675 742 15.791204s 1400 Not 

Tsp225 3916 4578 204.455153s 4500 Not 
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3.1.2 ACO&GDA Results 

By using ACO&GDA algorithm, which has been run with 20 iterations on the same 

collection of TSP problems that is used in ACO. The Table 3.2 shows the 

ACO&GDA results, it can be seen that the optimal tour for four TSP problems are 

founded. 

Table 3.2: ACO&GDA results with 20 iterations 

TSP 

problem 

Optimal 

Tour 

 ACO&GDA Time # of 

function 

Evaluation 

Optimal 

foundation 

att48 10628 10628 65.845424 s 192960 Iteration=7  

Time=24.618

300 s 

Evaluation=6

7536 

att532 27686 28321 28679.2511s 2138640 Not 

berlin52 7542  7657 21.190134 s 209040 not 

Lin105 14379 14434 448.722319s 422100 Not 

Ch150 6528 6554 345.672009 s 603000 Not 

Eil51 426 426 81.920737s 205020 Iteration=3 

Time=20.193

626 s 

Evaluation=3

0753 

Eil76 538 543 57.488787 s 305520 Not 

Eil101 629 630 112.080519s 406020 Not 

fl417 11861 12038 15797.0384s 1676340 Not 

kroA100 21282 21296 117.925550s 402000 not 

kroA150 26524 26751 353.030522s 603000 Not 

kroA200 29368 29591 818.688881s 804000 Not 

kroB100 22141 22258 110.074386s 402000 Not 

kroB150 26130 26292 344.846879s 603000 Not 

kroC100 20749 20798 110.332764s 402000 Not 

kroD100 21294 21395 112.804903s 402000 Not 
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Lin318 42029 42670 7642.12961s 1278360 Not 

Pr76 108159 108159 60.225353s 305520 Iteration=14 

Time=44.654

503 s 

Evaluation= 

213864 

Pr107 44303 44303 127.697276s 430140 Iteration=2 

Time= 

17.977372 s 

Evaluation= 

43014 

Pr124 59030 59087 188.399575s 498480 Not 

Pr136 96772 102323 255.565197s 546720 Not 

Pr144 58537 58636 284.115236s 578880 Not 

Pr152 73682 73880 353.679060s 611040 Not 

Rat99 1211 1221 107.793133s 397980 Not 

Rd100 7910 7951 116.764002s 402000 Not 

St70 675 677 45.134547s 281400 Not 

Tsp225 3916 3942 4379.11708s 904500 Not 

 

 

3.1.3 ACO and ACO&GDA Method Performances 

Table 3.3 show the fitness of the best tour found by ACO and ACO&GDA 

algorithms. 

Table 3.3: ACO and ACO&GDA best fitness 

Tsp 

problem 

Optimal 

value 

ACO ACO&GDA 

att48 10628 12012 10628 

att532 27686 32589 28321 

berlin52 7542  8092 7657 

Lin105 14379 16213 14434 

Ch150 6528 6871 6554 

Eil51 426 472 426 

Eil76 538 580 543 
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Eil101 629 746 630 

fl417 11861 13443 12038 

kroA100 21282 24698 21296 

kroA150 26524 30669 26751 

kroA200 29368 34543 29591 

kroB100 22141 25856 22258 

kroB150 26130 30320 26292 

kroC100 20749 23342 20798 

kroD100 21294 24465 21395 

Lin318 42029 48250 42670 

Pr76 108159 124032 108159 

Pr107 44303 46389 44303 

Pr124 59030 65145 59087 

Pr136 96772 111739 102323 

Pr144 58537 59553 58636 

Pr152 73682 78784 73880 

Rat99 1211 1437 1221 

Rd100 7910 9386 7951 

St70 675 742 677 

Tsp225 3916 4578 3942 

 

 

3.1.4 U-TACO Results 

U-TACO which uses UAnt to make an initialization to pheromone trail matrix, the 

pheromone trail matrix later uses by Ant to find a better solution for TSP problem. 

