
U-Turning Ant Colony Algorithm powered by Great

Deluge Algorithm for the solution of TSP Problem

Saman Mohammed Almufti

Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the Degree of

Master of Science

in

Computer Engineering

Eastern Mediterranean University

February 2015

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

 Prof. Dr. Serhan Çiftçioğlu

Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master

of Science in Computer Engineering.

 Prof. Dr. Işık Aybay

 Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Science in Computer

Engineering

 Asst. Prof. Dr. Ahmet Ünveren

 Supervisor

 Examining Committee

1. Asst. Prof. Dr. Adnan Acan ______________________________________

2. Asst. Prof. Dr. Mehmet Bodur ______________________________________

3. Asst. Prof. Dr. Ahmet Ünveren ______________________________________

iii

ABSTRACT

In latest years, Optimization Algorithms have been one of the most interesting

applications that can be used in order to solve tough real life problems. Real life

problems could be either single or multi objective. In general Optimization

techniques try to minimize an objective function for any real life problem. One of the

most interesting real life problems is Traveling Salesman Problem (TSP) that is NP-

hard which cannot be solved straightforwardly. Swarm Intelligence that is a field of

Artificial Intelligence, uses the behaviors of real swarms to solve Optimization

problems. Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO),

and Artificial Bee Colony Algorithm (ABC) are the well-known Swarm Intelligence

algorithms that are generally used in solving NP-hard problems.

In this thesis, TSP problems are solved by using ACO algorithm which uses the

behavior of real ants. For the betterment of the solutions found by ACO, a local

search, Greate Deluge Algorithm (GDA) is used, also a new type of Ant defined as

U-Turning Ant (UAnt) which returns back without completing its route guides the

remainders in finding the shortest route. In this thesis it is shown that by hybridizing

ACO with local search and using U-Turning Ants in ACO (U-TACO), the solutions

of the given TSP problems will be improved.

Keywords: Traveling Salesman Problem (TSP), Ant Colony Optimization (ACO),

Great Deluge Algorithm (GDA), and U-Turning Ant Colony Algorithm (U-TACO).

iv

ÖZ

Son yıllarda, En iyileme Algoritmaları gerçek hayat problemlerini çözmek için

kullanılabilecek en ilginç uygulamalarından biri olmuştur. Gerçek hayat problemleri

tek veya çok amaçlı olabilmektedir. Optimizasyon algoritmaları genellikle verilen

gerçek hayat problemlerinin amaç fonksiyonlarını en aza indirmeye çalışmaktadır.

En ilginç gerçek hayat problemlerinden biri polinomsal zamanda kolayca

çözülemeyen Gezgin Satıcı Problemidir (GSP). Yapay Zekanın bir parçası olan

Sürü Zekası gerçek hayat sürü davranışlarını kullanarak Optimizasyon problemlerine

çözüm üretir. En iyi bilinen Sürü Zeka algoritmalarına örnek olarak, Karınca Koloni

Optimizasyonu (KKO), Parçacık Sürü Optimizasyonu (PSO), ve Yapay Arı Koloni

algoritması (YAK) gösterilebilir.

Bu tezde, GSP problemleri gerçek karınca davranışlarını kullanan KKO algoritması

ile çözülmüşlerdir. Elde edilen çözümlerin iyileştirilmesi için de yerel arama

algoritması olan Büyük Tufan Algoritması (BTA) kullanıldı. Ayrıca kendi rotasını

tamamlamadan geri dönen yeni bir tür karınca olan U-Dönüşü yapan karıncalar

(UKarınca), geriye kalan karıncaların rotalarını enkısa yoldan tamamlamalarına

yardımcı olmak amacıyle, tanımlanmıştır. Bu tezde U-Dönüşü yapan karıncaları

kullanan KKO algoritmsı ile birleştirilen BTA algoritmasının GSP problemlerinin

çözümlerini iyleştirdiği gösterilmiştir.

Anahtar Kelimeler: Gezgin Satıcı Problemi (GSP), Karınca Koloni Optimizasyonu

(KKO), Büyük Tufan Algoritması (BTA), ve U-Dönüş yapan Karınca Koloni

Optimizasyonu (U-TACO).

v

DEDICATION

To my beloved family

&

My best friends

vi

ACKNOLEDGMENT

I gratefully acknoLedge the contributions of my Supervisor Asst. Prof. Dr. Ahmet

Unveren and all faculty members of Computer Engineering at Eastern Mediterranean

University.

I express my warm thanks to my best friends Kamiran S. Othman and Awaz A.

Shaban who always urged me to continue my study to get MSc degree.

In addition, I would like to thank the members of my family who assisted me with

this project. I appreciate all their love, encouragement and support avoid me being

dyslexic and catch all my goals.

vii

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ ... iv

DEDICATION ... v

ACKNOLEDGMENT .. vi

LIST OF TABLES .. ix

LIST OF FIGURES ... x

LIST OF ABBREVIATIONS .. xii

1 INTRODUCTION .. 1

1.1 Combinatorial Optimization .. 3

1.2 NP-hard Problem ... 3

1.3 Travelling Salesman Problem .. 4

1.4 Swarm Intelligence .. 6

1.5 Ant Colony Optimization (ACO) ... 7

1.5.1 Ant Colony Optimization (ACO) Metaheuristic ... 8

1.5.2 Real Ant Behavior and Capabilities .. 8

1.5.3 ACO and TSP ... 10

1.6 Local Search Methods .. 16

1.6.1 Great Deluge Algorithm.. 17

1.6.2 2-OPT Algorithm .. 20

2 METHODS USED FOR THE SOLUTION OF TSP ... 24

2.1 Great Deluge Algorithm (GDA) and 2-Opt Algorithm 24

2.2 Ant Colony Optimization and Great Deluge Algorithm with 2-Opt (ACO &

GDA) .. 26

viii

2.3 U-Turning Ant Colony Optimization (U-TACO) Powered by GDA 27

3 EXPERIMENTAL RESULTS .. 30

3.1 Experimental Results with 20 ACO Iterations ... 30

3.1.1 ACO Results ... 30

3.1.2 ACO&GDA Results .. 32

3.1.3 ACO and ACO&GDA Method Performances .. 33

3.1.4 U-TACO Results ... 34

3.1.5 ACO, ACO&GDA and U-TACO Method Performances 39

3.2 Comparison between ACO, ACO&GDA, and U-TACO Results with 20 ACO

Iterations .. 40

3.3 Experimental results with 100 ACO iterations .. 49

3.3.1 ACO Results ... 49

3.3.2 ACO&GDA Results .. 50

3.3.3 ACO and ACO&GDA Method Performances .. 51

3.3.4 U-TACO Results ... 51

3.3.5 ACO, ACO&GDA and U-TACO Method Performances 53

3.4 Comparison between ACO, ACO&GDA, and U-TACO Results with 100 ACO

Iterations .. 53

4 CONCLUSION ... 59

REFERENCES .. 61

ix

LIST OF TABLES

Table 3.1: ACO results with 20 iterations ... 31

Table 3.2: ACO&GDA results with 20 iterations .. 32

Table 3.3: ACO and ACO&GDA best fitness ... 33

Table 3.4: U-TACO results with 20 iterations ... 38

Table 3.5: ACO, ACO&GDA and U-TACO best fitness .. 39

Table 3.6: ACO results with 100 iterations ... 49

Table 3.7: ACO&GDA results with 100 iterations .. 50

Table 3.8: ACO and ACO&GDA best fitness ... 51

Table 3.9: U-TACO results with 100 iterations ... 52

Table 3.10: ACO, ACO&GDA and U-TACO best fitness .. 53

x

LIST OF FIGURES

Figure 1: Behavior of real ants (Mute-net.sourceforge.net, 2015)............................... 9

Figure 2: Ants are capable of finding new path (Dorigo, Maniezzo, & Colomi, 1991)

 .. 10

Figure 3: Flowchart of ACO algorithm for TSP (Samaiya & Samaiya, 2012) 12

Figure 4: ACO Pseudo-code (Denis, 2004-2005). ... 15

Figure 5: Flowchart of Great Deluge Algorithm (GDA) (Jaddi & Abdullah, 2013) . 19

Figure 6: 2-opt example (Devx.com, 2015) ... 20

Figure 7: 2-opt flowchart (Misevičius et al., 2007) ... 21

Figure 8: 2-Opt tour construction (Panyam, 2011) .. 22

Figure 9: 2-Opt Pseudo-code (Misevičius et al., 2007) ... 23

Figure 10: GDA Pseudo-code (AL-MILLI, 2014) .. 25

Figure 11: ACO & GDA Pseudo-code .. 26

Figure 12: Ant and UAnt tour .. 27

Figure 13: U-TACO Pseudo-code ... 29

Figure 14: U-TACO for Lin105 over length 1/4, 1/2, and 3/4 of city numbers 35

Figure 15: U-TACO for Pr107 over length 1/4, 1/2, and 3/4of city numbers 36

Figure 16: U-TACO for Eil51 over length 1/4, 1/2, and 3/4 of city numbers 37

Figure 17: berlin52 results using ACO, ACO&GDA, and U-TACO 41

Figure 18: Pr136 results using ACO, ACO&GDA, and U-TACO 42

Figure 19: kroA150 results using ACO, ACO&GDA, and U-TACO 43

Figure 20: Lin105 results using ACO, ACO&GDA, and U-TACO 44

Figure 21: Tsp225 results using ACO, ACO&GDA, and U-TACO 45

Figure 22: att532 results using ACO, ACO&GDA, and U-TACO 46

xi

Figure 23: Pr152 results using ACO, ACO&GDA, and U-TACO 47

Figure 24: ACO, ACO&GDA, and U-TACO Results with 20 iterations 48

Figure 25: KroB100 results using ACO, ACO&GDA, and U-TACO 54

Figure 26: KroC100 results using ACO, ACO&GDA, and U-TACO 55

Figure 27: Pr152 results using ACO, ACO&GDA, and U-TACO 56

Figure 28: Eil51 results using ACO, ACO&GDA, and U-TACO 57

Figure 29: ACO, ACO&GDA, and U-TACO Results with 100 iterations 58

xii

LIST OF ABBREVIATIONS

TSP Traveling Salesman Problem

ACO Ant Colony Optimization

GDA Great Deluge Algorithm

ACO&GDA Ant Colony Optimization Powered by Great Deluge

Algorithm and 2-Opt

U-TACO U-Turning Ant Colony Optimization

CO Combinatorial Optimization

NP-hard Non-deterministic Polynomial-time hard

SI Swarm Intelligence

L Level

 Heuristic value

 Pheromone trail matrix

 Parameter to regulate the influence of

 Parameter to regulate the influence of

1

Chapter 1

INTRODUCTION

Traveling Salesman Problem (TSP) is one of the NP-hard problems in which a

Salesman wants to have a minimum distance (shorter) tour between a given set of

cities and return to (starting city) his hometown (Laporte, 1992), at the end of TSP

the Salesman must find the cheapest Hamiltonian cycle (shortest tour) in the given set

of cities. Hamiltonian cycle is a tour that each city or node in a graph visited exactly

once (Patel & Doshi, 2011). TSP is an important problem in developing and testing

many new optimization techniques, generally TSP problem divided into two category

Symmetric Traveling Salesman Problem (STSP) and Asymmetric Traveling

Salesman Problem (ATSP) (Goyal, 2010).

