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ABSTRACT 

Insulator geometry strongly affects the distribution of electric field along the surface 

of the insulator. If the field distribution is not uniform, that stresses the insulator 

unevenly which most often may lead to unnecessary loss of energy, flashover and 

eventual breakdown of the power network system. As the desire to have a more 

efficient, effective and reliable system devoid of losses increases; the need for a well 

optimized insulator arises. 

In this study, neural network is used to obtain an optimized form of a pin insulator. 

Neural network is trained by using geometric information of the pin insulator and 

field intensities in order to provide a field distribution as uniform and minimum as 

possible along the insulator surface. Electric field intensities along the surface for 

different insulator profiles are obtained numerically by using finite element method.  

Finally, the result obtained such as the mean absolute error of less than 0.1 at 

optimum, shows that the network has successfully been used to optimize the contour 

geometry of the pin insulator. 

Keywords: High voltage, insulator, contour optimization, neural network, electric 

field distribution. 
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ÖZ 

İzolatör geometirisi, izolator yüzeyindeki elektrik alan dağılımını büyük oranda 

etkiler. Eğer izolatör yüzeyinde elektrik alan dağılımı düzgün değilse, izolatör 

zorlanır; bu durum genellikle güç sisteminde gereksiz enerji kaybına, atlamaya ve 

zamanla delinmeye yol açabilir. Daha verimli, etkin ve güvenilir kayıpsız bir sistem 

ihtiyacı arttıkça, optimum izolatör ihtiyacı da artar. 

Bu çalışmada, bir mesnet izolatörünün optimizasyonu için yapay sinir apı 

kullanılmıştır. Yapay sinir ağı, izolatörün geometrik bilgileri ve alan şiddetleri 

kullanılarak mümkün oladuğu kadar düzgün ve düşük şiddetli alan dağılımı 

sağlayacak şekilde eğitilmiştir. Farklı izolatör biçimleri için yüzey boyunca elektrik 

alan şiddetleri, sonlu elemanlar yöntemi kullanılarak sayısal olarak elde edilmiştir. 

Elde edilen sonuç, % 0,1 ortalama mutlak hata ile, sinir ağının mesnet izolatörü 

optimizasyonunda başarılı olduğunu göstermektedir.  

Anahtar Kelimeler: Yüksek gerilim, izolatör, biçim optimizasyonu, yapay sinir ağı, 

elektrik alan dağılımı. 
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Chapter 1 

1 INTRODUCTION 

1.1 Problem Statement 

For an effective and efficient delivery of electrical energy particularly in high voltage 

system, it is of great importance to ensure that the insulation system is resistant to 

system failures under normal operations. Constant breakdown and continuous 

degradation of insulation has been a major cause for reduction in power system 

efficiency [1], continuous increase in power losses and constant outages as 

experienced over the years have also been attributed to poor insulation mechanism. 

Furthermore, the cost implications incurred either in the installation process, design 

or maintenance has since been linked to poor design of insulators; thus a need for the 

study of insulator contours is of great importance. 

Distribution of electric field along insulator surfaces is usually affected by the 

geometry [2]. From [2], it is noted that flashover do occur along the insulator surface, 

if the tangential components of its potential gradient exceeds a critical level to 

sustain discharge, thus this may lead to a total breakdown of the system. In order to 

arrest such breakdown, the insulator contour should be designed in such a way as to 

obtain a desired uniform stress and have a minimal tangential electric field. 

For the purpose of this research work, an Artificial Neural Network is applied to 

obtain optimum contour pin type insulator to provide uniform stress distribution 
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along the surface. Electric field intensities along the surface, average and maximum 

electric field at the surface of the insulator are calculated for different insulator 

profiles by finite element method which would serve as an input data for the 

network. Geometric information of the insulator acts as the output of the network. 

Using these data, an optimized insulator contour can be determined to have a field 

distribution as uniform and minimum as possible. 

1.2 Thesis objective 

1. To understand the essence of using insulators in high voltage transmission. 

2. To understand the working mechanism of Artificial Neural Network 

3. To obtain an optimized insulator contour geometry that gives uniform stress 

distribution while keeping the electric field along its surface as minimum as 

possible. 

1.3 Thesis outline 

This thesis has been divided into six different chapters. 

The first chapter deals on the aim, its objectives and introduces the research work. It 

presents the problem statement which give rise to the need for this work. 

The second chapter takes on the literature of previous works carried out by other 

researchers using Artificial Neural Network both in high voltage fields and other 

fields. The electric stress and the factors that affect its distribution in an insulator are 

discussed. Finally, the finite element method as a numerical method of calculating 

electric field is analyzed. 

Chapter 3 deals entirely on artificial neural network, and its learning pattern. 
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In chapter four, the methodology of the work is discussed. It gives a vivid description 

of how numerical method was applied in obtaining the electric field needed in the 

training of the network, the finite element software applied and an in-depth 

description of the architecture and the training process involved in the Artificial 

Neural Network Model. 