UAnt can have partial tour of different length, here we tried three different value for 

tour length 1/4, 1/2, and 3/4 of city numbers for different TSP problem. The results 

obtained in 50 iterations for UAnt to initialize pheromone trail matrix and 20 

iterations for ACO to construct a complete tour.  The affect of variant in UAnt tour 

length for different TSP problem are shown in Figure 14, for Lin105 TSP problem, 

Figure 15, for Pr107 TSP problem, and Figure 16, for Eil51 TSP problem. 
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Figure 14: U-TACO for Lin105 over length 1/4, 1/2, and 3/4 of city numbers 

For Lin105 TSP problem we get tour fitness equal to 14434 for 1/4 * number of 

cities, 14379 for 1/2 * number of cities, and 14438 for 3/4 * number of cities. 

U-TACO find the optimal value for Lin105 which is equal to 14379 at iteration 6 

over 20 iteration, only when UAnt had make partial tour of length equal to 1/2 * 

number of cities. 
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Figure 15: U-TACO for Pr107 over length 1/4, 1/2, and 3/4of city numbers 

For Pr107 TSP problem we get tour fitness equal to 44665 for 1/4 * number of cities, 

44303 for 1/2 * number of cities, and 44457 for 3/4 * number of cities. 

U-TACO finds the optimal value for Pr107 which is equal to 44303 at iteration 1 

over 20 iteration, only when UAnt had makes partial tour of length 1/2 * number of 

cities. 
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Figure 16: U-TACO for Eil51 over length 1/4, 1/2, and 3/4 of city numbers 

For Eil51 TSP problem we get tour fitness equal to 428 for 1/4 * number of cities, 

426 for 1/2 * number of cities, and 426 for 3/4 * number of cities. 

U-TACO find the optimal value for Eil51 which is equal to 426 at iteration 1 over 20 

iteration, when UAnt had make partial tour of length 3/4 of number of cities, and at 

iteration 7 over 20 iteration when UAnt had make partial tour of length 1/2 * number 

of cities. 

From Figure 14, Figure 15, and Figure 16, we concluded that U-TACO have a best 

result when UAnt makes a partial tour of length 1/2 * number of cities. 

Table 3.4 shows the U-TACO results when UAnt had make a partial tour of length 

1/2 * number of cities for the same collection of TSP problems that have been used 

before in testing (ACO and ACO&GDA) the optimal value for 6 TSP problems are 

founded. 
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Table 3.4: U-TACO results with 20 iterations 

Tsp 

problem 

Optim

al 

Tour 

U-

Turning 

ACO 

Time # of 

function 

Evaluation  

Optimal 

foundation 

att48 10628 10628 72.608541 210960 Iteration=2 

Time=56.832731 

Evaluation= 21096 

att532 27686 28218 43566.033S 2338140 Not  

berlin52 7542  7542 92.900329s 228540 Iteration=3 

Time=76.081437s 

Evaluation=34281 

Lin105 14379 14379 467.574097s 461475 Iteration=1 

Time=358.475811s 

Evaluation=23073 

Ch150 6528 6547 1368.303153s 659250 Not 

Eil51 426 427 75.529904s 224145 Not 

Eil76 538 538 349.082318s 334020 Iteration=7 

Time=313.814483s 

Evaluation=116907 

Eil101 629    629 439.032526s 443895 Iteration=8 

Time=367.8602123

s 

Evaluation=177558 

fl417 11861 12045 20596.70082s 1832715 Not 

kroA100 21282 21282 415.284487s 439500 Iteration=6 

Time=344.404586s 

Evaluation=131850 

kroA150 26524 26618 1243.611930s 659250 Not 

kroA200 29368 29472 2808.580653s 879000 Not 

kroB100 22141 22200 439.673347s 439500 Not 

kroB150 26130 26242 1333.134116s 659250 Not 

kroC100 20749 20798 446.163972s 439500 Not 

kroD100 21294 21455 434.844920s 439500 Not 

Lin318 42029 42749 14079.42749s 1397610 Not 

Pr76 108159 108487 202.229656s 334020 Not 
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Pr107 44303 44303 524.576606s 470265 Iteration=1 

Time=392.417070s 

Evaluation=23513 

Pr124 59030 59030 680.470220s 544980 Iteration=5 

Time=545.294855s 

Evaluation=136245 

Pr136 96772 100702 884.805854s 597720 Not 

Pr144 58537 58669 1155.302216s 632880 Not 

Pr152 73682 73867 1550.821031s 668040 Not 

Rat99 1211 1213 981.875703s 435105 Not 

Rd100 7910 7935 479.834143s 439500 Not 

St70 675 679 212.419589s 307650 Not 

Tsp225 3916 3928 3400.762717s 88500 Not 

 

 

3.1.5 ACO, ACO&GDA and U-TACO Method Performances 

Table 3.5 show the fitness of the best tour found by ACO, ACO&GDA and U-TACO 

algorithms. 

