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ABSTRACT

In this thesis, we define the q-Bernoulli numbers and polynomials, q-Euler numbers

and polynomials, q-Frobenius-Euler numbers and polynomials and q-Genocchi numbers

and polynomials of higher order in two variables x and y, by using two q-exponential

functions. We also prove some properties and relationships of these polynomials and

q-analogue of the Srivastava and Pinter addition theorem. Furthermore, we represent

the figures of the q-Bernoulli, q-Euler and q-Genocchi numbers and polynomials. We

find the solutions of these q-polynomials, for n ∈ N, x and q ∈ C by using a computer

package Mathematica R⃝software. Finally, we discuss the reflection symmetries of these

q-polynomials.

Keywords: q-analogues of Bernoulli - Euler - Genocchi - Frobenius-Euler numbers and

Polynomials, Srivastava Pinter addition Theorems, shapes and roots of q-polynomials
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ÖZ

Bu tezde, iki q-üstel fonksiyonlarını kullanarak q-Bernoulli, q-Euler, q-Frobenius-Euler

ve q-Genocchisayıları ve polinomlari iki değişken x ve y yüksek düzenin polinomları

tanımlanır ve bu polinomların bazı özellikleri, ilişkileri ve Srivastava-Pinter ilave teo-

remin q-analogu kanıtlanır. Ayrıca bilgisayar kullanarak q-Bernoulli, q-Euler ve q-

Genocchi numaralarının şekilleri keşfedilir ve indeks n değerleri için q-Bernoulli, q-

Euler ve q-Genocchi polinomların köklerinin yapısı tarif edilir.

Anahtar Kelimeler: Genelleştirilmiş Bernoulli-Euler- Genocchi -Frobenius-Euler sayıları

ve Polinomları ve Srivastava - Pinter ilave teoremi, q-polinomlarının kökleri ve grafikleri
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Chapter 1

INTRODUCTION

In mathematics, the Bernoulli numbers Bn and polynomials Bn(x), Euler numbers En

and polynomials En(x) and Genocchi numbers Gn and polynomials Gn(x) are impor-

tant topics in number theory, analysis and differential topology and have applications in

statistics, combinatorics, numerical analysis and so on.

In the 17th century, mathematician studied to find out a formula for the sum of the first

n natural numbers with k-th powers, where k is a positive integer:

S k(n) = 1k +2k +3k + . . .+nk

The Swiss mathematician Jakob Bernoulli (1654-1705) would solve this problem with

the following equality:

1k +2k +3k + . . .+ (n−1)k = k!

n∫
0

Bk(x)dx

where Bk(x) is the Bernoulli polynomials. Jakob Bernoulli discovered the Bernoulli

numbers, Bn, famous work "Ars conjectandi" published in 1713 in related with sums

of powers of consecutive integers. Independently, Japanese mathamatician Seki Kőwa

studied with Bernoulli numbers, Bn, in his posthumous work "Kutsoyo Sampo" pub-

lished in 1712. Lady Ada Lovelace (1815-1852) wrote the first computer program in the
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world to investigate the Bernoulli numbers. Then, G.-S. Cheon in [6] and H.M. Srivas-

tava, Á. Pintér in [11] studied on the Bernoulli and Euler polynomials their properties

and relationships.

Over 7 decades ago, Carlitz studied on q-analogues of the ordinary Bernoulli numbers

Bn and polynomials Bn(x) and introduced the q-Bernoulli numbers and polynomials

(see [3], [4] and [5]). Then, many other mathematicians studied with q-analogues of

Bernoulli numbers and polynomials and introduced new definitions of Bn and Bn(x)

such as Simsek ([33], [34] and [35]), Cenki et al. ([13], [14], [15]), Choi et al. ([16] and

[17]), Srivastava et al. [36], Ryoo et al. [32], Luo and Srivastava [12], Ozden and Simsek

