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ABSTRACT 

By exploring the Position-dependent mass Von Roos Hamiltonian under cylindrical 

coordinates settings, we discuss the separation of variables of Schrödinger equation. 

Two radial masses of a coulomb-type and a harmonic oscillator-type are considered, 

and the effects of various z-dependent interaction potentials on the spectra are 

studied. 

Keywords: Power-law potential, Position dependent-masses, cylindrically 

symmetric settings, exactly solvable models. 
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 ÖZ  

Silindirik simetrik problemlerde Von Roos Hamilton fonksiyonu sayesinde 

pozisyona bağımlı kütleli Schrödinger denkleminin değişken ayrılırlığı tartışılmıştır. 

Kulomb ve harmonik titreşen sistemlerde radyal uzaklığa bağımlı kütle ele alınmış 

olup bazı  -bağımlı etkileşim potansiyellerinin spektrumlar üzerindeki etkisi 

incelenmiştir.  

Anahtar Kelimeler : Üstel bağımlı potansiyel, pozisyona bağımlı kütle, silindirik 

simetri, kesin çözünürlü modeller. 
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Chapter 1 

INTRODUCTION 

One of the strongest mathematical tools for handling problems related to quantum 

mechanical systems in physics and is the Hamiltonian operator. 

     ( )                                                         (1.1) 

Where T denotes kinetic energy operator and V(r) denotes potential energy. In 

quantum mechanics, a modified Hamiltonian operator provided by Von Roos [1] has 

proven to be effective in handling problems related to position- dependent mass 

(PDM). The Von Roos Hamiltonian is given by 

   
 

 
( ( ⃗)  ⃗⃗ ( ⃗)   ⃗⃗ ( ⃗)   ( ⃗)  ⃗⃗ ( ⃗)   ⃗⃗ ( ⃗) )   ( ⃗) .     (1.2) 

Where        are called the Von Roos ordering ambiguity parameters that satisfy the 

relation           ,  and the PDM function takes the form  ( ⃗)   ( ⃗)   

 ( ⃗), (where         units shall be used throughout). 

As a mathematically enriched wide-range-model for solving challenging problems in 

quantum systems, the position-dependent mass equation provides solutions to the 

many-body problems, electronic properties of semiconductors and solid states 

physics [1]. 

Over the years, the ambiguity parametric set-up of the Von Roos Hamiltonian has 

undergone a lot of changes based on the problem at hand. For instance, Gora and 

Williams provided a parametric set-up as            , Ben Daniel and Duke 
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[17] suggested            , while, Mustafa and Mazharimousavi [9] 

suggested       
 

 
     

 

 
  Here, we intend to discuss the radial power-Law-

type position-dependent mass given by 

 (     )   ( )  
      

 
⁄ .                                     (1.3) 

By using    
 

 
  and    , so that  ( )      which gives a position-dependent 

mass of quantum particles.  

In the second Chapter, we construct the mathematical framework for describing the 

above radial position-dependent mass in cylindrical coordinates and using separation 

the variables method where the wave function is defined us, 

𝜓(     )   ( )𝜙( ) ( ).                                            (1.4)  

In Chapter three, we look at some illustrative examples. In the first section we 

consider the radial cylindrical form of the coulomb potential,  ̃( )       , and 

obtain it's corresponding eigenenergies Eq. (3.9). In the second section we shall 

consider the harmonic oscillator potential,  ̃( )  
    

 
, and obtain it's eigenenergies 

Eq. (3.15). 

In Chapter four, we intend to look at the effects of z-dependent interactions on both 

the radial coulomb and harmonic oscillator spectra. Namely we shall study the 

effects of infinite walls potential, and Morse potential.  
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Chapter 2 

CYLINDRICAL SYMMETRY AND RADIAL POWER 

LAW PDM 

 

In this Chapter, we consider a position dependent mass is the form of,  

 ( ⃗)   (     )   ( ) ( ) ( ),                                           (2.1) 

and an interaction potential 

 ( ⃗)   (     ).                                                             (2.2) 

Hence    

  ⃗⃗⃗ ( ⃗)  ( ̂   
 ̂

 
    ̂  ) ( ) ( ) ( ).                                     (2.3) 

We now look at the kinetic energy operator of the PDM Hamiltonian Eq. (1.1), and 

define the following vectors, 

  ⃗    (     )    ⃗⃗⃗ (     ),                  

 ⃗⃗    (     )    ⃗⃗⃗ (     ),                                           (2.4) 

 ⃗    (     )    ⃗⃗⃗ (     ).                   