Table 3.5: ACO, ACO&GDA and U-TACO best fitness 

Tsp 

problem 

Optimal 

value 

ACO ACO&GDA U-Turning 

ACO 

att48 10628 12012 10628 10628 

att532 27686 32589 28321 28218 

berlin52 7542  8092 7657 7542 

Lin105 14379 16213 14434 14379 

Ch150 6528 6871 6554 6547 

Eil51 426 472 426 427 

Eil76 538 580 543 538 

Eil101 629 746 630    629 

fl417 11861 13443 12038 12045 

kroA100 21282 24698 21296 21282 
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kroA150 26524 30669 26751 26618 

kroA200 29368 34543 29591 29472 

kroB100 22141 25856 22258 22200 

kroB150 26130 30320 26292 26242 

kroC100 20749 23342 20798 20798 

kroD100 21294 24465 21395 21455 

Lin318 42029 48250 42670 42749 

Pr76 108159 124032 108159 108487 

Pr107 44303 46389 44303 44303 

Pr124 59030 65145 59087 59030 

Pr136 96772 111739 102323 100702 

Pr144 58537 59553 58636 58669 

Pr152 73682 78784 73880 73867 

Rat99 1211 1437 1221 1213 

Rd100 7910 9386 7951 7935 

St70 675 742 677 679 

Tsp225 3916 4578 3942 3928 

 

 

3.2 Comparison between ACO, ACO&GDA, and U-TACO Results 

with 20 ACO Iterations 

ACO, ACO&GDA, and U-TACO had different results in time, function evaluation, 

and the foundation of optimal tour, this section present‟s some graphical charts that 

shows difference between ACO, ACO&GDA, and U-TACO. All the charts bellow 

represents the solutions of ACO, ACO&GDA, and U-TACO to a TSP problem with 

20 ACO iterations. 
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Figure 17: berlin52 results using ACO, ACO&GDA, and U-TACO 

Berlin52 is a symmetric TSP problem of type Euclidean distance two dimensions 

(EUC_2), size equal to 52 cities, and optimal tour fitness equal to 7542 units. 

Figure 17, shows the results of all used algorithms in berlin52 with 20 iterations, the 

best solution obtained by ACO was 8092 which is 550 units longer than optimal tour 

fitness of berlin52, and the best solution obtained by ACO&GDA was 7657 which is 

115 units longer than optimal tour fitness, whereas the U-TACO reaches the optimal 

tour fitness value at iteration 3 with Time=76.081437seconds. 

For Berlin52 TSP problem, U-TACO is the best method between the used methods 

(ACO, ACO&GDA, and U-TACO) with respect to the fitness of best tour founded, 

which had finds the optimal tour. 
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Figure 18: Pr136 results using ACO, ACO&GDA, and U-TACO 

Pr136 is a symmetric TSP problem of type Euclidean distance two dimensions 

(EUC_2), size equal to 136 cities, and optimal tour fitness equal to 96772 units. 

Figure 18, shows the results of all used algorithms in Pr136 with 20 iterations, the 

best solution obtained by ACO was 111739 which is14967 units longer than optimal 

tour fitness of Pr136, whereas the best solution obtained by ACO&GDA was 102323 

which is 5551 units longer than optimal tour fitness, and the best solution obtained 

by U-TACO was 100702 which is 3930 units longer than optimal tour fitness. 

For Pr136 TSP problem, U-TACO is the best method between the used methods 

(ACO, ACO&GDA, and U-TACO) with respect to the fitness of best tour founded. 
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Figure 19: kroA150 results using ACO, ACO&GDA, and U-TACO 

KroA150 is a symmetric TSP problem of type Euclidean distance two dimensions 

(EUC_2), size equal to 150 cities, and optimal tour fitness equal to 26524 units. 

Figure 19, shows the results of all used algorithms in KroA150 with 20 iterations, the 

best solution obtained by ACO was 30669 which is 4145 units longer than optimal 

tour fitness of KroA150, whereas the best solution obtained by ACO&GDA was 

26751 which is 227 units longer than optimal tour fitness, and the best solution 

obtained by U-TACO was 26618 which is 94 units longer than optimal tour fitness. 