[29]. N.I.Mahmudov in [28],[44],[45],[56],[57] introduced new generating functions to

define q analogues of Bn(x) and Bn, Euler polynomials En(x), numbers En and Genocchi

polynomials Gn(x) and numbers Gn and Frobenious-Euler numbers and polynomials. In

[20]-[27] Kim et al introduced a new notion for the q-Genocchi numbers and polyno-

mials, studied on basic properties and gaves relationships of the q-analogues of Euler

and Genocchi polynomials. Many other authors studied on this subject such as : Cenkci

et al [14], Luo and Srivastava [8], [9], [12], Simsek et al [37], Cheon [6], Srivastava et

al. [11], Nalci and Pashaev [49], Gabaury and Kurt B. [41], Kurt V. [46], Araci et al.

[51]. D.S. Kim, T. Kim, and J Seo [60] studied on the new q-extension of Frobenious-

Euler numbers and polynomials, also D.S. Kim and T. Kim[62], studied on higher order

Frobenious-Euler numbers and polynomials-Bernoulli mixed type polynomials.

In recent years, Woon [58], Veselov and Ward [59] investigated the real and complex

roots of Bernoulli polynomials There are a lot of studies on investigated roots of q-
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numbers and polynomials, see [63], [64], [65], [67], [56], [57]. By using these numerical

results we can understand the structure of these q-numbers and q-polynomials, examine

the properties, give relationships and make some comparisons between them.

In this thesis, we give new definitions for the higher order q-numbers and polynomials

in two variables x and y, by using two q-exponential functions (see [2])

eq(z) =
∞∑

n=0

zn

[n]q!
=

∞∏
k=0

1
(1− (1−q)qkz)

, 0 < |q| < 1, |z| < 1
|1−q| , (1.1)

Eq(z) =
∞∑

n=0

q
1
2 n(n−1)zn

[n]q!
=

∞∏
k=0

(1+ (1−q)qkz), 0 < |q| < 1, z ∈ C, (1.2)

From this form we get eq (z) Eq (−z) = 1. Then, we have

Dqeq (z) = eq (z) ,

DqEq (z) = Eq (qz) ,

where Dq is the q-derivative and defined by

Dq f (z) :=
f (qz)− f (z)

qz− z
.

Two q-exponential functions (1.1) and (1.2) help us easily to prove some properties

of these q-polynomials and q-analogue of the Srivastava and Pinter addition theorem.

Moreover we investigate the shapes of the q- numbers and polynomials. We define the

structure of the real and complex roots of the q- polynomials for values of the n, q and

x ∈ C where n is the degree of these polynomials by using a computer package Mathe-
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matica .

This thesis consist of four chapters and is organized as follows:

In chapter 2, we give some fundamental definitions and some properties of Bernoulli

numbers Bn and polynomials Bn(x), Euler numbers En and polynomials En(x) and Genoc-

chi numbers Gn and polynomials Gn(x). We discuss relationships of Bn(x) and En(x).

The classical Bernoulli numbers Bn and Bernoulli polynomials Bn(x) are defined in [45]

by the generating functions given as follows:

t
et −1

=

∞∑
n=0

Bn
tn

n!
, |t| < 2π

( t
et −1

)
etx =

∞∑
n=0

Bn(x)
tn

n!
, |t| < 2π

the rational numbers Bn, are Bernoulli numbers for n ∈ N0. The classical Euler numbers

En and polynomials En(x) are defined in [45] by means of generating function as follows:

2
et +1

=

∞∑
n=0

En
tn

n!
, |t| < π

(
2

et +1

)
etx =

∞∑
n=0

En(x)
tn

n!
, |t| < π

The classical Genocchi numbers Gn and polynomials Gn(x) are defined in [28] by means

of generating functions:

2t
et +1

=

∞∑
n=0

Gn
tn

n!
, |t| < π

(
2t

et +1

)
etx =

∞∑
n=0

Gn(x)
tn

n!
, |t| < π

4



In this chapter, we also give few values of Bernoulli numbers Bn and polynomials Bn(x),

Euler numbers En and polynomials En(x) and Genocchi numbers Gn and polynomials

Gn(x).

