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ABSTRACT 

Advances in computing have resulted in many engineering processes being 

automated. Electrocardiogram (ECG) classification is one such process. The analysis 

and classification of ECGs can benefit from the wide availability and power of 

modern computers. 

This study presents a method on the usage of computer technology in the field of 

computerized ECG classification. Computerized electrocardiogram classification can 

help to reduce healthcare costs by enabling suitably equipped general practitioners to 

refer to hospital only those people with serious heart problems. Computerized ECG 

classification can also be very useful in shortening hospital waiting lists and saving 

life by discovering heart diseases early. 

This thesis investigates the automatic classification of ECGs into different disease 

categories using Discrete Wavelet Transform (DWT) and Support Vector Machine 

(SVM) techniques. The ECG data is taken from standard MIT-BIH database. The 

model is developed over 20 records of MIT arrhythmia database signals of which is 

30 minutes of recording time. A comparison of the use of different feature sets and 

SVM classifiers is presented. The feature sets include wavelet features, as well as 

temporal features which taken directly from time domain samples of an ECG.  

Keywords: ECG, Discrete Wavelet Transform, Support Vector Machine, 

Arrhythmia. 
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ÖZ 

Bilgisayar ve hesaplama alanlarındaki gelişmeler birçok mühendislik sürecinin 

otomasyonu sonucunu doğurmuştur. Elektrokardiyogram sınıflandınlması bu 

süreçlerden birisidir. Elektrokardiyogram analizi ve sınıflandırılması için modern 

bilgisayar ve hesaplama  teknolojilerinin geniş anlamda kullanımı önemli yararlar 

sağlamaktadır. 

Bu çalışma Elektrokardiyogram sınıflandırılması için bilgisayar teknolojisi ve 

tanımlama yöntemlerinin kullanımına yönelik bir içerik sunmaktadır . Bilgisayarlı 

elektrokardiyogram sınıflandırılması, tanıma süreçlerinin kısalması ve sadece ciddi 

sağlik problemleri olan hastaların hastahanelere başvurması yoluyla, sağlık 

harcamalarında ciddi azalmalar sağlayabilir. Ayrıca, hastahanelerde bekleme 

süreleninin azaltılması ve erken tanı ile hayat kurtarılması da elde edilebilecek diğer 

önemli kazanımlar olarak sıralanabilir. 

Bu tezde otomatik elektrokardiyogram sınıflandırılması için ayrık dalgacık 

dönüşümü ve destek vektör makinaları yöntemleri üzerinde çalışılmıştır. 

Elektrokardiyogram sinyalleri MIT/BIH veri tabanından alınmıştır. Model 

geliştirmek amacıyla her biri 30 dakikalık 20 kayıt kullanılmıştır . Özellik kümeleri 

dalgacık ve zaman ekseninde çıkarılan özellikleri içerir. Tanıma başarımı için destek 

vektör makinaları üç farklı özellik kümesi kıllanılarak sınanmıştır.  

Anahtar kelimeleri:  Elektrokardiyogram, destek vektör makinaları, ritm 

bozukluğu.  
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Chapter 1 

INRODUCTION 

1.1 Problem description 

Recently biomedical signal processing has been a hot topic among researchers. Their 

most effort is focused on improving the data analysis of automatic systems. 

Cardiologists by using various values which occurred during the ECG recording can 

decide whether the heart beat is normal or not.  Since observation of these values are 

not always clear, existence of automatic ECG detection system is required. 

It is reported that annually each person has 0.3 ECG recording in European countries. 

Electrocardiogram provides health information for patients. Cardiologists can detect 

various heart abnormalities by checking the ECG waveform. Electrocardiogram was 

created by W. Einthoven in 20
th

 century. Since nowadays heart diseases are a 

common death reason of people in developed countries, many researchers are 

working on ECG analysis. 

By using some electrode on body surface, they can record the electrical signal which 

is caused by cumulative heart cells action.  The cells do not work simultaneously 

since they have different potential in a particular moment and electrical currents go 

through the body organs and distribute around the heart. Since human body consists 

of many electrical ions it is conductive of electricity so potential difference generates 
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among two locations of the body and electrocardiography device records its changes 

in time. 

Electrical and mechanical heart actions are joining together. So electrocardiography 

is essential device to estimate the heart‟s work and it gives us good information of 

normal and abnormalities of heart actions. ECG record consists of repeatedly heart 

beats. Each single heart beat includes many waves and interweaves. The length and 

appearance will show different heart diseases. The time and potential axis are 

estimated by milliseconds and millivolts respectively. 

As illustrated in Figure 1.1 generated waves distribute among the body and we 

record ECG motion and its wave component such as P-wave, Q-wave, R-peak and S-

wave.    P-wave shows depolarization of atria so blood current change its direction 

from atria to ventricles. P-Q interval shows time of distributing of generated wave 

from atria to ventricles. QRS complex indicate the depolarization of ventricles so 

blood is exited from right ventricle to arteriapulmonalis and also from left ventricle 

to aorta. Repolarization of atria can‟t be seen during the recording since the QRS 

section covers it. Repolarization of ventricles is known as T-wave. 
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Figure 1.1: An ECG waveform with the standard ECG intervals [28]. 

The muscles of heart can be affected by Cardiac arrhythmias which is the reason of 

disorder rhythm. This problem can be an obstacle to pumping the blood. When the 

blood pumping is not sufficient, it will increase the risk of death.  

Common clinical arrhythmia detection is based on an expert human experiment. 

Since it is critical to assess and monitor a patient heart‟s situation, various methods 

for automatic recognition are available recently, but majority of them have heavy 

computation cost to extract proper features and they can classify just a limited 

disease types.  

Present systems are very sensitive to existence of noise and insufficient robustness is 

one the weakness of them. So it is obvious that the systems need to improve their 

classifier ability in order to classify overlapped classes and incomplete or noisy input 

samples. 
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1.2 The state of the art 

There are various type of digital signal processing (DIP) procedures, varies from 

simple to complex, which are used for analyzing heart activity and 

electrocardiography. These methods can be categorized into 3 classes: time-domain 

approach, frequency-domain approach, and time-frequency domain approach. 

Time domain and frequency domain approaches are common methods and have good 

performance in QRS detection and recognition its onset-offset positions. Recent 

methods are motivated to use combination of time and frequency domain in time-

frequency approach and use the prior methods benefits. These methods use 

frequency analysis and combine its result with time domain features extracted.  

Time-domain method doesn‟t have efficient results due to its low sensitiveness. The 

main reason is amplitude of signal has small change in time domain.  In the other 

hand, frequency domain approaches has more sensitivity to changes of signal 

amplitude, but they can‟t determine the exact location of changes. 

Recently, wavelet transform (WT) is commonly approach due to its easy 

implementation and since it is very similar to one of the famous frequency method, 

Fourier transform, interpretation of its results can be done in the same way. There are 

various model of wavelet transform so we can use it in different application. 

Choosing a specific kinds of wavelet transform is depends on the problem which can 

be varied from noise removal, detecting time and frequency elements, recognizing 

the essential peaks and so on. 
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For ECG classification different methods are introduced by the researchers but still 

no method is completely successful. The most important part of classification is 

choosing proper discriminative features from raw ECG signal. Different features 

types have been used in order to recognize the abnormalities of ECG automatically 

such as Bayesian [6] and heuristic approaches, template matching, expert systems 

[7], hidden Markov models [8], artificial neural networks (ANNs) [9], [10], and 

others [11],[12]. 

Most common methods are based on pattern recognition approaches. They use 

different morphological features of ECG [13] like interval length and amplitude of 

QRS complex, R-R interval, QRS component area, etc [14]. Main disadvantage of 

these approaches is that they have limited ability when the morphology of ECG 

signal changed [15]. 

Despite of these methods have good accuracy, they have some drawbacks too. They 

are focused on finding some fiducial or landmark points on ECG signal which are 

sensible to changes of signal morphology that may occur among inter-class variation 

of different patient samples or even within intra-class variation of the same patient in 

different time. Therefore a few types of waveforms can completely capture these 

features.  

 Some peoples use only the QRS complex features, while others add also 

morphological features  which are extracted from the P-wave and T-wave [13], [16]. 

The main limitation of this method is its sensitivity to accuracy detects the location 
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of P and T-wave and also QRS complex component. These kind of features are not 

suitable for analyzing special types of arrhythmias like ventricular fibrillation [15]. 

Other approaches use Hermite functions [9], cumulate features [17], wavelets [18], 

[19], correction waveform analysis [20], complexity measures [2], a total least 

squares-based Prony modeling algorithm [4], autoregressive modeling, non-linear 

measures and cluster analysis, etc. 

There are different approaches which use ANN and their combination with other 

approaches in order to classify ECG signal such as Fourier transform NNs [21], re-

current NNs [22] and back propagation (BP) NNs [23] and etc. 

1.3 Classification systems for ECG signal analysis 

 We can categorize the automatic classification systems of ECG signals into four 

classes. The first class systems use some kind of decision trees for classify different 

types of rhythm and morphology. Second class systems use decision trees and 

statistic multivariate analysis for classification and analysis for assessment of 

morphology respectively. The third class systems combine benefits of systems of 

first and second classes and then utilize some expert systems in order to assess 

pathology and signal defects. The fourth class systems exploit first and third classes 

with a mathematical model of electrical excitation distribution among heart parts. 