Due to the difficulty of finding the optimal tour for TSP, which is one of the most

known NP-hard problems, most of the optimization algorithms use a local search

algorithm to find the best tour for the salesman.

In this thesis the Ant Colony Optimization Algorithm (ACO) powered by the Great

Deluge Algorithm (GDA) will be used to find the optimal solution for STSP

problems.

Ant Colony Optimization Algorithm uses the real ants behaviors to obtain a solution

for TSP. Dorigo and his colleagues were the first who applied the idea of Ant Colony

Optimization Algorithm to Traveling Salesman Problem (TSP) (Colorni, Dorigo,

2

Maniezzo, 1991, 1996). In Ant colony algorithms, artificial ants make their choice to

add cities to the tour by measuring the amount of pheromone trail in the edge

connecting cities. Great Deluge Algorithm (GDA) is adapted to TSP problem and

hybridized with Ant Colony Optimization Algorithm (ACO) to improve the

efficiency of ACO algorithm.

Great Deluge Algorithm (GDA) is a local search method for solving optimization

problems, and it was introduced by Dueck (Dueck, 1993). GDA, like simulated

annealing (SA) (Bykov, 2003) and other local search techniques, depends on

iteratively replacement of a current solution by a neighborhood solution, until a

stopping condition is satisfied. In this thesis 2-opt algorithm is used to find

neighborhood solution which increase performance of Great Deluge Algorithm.

U-Turning Ant Colony Optimization (U-TACO) strategy is used for further

improving the ACO algorithm to converge best solutions. U-TACO makes random

partial tour of a specific length for the ants, and initializes the pheromone trail value

of the visited cities in the partial tour. This pheromone initialization used by ACO in

construction of the whole tour, at each ACOs iteration U-TACO‟s agent update a

specific length of the best tour.

In the beginning of this chapter we gave a general introduction to the principles will

be used in this thesis, the rest of the chapter contains a general description of NP-

hard problems, TSP and the methods used to solve TSP problem including ACO,

GDA, and 2-Opt. Other chapters of this thesis are organized as follows: in Chapter 2

we propose the methods used for the solution of TSP which illustrate the mechanism

of using 2-Opt inside GDA, ACO used with GDA and 2-Opt (ACO&GDA), and

3

U-Turning Ant Colony Optimization (U-TACO). Chapter 3 presents Experimental

results of all proposed methods and a comparison between them. Finally Conclusion

is given in Chapter 4.

1.1 Combinatorial Optimization

Combinatorial Optimization (CO) problems involve computing a good solution for

discrete variables such as finding an optimal solution for a problem with respect to a

given objective function (Schrijver, 2003). In theoretical computer science fields the

Combinatorial optimization is either a minimization or a maximization of a problem

(Iwr.uni-heidelberg.de, 2014), it arises in many optimization problems such as

finding shortest path, planning, scheduling, time-tabling, finding models of

propositional formulae, internet data packet routing, finding a minimum cost plan for

a customers and many other important real-world problems (Schrijver, 2005).

1.2 NP-hard Problem

Non-deterministic Polynomial-time hard (NP-hard) problems are those problems

which are strongly believed that their optimal solution cannot be found within a

polynomial bounded computation time (Hochbaum, 1997).

Generally there are two types of methods for solving real-life optimization problems

either complete approach or approximate approach. Complete approach requires

exponential computing time for solving NP-hard optimization problems, whereas

approximate approach which is divided in to two search approaches, single-based

search and population-based search, focuses on obtaining a good solutions in

relatively less time instead of finding optimal solutions which are hard to compute

(Blum, 2005).

4

For most NP-hard problems using exact algorithms are not preferable, because they

takes unbounded time, that is why most of the research often use approximate

methods, which obtain a near optimal solution for NP-hard problems in a

significantly short bounded time, and which are broadly known as heuristic methods

(Sahni & Gonzalez, 1976).

1.3 Travelling Salesman Problem

Traveling salesman problem (TSP) is one of the widely studied problems in

Mathematics and Computer Science fields. Due to its difficulty many mathematical

scientists studied it, going back to 1920, when the mathematician Karl Menger first

issued TSP with his colleagues in Vienna (LaLer, Lenstra, Rinnooy Kan & Shmoys,

1985), at that time TSP problem was called "Messenger Problem" by Karl Menger

(Theorsociety.com, 2014). Later in 1930, mathematical community of Princeton

sighted to the problem (AppleGate, Bixby, Chvatal & Cook, 1998). In 1940 the

scientist mathematician Merrill Meeks Flood discusses TSP through random

selection of locations in the Euclidean plane (Mahalanobis, 1940). In 1948 Flood

publicized the traveling salesman problem in RAND Corporation, in 1949 the first

reference containing the term “traveling salesman problem (TSP)” was reported by

Julia Robinson under the name “On the Hamiltonian game (a traveling salesman

problem)” (AppleGate et al., 1998). In 1954 Ray Fulkerson, Selmer Johnson, and

George Dantzig descript a method for solving the TSP, they have found an optimal

tour to a TSP problem of 49 cities (Wikipedia, 2014). In 1956 some heuristic

methods was described by Flood including the 2-opt and nearest-neighbour

algorithm which are used for finding a good tour for TSP (Theorsociety.com, 2014).

In 1972 Richard M. Karp showed that TSP is one of NP-hard problems, in 1977 the

optimal tour of West Germany which composed of 120 cities were found by

5

Groetschel (Theorsociety.com, 2014). The progress continued during the 1980s,

when the exact solutions of the TSP problems up to 2392 cities were found by

scientists Grötschel, Padberg, Rinaldi and others (Wikipedia, 2014). In 1991, the

researcher of the University of Augsburg Gerhard Reinelt published a collection of

84 varying difficulty TSP problems under the name TSPLIB. In 2006, Cook and

other researchers found an optimal tour for 85,900 city TSP problem (Wikipedia,

2014).

Travelling Salesman Problem (TSP) is an NP-hard problem in combinatorial

optimization (Laporte, 1992; Johnson & McGeoch, 2002), which has a huge search

space that it cannot be solve easily (Garey & Johnson, 1979; Louis & Gong, 2000).

Given a set of cities {C1, C2, C3, …., Cn} in which every city must be visited once

only and return to the starting city for completing a tour such that the length of the

tour is the shortest among all possible tours. For each pair of cities {Ci, Cj} the

distance of arc connecting those cities denoted by d(Ci, Cj), the best tour for a

salesman specified by an order permutation () of cities that have minimum tour

length.

Generally there are two different kinds of TSP problems, Symmetric TSP (STSP)

and Asymmetric TSP (ATSP). For the STSP the distance d(Ci,Cj) = d(Cj, Ci), for n

cities the number of possible tours is (n-1)!/2, whereas for ATSP, where the distance

d(Ci,Cj) ≠ d(Cj, Ci), for n cities the number of possible tours is (n-1)!, for large

number (n) of cities it is very difficult to find the exact best tours in both ATSP (n-

1)! and STSP (n-1)!/2, that is why TSP considers one of the NP-hard problems

(Johnson & Papadimitriou, 1985).

http://www.wikipedia.org/wiki/NP-hard
http://www.wikipedia.org/wiki/Combinatorial_optimization
http://www.wikipedia.org/wiki/Combinatorial_optimization

6

Formally, the TSP is a complete weighted graph G (N, A) where N is the set of cities

which must be visited, and A (i, j) is the set of arcs connecting the city (i) and city (j).

The length between city Ai and Aj can be represented as dij (Dorigo, 2004). Thus the

tour length to the given TSP problems can be found by finding the summation of the

length between the cities of a permutation list as shown in formula (1.1) (Denis,

2004-2005).

 (∑ () ()

) () () ()

Where π is the permutation list of cities.

1.4 Swarm Intelligence

In computer sciences, Swarm Intelligence (SI) is the field of studying and designing

efficient computational methods to solve problems using the behavior of real swarms

such as birds, fish, and ants (Bonabeau et al., 1999; Kennedy et al, 2001). SI is a part

of Artificial Intelligence introduced in the global optimization framework in 1989 by

Jing Wang and Gerardo Beni as a collection of algorithms for controlling robotic

swarm (Beni & Wang, 1989).

Swarm Intelligence issued a number of homogenous agents which interacts with each

other either directly or indirectly, they communicate directly with each other by

using audio or visual tools, as the honey bees communicate by waggle dance;

indirect communication refers to as stigmergy (Dorigo, Bonabeau, & Theraulaz,

2000). Grasse first introduced the concepts stigmergy to the processes when an insect

makes change in the. environment around it, and the other insects respond to that

change and adapt themselves. to the new environment, such as in ant colonies when

an ant deposit pheromone in its way to the food, leads other ants to follow that way

7

(Grasse, 1959). Examples of swarm intelligence methods are Ant Colony

Optimization (ACO), Artificial Bee Colony (ABC), Particle Swarm Optimization

(PSO), Bacterial Foraging, Artificial Immune System, Stochastic diffusion search,

Cat Swarm Optimization, Gravitational search algorithm, Bat algorithm, and

Glowworm Swarm Optimization (Merkle & Middendorf, 2008).

1.5 Ant Colony Optimization (ACO)

Ant Colony Optimization algorithms (ACO) belongs to swarm intelligence (SI) field

methods. Ant System (AS) was first represented in 1992 by Marco Dorigo in his PhD

thesis as a nature-inspired metaheuristics for solving hard combinatorial optimization

(CO) problems (Dorigo, 1992). Later in 1997 developed algorithms of Ant Colony

System (ACS) were published by Dorigo and Gambardella (Dorigo & Gambardella,

1997). The progress continued when one year later, in 1998, Dorigo introduced Ant

Colony Optimization algorithms (ACO) for the first time in a conference (Dorigo,

1998; Dorigo, Maniezzo, & Colomi, 1991; Dorigo, 1992; Dorigo & Di Caro, 1999;

Dorigo & Stützle 2004).

Over years, many algorithm designed that depend on Ant behaviors, such us Ant

System (AS), Ant colony Optimization (ACO), Ant-Q, and Ant Colony System

(ACS) (Dorigo, Caro and Gambardella, 1999). Generally the algorithms that depend

on ant behaviors and specifically Ant colony optimization, over years ago has been

adapted to solve many optimization problems in real life such as Mobile and

Wireless Sensor Networks (WSNs), vehicle routing problem, Network Security,

Computer Architecture, Data Mining and many other problems (Geetha & Srikanth,

2012).