The results and discussion is contained in Chapter 5 while the 6
th

 and final Chapter 

contains the thesis conclusion and a recommendation for future work. 
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Chapter 2 

2 LITERATURE REVIEW 

2.1 Overview 

In a bid to optimize insulator and electrode contours with complex geometry, 

different researchers have tried to apply different techniques to achieve this feat. In 

[3], corona onset was applied in its optimization process. In this work, the corona 

onset voltage measured was compared with surface electric field as its optimization 

criterion. It was discovered that its corona onset can result in a modest but 

measurable increase in corona onset voltage.  

In 2002 [4], a 35 kV vacuum interrupter was optimized using the Tabu Search 

Algorithm. It applied the finite element method in the computation of the electric 

field which was used in the process. The continuous needs for an optimized insulator 

use in power system continue to get serious attention owing to its major importance 

in power system delivery.  

K. Kato et al., in his work [5] tried to design an electrode contour with best insulation 

performance on the basis of area and volume effect in the breakdown field strength. 

They considered the breakdown characteristics instead of the electric field 

distribution. In their work, he found out that using the breakdown strength with 

consideration of its volume and area considerably improved the breakdown voltage 

as compared to using electric field.  
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Smoothing cubic splines has also been applied for the same purpose [6]. Local field 

derivatives were used to determine the necessary displacement to achieve predefined 

field strength intensity at each point. This he did iteratively in case of failure is step 

one while applying the smoothing cubic splines in controlling the contour geometry. 

The effects of contact angle, radius of curvature and the type of material on the 

electric field has also been considered [7], here the electric field is calculated using 

the charge simulation method technique at the triple junction as its junction geometry 

function. He varied the field dependence in accordance with the different variations 

of contact angle and discovered that electric field varies with angles. The 

dynamically adjustable algorithm was used for the optimization of a suspension 

insulator [2]. His aim was to minimize and make the tangential electric field uniform 

and reduce the insulator size. 

As the geometry of the various models of insulator became more complex and a need 

for an optimized form, either to minimize cost, or to have an optimal performance, 

various researchers have turned to using the Artificial Neural Network in achieving 

this feat. For instance, in [8] neural network was used to optimize the contour of axi-

symmetrical insulator in a multi-dielectric arrangement. He employed the multilayer 

feed-forward network with error back propagation and with resilient propagation 

learning algorithm. S. Charkravorti et al., [9] in 1994 demonstrated the effectiveness 

of neural network in electric field problems by applying a simple cylindrical 

electrode system. In his findings, he found out that neural network could give an 

accuracy of a mean absolute error of about 3%. Neural network has not only been 

successful in power system but has also had wide use even in weather predictions as 

seen in [10]. In 2008, daily global solar radiation was predicted by developing a 
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model with the help of neural network [11]. Furthermore, neural network 

applications extend even to disaster prediction as it has been successfully used in 

earthquake prediction [12]. Security application cannot be left out as well. In the area 

of control system, its application has adequately been deployed as it was used in 

capacitor control system [13]. 

Most insulator designers have a single motive, which is to ensure that the insulator 

has a minimal but uniformly distributed electric field along its surface. For this thesis 

work, the insulator to be optimized is the porcelain pin insulator. However, one has 

to understand the concept of electric field stress, trying to have it uniformly 

distributed by subjecting the pin geometry to finite element method so as to obtain 

the electric field needed for the optimization process. 

Thus in this work, the neural network is applied in optimizing the pin insulator 

geometry. This is due to its versatility in analyzing complex geometry.  

2.2 Porcelain Pin Insulator 

The porcelain pin insulators are widely used in voltage transmission of up to 33 kV.  

Owing to its bulky nature, it becomes highly uneconomical if deployed for use for 

higher voltage. However, despite this singular limitation observed, its advantages are 

enormous. Such of those examples include zero porosity, high dielectric resistance, 

and high mechanical resistance, chemically inert and high outdoor resistance 

amongst others. Figure 2.1 shows a typical pin porcelain insulator. 
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Figure 2.1: A Pin insulator 

2.3 Electric Field Stress 

In-order to design an insulator with optimum performance, it is necessary to grasp 

the electric field strength experienced particularly with high-level voltage 

transmission. The stress on dielectric by electric field is known as the electric stress. 

The magnitude of the field stress on the dielectric is measured using its field 

intensity. Electric field strength is termed as the electrostatic force per unit positive 

test charge positioned at a particular point in a dielectric. It is represented with the 

symbol „E‟ and its unit is „Newton per Coulomb‟.  In Figure 2.2 a typical illustration 

of an electric field is shown. 

 

 

 

Figure 2.2: Electric field between a and b 
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In Figure 2.2, the potential difference Uab having VA and Vb as its potentials in an 

electric field E    is described as work done in moving a one positive charge from point 

b to point a by an external force. Thus,  

                      ∫ |E   |
 

 
   (      )    (2.1) 

The maximum electric field is experienced when the direction of increment in the 

potential is mostly opposite the path of  E    ,  

                        
    

  
|
   

   |E   |
   

     (2.2) 

From equation (2.2), a physical interpretation of the process of finding electric field 

intensity from the scalar potential „V‟ is obtained. The operator on V by which E    is 

obtained is thus known as the gradient.  Therefore the relationship between V and E    

is given as 

E              (2.3) 

where; 

E   : Electric field  

 : scalar potential 

Equation (2.3) is referred to as gradient of the electric field potential. 