The first and second classes systems are suitable for commercial use. 

1.4 Pattern recognition 

Pattern Recognition is the task of classifying objects into predefined categories or 

classes. Pattern recognition systems can perform pattern identification and classify 
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the objects. They perform it either by using some form of prior information about the 

object distributions or some statistical knowledge which are embedded in the data. 

The objects could be assumed as sets of features or a series of experiment results 

which define the points in features space [24]. 

Pattern recognition systems consist of several subsystems: First, data acquisition 

section which is responsible to measure or record the raw intended data. Second, 

feature extraction section which is responsible to extract distinctive information from 

the raw data. Third, feature selection section which selects the optimal subset of 

extracted features. Fourth, classification section which is the main part of the system 

and by using the features information classifies the input data into predefined classes. 

The pattern recognition systems can be divided into supervised and unsupervised 

group. In the supervised group, the classification performs by using some data which 

have already classified by an expert. On the other hand, unsupervised learning tries 

to find the hidden structure in unlabeled data [25]. 

Various implementation methods such as statistical pattern recognition, syntactic 

pattern recognition and AI approaches are exist for the supervised and unsupervised 

model and selecting the appropriate method is depend on the characteristics of the 

problem‟s pattern[26]. 

In statistical pattern recognition approach which is based on statistical modeling of 

data, we assume that patterns are produced by a stochastic system with some 

distribution probability.  There are different type of methods such as Bayes linear 
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classifier, the k-nearest neighbor and the polynomial classifier. Other important 

issues in this method are the procedure for selecting discriminative features, number 

of necessary features, and adjusting the model parameters. All of this setting is done 

by the classifier designer [26]. 

Syntactic or structural pattern recognition is an approach in which each pattern can 

be represented by a set of symbolic features. In this method, instead of dealing with 

numeric features, more complex multiple relationships between particular features 

are present. It is possible to use a sort of formal language in order to describe these 

features and uses some grammar syntax codes for discriminate [26], [27]. 

 Artificial neural network (ANN) is one of the famous examples of artificial 

intelligence (AI) methods. ANN has been used in analyzing non-linear signal, 

classification and clustering, and optimization problem. Selecting the   type of 

topology, size of the network and number of neurons are completely problem 

dependent.  

In this thesis we use wavelet transform in order to achieve some discriminate features 

and combine them with other well known features like temporal and morphological 

features. We use SVM which is very popular in pattern classification, in order to 

classify an unknown heart beat signal and recognize its type of arrhythmia. 

The rest of this thesis is organized as follow: Chapter 2 introduces a brief summary 

on the physiology of the heart and electrocardiogram methods. Chapter 3 

summarizes mathematical fundamentals of wavelet transform; Chapter 4 describes 
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support vector machines and their mechanism for classifying samples. In Chapter 5, 

the MIT-BIH database that is used in this thesis introduced. Chapter 6 explains the 

signal processing approach used to analyze and classify ECG signals and shows the 

implementation results on several ECG signals.  Chapter 7 presents conclusions and 

future work plans.   
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Chapter 2 

ELECTROCARDIOGRAM AND SIGNAL PROCESSING 

Although the main focus of the thesis is on classification of ECG signals, we also 

need to describe briefly heart and its function. This chapter is written for this 

purpose- it summarizes basic facts about heart anatomy, its function and the basics of 

ECG measurement and showing the most common lead system used in 

electrocardiography. All pictures used in this section are from [28], which provides 

every picture freely available for any use. 

2.1 Anatomy and function of human heart 

The heart (Figure. 2.1) is an organ, which pumps oxygenated blood throughout the 

body to important organs and deoxygenated blood to lungs. It can be understood as 

two separate pumps - one pump (left) pumps the blood to peripheral organs, and 

second pump (right) pumps the blood to lungs. 

Left and right sides of the heart consist of two chambers - an atrium and a ventricle. 

For controlling of the blood flow there exist four valves - tricuspid, pulmonary, 

mitral and aortic. The mitral valve separates left atrium and ventricle and the 

tricuspid valve separates right atrium and ventricle. Pulmonary valve control the 

blood flow from heart to lungs and the aortic valve directs blood to the body 

circulation system. 
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Walls of the heart are formed by cardiac muscle (myocardium). This muscle is 

responsible for the mechanical work done by the heart (= pumping the blood). For 

controlling the pumping process specialized muscle cells that conduct electrical 

impulses evolved. These impulses are called action potential and they are responsible 

for forming the ECG waveform on the body surface. 

In order to distribute oxygen to whole body human heart never stops. It works in 

periodic cycles. A cycle works as follows: Deoxygenated blood flows through 

superior vena cava to the right atrium. When the atrium is contracted, blood is 

pumped to the right ventricle. From the right ventricle the blood flows through 

pulmonary artery to the lungs. Lungs remove carbon dioxide from blood cells and 

replace it with oxygen. 

Oxygenated blood returns to the left atrium and after another contraction it is 

pumped to the left ventricle. Finally the blood is forced out of the heart through aorta 

to the systemic circulation. The contraction period is called systole, during which the 

heart fills with blood. The relaxation period is called diastole. From electrical point 

of view the cycle has two stages - depolarization (activation) and repolarization 

(recovery). 

2.2 The conduction system of the heart 

To maintain the cardiac cycle the heart developed a special cell system for generating 

electrical impulses and by these impulses mechanical contraction of the heart muscle 

is ensured. This system is called conduction system (Figure. 2.2). 
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Figure 2.1: Basic heart anatomy schema - there are four chambers, two on the left 

(right heart) side responsible for pumping the blood to lungs and two on the right 

(left heart) responsible for pumping the blood to body. Picture used with permission 

from [28]. 

 

It conveys impulses rapidly through the heart. Normal rhythmical impulse, which is 

responsible for contractions, is generated in the sinoatrial (SA) node. Then 

propagates to the right and left atrium and to the atrioventricular node (AV). The 

impulse is delayed in the AV node in order to allow proper contraction of the atria. 

Thus all blood volume in the atria is forced out to the ventricles before its 

contraction. Atrium and ventricles are electrically connected by bundle of His. From 

here, the impulse is conducted to the right and left ventricle. The pathway to the 

ventricles is divided to the left bundle branch and right bundle branch. Further, the 
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bundles ramify into the Purkinje fibers that diverge to the inner sides of the 

ventricular walls. 

The primary pacemaker of the heart is the sinoatrial node. However, other 

specialized cells in the heart (AV node, etc.) can also generate impulses but with 

lower frequency. If the connection from the atria to the atrioventricular node is 

broken, the AV node is considered as the main pacemaker. If the conduction system 

fails at the bundle of His, the ventricles will beat at the rate determined by their own 

region. All cardiac cell types have also different waveform of their action potentials 

(Figure 2.3). 

2.3 Generation and recording of ECG 

Human body is a good electrical conductor; hence electrical activity of the heart can 

be measured using surface electrodes. Electrodes record the projection of resultant 

vectors, which describe the main direction of electrical impulses in the heart. The 

overall projection is named as electrocardiogram. Different placement of electrodes 

provides spatiotemporal variations of the cardiac electrical field. The difference 

between a pair of electrodes is referred to as a lead. A large amount of possible lead 

systems has been invented; depending on a diagnostic purpose, a lead system is 

chosen and electrodes placed on accurate positions. The most commonly used system 

is standard 12-lead ECG system defined by Einthoven [29]: Three bipolar limb leads 

(I, II, III) - electrodes are placed to the triangle (left arm, right arm and left leg) with 

heart in the center (Fig. 2.4). This placement is called the Einthoven‟s triangle. 
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Figure 2.2: Conduction system of the heart consists of Sinus node, Atrioventricular 

node, Bundle of His, bundle branches and Purkinje fibers[28]. 

 

The augmented unipolar limb leads (aVF, aVL, aVF) - electrodes are placed on same 

positions as in case of leads I, II and III. The difference is in the definition of leads. 

Leads are calculated as the difference between potential of one edge of the triangle 

and the average of remaining two electrodes (Fig. 2.5). 
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Unipolar precordial leads (V1-6) - leads are defined as the difference between 

potential of electrode on chest and central Wilson terminal (constant during cardiac 

cycle and is computed as average of limb leads). For details see Fig. 2.6. 

Figure 2.3: Schematic representation of ECG waveform generation by summing of 

different action potentials. Picture used with permission from [28]. 
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Figure 2.4: Schematic representation of Einthoven triangle electrode placement. 

Picture used with permission from [28]. 

 

Figure 2.5: Schematic representation of augmented limb leads calculation. Picture 

used with permission from [28]. 
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Figure 2.6: Precordial leads electrodes positions [28]. 

 

2.3.1 ECG wave form description 

As we mentioned earlier ECG, wave is formed as a projection of summarized 

potential vectors of the heart. ECG wave has several peaks and "formations", which 

is useful for its diagnosis (Figure 2.7). These are: 

 P-wave - indicates the depolarized wave that distributes from the SA node to 

the atria, and its duration is between 80 to 100 milliseconds. 