8

1.5.1 Ant Colony Optimization (ACO) Metaheuristic

Ant Colony Optimization (ACO) is a metaheuristic algorithm for solving

combinatorial optimization (CO) problem (Dorigo & Di Caro, 1999).

Metaheuristic algorithms uses some basic heuristics in the nature to escape from

local optimal to build an optimal solution for a real life problem (Denis, 2004-2005),

some metaheuristic algorithms start from an empty solution then add nodes

(elements) to build a solution, which is called constructive heuristics, when other

algorithms start from a weak complete solution and modify it iteratively to obtain a

better solution, it is called local search heuristics (Blum & Roli, 2003).

ACO is a constructive heuristic algorithm, its metaheuristics is an inspiration of real

ant‟s behaviors in the nature, which use the intelligence and strong attraction of

swarms in finding food (Deneubourg, Aron, Goss, & Pasteels, 1990). It basically

depends on pheromone trail updating and the following of other ants to the

pheromone smell: ants deposit pheromones in their way to the food source which

takes attention of other swarm ants to the food source, and the way that they should

take to the food. Artificial ants update pheromone forwarding to the food, the

increasing of pheromone in one path and the pheromone evaporation process which

decrease pheromone intensity in other paths avoids unlimited trails accumulation

over some components (Mute-net.sourceforge.net, 2015).

1.5.2 Real Ant Behavior and Capabilities

In the nature real ants which are „almost blind’ insects are capable to figure out the

shortest path connecting their nest with a source of food Figure 1. Ants communicate

to each other without using any visual indication (Hölldobler & Wilson, 1990) they

indirectly communicate by pheromone trails, which is an odorous chemical substance

9

that ants may deposit and smell (Goss, Aron, Deneubourg & Pasteels, 1989). The

term "pheromone" was first introduced in 1959 by P. Karlson and M. Lüscher, that

comes from Greek word “pherein” which means “to transport” and “hormone”

which means “to stimulate” (Karlson & Lüscher, 1959).

Ants lay pheromone in the way that takes them to the food, which make other ants

follow that path. The amounts of pheromone on a single path depends on the length

between food source and ant‟s nest, in which the way having greatest pheromone

density is the shortest way to the food, pheromone directly increases with the number

of ants following that path (Mute-net.sourceforge.net, 2015).

The behavior of real ants searching for food in nature Figure 1 (Mute-

net.sourceforge.net, 2015):

 First, each ant randomly lays down a pheromone trail in their path searching

for food source.

 If any of the ants finds a food, it returns to the nest laying down a pheromone

trail

 If in any path pheromone is increased, the other ants follow that path.

Figure 1: Behavior of real ants (Mute-net.sourceforge.net, 2015)

10

Ants can find a new short path in the case of absence of the old one after inserting an

obstacle (Beckers, Deneubourg & Goss, 1992). Consider Figure (2A) a straight way

of ants from nest to food source, in Figure (2B) an obstacle inserted in their way,

here ants arrive at a decision point and must make a choice whether to turn left or

right, in Figure (2C) half of ants takes one side of the obstacle and other ants takes

the other side of the obstacle, all ants move with approximately same speed and

approximately the same amount of pheromone deposit which lead to accumulate a

greater amount of pheromone trail in the shorter path per unit time, as the results

showen in Figure (2D). Ants make their decision according to the amount of

pheromone and choose a shortest way between food source and the nest (Dorigo,

Maniezzo, & Colomi, 1991).

Figure 2: Ants are capable of finding new path (Dorigo, Maniezzo, & Colomi, 1991)

1.5.3 ACO and TSP

The traveling salesman problem (TSP) has an important role in Ant System (AS)

algorithms in general. The first appearance of Ant System was tested on the

travelling salesman problem in 1992 by Marco Dorigo (Dorigo, 1992).

The Ant Colony Optimization Algorithm agents (Artificial Ants) move from one city

to another city until completing their tours and then return back to the starting city on

11

TSP graph, they iteratively construct solutions and deposit pheromone on the arc

connecting cities one by one.

ACO algorithm follows many steps iteratively to construct best solutions for TSP

problems, (i) each ant randomly chooses a city at the beginning, (ii) For each ant: ant

chooses the next city according to the heuristic information and pheromone value on

the edge between current city and the next one, and then pheromone update on the

edges used, (iii) After all ants construct their path (solution) a general pheromone

trail updates, (iv) A path, which has the best pheromone amount is the best solution

for the TSP problem (Dorigo & Gambardella, 1997). Figure 3, shows the steps of

ACO algorithm that solves TSP problem.

12

Figure 3: Flowchart of ACO algorithm for TSP (Samaiya & Samaiya, 2012)

Practically ACO algorithm used for TSP problems agents (Artificial ants) are equal

to the number of cities of a TSP problem (M ==N, M number of ants and N number

of cities). Each ant makes a solution tour, initially all ants locate in cities randomly,

then every ant chooses the next city upon a probability based function depending on

both pheromone trail accumulated on edge and heuristic value. The formula used for

choosing next city called random proportional rule (1.2), shows the probability of

ant (k) that locate in the city (i) to visit city (j) (Denis, 2004-2005).

13

∑

 , if j
 (1.2)

Where and are variables that determine the influence of pheromone trail and

heuristic information, where is a parameter to regulate the influence of pheromone

trail () and is a parameter to regulate the influence of heuristic value (),

and effects in the process of choosing next city as shown below.

 < The closest city is more likely to be chosen.

 The arcs that have more pheromone intensity are more likely to be

used.

 , heuristic value is used for the choosing without pheromone.

 , pheromone is used for the choosing without heuristic value, which

may cause poor result.

 ηij= 1/dij, is a priori available heuristic value, (dij) is the distance between cities (i

and j), () is the pheromone trail matrix, and (
) is the set of the neighborhood

that ant (k) has not visited yet (Denis, 2004-2005).

The probability that ant (k) choose arc (i, j) increases with the value of pheromone

trail () and heuristic value ().

In this thesis ACO uses in the case of 20 ACO iterations, and it

uses in the case of 100 ACO iterations, the initial value of

pheromone matrix usually set to a small value which is greater than zero (1.3).

 () (1.3)

14

Ants choose the city, which contains larger amounts of pheromone on the connecting

edges between the current city and the next one.

Each ant after adding new city to its tour makes a local pheromone update (1.4), by

adding the i to the old i

 (1.4)

Where the value of i can be found as shown in (1.5), i changes according to the

length () tour (1.6)

 ∑

 (1.5)

Where i is the pheromone trail on the arc (ij), m is number of ants, and i is the

summation of change in the i

, which is equal to a constant value (Q) over current

length of the tour constructed by ant (k), in this thesis we use value (Q=1).

The process of pheromone trail update continues until all ants complete their tour by

visiting all cities and returning to the start city, after all ants terminate the

construction of tour it is followed by pheromone evaporation (1.7) and a global

pheromone update (1.4) for the shortest tour. The shortest tour will have the greatest

amount of pheromone (Denis, 2004-2005).

Pheromone evaporation reduces the amount of pheromone in arcs which leads to

gradually disappears of pheromone trail in the unused arc which makes the ants to

follow one path.

 {

 ()

 (1.6)

15

 () (1.7)

Whereas () is a constant quantity used for reducing pheromone trail, here

we used () that decrease value by 0.5 which iteratively lead to disappear

pheromone trail in unused arc. Figure 7, shows the ACO Pseudo-code.

1. {Initialization}

Initialize

Initialize

Initialize (1.3)

2. {Construction}

For each ant k (currently in state i) do

 Chose next city (state j) (1.2) and append it to the tour

3. {Pheromone Trail update}

{

 Calculate i
 (1.6) for calculating (1.5)

 Update pheromone (1.4)

 }

4. {Pheromone evaporation}

 Decreasing pheromone intensity by value (1.7)

5. {End}

Figure 4: ACO Pseudo-code (Denis, 2004-2005).

16

1.6 Local Search Methods

Local search metaheuristics are the most successful approaches and the most used

methods for solving combinatorial optimization problems over the last few years.

Local search refers to a group of methods which depend on a neighborhood

(Johnson, 1990), which are a set of candidate states, that are connected directly to the

current state and can be reached by a single move for finding a best solution for

computationally hard optimization problems. Its methods are iteratively improve the

ordering of current solution states by performing simple modifications on the current

solutions to obtain a new solution, the improvement continues until some stopping

conditions has been satisfied or when there is no better solution in the given

neighborhood (Russell & Norvig, 2003).

The most famous and widely used Local search algorithms is k-opt which takes an

initial tour and improves it by making flips in the tour to obtain a better tour

(Chandra, Karloff, & Tovey, 1994), it is the basics of 2-opt (Croes, 1958), 3-opt (Lin,

1965) and Lin-Kernighan (LK) (Lin, & Kernighan, 1973). A more complicated local

search method that could have other Local search method imbedded inside it, is

called Great Deluge Algorithm (GDA), its procedure is finding a better solution from

the neighborhood of the initial solution, and then it iteratively improving solution

(Dueck, 1993). Another local search method which is based on Hill-Climbing,

includes some kind of intelligent in it, and is known as Tabu Search (TS), its

procedure based on saving the previous moves in a list called „tabu list‟ which is

used to avoid cycling (Glover,1986). Many other local search algorithms are used in

computer field to escape from local optimality which take unbounded time, one of

http://en.wikipedia.org/wiki/Mathematical_optimization

17

the most known algorithms is Simulated annealing (SA), a local search algorithms

which tries to improve a solution tour iteratively, using a temperature (T) factor, thus,

before each iteration T value decreases. SA uses another random parameter (i), if

(i>T), SA uses a heuristic in choosing the next solution node, otherwise it makes a

random choice (Mitra, Romeo & Sangiovanni-Vincentelli, 1985).

1.6.1 Great Deluge Algorithm

Great Deluge Algorithm (GDA) is a single-based approximate approaches using

neighbors strategies for solving optimization problems, was first introduced by

Dueck in 1993 as an alternative enhanced method of the Simulated Annealing,

similarly to the simulated annealing and hill-climbing algorithms. It depends on

replacing the current best solution by a new solution from set of neighborhoods,

replacing process continues until the solution values become equal or better than the

Level (L) value, which bounds the feasible region of the search space (Dueck, 1993).

Great Deluge Algorithm (GDA) controls the search space using a boundary Level (L)

which does not depend directly on the current best solution, at the beginning the level

(L) value equal to the initial value of function evaluation (cost function), then in each

iterations it monotonically increases or decreases (according to optimization

problem: maximization or minimization) by the L. L value is the only input

parameter for GDA. This decreasing/increasing process controlling the search

processes in the Great Deluge Algorithm, which drive the algorithm to word is the

best optimal solution (Bykov, 2003).