In chapter 3, we give some basic definitions and elementary properties related to q-

integers. We always make use of quantum concepts as follows: for more details see [1].

The q-shifted factorial is defined by

(a;q)0 = 1, (a;q)n =

n−1∏
j=0

(
1−q ja

)
, n ∈ N,

(a;q)∞ =

∞∏
j=0

(
1−q ja

)
, |q| < 1, a ∈ C.

The q-numbers and q-numbers factorial is defined by

[a]q =
1−qa

1−q
(q , 1) ;

[0]q! = 1; [n]q! = [1]q [2]q . . . [n]q n ∈ N, a ∈ C

respectively. The q-polynomial coefficient is defined by

[
n
k

]
q
=

(q;q)n

(q;q)n−k (q;q)k
, k ≤ n, n ∈ N.

N. I. Mahmudov define the (w,q)−Bernoulli numbers and polynomials in [56] as follows

t
weq (t)−1

=

∞∑
n=0

B
(w)
n,q

tn

[n]q!
, |t| < 2π,

t
weq (t)−1

eq (tx)eq (ty) =
∞∑

n=0

B
(w)
n,q (x,y)

tn

[n]q!
|t| < 2π.

5



where q ∈ C,and 0 < |q| < 1. The (w,q)−Euler numbers and polynomials is defined in

[56] as follows:

2
weq (t)+1

=

∞∑
n=0

E
(w)
n,q

tn

[n]q!
, |t| < π,

2
weq (t)+1

eq (tx)eq (ty) =
∞∑

n=0

E
(w)
n,q (x,y)

tn

[n]q!
, |t| < π.

We also study on relationships between the (w,q)−Bernoulli polynomials and (w,q)−Euler

polynomials. Then we discuss some elementary properties and get new formulas which

are extensions of the formulas studied by other authors like Cheon, Srivastava and Pin-

ter, and so on. (see [6], [11]). Furthermore, we explore the shapes of the q-Bernoulli

and q-Euler numbers and polynomials. We describe the structure of the roots of the q-

Bernoulli and q-Euler polynomials for values of the n, q and x ∈ C where n is the degree

of polynomials by using a computer. In this chapter, we also give the definition of higher

order Frobenius-Euler numbers and polynomials Hα,λn,q (x) and we investigate some ele-

mentary properties of these polynomials (see [57]).

In chapter 4, we define the q-Bernoulli numbersBn,q and q-Bernoulli polynomialsBn,q (x,y)

in x,y by means of the generating functions in [57] as follows:

(
t

eq (t)−1

)
=

∞∑
n=0

Bn,q
tn

[n]q!
, |t| < 2π,

(
t

eq (t)−1

)
eq (tx)eq (ty) =

∞∑
n=0

Bn,q (x,y)
tn

[n]q!
, |t| < 2π.
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We also define the q-Genocchi numbers Gn,q and q-Genocchi polynomials Gn,q (x,y) in

x,y by means of the generating functionsin [57] as follows:

(
2t

eq (t)+1

)
=

∞∑
n=0

Gn,q
tn

[n]q!
, |t| < π,

(
2t

eq (t)+1

)
eq (tx)eq (ty) =

∞∑
n=0

Gn,q (x,y)
tn

[n]q!
, |t| < π.

where q ∈C, and 0< |q|< 1.We give some elementary properties of the q−genocchi poly-

nomials Gn,q (x,y) . Also, we prove an interesting relationship between the q-Genocchi

and the q-Bernoulli polynomials. Then, we obtain q-analogous of some properties.

Moreover, we display the shapes of the q-Genocchi numbers and polynomials. Then

we investigate the roots of the q-Genocchi polynomials for values of the n, q and x ∈ C

where n is the degree of these polynomials by using a computer package Matematica.