2.4 Parameters Affecting Electric Stress Distribution In Insulators 

2.4.1 Shape of insulator 

This plays a significant role in determining the electric field stress distribution in an 

insulator. To ensure that the insulator is of good design, it must have an electric field 

stress below its ionization threshold.  Researches have shown that the electric field 

strength tends to be higher along the sheds than in adjacent areas of the insulator. 

Owing to its rounding curvature, it tends to attract more stress and as such needs to 
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be well optimized to obtain a uniformly distributed stress and minimize the field 

strength experienced around it. 

2.4.2 Permittivity of the material 

This determines how much electric field or flux is generated per unit charge. A 

medium with higher permittivity is likely to have less flux owing to its polarization. 

It is related directly to electric susceptibility. Kaana-Nkusi et al. [14] in his work 

calculated the voltage and electric field distribution along a post insulator. He 

considered a number of different criteria such as the electric flux density, potential 

error and tangential field strength. His findings showed that higher dielectric 

permittivity of an insulator correspond to an increment in value of electric field along 

the surface. Relative permittivity of some materials include, porcelain is 5-7, air is1, 

water between 4 and 8. 

2.4.3 Potential difference 

The electric field stress is affected by the potential difference across it. A measure of 

force per unit charge is the electric field and the energy per unit charge is the 

potential energy. Now if we assume that a unit test charge is to be moved from x to 

y, its work done which is the electric potential is related to the electric field with the 

equation (2.4) 

                                E      
  

  
      (2.4)  

where; 

 E   : electric field 

∆V: potential difference 

∆d: distance moved between x and y 

       ) sign shows that the potential decreases as it moves in the direction of the field. 
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2.4.4 External factors 

Adverse environmental conditions affect high voltage insulators since they are 

deployed for outside use. Some of these conditions include rain, fog, and dew, 

industrial as well as agricultural pollution. They stick to the surface of the insulators 

and in most cases are dormant. It gets activated once the air becomes humid. A 

conductive film is formed leading to an increase in the conductance of the insulator 

thereby increasing the leakage current, reducing its flashover voltage. Researches 

have shown that, contamination on the surface of insulator, affects the electric field 

greatly [15]. 

2.5 Electric Field Analysis Using Numerical Method. 

There are different numerical methods known for electric field calculation. They 

include, charge simulation method, boundary element method, finite difference 

method and the finite element method. However, for this thesis, the finite element 

method is used thus discussion would be limited to this method. 

2.5.1 Finite Element Method   

This is one of the most commonly used methods by engineers in calculating electric 

field. Its principles lie on transforming differential equation in integral structure and 

approximating it. The easiest way in transforming this is finding an operation that 

abates the energy in whole. Thus its calculations can easily be achieved if one 

calculates the electric potential distribution first and then the field distribution by 

deducting the gradient of electric potential from it. 

From Maxwell equation, 

                         E    
 

 
      (2.5) 
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where; 

 : the volume charge density 

ε: permittivity of the dielectric material (ε = εoεr) 

εo: permittivity of air (8.854 ×      ) 

εr: permittivity of the dielectric material. 

From equation (2.3) and (2.5), the Poisson equation is obtained by substituting (2.5) 

into (2.3); 

                            
 

 
      (2.6)      

The Laplace equation is obtained when the space charge   = 0 and equation (2.6) 

becomes 

                                     (2.7) 

But for a finite element method, its basic approach for obtaining the electric field 

involves that for electrostatic, the entire energy acquires a minutest quantity in the 

whole field. Thus, the potential V under given conditions should make the enclosed 

energy function to be given at a minimum for a given dielectric volume „υ‟ 

Thus; 

                       ∫
 

 

 

 
 (  )          (2.8) 

where  

υ: dielectric volume under consideration 

W: electrical energy stored in the volume of dielectric in view and is obtained by 

computing the simple equation in (2.3)  

Using this process, field between electrodes being considered is split into fixed 

quantity of distinct elements. Nodes and elements are allotted specific integer 
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numbers. The distinct element silhouette is chosen as triangular for a 2-dimensional 

or tetrahedral for a 3-dimensional. This is illustrated in figure 2.3 and figure 2.4. At 

locations were higher field intensity is present, discrete elements of minute size 

covers it.  

 

 

  

From equation (2.8), if the electrostatic field is not distorted by any space charge, 

potential will be determined by boundaries. Thus equation (2.8) becomes 

              ∭ [
 

 
  {(

  

  
)

 

 (
  

  
)

 

 (
  

  
)

 

}]       
 

 
    (2.9) 

Equation (2.9) is for the Cartesian coordinate. 