During the processing GDA accepts best solution in the case of obtaining an

improvement in the function evaluation value of a neighborhood solution which is

better than current best solution, or it may accept a worse solution in some cases if

18

the neighborhood solution is worse than the current solution but better than level (L).

GDA algorithm has been used to solve many optimization problems with relatively

high performance, such as for Examination Timetabling (Abdullah & Burke, 2006;

Landa-Silva & Obit, 2009). Figure 5, Shows a Detailed description of Great Deluge

Algorithm (GDA) steps.

19

Figure 5: Flowchart of Great Deluge Algorithm (GDA) (Jaddi & Abdullah, 2013)

20

1.6.2 2-OPT Algorithm

2-opt is among the simplest and best known local search algorithms which was one

of the first successful algorithms used to improve a solution tour of TSP (Croes,

1958). It easily takes the current tour then improves it by iteratively removing two

arcs (edge) from the tour, which divides the tour into two parts, then reconnects the

two parts of the tour in an opposed direction; the new tour is accepted if its fitness is

less or equal to the current tour; this continues until all possible tours are being tested

(Laporte, 1992; Bentley, 1992).

Figure 6, below shows an example of selected edges for deleting and reconnecting it,

the initial tour on the right {1,2,3,4,5,6,7,8} after applying 2-opt algorithm by

removing two blue edges in the right figure, and the reconnected tour by two red

edges in the left figure obtaining a new tour{ 1,2,6,5,4,3,7,8,} (Devx.com, 2015).

Figure 6: 2-opt example (Devx.com, 2015)

21

Figure 7, Shows 2-Opt algorithm steps in details.

Figure 7: 2-opt flowchart (Misevičius et al., 2007)

22

The algorithm depends on iteratively removing long edges and applying changes to

the tour, the improving process continues in such a manner that each removing and

reversing operations reduces the length of the current tour, until a tour is reached for

which no removing and reversing operation can proceed any improvement in the

tour.

The removing and reversing operations depend on the length of edges, such as if the

current tour contains two edges (first connecting city A with city B and the other

connecting city C and D), the removing and reconnection of edges depend on a

mathematical formula (1.8).

 () () () () (1.8)

If the neLength value is negative, it means that the length of new edges (AD and

BC) is less than the length of old edges (AB and CD), the new connection

edges accepted and applied the changes to current best tour; otherwise, if neLength is

positive, it means that the new tour have a length longer than the current tour, the

new connection is neglected and the algorithm continues testing other edges until

stopping condition is satisfied as shown in Figure 8 (Panyam, 2011).

Figure 8: 2-Opt tour construction (Panyam, 2011)

23

Figure 9, shows the pseudo code of 2-Opt Algorithm

1. {Initialization}

Initialize current tour

2. {Improving}

 Loop (stop condition)

{

 Find two edges (AB) and (CD) for removing and reversing.

 Calculate neLength (1.8)

 if neLength <0

 {Apply changes to current tour} removing

 (AB) and (CD) and revers the tour (AD and BC)

3. {End}

Figure 9: 2-Opt Pseudo-code (Misevičius et al., 2007)

24

Chapter 2

METHODS USED FOR THE SOLUTION OF TSP

2.1 Great Deluge Algorithm (GDA) and 2-Opt Algorithm

Great Deluge Algorithm (GDA) procedure finds a better solution from the

neighborhood of the initial solution, then it iteratively finds a new solution by using

2-Opt local search algorithm, and compares the new solution fitness (f(NewTour))

with the fitness of a current best tour (f(BestTour)), and the level (L) value. L is

value initially equal to the initial best tour fitness (L=f(initial BestTour)) then it

increases or decreases according to applied problem. GDA accepts new solution in

two cases:

Case 1: If f(NewTour)< f(BestTour), the new Tour is accepted, the current best tour

will be changed with the new tour (BestTour=NewTour), and the level (L)

will be updated (increased for maximization /decreased for minimization)

(2.1).

L=L± L (2.1)

 L= (f(BestTour)-Optimalrate)/(NumOfIteGDA) (2.2)

Where L can be found (2.2), it changes according to the f(BestTour),

number of GDA iteration (NumOfIteGD) and Optimal rate (Optimalrate),

which refers to as the optimal tour fitness of various problems (TSP tours).

Case 2: If f(NewTour)< L), the new Tour is accepted, the current best tour will be

changed with the new tour (BestTour=NewTour) without updating level (L).

25

Figure 10, shows the pseudo code for GDA that uses 2-Opt.

1. {Initialization}

Initialize initial tour

Initialize L, Optimalrate, NumOfIteGD

 Initialize L (2.2)

2. {Improving}

 Loop (stop condition)

{

 Finding neighborhood solution by (2-Opt algorithm)

 Calculate f(NewTour)

 If f(NewTour)< f(BestTour)

 {

 BestTour=NewTour

 L=L±ΔL

 }

 If f(NewTour)< L

 BestTour=NewTour

}

3. {End}

Figure 10: GDA Pseudo-code (AL-MILLI, 2014)

26

2.2 Ant Colony Optimization and Great Deluge Algorithm with 2-Opt

(ACO & GDA)

ACO uses GDA to improve its current tour. Every ACO iterations, ACO construct a

best tour by Ants, the current best tour is used by GDA as an initial tour, GDA which

uses 2-Opt Algorithm inside it, further improves the tour, and then it is followed by

an updating of pheromone trail on the ACO tour which has been improved by GDA.

1. {Initialization}

Initialize , , and (1.3)

LOOP

{

2. {Construction}

 For each ant k (currently in state i) do

 Chose next city (state j) (1.2) and append it to the tour

3. {Improving}

 Improving ACO current best tour by GDA (explained in (2.1))

4. {Pheromone Trail update}

 Calculate i
 (1.6) for calculating (1.5)

 Update pheromone (1.4)

5. {Pheromone evaporation}

 Decreasing pheromone intensity by value (1.7)

6. {End}

 } END LOOP

Figure 11: ACO & GDA Pseudo-code

27

2.3 U-Turning Ant Colony Optimization (U-TACO) Powered by GDA

U-Turning ACO is a simplified version of ACO algorithm which is applied to ACO

as a prefix method to obtain a better solution.

Generally U-TACO has a procedure exactly the same to ACO in construction of

tours, pheromone updates, and pheromone evaporations. The only difference is that

in U-TACO artificial ants (UAnt) instead of visiting all cities in the TSP graph,

which takes long time, make a specific number of iteration, visit a limited number of

cities, and return to their starting city feedback on the same way as shown in Figure

12.

Figure 12: Ant and UAnt tour

The UAnts mission is not to find the best optimal tour, it is used just to initialize the

pheromone trail matrix, which is later used by Ants to specify their required mission

(finding optimal TSP tour).

28

At the beginning U-TACO should determine the number of iteration and the length

of tour that U-Turning artificial ants (UAnt) should take, it can take any length (1<

U-TACO tour length< number of cities). In this thesis, we have tried three different

values for the U-TACO tour length 1/4 of number of cities , 1/2 of number of cities ,

and 3/4 of number of cities.

UAnts construct their tours based on random proportional rule (1.2), it can have

various value for (α, β), it may take values different from the values used by Ant, we

use values that is equal to Ant values (α=1, β=2).

UAnt use the same pheromone trail update formula (1.4) that is used by Ant in ACO,

here we use a value for (Q=3), which is used in updating formulas that are explained

before in formula (1.6)

The difference in (Q) value leads to changes in both … (1.4), and

 ∑

 … (1.5), this difference in the updating value makes the pheromone

deposit more quickly on the best tour, and leads the other UAnt to follow it.

After UAnt make their tour of specific length, they return to their starting city by the

same path (feedback), making a further updating in pheromone trail matrix, then

there is a final process ending UAnts mission – pheromone evaporation (1.7).

After UAnt finish their mission (making partial tour, and initializing pheromone trail

matrix ()) Ants mission starts to make a complete tour and finding optimal tour or

best tour in ACO explained before in (1.5.3). Ants make their choice based on the

pheromone matrix () obtained by UAnts, then Ant make changes on the ()

29

matrix, and in every ACO iterations UAnt make further pheromone trail update to a

specific length of ACO best tour.

1. {Making partial tour by UAnt}

 a. {Initialization UAnt}

Initialize , , and (1.3)

 Loop

 {

b. {Construction partial tour}

For each ant k (currently in state i) do

 Chose next city (state j) (1.2) and append it to the tour

c. {Pheromone Trail update}

 With Q=3, Calculate Δ ij
k (1.6) and (1.5)

 Update pheromone (1.4)

d. {Pheromone evaporation}

 Decreasing pheromone intensity by value (1.7)

e. {End}

} END LOOP

2. {Construction}

 Construct complete tour by ACO & GDA (explained in (2.2))

 UAnt update pheromone of a specific length of ACO tour

3. {End}

Figure 13: U-TACO Pseudo-code

30

Chapter 3

EXPERIMENTAL RESULTS

This section presents the experimental results obtained from Ant colony optimization

(ACO), Ant colony optimization (ACO) powered by Great Deluge algorithm

(ACO&GDA) and U-Turning Ant colony optimization (U-TACO) algorithms, for

different symmetric traveling salesman problems (STSP) selected from (TSPLIB95).

3.1 Experimental Results with 20 ACO Iterations

This section shows the results of ACO, ACO&GDA, and U-TACO for different

symmetric traveling salesman problems (STSP) selected from (TSPLIB95). All

problems were solved with 20 ACO iterations and the parameter that determine the

influence of pheromone trail and heuristic information , for each TSP

problem number of ants equal to number of cities.

3.1.1 ACO Results

Table 3.1 shows the results of ACO algorithms with 20 ACO iterations. It can be

seen from this table that it is not possible to find any optimal solution for the given

TSP problem from (TSPLIB95).

31

Table 3.1: ACO results with 20 iterations
TSP

problem

Optimal

Tour

ACO Time # of

function

evaluations

Optimal

foundation

att48 10628 12012 8.751971s 960 Not

att532 27686 32589 2057.607684s 10640 Not

berlin52 7542 8092 11.532953s 1040 Not

Lin105 14379 16213 37.226899s 2100 Not

Ch150 6528 6871 77.035097 s 3000 Not

Eil51 426 472 14.233584s 1020 Not

Eil76 538 580 21.822042 s 1520 Not

Eil101 629 746 36.084189s 2020 Not

fl417 11861 13443 1044.515205s 8340 Not

kroA100 21282 24698 33.873039s 2000 Not

kroA150 26524 30669 84.927355s 3000 Not

kroA200 29368 34543 157.599577s 4000 Not

kroB100 22141 25856 37.269276s 2000 Not

kroB150 26130 30320 82.397767s 3000 Not

kroC100 20749 23342 33.827723s 2000 Not

kroD100 21294 24465 35.068680s 2000 Not

Lin318 42029 48250 503.068268s 6360 Not

Pr76 108159 124032 20.916123s 1520 Not

Pr107 44303 46389 40.363483s 2140 Not

Pr124 59030 65145 53.535056s 2480 Not

Pr136 96772 111739 65.715502s 2720 Not

Pr144 58537 59553 75.360905s 2880 Not

Pr152 73682 78784 82.526424s 3040 Not

Rat99 1211 1437 33.232457s 1980 Not

Rd100 7910 9386 37.157033s 2000 Not

St70 675 742 15.791204s 1400 Not

Tsp225 3916 4578 204.455153s 4500 Not

32

3.1.2 ACO&GDA Results

By using ACO&GDA algorithm, which has been run with 20 iterations on the same

collection of TSP problems that is used in ACO. The Table 3.2 shows the

ACO&GDA results, it can be seen that the optimal tour for four TSP problems are

founded.