Then, one may obtain 

        ⃗⃗⃗ (     )   ⃗   (     )  ⃗⃗⃗ ,                                                 

 ⃗⃗⃗ (     )   ⃗⃗   (     )  ⃗⃗⃗ ,                                        (2.5)      

 ⃗⃗⃗ (     )   ⃗   (     )  ⃗⃗⃗  .                

Using the above identities we get    

                       (     )  ⃗⃗⃗ (     )   ⃗⃗⃗ (     )   

                   (     )  ( ⃗⃗  ⃗)   (     ) ( ⃗⃗  ⃗⃗⃗)   (     ) ( ⃗⃗⃗  ⃗)   
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       (     )    ⃗⃗⃗ ⃗ (     )  ⃗⃗⃗  .                                             (2.6)  

Moreover, one should use 

     (     ) ( ⃗⃗⃗  ⃗)   (     ) ( ⃗⃗⃗  ⃗   ⃗  ⃗⃗⃗) ,                           (2.7)  

and  

 (     )    ⃗⃗⃗ ⃗ (     )  ⃗⃗⃗                                                             

 (     )  (  (     )    ⃗⃗⃗ (     )  ⃗⃗⃗)   (     )    ⃗⃗⃗ ,          (2.8)  

to obtain 

                      (     )  ⃗⃗⃗ (     )   ⃗⃗⃗ (     )   

 (     ) ( ⃗⃗⃗  ⃗⃗)   (     )   ( ⃗⃗⃗  ⃗⃗⃗)   (     )   (  ⃗⃗⃗  ⃗⃗   ⃗⃗  ⃗⃗⃗)                   

                                                (     )   ⃗⃗⃗                                                              (2.9) 

Similarly, we get    

                (     )  ⃗⃗⃗ (     )   ⃗⃗⃗ (     )   

             (     ) ( ⃗⃗  ⃗)   (     )   ( ⃗⃗  ⃗⃗⃗)   (     )   (  ⃗⃗⃗  ⃗   ⃗  ⃗⃗⃗)   

                                                                     (     )   ⃗⃗⃗                                                                     (    ) 

 applying the vectors' definitions in Eq. (2.4) to yield   Now, 

 ⃗⃗  ⃗     (     )     ( ⃗⃗⃗ (     ))  ,                                     (2.11) 

 ⃗⃗  ⃗     (     )     ( ⃗⃗⃗ (     ))  ,                                    (2.12) 

 ⃗⃗  ⃗⃗⃗   (     )    ⃗⃗⃗ (     )  ⃗⃗⃗,                                          (2.13) 

 ⃗  ⃗⃗⃗   (     )    ⃗⃗⃗ (     )  ⃗⃗⃗ ,                                          (2.14) 

 ⃗  ⃗⃗⃗   (     )    ⃗⃗⃗ (     )  ⃗⃗⃗,                                          (2.15)  

   ⃗⃗⃗  ⃗    (     )    ⃗⃗⃗  (     )   

 (   ) (     )   ( ⃗⃗⃗ (     ))
 

,                                   (2.16)      

      ⃗⃗⃗  ⃗    (     )    ⃗⃗⃗  (     )   
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 (   ) (     )   ( ⃗⃗⃗ (     ))
 

.                                  (2.17) 

Adding Eq. (2.9) to Eq. (2.10) and using Eqs. (2.11)-(2.17) we obtain the kinetic 

energy operator is  

               ̂   
 

 
 (       (   )   (   ))

 (     )  

 (     ) 
( ⃗⃗⃗ (     ))

 

  

                                (        )
 (     )  

 (     )
( ⃗⃗⃗ (     )  ⃗⃗⃗)                    

                 (   )
 (     )  