For a small volume element dυ= (dx dy dz) and the expression (1/2 ε ∆2
V) within 

equation (2.9) represent the energy densities per unit volume in a given direction. 

In the case of two dimensions, it is assumed that potential distribution does not 

change in the z direction, thus total energy WA stored within area A can be given by 

equation (2.8) 

Vk Vj 

Vi 

Vl 

Vk 

Vi 

Vj 

Figure 2.4: Tetrahedral 
Figure 2.3: Triangular 
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   ∫
 

 

 

 

 (  )      

And from equation (2.9), in this case  

                                   ∬ [
  

 
 {(

  

  
)

 

 (
  

  
)

 

}]
 

 
                                     (2.10) 

where z is a constant. Inside each sub-domain, a linear dependency of V on x and y is 

assumed and gives rise to the first order approximation, 

                                  (   )                                                          (2.11) 

where V is the electrical potential of any arbitrary point inside each sub-domain, 

ae1,ae2,ae3, are the computational coefficient for a triangle element e. Thus equation 

(2.11) implies that within the element, the potential are linearly distributed and field 

intensity constant. 

In order to minimize the energy within the field region under consideration, only 

derivatives of the energies with respect to the potential distribution in each element 

are of particular interest. For the element under consideration, We is the energy 

enclosed within the element, then the energy per unit length denoted here by W∆e can 

be given as follows, 

                                               
 

 
   [(

  

  
)

 

 (
  

  
)

 

]                                     (2.12) 
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Symbol    represents the area of the discrete triangular element under consideration. 

If the total energy in the whole field of given element is denoted by W∆ , the relation 

for minimizing the energy within the entire can be given as 

                                                           
   

 [ ]
                                                        (2.13)  

where [V] is the total potential vector for all the nodes within a given system. 
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Chapter 3 

 3 ARTIFICIAL NEURAL NETWORK  

3.1 Introduction 

An artificial neural network is massively parallel system relying on dense 

management of interconnections and surprisingly, simple processors. Its simple 

processing units have the tendency of storing experimental data and make it available 

for us when required. In [16], it relates it behavior to that of human because of its 

ability to mimic the brain.  They are not programmed but learn by example [16]. It 

can also be described as a set of neurons connected in biologically arranged format in 

form of layers. Figure 3.1 depicts the structure of a feed-forward network. The 

neuron number in each of the layer is represented by Ni , In the i
th

 layer and the 

inputs served to these neurons are linked to the neurons in the preceding layer. The 

signal that excites system is received by the input layer. Each neuron has a weight 

attached to it and the training of artificial neural network practically deals with 

adjustment of this weights. The learning of this network relies on the input given to 

it, thus sets of data tagged as training data is needed for its training. 
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In Figure 3.1, the inputs to the network are a1,a2…..aN0. Owing to its high level 

performance in pattern recognition, artificial neural network are deployed to use in 

different fields including signal processing. Despite its wide applications, some draw 

backs still exist in it. Out of these draw backs is the lack of a guiding principle in 

choosing the actual number of neurons needed for each hidden layer, though this 

could be linked to the reason why it can easily generalize. A very important feature 

also of this neural network is its parallel computing character. This makes it able to 

produce an output corresponding to its input even though the network had no prior 

knowledge of it during training.  The basic algorithm is the back-error-propagation 

algorithm in which weights of the neuron are altered in iterative steps to limit the 

error between the measured and desired output. Such a process is termed „supervised 

learning‟. 

 

Output 

aN0 

a2 

a1 

Input layer Hidden Layer Output Layer 

Figure 3.1: A three layer ANN feedforward architecture 
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3.2 The neuron model 

A neuron can be expressed as a function that computes the output in relation to the 

input. The main idea of this model is the activation function being adopted. Figure 

3.2 shows the basic model of a neuron. 

  

X 

 

 

                ( )   (∑    
 
      )                                                          (3.1)   

Where y is the output of the neuron,  ( ) is the activation function of the neuron,   

is the summation output signal  

                                              W
T
X                                                                        (3.2) 

and  

          W=〔w0,w1…..wjn〕, A =〔  0,X1,…Xn  
                                                                           (3.3)       

 

The change weight ∆wji, weight of a connection between neurons i and j is given as 

                                    η                                                                                 (3.4) 

Where; 

η :  Learning rate 

δj :   Change rate and depends on if neuron j is an output or hidden neuron 

yj 

Output 

Activation function 

wjn 

wji 

wj1 

wj0 

+ 
𝛗 

f(𝛗) 

X0 

X1 

Xj 

Xn 

Inputs 

Figure 3.2: Basic Neuron Model 
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For output neuron; 

                                              (        )(      )                                                     ( 3.5) 

and for hidden neurons;  

                                       (         )(∑       )                                              (3.6)                                          

where; 

netj : Total weighted sum of input signals to neurons j 

yjt : Target output for neuron j 

δq : change rate for hidden neuron  

In-order to speed up the training process, momentum constant ( ) is added and the 

equation given as 

                                        (   )  η            ( )                                                  (3.7) 

Where; 