Table 3.2: ACO&GDA results with 20 iterations

TSP

problem

Optimal

Tour

 ACO&GDA Time # of

function

Evaluation

Optimal

foundation

att48 10628 10628 65.845424 s 192960 Iteration=7

Time=24.618

300 s

Evaluation=6

7536

att532 27686 28321 28679.2511s 2138640 Not

berlin52 7542 7657 21.190134 s 209040 not

Lin105 14379 14434 448.722319s 422100 Not

Ch150 6528 6554 345.672009 s 603000 Not

Eil51 426 426 81.920737s 205020 Iteration=3

Time=20.193

626 s

Evaluation=3

0753

Eil76 538 543 57.488787 s 305520 Not

Eil101 629 630 112.080519s 406020 Not

fl417 11861 12038 15797.0384s 1676340 Not

kroA100 21282 21296 117.925550s 402000 not

kroA150 26524 26751 353.030522s 603000 Not

kroA200 29368 29591 818.688881s 804000 Not

kroB100 22141 22258 110.074386s 402000 Not

kroB150 26130 26292 344.846879s 603000 Not

kroC100 20749 20798 110.332764s 402000 Not

kroD100 21294 21395 112.804903s 402000 Not

33

Lin318 42029 42670 7642.12961s 1278360 Not

Pr76 108159 108159 60.225353s 305520 Iteration=14

Time=44.654

503 s

Evaluation=

213864

Pr107 44303 44303 127.697276s 430140 Iteration=2

Time=

17.977372 s

Evaluation=

43014

Pr124 59030 59087 188.399575s 498480 Not

Pr136 96772 102323 255.565197s 546720 Not

Pr144 58537 58636 284.115236s 578880 Not

Pr152 73682 73880 353.679060s 611040 Not

Rat99 1211 1221 107.793133s 397980 Not

Rd100 7910 7951 116.764002s 402000 Not

St70 675 677 45.134547s 281400 Not

Tsp225 3916 3942 4379.11708s 904500 Not

3.1.3 ACO and ACO&GDA Method Performances

Table 3.3 show the fitness of the best tour found by ACO and ACO&GDA

algorithms.

Table 3.3: ACO and ACO&GDA best fitness

Tsp

problem

Optimal

value

ACO ACO&GDA

att48 10628 12012 10628

att532 27686 32589 28321

berlin52 7542 8092 7657

Lin105 14379 16213 14434

Ch150 6528 6871 6554

Eil51 426 472 426

Eil76 538 580 543

34

Eil101 629 746 630

fl417 11861 13443 12038

kroA100 21282 24698 21296

kroA150 26524 30669 26751

kroA200 29368 34543 29591

kroB100 22141 25856 22258

kroB150 26130 30320 26292

kroC100 20749 23342 20798

kroD100 21294 24465 21395

Lin318 42029 48250 42670

Pr76 108159 124032 108159

Pr107 44303 46389 44303

Pr124 59030 65145 59087

Pr136 96772 111739 102323

Pr144 58537 59553 58636

Pr152 73682 78784 73880

Rat99 1211 1437 1221

Rd100 7910 9386 7951

St70 675 742 677

Tsp225 3916 4578 3942

3.1.4 U-TACO Results

U-TACO which uses UAnt to make an initialization to pheromone trail matrix, the

pheromone trail matrix later uses by Ant to find a better solution for TSP problem.

UAnt can have partial tour of different length, here we tried three different value for

tour length 1/4, 1/2, and 3/4 of city numbers for different TSP problem. The results

obtained in 50 iterations for UAnt to initialize pheromone trail matrix and 20

iterations for ACO to construct a complete tour. The affect of variant in UAnt tour

length for different TSP problem are shown in Figure 14, for Lin105 TSP problem,

Figure 15, for Pr107 TSP problem, and Figure 16, for Eil51 TSP problem.

35

Figure 14: U-TACO for Lin105 over length 1/4, 1/2, and 3/4 of city numbers

For Lin105 TSP problem we get tour fitness equal to 14434 for 1/4 * number of

cities, 14379 for 1/2 * number of cities, and 14438 for 3/4 * number of cities.

U-TACO find the optimal value for Lin105 which is equal to 14379 at iteration 6

over 20 iteration, only when UAnt had make partial tour of length equal to 1/2 *

number of cities.

14370

14390

14410

14430

14450

14470

14490

14510

14530

1 2 3 4 5 6 7 8 9 1011121314151617181920

b
e

st
 t

o
u

r

ACO iteration

Lin105

(1/4)No. of cities

(1/2)No. of cities

(3/4)No. of cities

optimal

36

Figure 15: U-TACO for Pr107 over length 1/4, 1/2, and 3/4of city numbers

For Pr107 TSP problem we get tour fitness equal to 44665 for 1/4 * number of cities,

44303 for 1/2 * number of cities, and 44457 for 3/4 * number of cities.

U-TACO finds the optimal value for Pr107 which is equal to 44303 at iteration 1

over 20 iteration, only when UAnt had makes partial tour of length 1/2 * number of

cities.

44200

44300

44400

44500

44600

44700

44800

44900

1 2 3 4 5 6 7 8 9 1011121314151617181920

b
e

st
 t

o
u

r

ACO iteration

Pr107

(1/4)No. of cities

(1/2)No. of cities

(3/4)No. of cities

optimal

37

Figure 16: U-TACO for Eil51 over length 1/4, 1/2, and 3/4 of city numbers

For Eil51 TSP problem we get tour fitness equal to 428 for 1/4 * number of cities,

426 for 1/2 * number of cities, and 426 for 3/4 * number of cities.

U-TACO find the optimal value for Eil51 which is equal to 426 at iteration 1 over 20

iteration, when UAnt had make partial tour of length 3/4 of number of cities, and at

iteration 7 over 20 iteration when UAnt had make partial tour of length 1/2 * number

of cities.

From Figure 14, Figure 15, and Figure 16, we concluded that U-TACO have a best

result when UAnt makes a partial tour of length 1/2 * number of cities.

Table 3.4 shows the U-TACO results when UAnt had make a partial tour of length

1/2 * number of cities for the same collection of TSP problems that have been used

before in testing (ACO and ACO&GDA) the optimal value for 6 TSP problems are

founded.

425

426

427

428

429

430

431

1 2 3 4 5 6 7 8 9 1011121314151617181920

b
e

st
 t

o
u

r

ACO iteration

Eil51

(1/4)No. of cities

(1/2)No. of cities

(3/4)No. of cities

optimal

38

Table 3.4: U-TACO results with 20 iterations

Tsp

problem

Optim

al

Tour

U-

Turning

ACO

Time # of

function

Evaluation

Optimal

foundation

att48 10628 10628 72.608541 210960 Iteration=2

Time=56.832731

Evaluation= 21096

att532 27686 28218 43566.033S 2338140 Not

berlin52 7542 7542 92.900329s 228540 Iteration=3

Time=76.081437s

Evaluation=34281

Lin105 14379 14379 467.574097s 461475 Iteration=1

Time=358.475811s

Evaluation=23073

Ch150 6528 6547 1368.303153s 659250 Not

Eil51 426 427 75.529904s 224145 Not

Eil76 538 538 349.082318s 334020 Iteration=7

Time=313.814483s

Evaluation=116907

Eil101 629 629 439.032526s 443895 Iteration=8

Time=367.8602123

s

Evaluation=177558

fl417 11861 12045 20596.70082s 1832715 Not

kroA100 21282 21282 415.284487s 439500 Iteration=6

Time=344.404586s

Evaluation=131850

kroA150 26524 26618 1243.611930s 659250 Not

kroA200 29368 29472 2808.580653s 879000 Not

kroB100 22141 22200 439.673347s 439500 Not

kroB150 26130 26242 1333.134116s 659250 Not

kroC100 20749 20798 446.163972s 439500 Not

kroD100 21294 21455 434.844920s 439500 Not

Lin318 42029 42749 14079.42749s 1397610 Not

Pr76 108159 108487 202.229656s 334020 Not

39

Pr107 44303 44303 524.576606s 470265 Iteration=1

Time=392.417070s

Evaluation=23513

Pr124 59030 59030 680.470220s 544980 Iteration=5

Time=545.294855s

Evaluation=136245

Pr136 96772 100702 884.805854s 597720 Not

Pr144 58537 58669 1155.302216s 632880 Not

Pr152 73682 73867 1550.821031s 668040 Not

Rat99 1211 1213 981.875703s 435105 Not

Rd100 7910 7935 479.834143s 439500 Not

St70 675 679 212.419589s 307650 Not

Tsp225 3916 3928 3400.762717s 88500 Not

3.1.5 ACO, ACO&GDA and U-TACO Method Performances

Table 3.5 show the fitness of the best tour found by ACO, ACO&GDA and U-TACO

algorithms.

Table 3.5: ACO, ACO&GDA and U-TACO best fitness

Tsp

problem

Optimal

value

ACO ACO&GDA U-Turning

ACO

att48 10628 12012 10628 10628

att532 27686 32589 28321 28218

berlin52 7542 8092 7657 7542

Lin105 14379 16213 14434 14379

Ch150 6528 6871 6554 6547

Eil51 426 472 426 427

Eil76 538 580 543 538

Eil101 629 746 630 629

fl417 11861 13443 12038 12045

kroA100 21282 24698 21296 21282

40

kroA150 26524 30669 26751 26618

kroA200 29368 34543 29591 29472

kroB100 22141 25856 22258 22200

kroB150 26130 30320 26292 26242

kroC100 20749 23342 20798 20798

kroD100 21294 24465 21395 21455

Lin318 42029 48250 42670 42749

Pr76 108159 124032 108159 108487

Pr107 44303 46389 44303 44303

Pr124 59030 65145 59087 59030

Pr136 96772 111739 102323 100702

Pr144 58537 59553 58636 58669

Pr152 73682 78784 73880 73867

Rat99 1211 1437 1221 1213

Rd100 7910 9386 7951 7935

St70 675 742 677 679

Tsp225 3916 4578 3942 3928

3.2 Comparison between ACO, ACO&GDA, and U-TACO Results

with 20 ACO Iterations

ACO, ACO&GDA, and U-TACO had different results in time, function evaluation,

and the foundation of optimal tour, this section present‟s some graphical charts that

shows difference between ACO, ACO&GDA, and U-TACO. All the charts bellow

represents the solutions of ACO, ACO&GDA, and U-TACO to a TSP problem with

20 ACO iterations.

41

Figure 17: berlin52 results using ACO, ACO&GDA, and U-TACO

Berlin52 is a symmetric TSP problem of type Euclidean distance two dimensions

(EUC_2), size equal to 52 cities, and optimal tour fitness equal to 7542 units.