For KroA150 TSP problem, U-TACO is the best method between the used methods 

(ACO, ACO&GDA, and U-TACO) with respect to the fitness of best tour founded. 
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Figure 20: Lin105 results using ACO, ACO&GDA, and U-TACO 

Lin105 is a symmetric TSP problem of type Euclidean distance two dimensions 

(EUC_2), size equal to 105cities, and optimal tour fitness equal to 14379 units. 

Figure 20, shows the results of all used algorithms in Lin105 with 20 iterations, the 

best solution obtained by ACO was 16213 which is 1834 units longer than optimal 

tour fitness of lin105, and the best solution obtained by ACO&GDA was 14434 

which is 55 units longer than optimal tour fitness, whereas the U-TACO reaches the 

optimal tour fitness value at iteration 1 with Time=358.475811 seconds. 

For Lin105TSP problem, U-TACO is the best method between the used methods 

(ACO, ACO&GDA, and U-TACO) which had finds the optimal tour. 
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Figure 21: Tsp225 results using ACO, ACO&GDA, and U-TACO 

Tsp225 is a symmetric TSP problem of type Euclidean distance two dimensions 

(EUC_2), size equal to 225 cities, and optimal tour fitness equal to 3916 unit. 

Figure 21, shows the results of all used algorithms in Tsp225 with 20 iterations, the 

best solution obtained by ACO was 4578 which is 662 units longer than optimal tour 

fitness of Tsp225, whereas the best solution obtained by ACO&GDA was 3942 

which is 26 units longer than optimal tour fitness, and the best solution obtained by 

U-TACO was 3928 which is 12 units longer than optimal tour fitness. 

Again for Tsp225TSP problem, U-TACO is the best method between the used 

methods (ACO, ACO&GDA, and U-TACO) with respect to the fitness of best tour 

founded. 
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Figure 22: att532 results using ACO, ACO&GDA, and U-TACO 

Att532 is a symmetric TSP problem of type Euclidean distance two dimensions 

(EUC_2), size equal to 532 cities, and optimal tour fitness 27686 units. 

Figure 22, shows the results of all used algorithms in Att532 with 20 iterations, the 

best solution obtained by ACO was 32589 which is 4903 units longer than optimal 

tour fitness of Att532, whereas the best solution obtained by ACO&GDA was 28321 

which is 635 units longer than optimal tour fitness, and the best solution obtained by 

U-TACO was 28218 which is 532 units longer than optimal tour fitness. 

Again for Att532 TSP problem, U-TACO is the best method between the used 

methods (ACO, ACO&GDA, and U-TACO) with respect to the fitness of best tour 

founded. 
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Figure 23: Pr152 results using ACO, ACO&GDA, and U-TACO 

Pr152 is a symmetric TSP problem of type Euclidean distance two dimensions 

(EUC_2), size equal to 152cities, and optimal tour fitness equal to 73682 units. 

Figure 23, shows the results of all used algorithms in Pr152 with 20 iterations, the 

best solution obtained by ACO was 78784 which is 5102 units longer than optimal 

tour fitness of Pr152, whereas the best solution obtained by ACO&GDA was 73880 

which is 189 units longer than optimal tour fitness, and the best solution obtained by 

U-TACO was 73867 which is 185 unit longer than optimal tour fitness. 

Again for Pr152TSP problem, U-TACO is the best method between the used 

methods (ACO, ACO&GDA, and U-TACO) with respect to the fitness of best tour 

founded. 
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Figure 24: ACO, ACO&GDA, and U-TACO Results with 20 iterations 

Figure 24 shows the difference in the fitness of the tours obtained by ACO, 

ACO&GDA, and U-TACO with 20 ACO iterations, where the first column of each 

chart represents the difference between the optimal tour fitness and the fitness of the 

best tour founded by ACO&GDA, which is a small quantity in almost all charts, 

shows the efficiency of ACO&GDA in constructing tours for various TSP problems, 

whereas the second column represents the difference between the optimal tour fitness 

and the fitness of the best tour founded by ACO, which is a large quantity in all 

charts, shows that ACO is inefficient with respect to ACO&GDA, and U-TACO for 

solving TSP problems. The last column represents the difference between the 

optimal tour fitness and the fitness of the best tour founded by U-TACO, which is the 

best in all charts. 
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In all the above charts we noted that the difference between optimal tour fitness and 

the best tour founded by ACO is large, and the difference decrease between optimal 

tour fitness and the best tour founded by ACO&DGA, whereas the difference 

between optimal tour fitness and the best tour founded by U-TACO is minimum. 