 P-R interval - indicates the amount of time that the electrical impulse passing 

from the sinus node to  the AV node and entering the ventricles and is 

between 120 to 200 milliseconds. 

 P-R segment - Corresponds to the time between the ends of atrial 

depolarization to the onset of ventricular depolarization. Last about 100ms. 
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 QRS complex - Represents ventricular depolarization. The duration of the 

QRS complex is normally 0.06 to 0.1 seconds. 

 Q-wave - Represents the normal left-to-right depolarization of the inter 

ventricular septum. 

 R-wave - Represents early depolarization of the ventricles. 

 S-wave - Represents late depolarization of the ventricles. 

 S-T segment – it appears after QRS and indicates that the entire ventricle is 

depolarized.  

 Q-T interval - indicates the total time that need for both repolarization  and 

ventricular depolarization to happen, so it is an estimation for the average 

ventricular action duration. This time can vary from 0.2 to 0.4 seconds 

corresponding to heart rate. 

 T-wave - indicates ventricular repolarization and its time is larger than 

depolarization. 
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Figure 2.7: Normal ECG waveform. Picture used with permission from [28]. 
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Chapter 3 

MATHEMATICAL METHODS 

3.1 Introduction 

Fundamental of Wavelet transform (WT) is on the using of a series of computational 

analyzing elements called "wavelets". By applying the WT to a specific signal, its 

features store in the wavelet coefficients. Each resulting wavelet coefficient 

corresponds to measurement in the signal in a given time instant and a given 

frequency band.  

3.2 Wavelets 

The wavelet transform is a remarkable mathematical method with the ability to 

examine the signal concurrently in time and frequency, in a different way from 

previous mathematical methods. Wavelet analysis has been used in a wide range of 

applications: from climate analysis, to signal compression and medical signal 

analysis. The different application of WT emerged and increased in the early years of 

the 1990s, directly reflecting the interest of the scientific community [30]. 

Some of the most frequently used wavelets are depicted in Figure 3.1. We can notice 

that they have the shape of a small wave, localized on the time axis. Depending both 

on the signal we need to analyze and what characteristic we are analyzing, one 

wavelet can be better suited than others. 
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The wavelet function  ( ) has to satisfy some constrain, such as 

1. Limited finite energy: 

  ∫   ( )   
 

  
                                  (3.1) 

2. It must have no zero frequency components ( ̂( )(0) = 0), or in other words, if  ̂is 

the Fourier transform of   ( ) : 

 ̂( )  ∫  ( )
 

  
   (    )                               (3.2) 

3.  It must hold the following constraint: 

   ∫
| ̂ ( )|

 

 

 

 
                                        (3.3)                      

3.2.1 Wavelet transform 

Wavelet transform analysis uses ‟local‟ wavelike functions to transform the signal 

under investigation into a representation which is more useful for the analysis of the 

desired feature (the features may range from corner detection to frequency analysis, 

depending on the wavelet and the transform itself). This transform is a convolution 

of the wavelet function with the signal. 

The wavelet can be manipulated in two ways: it can change its location or its scale 

(Figure 3.2). If, at a point, the wavelet matches the shape of the signal, then the 

convolution has a high value. Similarly, if the wavelet and the signal do not correlate 

well, the transform results in a low value. The wavelet transform is computed at 

various locations of the signal and for various scales of the wavelet: this is done in a 

continuous way for the continuous wavelet transform (CWT) or in discrete steps for 

the discrete wavelet transforms (DWT). 
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The operations over the wavelet are defined by the parameters a (for dilation) and b 

(for translation). The shifted and dilated versions of the wavelet are denoted  [[  

 ]  ]. For sake of simplicity, let us take the Mexican hat wavelet: 

 ( )  (    )                                               (3.4) 

Figure 3.1: Example of wavelets: a)Gaussian wave (first derivative of a Gaussian). b) 

Mexican hat (second derivative of a Gaussian). c) Real part of Morlet [30]. 
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Figure 3.2: Two possible manipulations with wavelets: a) Translation (or location) 

and b) Scale (adapted from [30]). 

The shifted and dilated equation for this version of the wavelet would be: 

 (
   

 
)  [  (

   

 
)
 

]  
 

 
[(   )   ]                             ( 3.5) 

The wavelet transform of a continuous signal with respect with the wavelet is a 

convolution given by: 

 (   )   ( )∫  ( )   

  
(
   

 
)
 

                            (3.6) 

Where ω(a) is a weighting function. Typically, for energy conservation purposes, 

ω(a) is set to   √   because it ensures that the wavelet would have the same energy 

on all scales. 

3.3 The discrete wavelet transform 

To be of any practical use in a digital computer, we need to use the discrete version 

of the wavelet transform, namely, the discrete wavelet transform. First we need to 
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consider the discrete values of a and b over the wavelet, as the new discredited 

wavelet has the form: 

     
 

√  
  (

       
 

  
 )                                     (3.7) 

 where m and n are integers and the wavelet translation    (must be greater than 

zero) and the dilatation step    (must be fixed, greater than 1). Therefore, the discrete 

wavelet transform of a continuous signal using the discrete wavelet transform would 

be: 

     ∫  ( )
 

  
    (  

       )  
 

  
                        (3.8)     

Here, the     is the discrete wavelet transform given on a m dilation and n scale. 

These values are wavelet or detail coefficients. The discrete sampling of the time and 

scale parameters of a continuous wavelet transform (as above), is known as wavelet 

frame. The Energy of the wavelet functions that composes a frame lies in the 

bounded range: 

   ∑ ∑ |    |
 
    

    
 
                                      (3.9) 

Where A and B are the frame intervals (where the wavelet is defined and nonzero), E 

is the original signal energy . The values of A and B depends on the values of a0 and 

b0 used on the selected wavelet. When A = B the wavelet family defined by the 

frame forms an orthonormal basis. The signal can be reconstructed by the following 

formula: 

  ( )   
 

   
 ∑ ∑     

 
    

 
        ( )                     (3.10) 

When the wavelet family chosen is both an orthonormal basis and a dyadic grid 

arrangement (i.e.: the wavelet parameters    = 2 and   = 1), they are both orthogonal 

to each other and have unit energy, i.e., the product of each wavelet with all the 
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others is zero. This means that this wavelet transform has no redundancy and allows 

the reconstruct the original signal. 

3.3.1 The multiresolution representation 

Let the piecewise smooth function     ( ), also known as scaling function (or father 

wavelet), be an orthonormal base on our dyadic system, so that our wavelet can be 

defined [31] by: 

 ( )  
  

   
( )                                           (3.11) 

As our mother wavelet ω is a differentiated version of the   function, It also has 

higher frequency elements, if compared with the soothed  wavelet, as we can see in 

the Figure 3.3. 

Figure 3.3: Shannon father wavelet (left) and Shannon mother wavelet (right). Notice 

that the father wavelet has components with lower frequency than the mother 

wavelet. (adapted from [31]). 

 

The set of scaling functions is defined in the same way as we did for the wavelet: 

           (      )                                       (3.12) 

With the following property: 

∫     ( )    
 

  
                                       (3.13) 
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If the father wavelet is convolved with the signal (equation 3.14) then the 

approximation      are produced. 

     ∫  ( )    ( )  
 

  
                                     (3.14) 

An approximation of the original signal at a given scale m can be achieved by 

summing a sequence of fundamental wavelets at that scale, scaled by the 

approximation coefficients: 

  ( )  ∑         ( )
 
                                          (3.15) 

Figure 3.4 shows a sine wave and several approximations using the decomposition 

(3.14) and approximation (3.15) equations. The scale used was set to a various value 

of widths    to  . The widths are showed by the horizontal lines in each figure. Note 

that these approximations are applied on the original signal (the sine wave) with 

different levels (m values)[31]. 
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Figure 3.4: a) original signal (sine wave), b) Sine wave on scale 0 (the horizontal 

arrow is the width of the approximation level, 2m), from c) to i) approximation levels 

from 1 to 7 respectively.(adapted from [30]). 

 

One should notice that, since the frequency of father wavelet is lower than the 

frequencies of the mother wavelet, the convolution of the father wavelet and a signal 

results as a low pass filter, and the convolution of the mother wavelet and a signal 

results as a high pass filter. Their frequency ranges are showed in Figure 3.5. 

Figure 3.5: The frequency range on different levels (m values).T he frequency cut-

offs overlap due to the fact the filters that form the wavelet transform are not ideal 

filters [30] 
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A signal can be completely represented as a combined series expansion using the 

approximation and the detail coefficients: 

 ( )  ∑           ( )   ∑ ∑         ( )
 
    

 
    

 
               (3.16) 

We can see from the above formula that the signal is decomposed into an 

approximation and detail of itself at an arbitrary scale (  ). The contracted and 

shifted version of the father wavelet is as follows: 

 ( )   ∑    (    )                                           (3.17) 

Here,    is the scaling coefficient and k is the shift. Looking closely to this equation 

we can realize that one scaling function can be built up from previous scaling 

functions. Also, this function needs to be orthogonal (as it happens with the mother 

wavelet). The coefficients for the wavelet function are as follows: 

 ( )   ∑    (    )
    
                                           (3.18) 

From equations 3.12 and 3.17, at a given m+1 index, the next father wavelet 

becomes: 

      ( )   
 

√ 
∑         ( )                                (3.19) 

Similarly, the next mother wavelet: 

      ( )   
 

√ 
∑         ( )                               (3.20) 

Substituting equation 3.19 into equation 3.14 for the new indexes of the father 

wavelets yields the recursive form: 

        
 

√ 
∑  [∫        ( )  ]   

 

√ 

 

  
∑                        (3.21) 

           
 

√ 
∑  [∫        ( )  ]   

 

√ 

 

  
∑                        (3.22) 

Here we can see that every coefficient on the detail (3.21) and on the approximation 

(3.22), are recursive until m0, which is the signal itself. The above equations 
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represent the multi resolution decomposition algorithm. By iterating those two 

equations, we are performing a low-pass filtering (3.22) and a high-pass filtering 

(3.21). 