    (   ) : weight change in epochs (I+1) 

      ( )    : weight change in epoch (I) 

The activation function decides what power the output from the neuron would be 

depending on the sum of its inputs. Different activation functions are known and its 

application depends on its use. The function could be Linear, hyperbolic tangent 

sigmoid, logistic sigmoid or Gaussian RBF.  This difference is as shown, 

 

 Linear  

                                    F(x) = x                                             

 Hyperbolic Tangent sigmoid 

                        F(x) =  
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 Logistic sigmoid 

                         F(x) =  
 

      

 Gaussian RBF 

                         𝛗j(x) =    ( 
 

   
   ‖    ‖

 
) 

Depending on the interconnection of the neurons in a model, neural networks can be 

broadly divided into two main types. They are the feed-forward and the recurrent or 

feedback network. For the feedback network, circlets exist in the network 

connection, thus there is a feedback into the network along with its inputs. Owing to 

the simple nature and a well analyzed algorithm, the feed forward network is mostly 

used and has also been applied in this thesis work. 

3.3 Feedforward Networks 

These are the simplest types of network. It is devoid of loops or feedback 

connections thus its information travel in a unidirectional form. In the family of 

feedforward network, the most commonly applied is the layered network were 

neurons are structured into layers with its links emanating precisely from one 

direction from one layer to the next. 

3.4 Learning Method 

The main idea behind neural network successful application in various fields is to 

know the weight to realize the desired target and that process is described as training 

or learning. Two different learning methods are often been used; supervised learning 

and the unsupervised learning. Supervised learning modifies the weight with the 

objective of minimizing the errors between the given input set and target set [17]. 

Thus, in this mode, the input data and the corresponding target that should exit from 
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the network are known. Hence neural network is aware of both the inputs and target 

values. For the unsupervised learning, the data set used in training the data has only a 

known input value. Thus, it is pertinent to choose the right set of examples for 

training to achieve an efficient training. The Self-Organizing Map and the Adaptive 

Resonance Theory algorithm are the most commonly used unsupervised learning 

algorithms. The structure of the network determines the learning strategy to be used. 

For a feedforward network, the supervised learning strategy is adopted. It must be 

noted that the learning process aims at minimizing the error function.  

Most often, the activation constant used, is non-linear; thus minimization requires a 

nonlinear function to handle it, and this nonlinear function adopts the steepest-decent 

algorithm. From [18], the steepest decent is an addition to Laplace‟s method for 

integral approximation. In Levenberg-Marquardt algorithm back error propagation is 

used [18].   

3.3.1 The back-error propagation 

This is one of the easiest networks to understand. Learning and update procedure is 

intuitively appealing because it is based on a relatively simple concept; if the 

network gives the wrong answer, then the weights are corrected so that the error is 

lessoned as a result, future response of the network are more likely to be correct. The 

network is fully layered. Each of the layers is fully connected to the layers below and 

above. When the network is given an input, the updating of the activation value 

propagates forward from the input layer of processing units through each internal 

layer to the output layer of the processing unit and the output unit then provides the 

network response [19]. Once these internal parameters are corrected, the correction 

mechanism starts with the output units and propagates backward through each 



 

21 
 

internal layer to the input layer, hence the word „back-error-propagation‟. Figure 3.4 

shows the basic back-error-propagating processing unit.  

 

 

 

 

      

              

The inputs are at the left and output at the right which receive output from the 

processing unit at the center. The processing unit has a weighted sum (sj), an output 

value aj and an associated error value (𝜎j) applied during weight adjustment. It 

involves a forward propagating step followed by a backward propagating step. Both 

forward and backward are done for each pattern presentation during training. 

In each successive layer, every processing unit sums its input and then applies a 

sigmoid function     F(x) =   
 

       to compute its output. 

3.3.1.1 Forward propagation 

This gets initiated when an input pattern is presented to the network. Figure 3.5 

illustrates this forward propagation;  
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Figure 3.3: Back-error-propagating processing unit 
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Figure 3.4: Forward processing unit 

After setting the activation level for first layer of units, the other layer carries out a 

forward propagation step which decides the activation layer of other unit layers. 

Incoming connections to unit j are at the left and originates at unit below, not shown 

here. The outputs are summed up using  

                                       Sj=∑                                                                               (3.7) 

After Sj function [f] is used to compute Sj and f is the sigmoid function. 

3.3.1.2 Backward Propagation 

Here, the error values are calculated for all processing units and weight changes are 

calculated for all interconnections. It begins at the output layer and moves via the 

network to the input layer. The error value (𝜎) is used to compute for the output layer 

and is somewhat more complicated in the hidden layer [20] 

For instance, if unit j is in the output layer, 

              

     𝜎j= (tj-aj) f
′
(Sj)                                                                                        (3.8) 

Processing unit 

Sj =∑ajwji   output=F(Sj) 

wjn 

Wj2 

Wj1 

Wj0 

j 

an 

a2 

a1 

a0 
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where;  

tj =  target value for unit j 

aj = output value for unit j 

f
′
(x) = derivative of sigmoid function f  

Sj = weighted sum of input to j 

(tj-aj) = amount of error 

Figure 3.6 shows the processing unit in a hidden layer. 
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 Figure 3.5: Processing unit in hidden layer 
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Chapter 4 

4 METHODOLOGY 

4.1 Insulator contour optimization 

The electrical field distribution and the tangential stress on the surface of an 

electrode and insulator should be uniformly distributed in order to reduce the effect 

of flashover, partial discharge and even puncture. The main objective of the 

optimization process is to ensure uniform and minimal electric filed stress on the 

surface of the insulator. 