Throughout this thesis, we always make use the following notations and symbols:

• – Bernoulli numbers: Bn

– Bernoulli polynomials: Bn(x)

– Euler numbers : En

– Euler polynomials: En(x)

– Genocchi numbers: Gn

– Genocchi polynomials: Gn(x)

– q-Bernoulli numbers : Bn,q

– q-Bernoulli polynomials in x,y : Bn,q (x,y)

7



– (w,q)−Bernoulli numbers of order w : B(w)
n,q

– (w,q)−Bernoulli polynomials of order w in x,y :B(w)
n,q (x,y)

– (w,q)−Euler numbers of order w : E(w)
n,q

– (w,q)−Euler polynomials of order w in x,y : E(w)
n,q (x,y)

– q-Genocchi numbers: Gn,q

– q-Genocchi polynomials in x,y : Gn,q (x,y)

– Higher order, Frobenius-Euler numbers: Hα,λn,q

– Higher order Frobenius-Euler polynomials Hα,λn,q (x)

8



Chapter 2

BERNOULLI, EULER AND GENOCCHI NUMBERS AND

POLYNOMIALS

In this chapter, we mention about fundamental definitions and some elementary proper-

ties of Bn, Bn(x), En, En(x),Gn and Gn(x). For more details of this topics see [1], [6] and

[11].

2.1 Bernoulli Numbers

A sequence of rational numbers called Bn plays an important role in mathematıcs for

instance in number theory, analysis and differential topology. The Bernoulli numbers, Bn

have relationships with the Euler numbers En, Genocchi numbers Gn , Stirling numbers

and the tangent numbers. The first few values of Bn ’s are given below:

B0 = 1, B1 = −
1
2
, B2 =

1
6
, B3 = 0, B4 = −

1
30
, B5 = 0,

B6 =
1

42
, B7 = 0, B8 = −

1
30
, · · ·

Some authors used B1 = +
1
2 and this sequence is called the second Bernoulli numbers

where B1 = −1
2 is called the first Bernoulli numbers.

And some called even-index Bernoulli numbers since Bn = 0 for all odd index n where

n > 1 and denoted by Bn instead B2n.

Definition 1 [1] To find a formula for the sum of the first n natural numbers with r-th

9



powers, where r is a positive integer is called the power sum problem

S r(n) =
n∑

k=1

kr = 1r +2r + . . .+nr (2.1)

For small values of r one can easily derive the formulas for example

for r = 1 we get

S 1(n) =
n∑

k=1

k1 = 1+2+ . . .+n =
n(n+1)

2

for r = 2 we have

S 2(n) =
n∑

k=1

k2 = 12+22+ . . .+n2 =
n(n+1)(2n+1)

6

for r = 3 we have

S 3(n) =
n∑

k=1

k3 = 13+23+ . . .+n3 =

[
n(n+1)

2

]2

The coefficients of the sum formula (2.1) are related to the Bn by Bernoulli’s formula:

S r(n) =
1

r+1

r∑
k=0

(
r+1

k

)
Bknr+1−k (2.2)

where Bk is Bernoulli numbers and B1 = +
1
2 is used.

For B1 = −1
2 , Bernoulli’s formula is stated as

S r(n) =
1

r+1

r∑
k=0

(−1)k
(
r+1

k

)
Bknr+1−k (2.3)

10



According to above sum formula (2.2) we can get some known number sets for example,

for r = 0 and B0 = 1 we get N = {0,1,2,3, . . .}.

0+1+1+ ...+1 =
1
1

(B0.n) = n

for r = 1 and B1 =
1
2 we get {0,1,3,6, . . .which are called the triangular numbers .

0+1+2+ ...+n =
1
2

(B0.n2+2B1.n) =
1
2

(n2+n)

for r = 2 and B2 =
1
6 we get {0,1,5,14, . . .} which are called the pyramidal numbers .