To summarize, consider the input signal     . Compute      and      using the 

decomposition equations (3.22) and (3.21). The first iteration would give us     and 

    . Now we apply to the same approximation      to the equations again to get the 

next coefficients      and      and so on until only one approximation is computed 

(On each level, the amount of samples on the signal decreases by half. This means 

we have a lower maximum frequency). Now we have an array with the detail 

coefficients on different resolutions and one approximation, on the last level. This 

process is depicted in Figure 3.6. 

Figure 3.6: The wavelet decomposition using a filter bank: each filter receives the 

input from the previous levels approximation coefficients (adapted from [30]). 
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Chapter 4 

 SUPPORT VECTOR MACHINE (SVM)  

4.1 Introduction 

In simple terms, Machine Learning is designing an algorithm which lets the program 

to learn from some data or experience in order to perform special tasks like 

classification. Recently various methods and algorithms were introduced for this 

purpose [32]. 

Support Vector Machine (SVM) developed by Boser, Guyon, and Vapnik in 1992. 

SVM is a supervised learning algorithm which can be used for different applications, 

from pattern classification to regression analysis [32]. In other words, SVM is a tool 

which uses a training dataset in order to create maximum prediction accuracy 

classifier while it avoids over-fitting to training data. The first application which 

made SVM to be popular was a task for classification of handwriting. The SVM 

results are comparable to large NNs with complicated features [33]. Nowadays SVM 

is used in various areas like face recognition, text classification, signal classification 

and etc [34].  

4.2 Learning and generalization 

 One of the machine learning algorithms is to learn the behaviors of the target 

functions. In the other words machine learning algorithms aim to generate a 

hypothesis that correctly classify the training data without over fitting to the data; 
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however in the early algorithms they didn‟t pay attention to this important point [35]. 

Generalization is defined as the ability of a classifier to correctly classify an unseen 

data [36]. 

4.2.1 Why SVM? 

Neural networks (NNs) show a good performance in both unsupervised and 

supervised classification task. One of the famous architecture for such learning task 

is Multilayer Perceptron (MLP) which can be used for general function 

approximation. In MLP we can design multiple inputs and outputs neuron. The 

learning process and finding the proper weight connection can be done with input-

output patterns [37]. 

Figure 4.1: Left) Simple neural network  Right)multilayer perceptron. [38]. 

 

But NNs have some drawbacks: they may convergence to local minima. Another 

disadvantage of NNs is that there are many tuning parameters such as number of   

neurons, learning rate and etc which is need to correctly selected for a specific task.  

In order to understand the necessity of SVM, in Figure 4.2 we plot some sample data 

and try to find a linear classifier for them. As we can see from the figure there are 

multiple lines which can correctly classify the data, but which one is the best? 



32 

 

Figure 4.2: Multiple possible linear classifiers for a certain data set [33]. 

 

According to prior explanation, different linear classifier can be found to classify 

these data although some of them have better separation.  

It is important to have maximum margin separator since if we select a hyper plane 

for classification, it is probable to be too much close to some of the samples in 

respect to the others. Then when an unseen test data entered to the system it is more 

likely to classify correctly. Figure 4.3 shows an example of maximum margin 

classifier and how it solves this problem [39]. 

Figure 4.3: Example of Linear SVM.[33].  
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The equation for obtaining Maximum margins is [35][39]: 

                    ( )            
        

√∑   
  

   

                          (4.1) 

In the previous example maximum distance is achieved by linear classifier. But why 

we need to maximize the margin?  One of the reason is that the maximum margin 

classifier provide better result than the other classifiers since if a little error occurred 

in estimating the location and direction of classifier hyperplane, we still have chance 

to classify test data accurately. Another benefit of maximum margin is to avoid local 

minima.  

 The aim of SVM is finding a decision boundary so that completely separate the 

training data. If it is not possible to do it by a linear hyperplane then SVM map the 

training data into a higher dimensional feature space by using some predefined 

kernel functions [39].  This fundamental can be write as the following formulas: 

 If Yi= +1 or xi  belongs to class 1 then w.xi + b ≥ 1                               (4.2) 

If Yi= -1 or  xi  belongs to class 2 then  w.xi + b ≤ -1                             (4.3) 

We can combine these equations in the following one: 

 xi  :Yi* (w.xi + b) ≥ 1                                     (4.4) 

In these equations xi  is a pattern vector and w is learned weight vectors.  There may 

be multiple hyperplane in feature space that satisfy this constraint, support vector 

machine chooses the hyper plane where its distances to the closest sample of each 

classes   are as far as possible.   
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Figure 4.4: SVM hyper planes. [40] 

 

4.5 Kernel trick 

If the classes can be separated linearly, the data can be discriminate by a linear 

decision boundary. But in practical situation, classes cannot separate linearly and the 

decision boundary is a curve of higher degree than 1. For solving this problem we 

can uses kernels which are functions that map the input data feature vector to a 

higher dimensional space. The mapped data in new space can be separate linearly 

[32]. As an example we can define a simple mapping kernel as shown in Figure 4.5 

[40]. The Kernel formula is: 

 (   )   ( )  ( )                                          (4.5) 
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Figure 4.5: Kernels approach [40] 

 

4.5.1 Expanding feature Space 

Increasing the dimension of feature space give us a higher chance to classify the data 

which is not linearly separable. We show it in Figure 4.6 [32]. 

〈     〉
 
←   (     )  〈 (  )  (  )〉                          (4.6) 

Figure 4.6: Changing the feature space dimensions from 2 into 3 [40]. 

 

4.5.2 Popular kernel functions    

1)  Polynomial:  

 (    )  〈    〉                                                (4.7) 

 (    )  (〈    〉   )                                          (4.8) 

2) Gaussian Radial Basis Function: 

 (    )     ( 
 |    |  

   )                                       (4.9) 
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 3) Exponential Radial Basis Function: 

 (    )     ( 
 |    |  

   )                                       (4.10) 
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Chapter 5 

 MIT-BIH ARRHYTHMIA DATABASE 

The Massachusetts Institute of Technology Beth Israel Hospital (MIT-BIH) 

arrhythmia database [44] is a well-established source of ECG data for researchers 

studying ECG classification techniques. It contains digitized ECG signals, which 

have been transferred from Holter tape recordings taken from various in-patients at 

the Arrhythmia hospital laboratory at the Beth Israel Hospital between 1975 and 

1979. From 4000 Holter tape records, 48 annotated records divided into two groups 

were kept. Group one consists of 23 records (the lxx series) and contains examples 

that an arrhythmia detector might encounter in routine clinical use. 

The second group consists of 25 records (the 2xx series) and contains examples of 

complex arrhythmias that could pose difficulties to arrhythmia detectors or of rare 

clinical cases. The subjects were 25 men aged 32 to 89 years, and 22 women aged 

22to 89 years. About 60% of the records were obtained from in-patients. Each record 

is slightly over 30 minutes in length. The signals were sampled at the same 

frequency, 360 Hertz, but not necessarily at the same gain because during collection 

different equipment was used with different electrical gains for digitization of the 

various records. Moreover, the digital amplitude values range between [0, 2047], 

where 1024represents 0 volts. Therefore, the signals require normalization before 

use. 
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The variety of the patients and variation in their ages and physical conditions makes 

the MIT-BIH database suitable for investigations into ECG classification techniques. 

Lead II was the lead type used to record most of the ECG signals in the MIT-BIH 

database. 

The MIT-BIH Arrhythmia database contains software to enable extraction of the 

digitized records. For the purpose of this study the following ECG types were 

selected from the MIT-BIH database: 

1- Normal Sinus Rhythm (N): this is the term for the normal condition (Figure 5.1). 

2- Left Bundle Branch Block Beat (L): this arrhythmia is caused by a problem in 

conduction in the His bundle in the left side ventricle. This is seen as a widening of 

the QRS complex. This ECG type is invariably an indication of heart disease [45]. 

Figure 5.2 indicates that the QRS complex is notably wider than that shown in Figure 

5.1. This is due to the extra time taken for depolarization caused by poor electrical 

conduction (block). 