Figure 17, shows the results of all used algorithms in berlin52 with 20 iterations, the

best solution obtained by ACO was 8092 which is 550 units longer than optimal tour

fitness of berlin52, and the best solution obtained by ACO&GDA was 7657 which is

115 units longer than optimal tour fitness, whereas the U-TACO reaches the optimal

tour fitness value at iteration 3 with Time=76.081437seconds.

For Berlin52 TSP problem, U-TACO is the best method between the used methods

(ACO, ACO&GDA, and U-TACO) with respect to the fitness of best tour founded,

which had finds the optimal tour.

7500

7600

7700

7800

7900

8000

8100

8200

1 2 3 4 5 6 7 8 9 1011121314151617181920

b
es

t
an

t
so

lu
ti

o
n

 a
t

ea
ch

 it
e

ra
ti

o
n

ACO iteration

berlin52

ACO&GDA

optimal tour

ACO

U-TACO

42

Figure 18: Pr136 results using ACO, ACO&GDA, and U-TACO

Pr136 is a symmetric TSP problem of type Euclidean distance two dimensions

(EUC_2), size equal to 136 cities, and optimal tour fitness equal to 96772 units.

Figure 18, shows the results of all used algorithms in Pr136 with 20 iterations, the

best solution obtained by ACO was 111739 which is14967 units longer than optimal

tour fitness of Pr136, whereas the best solution obtained by ACO&GDA was 102323

which is 5551 units longer than optimal tour fitness, and the best solution obtained

by U-TACO was 100702 which is 3930 units longer than optimal tour fitness.

For Pr136 TSP problem, U-TACO is the best method between the used methods

(ACO, ACO&GDA, and U-TACO) with respect to the fitness of best tour founded.

95000

97000

99000

101000

103000

105000

107000

109000

111000

113000

115000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

b
es

t
an

t
so

lu
ti

o
n

 a
t

ea
ch

 it
e

ra
ti

o
n

ACO iteration

pr136

ACO&GDA

optimal tour

ACO

U-TACO

43

Figure 19: kroA150 results using ACO, ACO&GDA, and U-TACO

KroA150 is a symmetric TSP problem of type Euclidean distance two dimensions

(EUC_2), size equal to 150 cities, and optimal tour fitness equal to 26524 units.

Figure 19, shows the results of all used algorithms in KroA150 with 20 iterations, the

best solution obtained by ACO was 30669 which is 4145 units longer than optimal

tour fitness of KroA150, whereas the best solution obtained by ACO&GDA was

26751 which is 227 units longer than optimal tour fitness, and the best solution

obtained by U-TACO was 26618 which is 94 units longer than optimal tour fitness.

For KroA150 TSP problem, U-TACO is the best method between the used methods

(ACO, ACO&GDA, and U-TACO) with respect to the fitness of best tour founded.

26500

27500

28500

29500

30500

31500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

b
es

t
an

t
so

lu
ti

o
n

 a
t

ea
ch

 it
e

ra
ti

o
n

ACO iteration

kroA150

ACO&GDA

optimal tour

ACO

U-TACO

44

Figure 20: Lin105 results using ACO, ACO&GDA, and U-TACO

Lin105 is a symmetric TSP problem of type Euclidean distance two dimensions

(EUC_2), size equal to 105cities, and optimal tour fitness equal to 14379 units.

Figure 20, shows the results of all used algorithms in Lin105 with 20 iterations, the

best solution obtained by ACO was 16213 which is 1834 units longer than optimal

tour fitness of lin105, and the best solution obtained by ACO&GDA was 14434

which is 55 units longer than optimal tour fitness, whereas the U-TACO reaches the

optimal tour fitness value at iteration 1 with Time=358.475811 seconds.

For Lin105TSP problem, U-TACO is the best method between the used methods

(ACO, ACO&GDA, and U-TACO) which had finds the optimal tour.

14000

14500

15000

15500

16000

16500

17000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

b
es

t
an

t
so

lu
ti

o
n

 a
t

ea
ch

 it
e

ra
ti

o
n

lin105

ACO&GDA

optimal tour

ACO

U-Turning

45

Figure 21: Tsp225 results using ACO, ACO&GDA, and U-TACO

Tsp225 is a symmetric TSP problem of type Euclidean distance two dimensions

(EUC_2), size equal to 225 cities, and optimal tour fitness equal to 3916 unit.

Figure 21, shows the results of all used algorithms in Tsp225 with 20 iterations, the

best solution obtained by ACO was 4578 which is 662 units longer than optimal tour

fitness of Tsp225, whereas the best solution obtained by ACO&GDA was 3942

which is 26 units longer than optimal tour fitness, and the best solution obtained by

U-TACO was 3928 which is 12 units longer than optimal tour fitness.

Again for Tsp225TSP problem, U-TACO is the best method between the used

methods (ACO, ACO&GDA, and U-TACO) with respect to the fitness of best tour

founded.

3900

4000

4100

4200

4300

4400

4500

4600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20b
es

t
an

t
so

lu
ti

o
n

 a
t

ea
ch

 it
e

ra
ti

o
n

ACO iteration

tsp225

ACO&GDA

optimal tour

ACO

U-TACO

46

Figure 22: att532 results using ACO, ACO&GDA, and U-TACO

Att532 is a symmetric TSP problem of type Euclidean distance two dimensions

(EUC_2), size equal to 532 cities, and optimal tour fitness 27686 units.

Figure 22, shows the results of all used algorithms in Att532 with 20 iterations, the

best solution obtained by ACO was 32589 which is 4903 units longer than optimal

tour fitness of Att532, whereas the best solution obtained by ACO&GDA was 28321

which is 635 units longer than optimal tour fitness, and the best solution obtained by

U-TACO was 28218 which is 532 units longer than optimal tour fitness.

Again for Att532 TSP problem, U-TACO is the best method between the used

methods (ACO, ACO&GDA, and U-TACO) with respect to the fitness of best tour

founded.

27500

28500

29500

30500

31500

32500

33500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

b
es

t
an

t
so

lu
ti

o
n

 a
t

ea
ch

 it
e

ra
ti

o
n

ACO iteration

att532

ACO&GDA

optimal tour

ACO

U-TACO

47

Figure 23: Pr152 results using ACO, ACO&GDA, and U-TACO

Pr152 is a symmetric TSP problem of type Euclidean distance two dimensions

(EUC_2), size equal to 152cities, and optimal tour fitness equal to 73682 units.

Figure 23, shows the results of all used algorithms in Pr152 with 20 iterations, the

best solution obtained by ACO was 78784 which is 5102 units longer than optimal

tour fitness of Pr152, whereas the best solution obtained by ACO&GDA was 73880

which is 189 units longer than optimal tour fitness, and the best solution obtained by

U-TACO was 73867 which is 185 unit longer than optimal tour fitness.

Again for Pr152TSP problem, U-TACO is the best method between the used

methods (ACO, ACO&GDA, and U-TACO) with respect to the fitness of best tour

founded.

73500

74500

75500

76500

77500

78500

79500

80500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

b
es

t
an

t
so

lu
ti

o
n

 a
t

e
ac

h
 it

er
at

io
n

ACO iteration

pr152

ACO&GDA

optimal tour

ACO

U-TACO

48

Figure 24: ACO, ACO&GDA, and U-TACO Results with 20 iterations

Figure 24 shows the difference in the fitness of the tours obtained by ACO,

ACO&GDA, and U-TACO with 20 ACO iterations, where the first column of each

chart represents the difference between the optimal tour fitness and the fitness of the

best tour founded by ACO&GDA, which is a small quantity in almost all charts,

shows the efficiency of ACO&GDA in constructing tours for various TSP problems,

whereas the second column represents the difference between the optimal tour fitness

and the fitness of the best tour founded by ACO, which is a large quantity in all

charts, shows that ACO is inefficient with respect to ACO&GDA, and U-TACO for

solving TSP problems. The last column represents the difference between the

optimal tour fitness and the fitness of the best tour founded by U-TACO, which is the

best in all charts.

49

In all the above charts we noted that the difference between optimal tour fitness and

the best tour founded by ACO is large, and the difference decrease between optimal

tour fitness and the best tour founded by ACO&DGA, whereas the difference

between optimal tour fitness and the best tour founded by U-TACO is minimum.

3.3 Experimental results with 100 ACO iterations

This section shows the results of ACO, ACO&GDA, and U-TACO for 10 problems

that the optimal tour could not be found with 20 ACO iterations by ACO,

ACO&GDA, and U-TACO algorithms. All problems were solved with 100 ACO

iterations and the parameter that determine the influence of pheromone trail

and heuristic information , for each TSP problem number of ant equal to

number of cities.

3.3.1 ACO Results

Table 3.6 shows the results of ACO algorithms. Here by using ACO with 100

iterations. It can be seen from this table that it is not possible to find any optimal

solution for the given TSP problem from (TSPLIB95).

Table 3.6: ACO results with 100 iterations

Tsp

problem

Optimal

Tour

ACO

Time # of

function

Evaluation

Optimal

foundation

Eil51 426 472 127.366233s 5100 Not

kroB100 22141 25774 559.368621s 10000 Not

kroC100 20749 23074 577.269972s 10000 Not

kroD100 21294 24354 566.206931s 10000 Not

Pr76 108159 125166 167.635915s 7600 Not

Pr144 58537 59176 570.405804s 14400 Not

Pr152 73682 79564 443.512765s 15200 Not

Rat99 1211 1356 200.324875s 9900 Not

50

Rd100 7910 9386 449.774010s 10000 Not

St70 675 740 193.447773s 7000 Not

3.3.2 ACO&GDA Results

Table 3.7, shows the results of ACO&GDA algorithm, which have been run with 100

iterations on the same 10 TSP problem that we used before for ACO, the optimal

tour for two TSP problem in total 10 TSP problem were found.