0+12+22+ ...+n2 =
1
3

(B0.n3+3B1.n2+3B2.n)

=
1
3

(n3+
3
2

n2+
1
2

n)

Bernoulli numbers, Bn,can be introduced by using different characterizations Three of

them are given as follows:

1. a generating function

2. a recursive equation

3. an explicit formula

Definition 2 [1] (Generating function) The Bernoulli numbers are defined by the gener-

ating functions:

t
et −1

=

∞∑
n=0

Bn
tn

n!
, |t| < 2π.

11



Here the rational numbers Bn, are called Bernoulli numbers for n ∈ N. In this equation

we replace Bn by Bn (n ≥ 0) symbolically.

Since t
et−1 has simple poles at t =±2πni, n= 1,2, . . . , the expansion converges for |t|< 2π.

In definition (2) let t approaches to 0 then we get B0 = 1.

Next we have

t
2
+

t
et −1

=
t
2

et +1
et −1

=
t
2

coth
t
2

is an even function of t.So in its power series expansion about t = 0 the odd order coeffi-

cients after n = 1 are zero.

B1 = −
1
2

B2n+1 = 0, n ∈ N0.

Now, we obtain a reccurrence formula to compute of the Bernoulli numbers

t
et −1

et = t+
t

et −1

then, we have

∞∑
n=0

Bn
tn

n!

∞∑
n=0

tn

n!
= t+

∞∑
n=0

Bn
tn

n!

12



now, by applying Cauchy product we get

∞∑
n=0

n∑
k=0

Bk
tk

k!
tn−k

(n− k)!
= t+

∞∑
n=0

Bn
tn

n!

on both sides compare coefficients of tn for n > 1 we obtain

Bn

n!
=

n∑
k=0

Bk
1

k!(n− k)!
,

therefore we get

Bn =

n∑
k=0

(
n
k

)
Bk, n > 1.

This relation can be written symbolicaly as

Bn = (1+B)n, n > 1.

Definition 3 [1] (Recursive equation) The binomial recursion formula for Bn is given

for all n ∈ N

n∑
k=0

(
n
k

)
Bk −Bn =


1, n = 1

0, n > 1

For n = 1, we obtain the value of B0

1∑
k=0

(
1
k

)
Bk −B1 = 1,

B0+B1−B1 = 1,

B0 = 1.

13



For n = 2, we obtain the value of B1

2∑
k=0

(
2
k

)
Bk −B2 = 0,

B0+2B1+B2−B2 = 0,

B1 = −
1
2
.

Definition 4 [1] (Explicit formula) An explicit formula for Bernoulli numbers is given

by

Bn(x) =
n∑

k=0

k∑
j=0

(−1) j
(
k
j

)
(x+ j)n

k+1
.

For x = 0,we get the following form,

Bn =

n∑
k=0

k∑
j=0

(−1) j
(
k
j

)
jn

k+1
,

and for, x = 1, we get the following form

Bn =

n+1∑
k=1

k∑
j=1

(−1) j+1
(
k−1
j−1

)
jn

k
.

2.2 Bernoulli Polynomials

In mathematics, the Bernoulli polynomials Bn(x) arrise in many special functions like

Riemann zeta function,

ζ(s) =
1
1s +

1
2s +

1
3s + . . . =

∞∑
k=1

1
ks

14



and the Hurwitz zeta function

ζ(s,q) =
∞∑

n=1

1
(q+n)s .

For more details see ([1]).

Definition 5 [1] The Bernoulli polynomials Bn(x) are defined by the generating function

t
et −1

etx =

∞∑
n=0

Bn(x)
tn

n!

for each nonnegative integer n.

Definition 6 [1] The explicit formula for Bn(x) is given

Bn(x) =
n∑

k=0

(
n
k

)
Bkxn−k

for n ≥ 0 where Bk are the Bernoulli numbers.

Symbollically one can use

Bn(x) = (B+ x)n.