3.3 Experimental results with 100 ACO iterations 

This section shows the results of ACO, ACO&GDA, and U-TACO for 10 problems 

that the optimal tour could not be found with 20 ACO iterations by ACO, 

ACO&GDA, and U-TACO algorithms. All problems were solved with 100 ACO 

iterations and the parameter that determine the influence of pheromone trail     

and heuristic information    , for each TSP problem number of ant equal to 

number of cities. 

3.3.1 ACO Results 

Table 3.6 shows the results of ACO algorithms. Here by using ACO with 100 

iterations. It can be seen from this table that it is not possible to find any optimal 

solution for the given TSP problem from (TSPLIB95). 

Table 3.6: ACO results with 100 iterations 

Tsp 

problem 

Optimal 

Tour 

ACO 

 

Time # of  

function 

Evaluation 

Optimal 

foundation 

Eil51 426 472 127.366233s 5100 Not 

kroB100 22141 25774 559.368621s 10000 Not 

kroC100 20749 23074 577.269972s 10000 Not 

kroD100 21294 24354 566.206931s 10000 Not 

Pr76 108159 125166 167.635915s 7600 Not 

Pr144 58537 59176  570.405804s 14400 Not 

Pr152 73682 79564 443.512765s 15200 Not 

Rat99 1211 1356 200.324875s 9900 Not 
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Rd100 7910 9386 449.774010s 10000 Not 

St70 675 740 193.447773s 7000 Not 

 

 

3.3.2 ACO&GDA Results 

Table 3.7, shows the results of ACO&GDA algorithm, which have been run with 100 

iterations on the same 10 TSP problem that we used before for ACO, the optimal 

tour for two TSP problem in total 10 TSP problem were found. 

Table 3.7: ACO&GDA results with 100 iterations 

Tsp 

problem 

Optimal 

Tour 

GDA 

& 

ACO 

Time # of  

function 

Evaluation 

Optimal 

foundation 

Eil51 426 426 92.695518s 1025100 Iteration=8 

Time=9.426011s 

Evaluation=8200

8 

kroB100 22141 22220 534.16368s 2010000 Not 

kroC100 20749 20798 564.601225s 2010000 Not 

kroD100 21294 21395 526.477314s 2010000 Not 

Pr76 108159 108159 307.913820s 1527600 Iteration=20 

Time=79.861093

s 

Evaluation=3055

20 

Pr144 58537 58636 1783.66841s 2894400 Not 

Pr152 73682 73818 2046.780874 3055200 Not 

Rat99 1211 1221 534.826458s 1989900 Not 

Rd100 7910 7951 566.902234s 2010000 Not 

St70 675 677 218.909780s 1407000 Not 
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3.3.3 ACO and ACO&GDA Method Performances 

Table 3.8 show the fitness of the best tour found by ACO and ACO&GDA 

algorithms. 

Table 3.8: ACO and ACO&GDA best fitness 
Tsp 

problem 

Optimal 

Tour 

ACO 

 

GDA&ACO 

 

Eil51 426 472 426 

kroB100 22141 25774 22220 

kroC100 20749 23074 20798 

kroD100 21294 24354 21395 

Pr76 108159 125166 108159 

Pr144 58537 59176 58636 

Pr152 73682 79564 73818 

Rat99 1211 1356 1221 

Rd100 7910 9386 7951 

St70 675 740 677 

 

3.3.4 U-TACO Results 

Table 3.9 shows the U-TACO results when UAnt had make a partial tour of length 

1/2 * number of cities for the same collection of TSP problems that have been used 

before in testing ACO and ACO&GDA we find optimal value for 7 in total 10 TSP 

problems. 
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Table 3.9: U-TACO results with 100 iterations 

Tsp 

problem 

Optimal 

Tour 

U-

Turning 

ACO 

 