Table 3.7: ACO&GDA results with 100 iterations

Tsp

problem

Optimal

Tour

GDA

&

ACO

Time # of

function

Evaluation

Optimal

foundation

Eil51 426 426 92.695518s 1025100 Iteration=8

Time=9.426011s

Evaluation=8200

8

kroB100 22141 22220 534.16368s 2010000 Not

kroC100 20749 20798 564.601225s 2010000 Not

kroD100 21294 21395 526.477314s 2010000 Not

Pr76 108159 108159 307.913820s 1527600 Iteration=20

Time=79.861093

s

Evaluation=3055

20

Pr144 58537 58636 1783.66841s 2894400 Not

Pr152 73682 73818 2046.780874 3055200 Not

Rat99 1211 1221 534.826458s 1989900 Not

Rd100 7910 7951 566.902234s 2010000 Not

St70 675 677 218.909780s 1407000 Not

51

3.3.3 ACO and ACO&GDA Method Performances

Table 3.8 show the fitness of the best tour found by ACO and ACO&GDA

algorithms.

Table 3.8: ACO and ACO&GDA best fitness
Tsp

problem

Optimal

Tour

ACO

GDA&ACO

Eil51 426 472 426

kroB100 22141 25774 22220

kroC100 20749 23074 20798

kroD100 21294 24354 21395

Pr76 108159 125166 108159

Pr144 58537 59176 58636

Pr152 73682 79564 73818

Rat99 1211 1356 1221

Rd100 7910 9386 7951

St70 675 740 677

3.3.4 U-TACO Results

Table 3.9 shows the U-TACO results when UAnt had make a partial tour of length

1/2 * number of cities for the same collection of TSP problems that have been used

before in testing ACO and ACO&GDA we find optimal value for 7 in total 10 TSP

problems.

52

Table 3.9: U-TACO results with 100 iterations

Tsp

problem

Optimal

Tour

U-

Turning

ACO

Time # of

function

Evaluation

Optimal

foundation

Eil51 426 426 162.245474

s

1044225 Iteration=20

Time=82.858010s

No.evaluation=2088

4

kroB100 22141 22141 909.405891

s

2047500 Iteration=75

Time=764.909430s

No.evaluation=1535

62

kroC100 20749 20749 927.863812

s

2047500 Iteration=4

Time=371.255152s

No.evaluation=8190

0

kroD100 21294 21398 1497.1134s 2047500 Not

Pr76 108159 108159 439.465675

s

1556100 Iteration=22

Time=235.134446s

No.evaluation=3423

42

Pr144 58537 58636 2251.4319s 2948400 Not

Pr152 73682 73682 2584.72024

7s

3112200 Iteration=97

Time=2534.341909s

No.evaluation=3018

834

Rat99 1211 1211 940.880195

s

2027025 Iteration=55

Time=663.725786s

No.evaluation=1114

863

Rd100 7910 7910 924.741646

s

2047500 Iteration=33

Time=536.255092s

No.evaluation=6756

75

St70 675 676 399.83319s 1433250 Not

53

3.3.5 ACO, ACO&GDA and U-TACO Method Performances

Table 3.10 show the fitness of the best tour found by ACO, ACO&GDA and U-

TACO algorithms.

Table 3.10: ACO, ACO&GDA and U-TACO best fitness
Tsp

problem

Optimal

Tour

ACO

GDA&ACO

U-Turning

ACO

Eil51 426 472 426 426

kroB100 22141 25774 22220 22141

kroC100 20749 23074 20798 20749

kroD100 21294 24354 21395 21398

Pr76 108159 125166 108159 108159

Pr144 58537 59176 58636 58636

Pr152 73682 79564 73818 73682

Rat99 1211 1356 1221 1211

Rd100 7910 9386 7951 7910

St70 675 740 677 676

3.4 Comparison between ACO, ACO&GDA, and U-TACO Results

with 100 ACO Iterations

ACO, ACO&GDA, and U-TACO had different results in time, function evaluation,

and the foundation of optimal tour. U-TACO was the best algorithm used to solve

TSP problem with in 20 ACO iterations. This section will present some graphical

charts that show different in between ACO, ACO&GDA, and U-TACO for different

TSP problems with 100 ACO iterations.

54

Figure 25: KroB100 results using ACO, ACO&GDA, and U-TACO

KroB100 is a symmetric TSP problem of type Euclidean distance two dimensions

(EUC_2), size equal to 100 cities, and optimal tour fitness equal to 22141 units.

Figure 25 shows the results of all used algorithms in KroB100 with 100 iterations,

the best solution obtained by ACO was 25774 which is 79 units longer than optimal

tour fitness of KroB100, and the best solution obtained by ACO&GDA was 22220

which is 3633 units longer than optimal tour fitness, whereas the optimal solution

found by U-TACO at iteration 75 with time equal 909.405891 seconds.

For KroB100 TSP problem, U-TACO is the best method between the used methods

(ACO, ACO&GDA, and U-TACO) with respect to the fitness of best tour founded.

22000

22500

23000

23500

24000

24500

25000

25500

26000

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6b
es

t
an

t
so

lu
ti

o
n

 a
t

ea
ch

 it
e

ra
ti

o
n

ACO iteration

kroB100

ACO&GDA

optimal tour

ACO

U-TACO

55

Figure 26: KroC100 results using ACO, ACO&GDA, and U-TACO

KroC100 is a symmetric TSP problem of type Euclidean distance two dimensions

(EUC_2), size equal to 100 cities, and optimal tour fitness equal to 20749 units.

Figure 26 shows the results of all used algorithms in KroC100 with 100 iterations,

the best solution obtained by ACO was 23074 which is 2325 units longer than

optimal tour fitness of KroC100, and the best solution obtained by ACO&GDA was

20798 which is 49 units longer than optimal tour fitness, whereas the optimal

solution found by U-TACO at iteration 4 with time equal 371.255152 seconds.

For KroC100 TSP problem, U-TACO is the best method between the used methods

(ACO, ACO&GDA, and U-TACO) with respect to the fitness of best tour founded.

20500

21000

21500

22000

22500

23000

23500

24000

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

b
e

st
 a

n
t

so
lu

ti
o

n
 a

t
e

ac
h

 it
e

ra
ti

o
n

ACO iteration

KroC100

ACO&GDA

optimal tour

ACO

U-TACO

56

Figure 27: Pr152 results using ACO, ACO&GDA, and U-TACO

Pr152 is a symmetric TSP problem of type Euclidean distance two dimensions

(EUC_2), size equal to 100 cities, and optimal tour fitness equal to 73682 units.

Figure 27 shows the results of all used algorithms in Pr152 with 100 iterations, the

best solution obtained by ACO was 79564 which is 5882 units longer than optimal

tour fitness of Pr152, and the best solution obtained by ACO&GDA was 73818

which is 136 units longer than optimal tour fitness, whereas the optimal solution

found by U-TACO at iteration 97 with time equal 2534.341909 seconds.

For Pr152 TSP problem, U-TACO is the best method between the used methods

(ACO, ACO&GDA, and U-TACO) with respect to the fitness of best tour founded.

73500

74500

75500

76500

77500

78500

79500

80500

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

b
es

t
an

t
so

lu
ti

o
n

 a
t

e
ac

h
 it

er
at

io
n

ACO iteration

pr152

ACO&GDA

optimal tour

ACO

U-TACO

57

Figure 28: Eil51 results using ACO, ACO&GDA, and U-TACO

Eil51 is a symmetric TSP problem of type Euclidean distance two dimensions

(EUC_2), size equal to 51 cities, and optimal tour fitness equal to 426 units.

Figure 28, shows the results of all used algorithms in Eil51 with 100 iterations, the

best solution obtained by ACO was 472 which is 46 units longer than optimal tour

fitness of Eil51, and the best solution obtained by ACO&GDA was 426 which is

equal to optimal tour fitness, ACO&GDA found the optimal tour at iteration 8 with

time equal 9.426011 seconds, whereas the U-TACO reaches the optimal tour fitness

value at iteration 20 with Time=82.858010 seconds.

420

430

440

450

460

470

480

490

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

b
es

t
an

t
so

lu
ti

o
n

 a
t

ea
ch

 it
e

ra
ti

o
n

ACO iteration

Eil51

ACO&GDA

optimal tour

ACO

U-TACO

58

Figure 29: ACO, ACO&GDA, and U-TACO Results with 100 iterations

Figure 29, shows the different in the fitness of the tours obtained by ACO,

ACO&GDA, and U-TACO with 100 ACO iterations, where The first column of each

chart represents the difference between the optimal tour fitness and the fitness of the

best tour founded by ACO&GDA, which is a small quantity in almost all charts,

shows the efficiency of ACO&GDA in constructing tours for various TSP problems,

whereas the second column represents the difference between the optimal tour fitness

and the fitness of the best tour founded by ACO, which is a large quantity in all

charts, shows that ACO is inefficient with respect to ACO&GDA, and U-TACO in

solving TSP problems. The last column represents the difference between the

optimal tour fitness and the fitness of the best tour founded by U-TACO, which is the

best in all charts.

59

Chapter 4

 CONCLUSION

Over the years Traveling Salesman Problem is one of the important optimization

problem, which has been studied by many mathemation and computer scientist. In

this study we considered different symmetric TSP (STSP) Problems from

(TSPLIB95) of type Euclidean distance of 2-Dimensions, and ATT (ATT is a special

distance function for problem ATT48 and ATT532) of various sizes we tried to solve

them using different local search based algorithms that construct a near optimal tour.

In this thesis we use Ant Colony Optimization (ACO) algorithm, Ant Colony

Optimization Powered by Great Deluge Algorithm (ACO&GDA), and finally we

designed U-Turning Ant Colony Optimization (U-TACO) algorithm, all the three

Algorithms have been run in a same collection of TSP problems, the obtained results

of ACO, ACO&GDA, and U-TACO algorithms were various according to tour

fitness, time elapsed, function evaluation, and foundation of optimality. The results

of ACO, ACO&GDA, and U-TACO algorithms are given in details Table 3.1, Table

3.2, and Table 3.3, with 20 ACO iterations, and Table 3.4, Table 3.5, and Table 3.6,

with 100 ACO iterations.

Ant Colony Optimization (ACO) algorithm is used to solve symmetric TSP problems

over 20 ACO iterations and 100 ACO iterations, the results were far (very large

different) from the optimal tours, In general ACO construct tours quickly and needs a

60

few Function evaluation calculations with respect to other algorithm used in finding

a tour for the same TSP problems.

Ant Colony Optimization powered by Great Deluge Algorithm (ACO&GDA) is

used to solve symmetric TSP problems over 20 ACO iterations and 100 ACO

iterations, the results were relatively good (optimal / near optimal) with small

difference between it and the optimal tour. But generally using ACO&GDA increase

the time elapsed in solving the problem and the number of function evaluations used.

ACO&GDA is better than ACO in the foundation of optimal tour, and generally in

construction of tour, but it is weaker according to elapsed time and number of

function evaluations.

U-Turning Ant Colony Optimization powered by Great Deluge Algorithm (U-

TACO) is used to solve symmetric TSP problems over 50 iterations for UAnts and

20 ACO iterations and 100 ACO iterations for Ants, the results were very good

(optimal / near optimal) with a small difference between the optimal tour. But

generally using U-TACO have a large time elapsed in solving the problem and the

number of function evaluations used.