15



The first few Bn(x) for n ∈ N are listed below:

B0(x) = 1,

B1(x) = x− 1
2
,

B2(x) = x2− x+
1
6
,

B3(x) = x3− 3
2

x2+
1
2

x,

B4(x) = x4−2x3+ x2− 1
30

B5(x) = x5− 5
2

x4+
5
3

x3− 1
6

x.

2.2.1 Properties of Bernoulli Polynomials

For more details see [1]:

1. The Bernoulli polynomials at x = 0 are equal to Bernoulli numbers

Bn(0) = Bn.

2. If we differentiate the generating function with respect to x, we get the following

relation

B
′
n(x) = nBn−1(x).

3. The difference relation property is given below

△Bn(x) = Bn(x+1)−Bn(x) = nxn−1

where △ is the difference operator.

16



4. Bn(1− x) = (−1)nBn(x) for n ≥ 0.

2.3 Euler Numbers

A sequence of integers called Euler numbers, En, are defined by Taylor series expansion

given as follow:

∞∑
n=0

En
tn

n!
=

1
cosh t

=
2

et + e−t (2.4)

where cosh t is the hyperbolic cosine. Here we replace En by En (n ≥ 0) symbolically.

The equation (2.4) is equivalent to following identitiy

(E+1)n+ (E−1)n =


2 if n = 0

0 if n > 0
.

The values of the first few En are given below

E0 = 1, E1 = 0, E2 = −1, E3 = 0, E4 = 5, E5 = 0,

E6 = −61, E7 = 0, E8 = 1385, · · ·

For all n > 0, the En with odd indexed are all zero

E2n+1 = 0

and the even indexed ones have alternating signs.

17



2.4 Euler Polynomials

Definition 7 [1] The Euler polynomials En(x), is defined by the generating function:

2
et +1

etx =

∞∑
n=0

En(x)
tn

n!
,

where we replace En by En (n ≥ 0) symbolically.

Definition 8 [1] An explicit formula for the En(x) is given by

Em(x) =
m∑

n=0

1
2n

n∑
k=0

(−1)k
(
n
k

)
(x+ k)m.

Now, from the above equation we get En(x) in terms of the Ek as

En(x) =
n∑

k=0

(
n
k

)
Ek

2k (x− 1
2

)n−k.

The first few En(x) are listed below:

E0(x) = 1,

E1(x) = x− 1
2
,

E2(x) = x2− x,

E3(x) = x3− 3
2

x2+
1
4
,

E4(x) = x4−2x3+ x

E5(x) = x5− 5
2

x4+
5
2

x3− 1
2
.

18



2.4.1 Properties of Euler Polynomials

1. The En(x) at x = 0 are equal to Euler numbers

En(0) = En.

2. If we differentiate the generating function with respect to x, we get the following

relation

E
′
n(x) = nEn−1(x).

3.

△En(x) = En(x+1)+En(x) = 2xn

where △ is the difference operator.

4.

En(1− x) = (−1)nEn(x)

for n ≥ 0 .

2.5 Properties of Bernoulli and Euler polynomials

In recent years, Cheon [6] obtained the following results:
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1.

Bn(x+1) =
n∑

k=0

(
n
k

)
Bk(x) where n ∈ N0. (2.5)

2.

En(x+1) =
n∑

k=0

(
n
k

)
Ek(x) (2.6)

where n = 1,2,3, . . .

3.

Bn(x) =
n∑

k=0
k,1

(
n
k

)
BkEn−k(x) (2.7)

where n = 1,2,3, . . .

Here equations 2.5 and 2.6 are special cases of addition theorems given below:

En(x+ y) =
n∑

k=0

(
n
k

)
Ek(x)yn−k.

and equation 2.7 is equivalent to the following idetities

Bn(x) = 2−n
n∑

k=0

(
n
k

)
Bn−kEk(2x),

2nBn(
x
2

) =
n∑

k=0

(
n
k

)
BkEn−k(x).
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2.6 Genocchi Numbers and Polynomials

Definition 9 Genocchi numbers Gn are defined in [68] by means of the generating func-

tion:

2t
et +1

=

∞∑
n=0

Gn
tn

n!
, |t| < π,

where we replace Gn by Gn (n ≥ 0) symbolically.