3- Right Bundle Branch Block Beat (R): the cause of this arrhythmia is similar to 

(L). However, the conduction problem now occurs on the right side of the His bundle 

branch and the ECG indicates a problem in the heart but also can be seen in a healthy 

heart. This type of arrhythmia is identified by a wide bimodal QRS complex (see 

Figure 5.3). 
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4- Paced Beat (P): this problem arises in patients that have been fitted with an 

artificial pacemaker. Pacemakers are used when a person has bradycardia (a very 

slow heart rhythm), which causes poor circulation and cannot be corrected by 

treatment with drugs. Pacemakers stimulate the heart muscle. This type of arrhythmia 

is indicated by the occasional missing of the P-wave and the presence of a spike 

representing the stimulus from the pacemaker, followed by a wide QRS complex (see 

Figure 5.4). 

Figure 5.1: Normal sinus rhythm (N) type (MIT-BIH database, record 100) 
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Figure 5.2: Left bundle branch block (L) type (MIT-BIH database, record 109) 

 

Figure 5.3: Right bundle branch block (R) type(MIT-BIH database, record 118) 
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5- Premature Ventricular Contraction (V): this arrhythmia occurs when the 

heartbeats earlier than it should. This is because of the abnormal electrical activity of 

the ventricles which causes premature contraction of the lower chambers of heart, the 

ventricles. The premature contraction is followed by a pause as the heart‟s electrical 

system “resets” itself. The contraction following the pause is usually more forceful 

than normal. With this type, the QRS complex is misshapen and prolonged 

representing ventricular contraction without earlier atrial stimulation (see Figure 5.5). 

6- Atrial Premature Beat (A): this arrhythmia is associated with early 

depolarization of atrium this type can be identified by a premature, small and 

distorted P-wave (see Figure 5.6). 

7- Aberrated Atrial Premature Beat (a): early depolarization of atria. These 

manifest itself as an abnormal P-wave (wide prolonged), narrow R-wave, and 

distorted QRS complex (see Figure 5.7). 

8- Nodal (junctional) Escape Beat (j): the cause of this arrhythmia is that the region 

around the AV node takes over as the focus of the depolarization; the rhythm is 

called “nodal” or „junctional‟ escape. Figure 5.8 shows one beat cycle of this 

arrhythmia which has no Q- and S-waves. Also, the P-wave has an inverse polarity 

compared to that of the normal sinus rhythm 
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Figure 5.4: Beat stimulated by an artificial pacemaker („Pace‟) type (MIT-BIH 

database, record 104) 

 

Figure 5.5: Premature ventricular contraction (V) type (MIT-BIH database, Record 

105) 
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Figure 5.6: Atrial premature beat (A) type (MIT-BIH database, Record 100) 

 

Figure 5.7: Aberrated atrial premature beat (a) type (MIT-BIH database, Record 105) 
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Figure 5.8: Nodal (junctional) escape beat (j) type (MIT-BIH database, Record 201) 

 

9- Ventricular Escape Beat (E): this most commonly occurs when the ventricle 

contracts without nodal stimulation. This is classically associated with complete 

heart blockage. The QRS complexes are wide whereas the P-waves are occasionally 

absent as demonstrated in Figure 5.9. 

Examples of the above arrhythmias and normal ECGs were extracted from 

records100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 111, 112, 113, 114, 115, 

116, 117,118, 119, 121, 122, 123, 124, 200, 201, 202, 203, 205, 207, 208, 209, 210, 

212, 213,214, 215, 217, 219, 220, 221, 222, 223, 228, 230, 231, 232, 233, 234. 

There are two points to be taken into account concerning the above examples: intra 

patient and inter-patient variability. Intra-patient variability occurs due to changes in 

the patient‟s emotional and physical states and inter-patient variability is due to 
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different physical conditions between the different patients. As a result of intra- and 

inter-patient variability, different beat waveforms and different lengths of a beat 

cycle are observed. 

Table 1 provides an overview of the different beat types in the MIT−BIH database.  

In this table, for each record from database, numbers of heart beats which are 

indicate a special kind of arrhythmia is shown. 

Figure 5.9: Ventricular escape beat (E) type (MIT-BIH database, Record 207) 
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Table 1: ECG database. A statistical overview of different beat types in the 

MIT−BIH Arrhythmia database [46]. 
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100  2239  -  -  33  -  -  -  1  -  -  -  -  -  -  -  -  -  

101  1860  -  -  3  -  -  -  -  -  -  -  -  -  -  -  -  2  

102  99  -  -  -  -  -  -  4  -  -  -  -  -  2028  56  -  -  

103  2082  -  -  2  -  -  -  -  -  -  -  -  -  -  -  -  -  

104  163  -  -  -  -  -  -  2  -  -  -  -  -  1380  666  -  18  

105  2526  -  -  -  -  -  -  41  -  -  -  -  -  -  -  -  5  

106  1507  -  -  -  -  -  -  520  -  -  -  -  -  -  -  -  -  

107  -  -  -  -  -  -  -  59  -  -  -  -  -  2078  -  -  -  

108  1739  -  -  4  -  -  -  17  2  -  -  1  -  -  -  11  -  

109  -  2492  -  -  -  -  -  38  2  -  -  -  -  -  -  -  -  

111  -  2123  -  -  -  -  -  1  -  -  -  -  -  -  -  -  -  

112  2537  -  -  2  -  -  -  -  -  -  -  -  -  -  -  -  -  

113  1789  -  -  -  6  -  -  -  -  -  -  -  -  -  -  -  -  

114  1820  -  -  10  -  2  -  43  4  -  -  -  -  -  -  -  -  

115  1953  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  

116  2302  -  -  1  -  -  -  109  -  -  -  -  -  -  -  -  -  

117  1534  -  -  1  -  -  -  -  -  -  -  -  -  -  -  -  -  

118  -  -  2166  96  -  -  -  16  -  -  -  -  -  -  -  10  -  

119  1543  -  -  -  -  -  -  444  -  -  -  -  -  -  -  -  -  

121  1861  -  -  1  -  -  -  1  -  -  -  -  -  -  -  -  -  

122  2476  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  

123  1515  -  -  -  -  -  -  3  -  -  -  -  -  -  -  -  -  

124  -  -  1531  2  -  29  -  47  5  -  -  5  -  -  -  -  -  

200  1743  -  -  30  -  -  -  826  2  -  -  -  -  -  -  -  -  

201  1625  -  -  30  97  1  -  198  2  -  -  10  -  -  -  37  -  

202  2061  -  -  36  19  -  -  19  1  -  -  -  -  -  -  -  -  

203  2529  -  -  -  2  -  -  444  1  -  -  -  -  -  -  -  4  

205  2571  -  -  3  -  -  -  71  11  -  -  -  -  -  -  -  -  

207  -  1457  86  107  -  -  -  105  -  472  -  -  105  -  -  -  -  

208  1586  -  -  -  -  -  2  992  373  -  -  -  -  -  -  -  2  

209  2621  -  -  383  -  -  -  1  -  -  -  -  -  -  -  -  -  

210  2423  -  -  -  22  -  -  194  10  -  -  -  1  -  -  -  -  

212  923  -  1825  -  -  -  -  -  -  -  -  -  -  -  -  -  -  

213  2641  -  -  25  3  -  -  220  362  -  -  -  -  -  -  -  -  

214  -  2003  -  -  -  -  -  256  1  -  -  -  -  -  -  -  2  

215  3195  -  -  3  -  -  -  164  1  -  -  -  -  -  -  -  -  

217  244  -  -  -  -  -  -  162  -  -  -  -  -  1542  260  -  -  

219  2082  -  -  7  -  -  -  64  1  -  -  -  -  -  -  133  -  

220  1954  -  -  94  -  -  -  -  -  -  -  -  -  -  -  -  -  

221  2031  -  -  -  -  -  -  396  -  -  -  -  -  -  -  -  -  

222  2062  -  -  208  -  1  -  -  -  -  -  212  -  -  -  -  -  

223  2029  -  -  72  1  -  -  473  14  -  16  -  -  -  -  -  -  

228  1688  -  -  3  -  -  -  362  -  -  -  -  -  -  -  -  -  

230  2255  -  -  -  -  -  -  1  -  -  -  -  -  -  -  -  -  

231  314  -  1254  1  -  -  -  2  -  -  -  -  -  -  -  2  -  

232  -  -  397  1382  -  -  -  -  -  -  -  1  -  -  -  -  -  

233  2230  -  -  7  -  -  -  831  11  -  -  -  -  -  -  -  -  

234  2700  -  -  -  -  50  -  3  -  -  -  -  -  -  -  -  -  
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5.2 Previous work on ECG/arrhythmia classification 

Several authors have looked at ECG arrhythmia classification using different means 

such as statistical methods, expert systems, and supervised neural networks. 

Automated interpretation of ECGs began more than 52 years ago ([47],[48]). Since 

that time there has been continuous development of expert systems for automated 

interpretation of ECGs. Automated interpretation of ECGs consists of three main 

methods. First method is a kind of expert system such that the information from a 

cardiologist stored in a knowledge base. The system tries to simulate the decision 

processes of an expert person. The second approach utilizes statistical pattern 

recognition methods to classify the patterns [49]. The third approaches employing 

neural networks [50] and machine learning [51] have also been developed. 

Recently many physicians use automated interpretation of ECGs for supporting their 

decisions. The performance and accuracy of some ECG analyzing approximately  as 

well as expert physician. 