 (     )
 ⃗⃗⃗  (     )    (     )   ⃗⃗⃗                          (    ) 

and 

        ̂   
 

 
 𝜉 (     )  (

  
 

 (     ) 
 

 

  
  

 

 (     ) 
 

  
 

 (     ) 
)   

              (     )  (
  

 (     )
   

 

  
  

 (     )
   

  

 (     )
  )   

 (   ) (     )  (
 ⃗⃗⃗  (     )

 (     )
)    (     )   ⃗⃗⃗                              (    )  

Therefore, the PDM Schrödinger equation for Hamiltonian (1.1) is written us, 

 ̂𝜓( ⃗)   𝜓( ⃗),                                                         (2.20) 

with Eq. (1.4), and 

 ⃗⃗⃗  (
 

 

 

  
( 

 

  
)  

 

  
  

   
 

  

   
)                                            (    ) 

Taking the first order derivatives for 𝜙( )  ( ) and  ( )   would result in 

      (     )  ( )𝜙( ) ( )   

    𝜉 *(
  

 (     )
)
 

 
 

  
(

  

 (     )
)
 

 (
  

 (     )
)
 

+  ( )𝜙( ) ( )   
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                  (
  

 (     )
  ( )𝜙( ) ( )  

 

  
  

 (     )
 ( )𝜙 ( ) ( )  

 
     

                                   
  

 (     )
 ( )𝜙( )  ( ))          

                    (   ) (
 

  

  

 (     )
 

   

  (     )
 

 

   
   

 (     )
 

   

  (     )
) 

 ( )𝜙( ) ( )                                              

 

 
(  ( )𝜙( ) ( )      ( )𝜙( ) ( )  

 

 
 ( )𝜙  ( ) ( )                

                                ( )𝜙( )   ( ))                                          (    ) 

Dividing Eq. (2.22) by  ( ) ( ) ( ), from the left we obtain. 

      ( ) ( ) ( )    (     )                                                                

  
 

 
[
   ( )

 ( )
 (

  ( )

 ( )
 
 

 
)
  ( )

 ( )
 
𝜉

 
(
  ( )

 ( )
)

 

 
(   )

 
(
 

 

  ( )

 ( )
 
   ( )

 ( )
)]         

  
 

 
[
   ( )

 ( )
 
  ( )

 ( )

  ( )

 ( )
 
𝜉

 
(
  ( )

 ( )
)

 

 
(   )

 

   ( )

 ( )
]                  

 

   
[
𝜙  ( )

𝜙( )
 
  ( )

 ( )

𝜙 ( )

𝜙( )
 
𝜉

 
(
  ( )

 ( )
)

 

 
(   )

 

   ( )

 ( )
]             (    ) 

where we used 

   
  

  
      

   

   
                                                     (    ) 

and 

𝜉   (   )   (   )   (   ).                                      (2.25) 

It is clear that the separability is awarded via various options. The easiest one is, 

however, suggested by the first term in Eq. (2.23), as 

  ( ) ( ) ( ) (     )   ̃( )   ̃( )  
 

  
 ̃( ).                         (2.26) 
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Let us now introduce new functions in order to remove the first order derivatives 

Z'(z), R'(ρ) and 𝜙'( ) in Eq. (2.23) and cast 

 ( )     ( ) ,                                                         (2.27) 

 ( )      ( ) ̃( ),                                                       (2.28) 

𝜙( )      ( )𝜙̃( ) ,                                                    (2.29) 

and consider 

 ( )  
 

 
                                                               (2.30) 

Herein b and   are non-zero constants and both are said to be real. From Eq. (2.27) 

  ( )        ( )      ( ) ,                                           (2.31) 

   ( )   (   )     ( )          ( )       ( ) .             (2.32) 

From Eq. (2.30) 

  ( )  
 

 
(    )                                                          (2.33) 

   ( )   (    )                                                        (2.34) 

From Eq. (2.28) 

  ( )  
 

 
     ( ) ̃( )   ̃ ( )    ( )                                          (2.35) 

   ( )   
 

 
     ( ) ̃( )       ( ) ̃ ( )   ̃  ( )    ( )                         (2.36) 