U-TACO is the best algorithm used between ACO, ACO&GDA, and U-TACO in the

foundation of optimal tour, and generally in construction of tour, but it is weakest

according to elapsed time and number of function evaluations.

61

REFERENCES

Abdullah, S., & Burke, K. (2006). A multi-start large neighbourhood search

approach with local search methods for examination timetabling. International

Conference on Automated Planning and Scheduling, pp. 334-337.

Al-Milli, N. (2014). Hybrid Genetic Algorithm with Great Deluge To Solve

Constrained Optimization Problems. Journal of Theoretical And Applied

Information Technology, 59(2).

AppleGate, D., Bixby, R., Chvatal, V., & Cook. W. (1998). On the Solution of the

Traveling Salesman Problems. Documenta Mathematica – Extra Volume ICM,

chapter 3. 645-656.

Beckers, R., Deneubourg, L., & Goss, S. (1992). Trails and U-turns in the selection

of the shortest path by the ant Lasius Niger. J. Theoretical Biology. 159, 397–

415.

Beni, G., & Wang, J. (1989). Swarm intelligence in cellular robotic systems. In

NATO Advanced Workshop on Robots and Biological Systems, Il Ciocco,

Tuscany, Italy.

Bentley L. (1992). Fast Algorithms for Geometric Traveling Salesman Problems,

ORSA J. Comput. vol. 4-4, 387-411.

62

Blum, C. (2005). Ant colony optimization Introduction and recent trends, Physics of

Life Reviews, 2(4), 353-373.

Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization:

Overview and conceptual comparison. 35 (3). ACM Computing Surveys. 268–

308.

Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm Intelligence: From

Natural to Artificial Systems, Oxford University Press, Oxford.

Chandra B., Karloff, H., & Tovey, C. (1994). New Results on the Old k-Opt

Algorithm for the TSP. Proceedings of the fifth annual ACM-SIAM Symposium

on Discrete Algorithms.150-159.

Colorni, A., Dorigo, M., & Maniezzo, V. (1991). Distributed optimization by ant

colonies, in: Varela, F., Bourgine, P. (Eds.), First Eur. Conference Artificial

Life. 134–142.

Croes, A. (1958). A Method for Solving Traveling-Salesman Problems. Operations

Research. 5, 791-812.

Deneubourg, J.-L., Aron, S., Goss, S., & Pasteels, J.-M. (1990). The self-organizing

exploratory pattern of the argentine ant. Journal of Insect Behaviour, 3,159–168.

63

Denis, D. (2004-2005). Implementation and Applications of Ant Colony Algorithm,

Faculties Universitaires Notre-Dame de la Paix, Namur, Institute of

Informatique Annee acad_emique

Devx.com.(2015). Four Heuristic Solutions to the Traveling Salesperson Problem

: Page 3. [online] Available at:

http://www.devx.com/dotnet/Article/33574/0/page/3 [Accessed 22 Jan. 2015].

Dipak, P., & Nishant, D. (4 Apr 2011). Hamiltonian cycle and TSP: A backtracking

approach. International Journal on Computer Science and Engineering (IJCSE)

Vol. 3.

Dorigo, M. (1992). Optimization, Learning and Natural Algorithms, PhD thesis,

Politecnico di Milano, Italy.

Dorigo, M. (1998). ANTS‟ 98. From Ant Colonies to Artificial Ants : First

International Workshop on Ant Colony Optimization, ANTS 98, Bruxelles,

Belgique, octobre.

Dorigo, M., & Di Caro, G. (1999). The ant colony optimization meta-heuristic, in:

New Ideas in Optimization, D. Come, M. Dorigo, & F. Glover, eds, McGraw-

Hill, New York. 11-32.

Dorigo, M., & Gambardella, L. (1997). Ant colonies for the travelling salesman

problem. Biosystems, 43(2), pp.73-81.

64

Dorigo, M., & Gambardella, M. (1997). Ant Colony System : A Cooperative

Learning Approach to the Traveling Salesman Problem, IEEE Transactions on

Evolutionary Computation, volume 1, numéro 1, 53-66.

Dorigo, M., & Stützle, T. (2003). The Ant Colony Optimization Metaheuristic:

Algorithms, Applications, and Advances. International Series in Operations

Research & Management Science.

Dorigo, M., & Stützle, T. (2004). Ant Colony Optimization. Cambridge, MA: MIT

Press. 65-66.

Dorigo, M., Bonabeau, E., & Theraulaz., G. (2000). Ant algorithms and stigmergy,

Future Gener. Comput. Syst., Vol. 16. 8, 851–871.

Dorigo, M., Caro, G., & Gambardella, L. (1999). Ant Algorithms for Discrete

Optimization. Artificial Life, 5(2), pp.137-172.

Dorigo, M., Maniezzo, V., & Colorni. A. (1996). Ant system: optimization by a

colony of cooperating agents, IEEE Transactions on Systems, Man, and

Cybernetics––Part B: Cybernetics 26 (1) 29–41.

Dueck, G. (1993). New optimization heuristics: The great deluge algorithm and the

record-to-record travel. Journal of Computational Physics, 104: 86–92.

Garey, R. & Johnson, D. S. (1979). Computers and Intractability: A Guide to the

Theory of NPCompleteness. W. H. Freeman.

65

Geetha, R. & Umarani Srikanth, G. (2012). Ant Colony Optimization in Different

Engineering Applications: An Overview. International Journal of Computer

Applications, 49(17), pp.19-25.

Glover, F. (1986). Future Paths for Integer Programming and Links to Artificial

Intelligence. Computers and Operational Research. 5, 533-549.

Goss, S., Aron, S., Deneubourg, L., & Pasteels, M. (1989). Self-organized shortcuts

in the argentine ant. Naturwissenschaften. 76, 579–581.

Goyal, S. (2010). A Survey on Travelling Salesman Problem.1-9.

Grasse´, P. (1959). La reconstruction du nid et les coordinations interindividuelles

chez Bellicositermes natalensis et Cubitermes sp. La the´orie de la stigmergie:

Hochbaum, S. editor. (1997). Approximation Algorithms for NP-Hard Problems.

PWS Publishing Company, Boston.

Hölldobler, B. & Wilson, O. (1990). The Ant. Cambridge, MA: Harvard University

Press. 756.

Iwr.uni-heidelberg.de, (2014). Projects. [online] Available at: http://www.iwr.uni-

heidelberg.de/groups/comopt/projects/index.html [Accessed 12 Nov. 2014].

Jackson, E., & Ratnieks. L. (2006). Communication in ants, Current Biology, Vol.

16, No. 15, pp. 570–574.

66

Jaddi, N., & Abdullah, S. (2013). Hybrid of genetic algorithm and great deluge

algorithm for rough set attribute reduction. Turk J Elec Eng & Comp Sci, 21,

pp.1737-1750.

Johnson, D. (1990).Local Optimization and the Traveling Salesman Problem,

Proceedings of the 17th Colloquium on Automata Languages and Programming,

Lecture Notes in Computer Science, 443, 446-461.

Johnson, D., & McGeoch, L. (2002). Experimental analysis of heuristics for the

STSP. In Gutin and Punnen. chapter 9. 369–444.

Johnson, D., & Papadimitriou, C. (1985). Computational complexity. In LaLer et al.

chapter 3, 37–86.

Karlson, P., & Lüscher, M. (1959) Pheromones: a new term for a class of

biologically active substances. Nature. 183, 55–56.

Kennedy, J., Eberhart, G., & Shi, Y. (2001). Swarm Intelligence, Morgan Kaufmann,

San Francisco, GA.

LaLer, L., Lenstra, K., Rinnooy K., & Shmoys. B. (1985) The Traveling Salesman

Problem: A Guided Tour of Combinatorial Optimization. John W., & Sons,.

Landa-Silva, D., & Obit, J.H. (2009). Evolutionary nonlinear great deluge for

university course timetabling. International Conference on Hybrid Artifcial

Intelligence systems.

67

Laporte, G. (1992). The Traveling Salesman Problem: An overview of exact and

approximate algorithms. European Journal of Operational Research, 59, 231-

247.

Lin, S. (1965). Computer Solutions of the Traveling-Salesman Problem. Bell

Systems Technical Journal. 44, 2245-2269.

Lin, S., & Kernighan, W. (1973). An effective heuristic algorithm for the traveling

salesman problem. Operations Research. 21, 498-516.

Louis J., & Gong L., (2000). Case injected genetic algorithms for traveling salesman

problems, Information Sciences. 122, 201-225.

Mahalanobis, C. (1940). A sample survey of the acreage under jute in Bengal.

Sankhyu.4, 511-530.

Merkle, D. & Middendorf, M. (2008). Swarm intelligence and signal processing

[DSP Exploratory]. IEEE Signal Process. Mag., 25(6), pp.152-158.

Misevičius, A., Ostreika, A., Šimaitis, A. & Žilevičius, V. (2007). Improving local

search for the traveling salesman problem. Issn 1392 – 124x information

technology and control, 36(2).

Mitra, D., Romeo, F., & Sangiovanni-Vincentelli, A. (Dec. 1985). Convergence and

finite-time behavior of simulated annealing. vol. 24, pp. 761–767.

68

Mute-net.sourceforge.net, (2015). MUTE: Simple, Anonymous File Sharing. [online]

Available at: http://mute-net.sourceforge.net/howAnts.shtml [Accessed 20 Jan.

2015].

Panyam, S. (2011). Stochastic Algorithms : Part 2 - Clever Algorithms in Python.

[online] Sai Panyam.NET. Available at:

http://www.saipanyam.net/2011/06/stochastic-algorithms-2.html [Accessed 22

Jan. 2015].

Russell, S. & Norvig, P. (2003). Artificial intelligence. 1st ed. Upper Saddle River,

NJ [u.a.]: Prentice Hall.

Sahni, S. & Gonzalez, T. (1976). P-Complete Approximation Problems. JACM,

23(3), pp.555-565.

Schrijver, A. (2005). on the history of combinatorial optimization (till 1960),

handbook of discrete optimization, Elsevier, Amsterdam. 1-68.

Schrijver, A. (Springer 2003). Combinatorial Optimization: Polyhedra and

Efficiency. Berlin.

Theorsociety.com, (2014). The OR Society: O.R. Methods - Heuristics - A brief

History of the Travelling Salesman Problem. [online] Available at:

http://www.theorsociety.com/Pages/ORMethods/Heuristics/articles/HistoryTSP.

aspx [Accessed 3 Nov. 2014].

69

Wikipedia, (2014). Travelling salesman problem. [online] Available at:

http://en.wikipedia.org/wiki/Travelling_salesman_problem [Accessed 3 Nov.

2014].

Yuri B. (November 2003). Time-Predefined and Trajectory-Based Search: Single

and Multiobjective Approaches to Exam Timetabling. PhD Thesis submitted to

the University of Nottingham.