Partial discharge usually starts from areas with uneven distribution and gradually 

proceeds to areas evenly distributed. Continuous discharge could lead to a puncture 

of the insulating media and may lead to a breakdown of the entire system. The shape 

of the insulator used in high voltage transmission should be taking into cognizance as 

it is one of the main determining factors influencing electric field distribution [21], 

thus to have an insulator with minimal electric field and uniformly distributed stress, 

its surface geometry must be smoothened as possible. For instance, the widely used 

commercial pin insulator is seen to have irregular surface especially along its shed. 

This irregular surface increases the electric field stress in concentrated parts of its 

geometry. 

For improved efficiency, increased life span of power system, the insulator employed 

must be well optimized. In this study, a commercial pin insulator used for high 

voltage transmission is optimized using neural network. The network is trained with 
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the geometry and electric field obtained from its surface and the contour of the 

insulator found optimal and thus obtaining an even electric field distribution. 

4.2 Data collection methods 

Various techniques are deployed when collecting data. These techniques are grouped 

into six types [22]. These include Interviews, questionnaires and surveys, 

observation, focus groups, ethnographies, documents and records. For the purpose of 

this research work, the observation method was applied. The observation method, 

allows one to study the dynamic of the situation under view, frequency counts of 

target behavior and acts as a good source of providing qualitative and quantitative 

data. 

4.2.1 Data collection using Observation method 

For this research work, a 2D axisymmetric pin insulator as shown in Figure 4.1 is 

used. R1, R2, R3, and R4 are varied at different times in order to obtain different 

insulator profiles. In the first case, the R1 curvature was varied from a radius of 1.0 

cm to 1.5 cm at a step of 0.01 cm while R2, R3, R4 held constant at a value of 0.5 cm. 

This generated 51 different patterns. On the other case, R1 held constant at a value of 

1.5cm while varying R2, R3 and R4 from a radius of 0.5 cm to 1.5 cm at a step of 0.02 

cm. This also yields another 51 patterns of the geometry. In total, 102 patterns are 

obtained. The height (H) of the insulator kept fixed at 18.9 cm and R5 kept fixed at 

0.5cm. 
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Then, the finite element method is applied to calculate electric field intensities with 

help of the finite element software „COMSOL‟. This first discretize the domain into 

a finite number of elements in the form of mesh, Figure 4.1. The live conductor with 

a voltage of 1kV is supported at R5. This applies the electric field experienced on the 

insulator. Relative permittivity of the insulator taken to be 5 since a porcelain 

material is used and that of the surrounding environment placed at 1 (relative 

permittivity of air). Part of the insulator that is connected to the tower is grounded. 

The mesh is physics controlled and an element size of finer (simple tiny triangular 

nodes) adopted in order to have a more accurate result. It is pertinent to note that, the 

smaller the mesh sizes, the more accurate the results are likely to be. The 

equipotential distribution of the insulator is shown in Figure 4.2. 

Finally, the maximum line electric field along the tangential component of the 

insulator contour, its surface average and the surface maximum are collected. 

Figure 4.1: 2D view of the pin insulator 
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H 

R4 

R3 

R2 

R1 
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                 Figure 4.2: Triangular meshing 

 
                       Figure 4.3: Surface Electric Potential 
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 Figure 4.4: 3D view of the surface electric potential 

At the end of this process, the inputs and target parameters required for the neural 

network training and testing are obtained. Its input are the different electric field 

collected (maximum line electric field, maximum surface electric field and the 

surface average electric field) and the target are the geometrical coordinates (R1, R2, 

R3 and R4). 

4.3 Designing the Artificial Neural Network 

4.3.1 Data Normalization 

After the data has been collected using the observation method by applying the finite 

element method with the help of COMSOL, as described in 4.2, the data are imputed 

into the neural network. In the network, the data is first normalized since it has 

varying ranges in its data.  Tymvios et al. [23] „states that mixing variables with large 

magnitude and small magnitude confuses the learning algorithm and could force it 

rejecting the variable with lesser magnitude.  
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 4.3.2 Network building 

The multilayer perceptron network is used for this research work. The training 

algorithm selected for this work is the Levenberg-Marquardt. Number of inputs 

specified to be three while its output specified four, other network parameters used 

includes; one hidden layer and the number of neurons ten. The epoch which is 

otherwise described as the training cycle is fixed at 1000, built in transfer function 

provided by Matlab used for this work is the logistic sigmoid.  