From Eq. (2.29) 

𝜙 ( )  
 

 
     ( )𝜙̃( )  𝜙̃ ( )    ( )                                  (2.37) 

𝜙  ( )   
 

 
     ( )𝜙̃( )       ( )𝜙̃( )  𝜙̃  ( )    ( )               (2.38) 

In this case, we have, the z-dependent term of Eq. (2.23) become 

  [ 
 

 
(
  ( )

 ( )
)

 

 
 

 

   ( )

 ( )
 
 ̃  ( )

 ̃( )
 
𝜉

 
(
  ( )

 ( )
)

 

 
 

 

   ( )

 ( )
 
 

 

   ( )

 ( )
]   

                            
 ̃  ( )

 ̃( )
 
( 𝜉   )

 
(
  ( )

 ( )
)

 

 
 

 

   ( )

 ( )
                                         (    ) 
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For the Radial part of Eq. (2.23) we have 

   ( )

 ( )
 (

  ( )

 ( )
 
 

 
)
  ( )

 ( )
 
   ( )

 ( )
 
 (   )

  
                  

to imply, from Eq. (2.23), that 

[
   ( )

 ( )
 
 (   )

  
 
𝜉

 
(
  ( )

 ( )
)

 

 
(   )

 
(
 

 

  ( )

 ( )
 
   ( )

 ( )
)]   

                         
   ( )

 ( )
 
  (   )  (    )  𝜉      

   
                      (    ) 

Next, for the    dependent term, from Eq. (2.23) 

 
 

 
(
  ( )

 ( )
)

 

 
 

 

   ( )

 ( )
 
𝜙̃  ( )

𝜙̃( )
 
𝜉

 
(
  ( )

 ( )
)

 

 
(   )

 

   ( )

 ( )
    

                         
𝜙̃  ( )

𝜙̃( )
 
( 𝜉   )

 
(
  ( )

 ( )
)

 

 
 

 

   ( )

 ( )
                                   (    ) 

Substituting Eqs. (2.39)- (2.41) and (2.26) into Eq. (2.23) gives  

   *
   ( )

 ( )
 
(    )  𝜉         (   )

   
+                       

 [
 ̃  ( )

 ̃( )
 
( 𝜉   )

 
(
  ( )

 ( )
)

 

 
 

 

   ( )

 ( )
]                                    

                
 

  
[
𝜙̃  ( )

𝜙̃  ( )
 
( 𝜉   )

 
(
  ( )

 ( )
)

 

 
 

 

   ( )

 ( )
]             

                               ( ) ( )   ̃( )   ̃( )  
 

  
 ̃( )                                (    ) 

and collecting like terms together we obtain  

       ( ) ( )   

                          *
   ( )

 ( )
 
(    )  𝜉         (   )

   
  ̃( )+   

[
 ̃  ( )

 ̃  ( )
 
( 𝜉   )

 
(
  ( )

 ( )
)

 

 
 

 

   ( )

 ( )
  ̃( )]                           
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[
𝜙̃  ( )

𝜙̃  ( )
 
( 𝜉   )

 
(
  ( )

 ( )
)

 

 
 

 

   ( )

 ( )
  ̃( )]                    (    ) 

Now we will consider the PDM function to be only an explicit function of    

Namely,  we choose  ( )     ( ) and  ( )      so that  (     )  

 ( )               . Hence, Eq. (2.43) takes the form 

        *
𝜙  ( )

𝜙( )
     ̃( )   (𝜉     )+   

                      *
   ( )

 ( )
 
 

 

  ( )

 ( )
  ̃( )  

   ( )

 ( )
  ̃( )+                           (    ) 

Eq. (2.44) along with  ̃( )    would, right away, imply 

                                      
𝜙  ( )

𝜙( )
     (𝜉     )    

                                       (    ) 

In Eq. (2.43) to save azimuthal symmetrization, we substitute   ̃( )    and 

 ( )     also, we choose  ( )   . Then, one obtain  

                                  
  𝜙 ( )

𝜙( )
     | |        | |                                              (    ) 

In due course, the solution of Eq. (2.45) gives us 

  
      (𝜉     )                                            (2.47) 

where   is the magnetic quantum number. 