Neural networks have been utilized with positive results in various medical 

diagnoses ([52], [53], [54]). In computerized ECG, the developed applications have 

concentrated mainly on beat and diagnostic classification ([55],[56]). According to 

Lippmann [57], recent interest in neural networks is directed towards practical 

research. This includes areas of study encompassing pattern recognition and artificial 

intelligence applications where real-time response is required. Both areas are relevant 

to ECG classification. 
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Pedrycz et al. [58] used a combination of two pattern recognition techniques, cluster 

analysis and feed-forward back propagation neural networks, for the diagnostic 

classification of a 12-lead ECG. The principle of cluster analysis based on the 

Euclidean distance in parameter space was also applied to the original learning set. 

The classification accuracy results varied between 51.9% and 84.0% for classifying 7 

classes of ECG abnormality. 

Silipo and Bortolan[59] compared statistical methods and neural network 

architectures with supervised and unsupervised learning approaches in performing 

the automatic analysis of the diagnostic ECG, where seven beat types and39 features 

were used. The classification results varied between 91.0% and 94.0%correct 

classification for all seven types, showing that a classifier based on neural networks 

can produce a performance at least comparable with those of traditional classifiers. 

As for the neural network architectures trained with unsupervised techniques, they 

produced a reasonable classification performance. Interestingly, two additional 

features used were the age and sex of the subjects. This information is not given in 

the MIT-BIH database. 

A neural network based system, the GNet 2000 ambulatory ECG monitor, was 

developed by Gamlyn et al. [60]. This is a portable, battery-powered unit capable of 

analyzing an ECG in real time. A panel of Kohonen networks is embedded in a 32-

bit micro-controller. The system is able to detect variations in the heart rate and P-R 

interval, changes to the ST segment, „ectopic‟ beats and certain arrhythmias. Features 

include 24-hour monitoring and printout of detailed reports. 
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The product is now commercially available. Hu et al.[61] used a patient-adaptable 

approach to classify ECG beats in the MIT-BIH arrhythmia database. They 

concentrated on four categories of ECG beats, namely, normal, ventricular premature 

beat, fusion of normal and ventricular beat and unclassifiable beat. They used a 

mixture of the Self Organising Feature Map(SOFM) and Learning Vector 

Quantisation (LVQ) algorithms to develop two expert programs, the global expert 

program capable of classifying ECG beats from the whole database and the local 

expert program, which is a patient-specific expert system The classification accuracy 

varied between 62.2%-95.9% for different records. The main drawback of the 

method is the need to create a local expert program for each individual patient. 

Edenbrandt et al. [62] used single output MLPs to classify seven different classes of 

ST-T segments found in the ECG. They used the ST slope and the positive and 

negative amplitudes of the T-wave as inputs to the MLP. They trained and tested ten 

MLPs with different configurations of hidden layers and neurons in the hidden 

layers. The average classification accuracy was between 90.0% and 94.4%. 

Izeboudjen and Farah [63] proposed an arrhythmia classifier using two neural 

network classifiers based on the MLP model. The morphological classifier groups 

the P-waves and QRS complexes into normal or abnormal beats. The timing 

classifier takes as the input the output of the morphological classifier and the 

duration of the PP, PR and RR intervals. An accuracy of 93.0% was reported in 

classifying 13 arrhythmia classes from 48 examples scanned from different ECG 

signals using a PC. 
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Dorffher et al. [64] compared the performance of neural networks with the 

performance of skilled cardiologists in classifying coronary artery disease during 

stress and exercise testing. He performed three experiments, two of which used 

recurrent networks, while the third one employed an MLP. This neural network 

approach produced results comparable to the diagnosis of experts. Only in some 

cases did the neural networks outperform the experts. 

Nugent et al. [65] used single-output bi-group MLPs to detect the presence or 

absence of a specific ECG class. Three different feature selection techniques were 

adopted, namely, rule based, manual and statistical. The results of the bi-group 

neural networks were combined using orthogonal summation. The methodology was 

applied to recognize three classes, namely, normal, left ventricular hypertrophy and 

inferior myocardial infarction. On average, the classification accuracy was only 

78.0%. 

Biel et al. [66] suggested that the distinction between ECG signals of different people 

is sufficiently great to identify individuals using just one lead of an ECG. 

Bortolan et al. [67] used a feed forward network with back-propagation to classify 

seven beat types using 39 features. Results of over 90.0%correct classification for all 

seven types were achieved. Interestingly, two features used were the age and sex of 

the subjects. Such information is not given in the MIT-BIH database. The same 

seven beat classes were investigated by Silipo et al. [68] using a neural classifier with 

Radial Basis Function (RBF) pre-processing. 
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Here again, correct beat type designation was consistently made for over 90.0 % for 

all classes. 

The influences of various network parameters on multilayer neural network 

performance were researched by Edenbrandt et al. [62]. ECG STT segments were the 

basis of the study which found that increasing the number of input features did not 

necessarily improve classification. Similarly, increasing the number of neurons in the 

hidden layer beyond five gave no benefit. It was also reported that networks with two 

hidden layers showed only a very slight improvement over those with one hidden 

layer. Problems were encountered with training networks to recognize uncommon 

patterns, the best results being obtained, as expected, for those beats with the most 

examples in the training set. 

Magleveras et al. [63] advised against using digital filtering of signals at the pre-

processing stage to avoid corrupting the components of the ECG. 

Modular neural networks were applied to ECG classification [Kidwai, 2001]. These 

employed a more logical step-by-step approach by breaking the problem of 

classification down into stages rather than using a one-hit approach. 

Suzuki [70] and Hamilton and Tompkins [71] researched methods of QRS complex 

detection. Their aim was reliably to break down a continuous ECG signal into 

individual beats. This is in contrast to supplying information from a database where 

signals have already been pre-divided into beats, such as the MIT-BIH database. 

Recognition of the QRS complex was proposed by Suzuki as the first step in the 
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development of a real-time ECG analysis system His self-organising neural network 

was capable of detecting R-waves in real time, in order to divide the ECG into 

cardiac cycles. An Adaptive Resonance Theory (ART) network then performed 

classification according to QRS complex features. Hamilton and Tompkins 

[Hamilton and Tompkins, 1986] claimed that their system carried out QRS detection 

at 100 times the rate of the cardiac cycle, and gave a 99.8 % success rate for QRS 

identification. 

Dokur et al. [72] used a Kohonen neural network to detect four ECG waveforms: 

Normal beat (N), Premature ventricular contraction (V), Paced beat (P)and Left 

bundle branch block (L). The network was trained with data from the MIT-BIH 

arrhythmia database and gave 90.0% classification accuracy. 
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Chapter 6 

METHODOLOGY 

6.1 Step by step design method  

In order to classify ECG signals, our proposed system consist of the following 

subsystems: Preprocessing, Feature extraction, Training the classifier and Evaluation.    

We illustrate the detail of these steps in Figure 6.1. 

In the first step we perform baseline elimination and noise removal on the raw ECG 

signal as preprocessing. In the second step, we apply forth-level wavelet 

decomposition on the output signal of previous step and calculate the approximation 

and detail coefficients of them. These coefficients are used as a part of 

morphological features. In the next step we apply an algorithm in order to find 

fiducial points such as P-QRS-T peaks, inter-waves locations and etc in ECG signal. 

These points are used in the temporal and morphological feature extraction process. 

After extracting all temporal and morphological features we construct a feature 

vector for each heart beat by concatenating these features and also the heart beat type 

which is obtained from annotations file. 
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In the classification step, we train 7 separate SVM classifier, one SVM for 

NORMAL class and the six remaining SVMs for LBBB, RBBB, PVC, FOV, APC 

and PACED Arrhythmia.  

For final decision we use maximum voting technique, so an unknown heart beat is 

given to all SVM and the SVM which is modeling the type of this heart beat generate 

1 and all other SVMs produce 0. So we can assign the class label of this SVM to that 

particular heart beat. 

Figure 6.1: Structure of purposed ECG signal processing approach. 

 

6.2 Preprocessing of ECG signals 

ECG signal inherently contains of various type of unwanted noise and artifact effects 

like baseline drift, noise of electrode contact, polarization noise, the internal 

amplifier noise, noise due to muscle movement, and motor artifacts.  The movements 
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of electrodes induced artifacts noise. Therefore in order to make the ECG signal 

ready for feature extraction step, we must remove baseline wander and eliminate 

above noise.  

We propose to use wavelet filtering to filter the ECG signal since this technique is 

suitable for computing the R-peak locations without change of the shape or position 

of the original signal.  According to the previous experimental knowledge, in order to 

optimize the signal filtering, we must consider these two criteria: the signal sampling 

frequency and the knowledge that most of the noises are located outside of the 

frequency interval between 1.5 Hz to 50 Hz [73].   For this purpose, we use a band 

pass filter which is constructed by a high pass filter with cutoff frequency 1.5 Hz. 

This filter eliminates baseline variations.  The output of this filter is cascade with a 

low pass filter with cutoff frequency 50 Hz. This filter removes high frequency noise.  

 The scale and type of the mother function parameters are specific to each filter. 