 
 ( )  

 

     
 

(4.1) 

4.3.2.1 Learning rate (η) 

Success and conjunction of the algorithm depends largely on this parameter. It is 

recommended that a small value of learning rate be used.  It must be noted that every 

system has its own learning rate. 

4.3.2.2 Momentum constant (𝝁) 

This helps in preventing the system from converging to a local minimum. It‟s also 

useful in helping to speed up the system convergence. 

4.3.2.3 Hidden neurons 

They are neither in the output nor input layers. In fact, they are hidden from view. 

The number of neurons in a system affects the complexity of the algorithm and 

processing power. High number of neurons increases the complexity of the algorithm 

but increases its processing power. Very few numbers of hidden neurons leads to the 

system taking longer training period [24]. 

4.3.3 Network training  

In this process, the neural networks learn from the inputs and update itself 

accordingly with reference to varying weight. Thus sets of data are required for this 

feat. The data imputed into the network has both an input and a target, thus the 
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network has an idea of what the output looks like. Slowly, the network learns from 

the data imputed and gradually develops the ability to generalize and eventually 

produce an output when new data are introduced. 

For the training of this network, the normalized data is used. The electric field is 

specified as its input data while the different curvature radii are taking as its target. 

The leaning rate (η) and the momentum (𝝁) constant is varied between 0.1 and 0.9. 

For instance, at lr= 0.1, mu varied from 0.9 to 0.1 at a step of 0.1. This process is 

repeated for values of lr from 0.1 through 0.9 at steps of 0.1 as well. Different 

numbers of neurons have been considered as well. 

4.3.4   Network Testing 

Having finished training the network, the next step is testing. Testing helps check the 

generalization performance for the network. Various ways are employed in testing 

the network. In this work, a statistical method is applied to quantitatively analyze the 

system, and to ascertain the error in both training and testing. These are the root 

mean square error (RMSE) and the maximum absolute error (MAE). The MAE is a 

measure of the average magnitude of errors in a set of forecast and it is a linear score; 

meaning all individual differences is weighted equally on the average. The RMSE is 

used when large errors are undesirable and usually higher than the MAE or equal. 

When RMSE equals MAE, it means all errors are of same magnitude. RMSE 

represent the error in training while the MAE represents error for testing. Equation 

(4.2) and (4.3) shows the formula for both RMSE and MAE respectively. 
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Where, tPK = measured value, OPK = Network predicted value, MN= number of test 

cases. 

  

The flow chat for developing the MLP network in Matlab is shown in figure 4.5 
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Figure 4.5: Flow chart for the MLP 
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Chapter 5 

5 RESULTS AND DISCUSSION 

The flow chart of Figure 4.5 with respect to the methodology shows the different 

steps taking in training the network. This training is implemented using the Matlab 

software. The mean absolute error (MAE) for testing and the root mean square error 

for training are obtained respectively using different learning rate, momentum 

constant and different number of neurons. Though both RMSE and MAE are used 

for the error correlation in the network, for the purpose of this optimization process, 

more attention is paid to the MAE of the test cases. 

5.1 Effect of momentum constant (𝝁) 

The momentum constant helps to prevent the network from converging at a local 

minimum. It is varied from 0.1 through 0.9 at step of 0.1. The result obtained is 

shown in Table 5.1 and Figure 5.1. 
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Table 5.1: MAE and RMSE for varied momentum constant (𝝁). 

  effect of the momentum constant 

  train test 

 η=0,1 RMSE MAE RMSE MAE 

𝝁 0.9 0.4514 0.3248 12.9015 5.8202 

0.8 0.4365 0.4360 5.2112 2.8424 

0.7 0.3224 0.2145 5.1007 2.1415 

0.6 0.2077 0.3221 3.0842 1.7474 

0.5 0.3802 0.2881 15.6999 6.5079 

0.4 0.6579 0.6744 22.2838 8.9187 

0.3 0.2146 0.1919 7.2824 2.9224 

0.2 0.3962 0.2238 2.9476 1.8938 

0.1 0.2931 0.2466 6.2718 2.1629 

 

From Figure 5.1 and table 5.1, it is observed that the MAE and RMSE have its 

lowest value at a momentum constant of 0.6. This indicates that this momentum 

constant has the optimum accuracy since it has the lowest values.  It is also seen that 

there is closeness between the MAE and the RMSE at 0.6 which indicates the 

closeness of variance in the errors. Therefore, 0.6 is chosen. 
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Figure 5.1: MAE and RMSE for varied momentum constant (𝝁) 
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5.2 Effect of learning rate (η) 

The learning rate is varied between 0.1 through 0.9 at a step of 0.1. The results of the 

MAE and RMSE obtained are shown in Table 5.2 and Figure 5.2  

Table 5.2: MAE and RMSE for varied learning rate 

  effect of the learning rate  

  train test 

 𝝁=0.1 rmse mae rmse mae 

η 0.1 0.2931 0.2466 6.2718 2.1629 

0.2 0.3110 0.2888 10.7189 3.5105 

0.3 0.3889 0.2341 13.2886 3.2434 

0.4 0.2333 0.1251 2.7754 2.1086 

0.5 0.3114 0.2273 3.4510 2.8979 

0.6 0.5581 0.3488 3.7674 2.7979 

0.7 0.3060 0.2151 2.6179 2.7270 

0.8 0.4952 0.3610 12.5855 6.7775 

0.9 0.4852 0.304 8.0596 2.62 
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Figure 5.2: MAE and RMSE for varied learning rate (η) 
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With the varying learning rate, Table 5.2 and Figure 5.2 show the best value at 0.4 

since it has the least error rate. Thus the optimized value required lies within the 

learning rate value and is chosen. 