Eq. (2.44) becomes, moreover 

            *
   ( )

 ( )
 
 

 

  ( )

 ( )
 
  
 

  
  ̃( )+  *

   ( )

 ( )
  ̃( )+                               (    ) 

As a result, one may consider that 

   ( )

 ( )
  ̃( )     

                                                                (    ) 

Hence  

   ( )

 ( )
 
 

 

  ( )

 ( )
 
  
 

  
  ̃( )    

                                         (    ) 
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Now, we remove the first order derivative in the radial part Eq. (2.50) and redefine, 

Eq. (2.27), where     
 

 
 , to obtain                                        

                                       
   ( )

 ( )
 
 

 

  ( )

 ( )
 
   ( )

 ( )
 

 

   
                                         (    ) 

Substituting Eq. (2.51) into Eq. (2.50) we get 

            
    ( )

 ( )
 

 

   
 
  
 

  
  ̃( )    

    

which after multiplying by  ( ) we get  

    ( )  (
 

 
   

 

  
  ̃( )) ( )     

  ( )                             (2.52) 

This equation is to be used and solved (in Chapter 3)  ̃( )   
 

 
  and   ̃( )  

    

 
 . 

Then we shall see the effect (in Chapter 4) of having some  ̃( ) interactions on the 

spectra. 
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Chapter 3 

RADIALLY CYLINDRICAL COULOMB AND 

HARMONIC OSCILLATOR POTENTIAL 

 

In this Chapter we consider,  ̃( ) to represent a Coulomb and a harmonic oscillator 

potentials each at a time. 

3.1 The Radial Cylindrical Coulomb Potential 

We take a coulomb model 

                                                         ̃( )                                                                   (   ) 

So Eq. (2.52) becomes 

              ( )  (
 
  

 

 

  
 

 

 
) ( )     

  ( )                               (3.2) 

where    

 
  

 

 
 
 

 
   

                                                               (   ) 

  
     

                                                               (   ) 

and 

  (    
 )

   
                                                   (3.5) 

Eq. (3.2) has exact eigenvalue given by 

   (      )
  

                                            (3.6)  

            , is the radial quantum number. where 

 Eq. (3.6) becomes   
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   √       

                                                             (   ) 

which implies 

  
    (

 

  
      )

 

                                                     (3.8) 

Substituting Eq. (3.8) into Eq. (2.47) we obtain  

  (
 

  
     )

 

     (𝜉   )         

which gives 

  (
    

 
)  (𝜉   )  

 

 
(
 

  
     )

 

                                       (3.9) 

This is energy for the radial coulomb potential. 

3.2 The Radial Harmonic-oscillator Potential 

 Now we consider the radial harmonic oscillator model 

  ̃( )  
    

 
                                                                    (    )  

Again with Eq. (3.5),  and Eq. (2.52) becomes                  

    ( )  (
 
  

 

 

  
 

    

 
) ( )     

  ( )                                   (3.11) 

which has exact eigenvalue given by 

  
   (       )                                                   (3.12) 

  Let  

  
   (√           )                                                   (    ) 

which implies 

    
    (

  
 

 
      )

 

                                               (3.14) 

Putting Eq. (3.14) into Eq. (2.47) we obtain 
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  (
    

 
)  (𝜉   )  

 

 
(
  
 

 
      )

 

                                       (3.15) 

This is energy for the radial harmonic oscillator potential. 
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Chapter 4 

EFFECTS OF Z-DEPENDENT INTERACTIONS ON THE 

SPECTRA 

 

In this Chapter we shall study the effects of some z-dependent interaction potentials 

( ̃( )   ) on the radial coulomb and. harmonic oscillator spectra.   