Thus, the automatic compute of optimal scale for high pass filtering when the 

sampling frequency is 256 is equal to order 6. The optimal scale order for the low 

pass filtering is equal to order 2. The results of above steps are shown in the Figure 

6.2. 
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(a) 

(b) 

(c) 

 Figure 6.2: Implementation results of preprocessing on record [100] from MIT-BI 

database (a) original signal, (b)eliminated baseline, (c) noise removal 
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6.3 QRS detection 

Each ECG cycle is consists of a P-wave which is corresponding to the atrial 

depolarization, a QRS complex which is corresponding to the ventricular 

depolarization and a T wave which is point to the rapid repolarization of the 

ventricles. A normal ECG signal and its time intervals are shown in Figure 6.3. 

Figure 6.3: Standard waves of a normal electrocardiogram [73]. 

Most of the clinically features which are useful for diagnostic the disease can be 

found in the time interval between components of ECG and the value of the signal 

amplitude. For example, the Q-T feature is used to recognition one dangerous 

disease, the Long Q-T Syndrome (LQTS), which is responsible of thousand deaths 

each year [1]. The shape of T wave is a critical factor and it is essential to identify it 

correctly since inverted T waves can be caused as an effect of a serious disease 

named coronary ischemia [74]. 
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Designing an algorithm in order to extract the ECG features automatically is very 

hard since ECG signal has a time-variant behavior. As a result of these signal 

properties, we face with multiple physiological constraints and the existence of noise. 

In recent years several algorithms have been proposed for detection those features. In 

[74] they introduced a method to extract wavelet features and used SVM for 

classification. In Their purposed method, the classification is done without 

completely identify ECG components. Castro et al. introduced a method that used 

wavelet based features and classify various form of abnormal heartbeats [75]. 

Tadejko and Rakowski proposed an algorithm which is based on computational 

morphology [76]. Their main goal is the assessment of various automatic classifiers 

for detection of disorder in the ECG. In [77] they proposed a method to extract 

feature from ECG based on a multi resolution wavelet transform. First, they remove 

noise from ECG signal by discarding the coefficient which caused noise. In next 

step, they detect QRS complexes and by using them the start and end of each wave 

part is determined. They assess proposed method on some records from MIT-BIH 

Arrhythmia Database. 

 In this thesis, we proposed a method for recognition of time interval and amplitude 

of various wave parts of ECG. In the First stage of our approach, the R-peak is detect 

accurately. For this purpose we used wavelet. In the second stage, the other ECG 

components are identified by using a local search around the detected R-peak. We 

can summarize this approach: 

The location of the R-wave has been identified by using wavelet transform. 

Each R-R interval from ECG signal is segmented as follow: 
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Within an interval, finding the maximum and minimum of the wave which 

are corresponding to the Q and S waves 

Since P-wave and T-wave are dependant to other factors; we must provide 

some deterministic point in order to find their location. These points are 

including the end point of S-wave or Soff, the start point of T-wave or Ton, 

and the start point of Q-wave or Qon.  

6.4 R-peaks detection 

The detection of R-peak is the first step of feature extraction. For this purpose, we 

used DWT due to its ability to recognize different locations of the waves accurately.  

Similarly to the preprocessing, we apply the same steps in order to compute the scale 

and choose the mother function. We have the QRS complex signal as an input which 

has the frequencies between 5Hz and 15Hz, so we select scale of order 4 and choose 

the Db4 mother wavelet. The Db4 wavelet is very popular for the detection and 

location of R peaks due to the strong similarity of its shape to the ECG signal. Our 

method is organized in the following steps. By performing wavelet decomposition, 

we down sampling the input. Therefore the amount of unnecessary information is 

reduced but the component of QRS is not changed. 

In order to find the location of R-peak, first we choose the locations which their 

amplitude are greater than 60% of the max value of the whole input signal. Since we 

remove the noise from the signal in the previous step, it is useful for R-peak 

detection.  
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Since we decompose the signal into 4
th

 level, the R-peak location in the modified 

signal is at least 0.25 of the R-peak location in the original signal. So in order to find 

the actual location of R-peal we must convert the founded positions by multiplying 

them with 4.   

Another important point is that R-peak location in modified signal is not exactly on 

the original signal at a scale of 4. Position of the signal will change during the down 

sampling, so we must to do local search around the R-peaks which calculated in 

previous part. The interval of this search can be limited to a window of ± 20 samples. 

6.5 P, Q and S detection algorithms 

The accuracy of detecting R-peak completely affected on P, Q and S detection parts 

since their location is determined relatively to R-peak. In the other hand, detect the 

location of R-peaks are corresponding to recognize the heart beat interval.  

One of the most popular features in ECG signal processing is the R-R interval which 

can be computed by the following formula: 

   ( )   (   )   ( )                                       (6-1) 

Where R(i)  and R(i + 1) are  the indexes of the current and  next R wave peak 

respectively. 

6.5.1 S wave detection 

The S-wave is located on the end of the QRS complex so in order to find its location 

we must start from R-peak location plus 6 units because range of the shortest length 

of it is between 0.016 and 0.036 seconds. This range is corresponding to 6 and 13 

samples. The stop point of search interval is related to the value of R-R interval. 
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However the maximum length of the RS intervals is recorded is around 0.27 seconds 

where its R-R interval was 1.41 seconds [78].  

6.5.2 Q-wave detection 

The Q-wave indicates the start point of the QRS complex section. It is reported that 

Q-wave peak location can be found in the range between 0.02 to 0.06 seconds from 

R-peak. In the other hand, this interval is equal to 8 and 22 samples. But this interval 

must be relevant to the value heart beat length. Therefore  Q-R interval varies from 

one patient to another, for example a patient with a R-R equal to 235 can have a Q-R 

interval equal to 19 and another one can have Q-R equal to 8 while has a  R-R equal 

to 292. As a result, the range for search will be larger for longer R-R interval. The 

process of Q-wave detection is illustrated in Figure 6.4. 

Figure 6.4: Q wave identification (150 samples in this case) 

 

6.5.2.1 Q-wave onset detection 

The start point of Q, Qon can be indicated as the point with the maximum value of 

amplitude near the negative peak location of the Q-wave. Therefore the search 

interval for finding the Qon started from Q-12 and continues till Q-5. Since some 
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points before Qon may have larger amplitude, its index may need some corrections. 

For this purpose, it is necessary to: 

 Compute the amplitude difference between Qon and Q by the following 

equation 

           ( )    ( )                                   (6-2) 

 if amplitude(P)-level>0.25 then threshold=0.90 else set it to 0.87 

 Start searching from     in order to find the first value which  

                           Point_ amplitude <      ( )                                (6-3) 

6.5.3 P- wave detection 

Since P-wave can be located far or near from Q-wave, it is necessary for its interval 

to be relative to the R-R interval value.  

It is reported that duration of the P-R interval is between 0.09 and 0.19 seconds and 

this interval also depends on the R-R interval. This interval is equal to 19 and 38 

samples. From the point of view of proportional, the limits are 14% to 22% of the 

respective RR range. One of the benefits of this approach is that we can detect P-

waves with low amplitude, so according to the search area interval, we have two 

cases: 

 Case 1:search_interval set to         ( )        ( )    . This interval is 

works for most of the patient but have some problem with records 111,215 

and 218. 

 Case 2:search_interval=        ( )         ( )     . This search interval 

solve the above problem but now when we can‟t find P-wave and the S-T 
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segment is depressed, we must start searching the P-wave from the start point 

in its equation.  

6.6 T-wave detection 

Finding T-wave in ECG signal is the most complicated task. Designing a procedure 

for detecting T-wave is difficult since it has a time variant behaviors.  By checking 

the ECG waveform someone can see that the T- wave is located as the interval which 

has largest amplitude between S and the middle of the R-R interval. Therefore, the 

search interval for T started from S-wave and finished at the middle point of the R-R 

interval. 

6.6.1 T-wave Onset detection 

Another important point in analyzing the ECG signal is the start point of T-wave or 

Ton because it is used as a support point for determining the polarity of T which can 

be positive, negative or flat. Existence of negative or flat T waves in ECG shows a 

serious disease, the cardiac ischemia. The searching area is start from the S-wave 

plus small offset till T-wave and Ton is a point with minimum value in this interval. 

6.6.2 T-wave end detection  

Detection of end point of T-wave, Toff, is another difficult task in this domain since 

there is still discussion between specialists about it. The best properties for detect 

Toff is finding the point which has the lowest amplitude after T within a limited 

range. For this purpose, it is necessary to make the signal smooth. We can do it by 

adding previous values of the signal to it. If a point amplitude be larger than the 

amplitude‟s of all the previous 3 samples, it can be consider as a Toff point.  
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Table 2 summarizes the search intervals used to find ECG components. It shows the 

indexes of the start and the end ranges of the search[78]. The results of 

implementation of PQRS detection algorithm for some ECG records from MIT-BIH 

database are shown in Figure 6.5. 

Table 2: Search intervals [78] 

Wave Beginning End Type 

P         ( )       ( )     max 

Q    ( )        ( )    min 

Qon  ( )      ( )    max 

S  ( )         ( )      min 

Ton     (( ( )   ( ))  ( )     min 

T  ( )          ( )   max 
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(a) PQRST detected in record [100]. 