Time # of  

function 

Evaluation 

Optimal 

foundation 

Eil51 426 426 162.245474

s 

1044225 Iteration=20 

Time=82.858010s 

No.evaluation=2088

4 

kroB100 22141 22141 909.405891

s 

2047500 Iteration=75 

Time=764.909430s 

No.evaluation=1535

62 

kroC100 20749 20749 927.863812

s 

2047500 Iteration=4 

Time=371.255152s 

No.evaluation=8190

0 

kroD100 21294 21398 1497.1134s 2047500 Not 

Pr76 108159 108159 439.465675

s 

1556100 Iteration=22 

Time=235.134446s 

No.evaluation=3423

42 

Pr144 58537 58636 2251.4319s 2948400 Not 

Pr152 73682 73682 2584.72024

7s 

3112200 Iteration=97 

Time=2534.341909s 

No.evaluation=3018

834 

Rat99 1211 1211 940.880195

s 

2027025 Iteration=55 

Time=663.725786s 

No.evaluation=1114

863 

Rd100 7910 7910 924.741646

s 

2047500 Iteration=33 

Time=536.255092s 

No.evaluation=6756

75 

St70 675 676 399.83319s 1433250 Not 
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3.3.5 ACO, ACO&GDA and U-TACO Method Performances 

Table 3.10 show the fitness of the best tour found by ACO, ACO&GDA and U-

TACO algorithms. 

Table 3.10: ACO, ACO&GDA and U-TACO best fitness 
Tsp 

problem 

Optimal 

Tour 

ACO 

 

GDA&ACO 

 

U-Turning 

ACO 

Eil51 426 472 426 426 

kroB100 22141 25774 22220 22141 

kroC100 20749 23074 20798 20749 

kroD100 21294 24354 21395 21398 

Pr76 108159 125166 108159 108159 

Pr144 58537 59176 58636 58636 

Pr152 73682 79564 73818 73682 

Rat99 1211 1356 1221 1211 

Rd100 7910 9386 7951 7910 

St70 675 740 677 676 

 

3.4 Comparison between ACO, ACO&GDA, and U-TACO Results 

with 100 ACO Iterations 

ACO, ACO&GDA, and U-TACO had different results in time, function evaluation, 

and the foundation of optimal tour. U-TACO was the best algorithm used to solve 

TSP problem with in 20 ACO iterations. This section will present some graphical 

charts that show different in between ACO, ACO&GDA, and U-TACO for different 

TSP problems with 100 ACO iterations. 
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Figure 25: KroB100 results using ACO, ACO&GDA, and U-TACO 

KroB100 is a symmetric TSP problem of type Euclidean distance two dimensions 

(EUC_2), size equal to 100 cities, and optimal tour fitness equal to 22141 units. 

Figure 25 shows the results of all used algorithms in KroB100 with 100 iterations, 

the best solution obtained by ACO was 25774 which is 79 units longer than optimal 

tour fitness of KroB100, and the best solution obtained by ACO&GDA was 22220 

which is 3633 units longer than optimal tour fitness, whereas the optimal solution 

found by U-TACO at iteration 75 with time equal 909.405891 seconds. 

For KroB100 TSP problem, U-TACO is the best method between the used methods 

(ACO, ACO&GDA, and U-TACO) with respect to the fitness of best tour founded. 
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Figure 26: KroC100 results using ACO, ACO&GDA, and U-TACO 

KroC100 is a symmetric TSP problem of type Euclidean distance two dimensions 

(EUC_2), size equal to 100 cities, and optimal tour fitness equal to 20749 units. 

Figure 26 shows the results of all used algorithms in KroC100 with 100 iterations, 

the best solution obtained by ACO was 23074 which is 2325 units longer than 

optimal tour fitness of KroC100, and the best solution obtained by ACO&GDA was 

20798 which is 49 units longer than optimal tour fitness, whereas the optimal 

solution found by U-TACO at iteration 4 with time equal 371.255152 seconds. 

For KroC100 TSP problem, U-TACO is the best method between the used methods 

(ACO, ACO&GDA, and U-TACO) with respect to the fitness of best tour founded. 
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Figure 27: Pr152 results using ACO, ACO&GDA, and U-TACO 

Pr152 is a symmetric TSP problem of type Euclidean distance two dimensions 

(EUC_2), size equal to 100 cities, and optimal tour fitness equal to 73682 units. 

Figure 27 shows the results of all used algorithms in Pr152 with 100 iterations, the 

best solution obtained by ACO was 79564 which is 5882 units longer than optimal 

tour fitness of Pr152, and the best solution obtained by ACO&GDA was 73818 

which is 136 units longer than optimal tour fitness, whereas the optimal solution 

found by U-TACO at iteration 97 with time equal 2534.341909 seconds. 