5.3 Effect of number of neurons in hidden layer 

Different numbers of neurons are considered to know the best value that produces the 

least error in the network. Table 5.3 shows the different neurons used and the 

corresponding MAE and RMSE obtained.  

Table 5.3: MAE and RMSE for varied number of neurons 

  effect of the number of neurons in hidden layer 

  train test  

# of 

neurons 

in 

hidden 

layer 

 rmse  mae rmse mae  

8 0.3514 0.3121 10.5450 4.6147  

9 0.2873 0.1193 3.5644 2.0450  

10 0.2387 0.3028 2.1810 1.0911  

11 0.2547 0.1556 3.7983 1.8424  

12 0.3309 0.2236 10.2201 2.7621  

13 0.2960 0.1417 16.3997 9.4015  

14 0.2686 0.1656 9.4162 4.0194  

15 0.2531 0.1815 5.4975 3.2461  

16 0.2355 0.1535 12.5766 4.6775  

 

From Table 5.3, it is seen that MAE and RMSE has the least values when 10 neurons 

are used in the network. Therefore, this is chosen as the best value for the optimum 

prediction. Figure 5.3 further shows a graphical picture of this value. 
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In order to obtain the best performance for the contour prediction, the optimum 

values for some variables are used. This variable are 0.1 for learning rate, momentum 

constant 0.6, number of neurons 10, iterations 1000. These values are obtained from 

the best performance of the MAE and RMSE. This results in the optimum geometry 

of the insulator. The performance of the network is shown in the Figure 5.4 by 

calculating the mean-squared error at each iteration. 

Figure 5.4: Network performance 

From Figure 5.4, mean squared error goal set at 0.00001 is achieved at 1000 

iterations. This further affirms the network performance. 
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Figure 5.3:MAE and RMSE for varied number of neurons 
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The optimum contour for the insulator has been determined by using the field 

distribution. The most uniform and minimum field values are fed to the network to 

get the optimum geometry. The results for R1, R2, R3 and R4 are 1.51 cm, 0.4448 cm, 

0.4448 cm, and 0.4448 cm respectively. Its electric potential and the arrow surface 

electric field distribution of the optimized insulator is shown in Figure 5.5. 

                            

Finally, maximum line electric field along the vertical (z) component of the insulator 

surface is computed and compared with values of the commercial one and the result 

is shown in Figure 5.7 and Figure 5.9 respectively. The electric field distribution of 

both the optimized and commercial insulators is shown in Figure 5.6 and Figure 5.8 

respectively. 

 

 

 

 

 

 

 

      

                           Figure 5.5: Electric potential and Arrow Surface of Electric field 
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             Figure 5.6: 2D Electric field for the optimized insulator 

 
Figure 5.7: Maximum Line component of the Optimized insulator 
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           Figure 5.8: 2D Electric field for the commercial insulator 

 
Figure 5.9: Maximum line component of the commercial insulator 

From the figures, it is seen that the optimized insulator showed a better performance 

as compared with the commonly used commercial insulators. This is obvious with 

Figure 5.9 having higher electric field of about 4500V/m as against Figure 5.7 with 

4000V/m.



 

41 
 

   
Chapter 6 

6 CONCLUSION AND FUTURE WORK 

6.1 Conclusion  

For an efficient and reliable power delivery system, it is of great importance that the 

insulator employed in the network is well optimized so as to have a minimum but 

uniformly distributed electric field and tangential stress across it while trying to 

obtain optimum geometry. In this work, the Artificial Neural Network has been 

successfully used to optimize the contour geometry of a porcelain pin insulator. With 

the help of Levenberg-Marquardt learning algorithm, an optimized form of the 

insulator is achieved. The optimized insulator is compared with the commercial 

insulators readily used in high voltage transmission and is found to have a better 

performance as it relates to the desired field distribution. Finally with the help of 

neural network, a pin insulator is optimized producing an MAE of less than 2% 

which can be considered as negligible. 

 6.2 Future Work 

For this work, the porcelain pin insulator that is optimized is the ones deployed for 

high voltage transmission of up to 1 kV. This same model can also be applied to the 

different types of pin insulators; the material type can be included in the model to 

enable generalization of the model. In order to increase the network accuracy, dataset 

should be extended. Different learning algorithms and different network topologies 

can be applied during training process to investigate their effect on accuracy. 
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