(b) PQRST detected in record [111]. 

  



66 

 

(c) PQRST detected in record [118]. 

(d) PQRST detected in record [201]. 
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(e) PQRST detected in record [210]. 

(f) PQRST detected in  record [220]. 

Figure 6.5: Implementation result of  PQRST detection method in (a) record [100], 

(b) record [111], (c) record [118], (d) record [201], (e) record [210], (f) record [220] 

from ECG MIT-BIH arrhythmia database. 
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We test the algorithm on MATLAB 2012 using 26 records of MIT-BIH arrhythmia 

database. Sensitivity and specificity parameters are calculated to evaluate the 

detection performance and the results are given by Table 3 and Table 4 respectively. 

Sensitivity measures the accuracy in detection while specificity gives an indication of 

rejection of false detections. The formulas used for calculation of sensitivity and 

specificity are given as follow: 

   
  

     
                                                        (6.3) 

   
  

     
                                                   (6.4) 

Sensitivity is conditional probability that the case correctly classified and specificity 

is conditional probability that non-cases are correctly classified. Both    and    take 

a value of 1.0 for an ideal recognition algorithm. 

The results of implementation of                  detection algorithm for 

previous ECG records are shown in the Figure 6.6 
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Table 3: Sensitivity calculation of PQRST detection on MIT-BIH arrhythmia 

database. 

Record No. 
Sensitivity Calculation in Percentage (%) 

P Q R S T 

100 92 100 100 100 90 

101 100 100 100 100 100 

103 100 100 100 100 100 

105 100 100 100 100 100 

106 77 100 80 100 100 

112 100 80 82.35 82.35 100 

115 92 100 100 100 100 

116 100 100 100 100 100 

118 100 100 92 100 100 

119 89 100 100 100 90 

121 100 100 100 100 100 

200 100 82 82 82 82 

201 100 100 100 100 100 

202 100 100 100 100 100 

203 91 94.5 94.5 94.5 94.5 

205 100 100 100 100 100 

207 100 100 100 100 100 

209 100 74 75.23 76.19 94.54 

210 100 93.5 93.5 93.5 100 

214 97 100 100 97 100 

219 100 100 100 100 100 

220 100 100 100 100 100 

221 86 100 100 100 100 

223 100 100 100 100 100 

230 84 100 100 100 84 

234 100 100 100 100 100 

Average 96.72 97.12 96.04 97.32 97.56 
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Table 4: Specificity calculation of PQRST detection on MIT-BIH arrhythmia 

database. 

Record No. 
Specificity Calculation in Percentage (%) 

P Q R S T 

100 100 100 100 100 50 

101 91 100 100 100 70 

103 100 100 100 100 70 

105 83 100 100 100 50 

106 100 100 100 100 70 

112 82 100 100 100 74.3 

115 100 100 100 100 80 

116 91 100 100 100 100 

118 92 100 100 100 90 

119 90 90 100 91 100 

200 79 100 100 100 72 

201 69 100 100 100 84 

202 100 100 100 100 100 

203 100 100 100 100 100 

205 60 100 100 100 54 

207 100 100 100 100 100 

209 60 100 100 100 42.85 

210 13 100 100 100 82 

219 90 100 100 100 100 

220 100 100 100 100 94 

221 70 100 100 100 94 

222 50 100 100 100 100 

223 83.33 100 100 100 100 

230 55 100 95 100 50 

231 100 100 100 100 70 

234 93.33 100 100 100 62 

      

Average 83.47 99.61 99.80 99.68 80.41 
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(a) Onset-Offset of inter-waves detected in record [100]. 

(b)  Onset-Offset of inter-waves detected in record [111]. 
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(c) Onset-Offset of inter-waves detected in record [118]. 

       (d) Onset-Offset of inter-waves detected in record [201]. 
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(e) Onset-Offset of inter-waves detected in record [210]. 

(f) Onset-Offset of inter-waves detected in record [220]. 

Figure 6.6: Onset-Offset of waves detected in (a) record [100], (b) record [111], (c) 

record [118], (d) record [201], (e) record [210], (f) record [220] from ECG MIT-BIH 

arrhythmia database 
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6.7 Feature extraction 

There are various features in ECG analyzing which someone can select among them 

and it is a hard task to select the right feature combinations. The first approach is to 

use all features found in the literature, however if the number of selected features be 

too large, it causes heavy computational cost. Therefore we chose those features that 

are relevant for a specific type of disease. Those features are identified from 

literature and are mixed to form a single feature vector which consists of the 

following categories. 

 Temporal features consist of heart rate and interval features which discussed 

before. 

 Morphological features, gives the characteristic morphology details that 

include coefficients from wavelet decomposition, their maxima minima etc. 

 For morphological feature, first we decomposed the ECG signal to level 4 by using 

daubechies as the mother wavelet. Then the maximum and minimum values of Detail 

coefficient and Approximation coefficients for each level are used. We also used the 

peak values of P-wave, Q-wave, R- wave, S-wave and T-wave [18]. 

In order to compose the feature vector, we combine all of the above features so we 

have 30 features for each single beat. This feature vector is given as the input to the 

SVM classifier. 
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6.8 Identification 

Classification process includes two phases: training phase and testing phase. We use 

an integrated software for support vector classification, SVMlib, with linear kernel. 

For training and testing the system, we used "one against all" approach, so we collect 

all  of data in one file, each time we select one class as "Target class" and the other 

remaining classes as undesired , and give it to a separate SVM for each type of 

arrhythmia and train a model to detect a target class.  

We chose 60% of data from each file as training data and the remaining data as test 

data. The total numbers of beats used in training are about 20600 beats and 13700 

beats have been left for testing. The detail of selected record number and the number 

of beats that are used in the experiment are shown in Table 5.   

The accuracy of each SVM for test set is shown in Table 6. The best performance 

achieved for PVC arrhythmia by 99.97% accuracy, and then Paced, FOV, APC and 

LBBB have the next rank. The lowest performance belongs to Normal beats and 

RBBB arrhythmia. 
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Table 5: ECG samples used for training and testing. 

Class label Beat Type 
# of Beat per Data 

file 
MIT-BIH  Data File 

1 N 

2230 100 

1860 101 

2080 103 

1730 113 

1950 115 

1510 123 

2 LBBB 

2490 109 

2120 111 

1450 207 

2000 214 

3 RBBB 

2160 118 

1530 124 

1820 212 

1250 231 

5 PVC 
990 208 

830 233 

6 FOV 
370 208 

360 213 

8 APC 

380 209 

90 220 

70 223 

1380 232 

12 Paced 
2070 107 

1540 217 
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Table 6: Accuracy of detection different type of arrhythmia on MIT-BIH arrhythmia 

database. 

Arrhythmia type Model Accuracy 

Normal 94.16 % 

Atrial premature beat 99.04 % 

Left bundle branch block beat 98.5 % 

Right bundle branch block beat 92.33 % 

Premature Ventricular Contraction 99.97 % 

Fusion of ventricular and normal beat 99.51 % 

Paced beat 99.63 % 

Average 97.59% 

As we discussed before, other researchers used various kind of methods for ECG 

classification such as Combining KNN and DWT [74], MLP and VQ [76] and SOM 

with SVD [77]. Their system performance is shown in Table 7. 

As we can see, there are multiple factors and reasons cause the comparison between 

ours system results and theirs inaccurate. For example the number of selected 

arrhythmia by each researcher is varied to the others, also the selected records or 

even the number of extracted beat from a specific record for training and testing are 

not mentioned clearly. Nevertheless our system results are comparable with the 

others.  
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Table 7: Accuracy of the proposed method and other methods for ECG classification   

Method Number of beat type Accuracy (%) 

KNN-DWT 4 96.65 

Neuro Fuzzy 4 98 

MLP-VQ 2 96.8 

SOM-SVD 3 92.2 

Wavelet-SVM 

(proposed method) 
7 97.59 
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Chapter 7 

CONCLUSION AND FUTURE WORK PLANS 

A multiple ECG classifier is implemented based on temporal and wavelet features 

that are submitted individual SVM classifiers for six different types of cardiac 

arrhythmia. The use of MIT-BIH ECG signals enabled the use of reliable and long 

duration recordings for the extraction of characteristic ECG features. 

Combining temporal and wavelet features resulted in the description of ECG signals 

in time, frequency and morphological dimensions. Effectiveness of using this set of 

features can easily be seen on the achieved recognition rates. Using simple SVM 

classifiers for each of the six cardiac arrhythmia, the recognition rates achieved 

change from 92.33% to 99.97%. Compared to well-known methods such as       

KNN-DWT and neuro-fuzzy classifier with four beat types, the purposed SVM-

DWT exhibited better performance with seven beat types. The purposed method also 

performs better than MLP-VQ and SOM_SVD algorithms even though they 

considered two or three beat types only. 

Feature work is planned on extending our work using statistical features together 

with wavelet and temporal features. Including more beat types, heterogeneous 

multiple classifiers are also within the contents of our future work plans. 

Additionally, real-time implementation of the developed system in cooperation with 
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EMU-Faculty of Medicine will be considered as a near- future study to put the 

system into practical use.  
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