For Pr152 TSP problem, U-TACO is the best method between the used methods 

(ACO, ACO&GDA, and U-TACO) with respect to the fitness of best tour founded. 
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Figure 28: Eil51 results using ACO, ACO&GDA, and U-TACO 

Eil51 is a symmetric TSP problem of type Euclidean distance two dimensions 

(EUC_2), size equal to 51 cities, and optimal tour fitness equal to 426 units. 

Figure 28, shows the results of all used algorithms in Eil51 with 100 iterations, the 

best solution obtained by ACO was 472 which is 46 units longer than optimal tour 

fitness of Eil51, and the best solution obtained by ACO&GDA was 426 which is 

equal to optimal tour fitness, ACO&GDA found the optimal tour at iteration 8 with 

time equal 9.426011 seconds, whereas the U-TACO reaches the optimal tour fitness 

value at iteration 20 with Time=82.858010 seconds. 
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Figure 29: ACO, ACO&GDA, and U-TACO Results with 100 iterations 

Figure 29, shows the different in the fitness of the tours obtained by ACO, 

ACO&GDA, and U-TACO with 100 ACO iterations, where The first column of each 

chart represents the difference between the optimal tour fitness and the fitness of the 

best tour founded by ACO&GDA, which is a small quantity in almost all charts, 

shows the efficiency of ACO&GDA in constructing tours for various TSP problems, 

whereas the second column represents the difference between the optimal tour fitness 

and the fitness of the best tour founded by ACO, which is a large quantity in all 

charts, shows that ACO is inefficient with respect to ACO&GDA, and U-TACO in 

solving TSP problems. The last column represents the difference between the 

optimal tour fitness and the fitness of the best tour founded by U-TACO, which is the 

best in all charts. 
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Chapter 4 

 CONCLUSION 

Over the years Traveling Salesman Problem is one of the important optimization 

problem, which has been studied by many mathemation and computer scientist. In 

this study we considered different symmetric TSP (STSP) Problems from 

(TSPLIB95) of type Euclidean distance of 2-Dimensions, and ATT (ATT is a special 

distance function for problem ATT48 and ATT532) of various sizes we tried to solve 

them using different local search based algorithms that construct a near optimal tour. 

In this thesis we use Ant Colony Optimization (ACO) algorithm, Ant Colony 

Optimization Powered by Great Deluge Algorithm (ACO&GDA), and finally we 

designed U-Turning Ant Colony Optimization (U-TACO) algorithm, all the three 

Algorithms have been run in a same collection of TSP problems, the obtained results 

of ACO, ACO&GDA, and U-TACO algorithms were various according to tour 

fitness, time elapsed, function evaluation, and foundation of optimality. The results 

of ACO, ACO&GDA, and U-TACO algorithms are given in details Table 3.1, Table 

3.2, and Table 3.3, with 20 ACO iterations, and Table 3.4, Table 3.5, and Table 3.6, 

with 100 ACO iterations. 

Ant Colony Optimization (ACO) algorithm is used to solve symmetric TSP problems 

over 20 ACO iterations and 100 ACO iterations, the results were far (very large 

different) from the optimal tours, In general ACO construct tours quickly and needs a 
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few Function evaluation calculations with respect to other algorithm used in finding 

a tour for the same TSP problems. 

Ant Colony Optimization powered by Great Deluge Algorithm (ACO&GDA)  is 

used to solve symmetric TSP problems over 20 ACO iterations and 100 ACO 

iterations, the results were relatively good (optimal / near optimal) with small 

difference between it and the optimal tour. But generally using ACO&GDA increase 

the time elapsed in solving the problem and the number of function evaluations used. 

ACO&GDA is better than ACO in the foundation of optimal tour, and generally in 

construction of tour, but it is weaker according to elapsed time and number of 

function evaluations. 

U-Turning Ant Colony Optimization powered by Great Deluge Algorithm (U-

TACO) is used to solve symmetric TSP problems over 50 iterations for UAnts and 

20 ACO iterations and 100 ACO iterations for Ants, the results were very good 

(optimal / near optimal) with a small difference between the optimal tour. But 

generally using U-TACO have a large time elapsed in solving the problem and the 

number of function evaluations used. 

U-TACO is the best algorithm used between ACO, ACO&GDA, and U-TACO in the 

foundation of optimal tour, and generally in construction of tour, but it is weakest 

according to elapsed time and number of function evaluations. 
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