4.1 Effect of Infinite Walls on the Radial Coulomb and Harmonic 

Oscillator Spectra 

Let us consider PDM-particle trapped to move between tow impenetrable walls at 

    and     under the influence of a potential 

 ̃( )   
                               
                                   

 .                                     (4.1) 

Using the Schrödinger Eq. (2.49) 

                                             
    ( )

   
   

  ( )                                                            (   )  

with a solution  

 ( )      (   )      (   )                                                 (   ) 

 The boundary condition imply   

 ( )                                                             (   ) 

and                                 

 ( )           (   )                                                     (   )  

which results in 

   
   

 
  ,                                                                     (4.6) 
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and finally 

    
  

  
   

  
  ,                                                                 (4.7) 

where             . Therefor, a quantum particle with  (     )   ( )      

subjected to an interaction potential of the form 

 (     )           ̃( ),                                         (4.8) 

with  ̃( ) defined in Eq. (4. 1), will admit exact energy eigenvalues given by 

  (
    

 
)  (𝜉   )  

 

 
(

 

   
     )

 

.                                      (4.9) 

 

 

 

 

 

 

Figure 4.1: The plot of E versus L, using Eq. (4.9) and taking (         

              
 

 
        

 

 
                 )         

From Fig. 4.1, for the radial coulomb case, it is clear that E  L. It shows that when 

L=0, the energy of the system remains constant and the spectra gives a straight line. 

However, as L increases, the space between the line spectra also increases. 
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Figure 4.2: The plot of E versus    , using Eq. (4.9) and taking (         

           
 

 
        

 

 
                  )        

From Fig. 4.2, for the radial coulomb case, it is clear that E  
 

  
 . It shows that 

as      the energy of the system diverges towards negative infinity. However, as 

   increases, the energy of the system decreases and the space between the line 

spectra narrow down to a straight line. 

On the other hand, a quantum particle with  (     )   ( )       subjected to 

an interaction potential                                                                                                

                                      (     )  
    

 
    ̃( )                                            (4.10) 

by substituting Eq. (4.6) into Eq. (3.15) will have exact energy eigenvalues of the 

form 

  (
    

 
)  (𝜉   )  

 

 
(
  

   

   
      )

 

                            (4.11)  
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Figure 4.3: The plot of E versus  , using Eq. (4.11) and taking (         

              
 

 
        

 

 
                 )        

From Fig. 4.3, for radial harmonic oscillator, it is clear that E  
 

  
 . It shows that 

when L=0, energy diverges towards negative infinity and the spacing between the 

line spectra also widens-up. However, as L increase, the Energy of the system 

decreases to a constant (steady) as the spacing between the line spectra narrows 

down to a straight line. 
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Figure 4.4: The plot of E versus  , using Eq. (4.11) and taking (         

              
 

 
        

 

 
                 )        

From Fig. 4.4, for the radial harmonic oscillator, it is clear that E  
 

 
 , it is shows 

that when     0, energy diverges towards negative infinity and the spacing between 

the line spectra also widens-up. However, as   increases, the energy of the system 

increases to a constant and the spacing between the line spectra narrows down to a 

straight line. 
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Figure 4.5: The plot of E versus   , using Eq. (4.11) and taking (         

                
 

 
        

 

 
                )        

From Fig. 4.5, for the radial harmonic oscillator, it is clear that E    
 . It shows 

that when   
 =0 the energy of the system remains constant and the spectra gives a 

straight line. However, as   
  increases, the spacing between the line spectra 

increases.  

4.2 Effect of a  ̃( ) Morse Model on the Radial Coulomb and 

Harmonic-oscillator Spectra.  

Let us consider a z-depndent Morse type interaction potential                                                             

                                          ̃( )   (           )      .                               (4.12) 

In Eq. (2.49) 

   ( )

 ( )
  ̃( )     

    

then, it has a well-known solution of the form 

  
  (

√ 

 
  ̃  

 

 
)      ̃          .                              (4.13) 

In this case, a position-dependent mass defined in Eq. (2.1) moving in a potential 

function,  
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 (     )         (           )                             (4.14) 

will have exact eigenenergies given by    

  (
    

 
)  (𝜉   )  

 

 
(

 

√√ 

 
  ̃  

 

 

      )

 

.                       (4.15) 

 

 

 

 

 

 

 

 

Figure 4.6: The plot of E versus  , using Eq. (4.15) and taking (         

        ̃         
 

 
        

 

 
                   )        

From Fig. 4.6, for the radial coulomb, it is obvious that    . It shows that as  

  decreases, the energy of the system also decrease and the spacing between the line 

spectra narrows down. However, as   increases, the Energy of the system also 

increases and the space between the line spectra widen-up.  
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Figure 4.7: The plot of E versus  ̃ , using Eq. (4.15) and taking (         

                                 
 

 
        

 

 
 )        

From Fig. 4.7, for the radial coulomb type, it is clear that     ̃ . It shows that as 

 ̃  decreases, the energy of the system also decreases. However, as  ̃  increases the 

energy of the system also increases and the spacing between the line spectra widens-

up. 

 

 

 

 

 

 

Figure 4.8: The plot of E versus  , using Eq. (4.15) and taking (         

                ̃                
 

 
        

 

 
 )        
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From Fig. 4.8, for the radial coulomb type, it is clear that E     . It shows that, as 

D  , the energy of the system increases, and the spacing between the line spectra 

also increase. However, as D increases, the Energy of the system decreases and the 

spacing between the line spectra narrows down to a straight line.  

Next, we consider the radial harmonic oscillator   ( )  
    

 
. Along with the Morse 

potential   ̃( ) Eq. (4.12). In this case   

  
   (

√ 

 
  ̃  

 

 
)      ̃                                              (4.16) 

and 

 (     )  
    

 
    (           )                               (    ) 

Substituting Eq. (4.16) into Eq. (3.15) we obtain  

  (
    

 
)  (𝜉   )  

 

 
(
 

 
*
√ 

 
  ̃  

 

 
+       )

 

              (4.18) 

This is energy for the radial harmonic oscillator along with the z-dependent Morse 

potential. 
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Figure 4.9: The plot of E versus  , using Eq. (4.18) and taking (         

                      ̃                 
 

 
        

 

 
 )  

From Fig. 4.9, for the radial harmonic oscillator, it is clear that E    . It shows 

that, as D  , the energy of the system increases. However, as D increases, the 

energy of the system decreases and the spacing between the line spectra increases.  

 

 

 

 

 

 

Figure 4.10: The plot of E versus  , using Eq. (4.18) and taking (         

                    ̃                 
 

 
        

 

 
 )  

Fig. 4.10, is for the radial harmonic oscillator. It is clear that E     . It shows that, 

as     , the energy of the system increases, and the spacing between the line 
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spectra also increases. However, as    an increase, the energy of the system decreases 

and the spacing between the line spectra narrows down to a straight line. 

 

 

 

 

 

 

 

 

 

Figure 4.11: The plot of E versus  , using Eq. (4.18) and taking (         

                     ̃                   
 

 
        

 

 
 )  

Fig. 4.11, is for the radial harmonic oscillator. It shows that as   increases, the 

energy increases to some points, after which, the energy of the system becomes 

steady while the spacing between the line spectra is maintained.  
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Chapter 5 

CONCLUSION 

We started by using the Hamiltonian operator Eq. (1.1) with kinetic energy and 

potential energy to obtain the position dependent mass (PDM) equation of the Von 

Rose Hamiltonian [1] with ambiguity parameters where we looked at the position-

dependent mass equation; 

  ( ⃗)   (     )   ( ) ( ) ( ) under the azimuthally symmetric settings. By 

using the general power-law radial position dependent mass, Eq. (2.30), where 

 (     )   ( )      . 

 By using separation of variables method, we obtained Eqs. (2.47), (2.49) and (2.50). 

Using the radial columbic potential  ̃( )       , we obtained the eigenenergy Eq. 

(3.9), and for the radial harmonic oscillator potential  ̃( )  
    

 
, obtained the 

eigenenergy (3.15). 

With combining the solution of this two energy Eqs. (2.47) and (2.49), we were able 

to determine the energies for the coulomb potential, Eq. (3.9), and for the Harmonic 

oscillator potential, Eq. (3.15). Applying the value of elements with the eiginenergies 

equation we can find the effects of the impenetrable walls potential, and the Morse 

potential, on the radial coulomb and harmonic oscillator were analyzed.  
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