The values of the first few Gn are listed below:

G1 = 1,G2 = −1,G3 = 0,G4 = −1,G5 = 0,G6 = −3,

G7 = 0,G8 = 17,G9 = 0,G10 = −155,

G11 = 0,G12 = 2073, · · ·

The odd indexed of Gn for n > 1 is zero

G2n+1 = 0

and even ones have the following relationships with Bn and En

Gn = 2(1−22n)B2n = 2nE2n−1.

Definition 10 In [68] Ryoo, C.S. define the Genocchi polynomials for x ∈ R, as follows:

2t
et +1

ext =

∞∑
n=0

Gn(x)
tn

n!
, |t| < π.
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Also, the following recurrence relation is given

Gn(x) =
n∑

k=0

(
n
k

)
Gkxn−k.

where Gk is Genocchi numbers. For x = 0, we obtain Gn(0) =Gn.

The first few Genocchi polynomials are listed below:

G1(x) = 1,

G2(x) = 2x−1,

G3(x) = 3x2−3x,

G4(x) = 4x3−6x2+1,

G5(x) = 5x4−10x3+5x,

G6(x) = 6x5−15x4+15x2−3,

G7(x) = 7x6−21x5+35x3−21x, · · ·
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Chapter 3

THE q-ANALOGUES OF BERNOULLI AND EULER

POLYNOMIALS

The main aim of this chapter is to give new definitions of two dimensional (w,q)-

Bernoulli and (w,q)-Euler numbers and polynomials by using generating functions and

study on relationships between the (w,q)−Bernoulli polynomials and (w,q)-Euler poly-

nomials. We also discuss some elementary properties and get new formulas which are

extensions of the formulas studied by other authors like Cheon, Srivastava and Pinter,

and so on. (see [6], [11]). Furthermore, we explore the shapes of the q-Bernoulli and q-

Euler numbers and polynomials. We describe the structure of the roots of the q-Bernoulli

and q-Euler polynomials for values of the n, q and x ∈ C where n is the degree of poly-

nomials by using a computer. In this chapter, we also give the definition of higher order

Frobenius-Euler numbers and polynomials Hα,λn,q (x) and we investigate some elementary

properties of these polynomials (see [57]).

3.1 The q-integers

In this section we will give basic definitions related to q-integers. For more details see

[1].

Definition 11 [1]Let f (x) be an arbitrary function and q ∈ R+�{1}. Then the following
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statement is called q-derivative of the function f (x).

Dq f (x) =
Dq f (x)

dqx
=

f (qx)− f (x)
qx− x

(3.1)

Let c and d are any two constants then Dq is a linear operator on the space of polynomials

since it satisfies the following property:

Dq(c f (x)+dg(x)) = cDq f (x)+dDq(x).

Definition 12 [1] q-shifted factorial: The following expression is defined as q-shifted

factorial

(a;q)0 = 1, (a;q)n =
n−1
Π
j=0

(1−q ja), n ∈ N,

(a;q)∞ =
∞
Π
j=0

(1−q ja), |q| < 1, a ∈ C

Definition 13 [1] q-integer: The q-analogue of n is defined by

[n]q : =


n if q = 1

qn−1
q−1 = 1+q+q2+ · · ·+qn−1 if q , 1

(3.2)

and [0]q : = 0. (3.3)

where n ∈ N and q ∈ R+ .

Definition 14 The set of q-integers Nq is defined by

Nq = {[n], with n ∈ N}. (3.4)
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By putting q = 1 we get the set of nonnegative integers N.

Definition 15 [1] q-factorial: The following expression is defined as q-analogue of n!

[n]! = [n]!q :=


1 if n = 0

[1][2] · · · [n] if n = 1,2,3, · · ·
. (3.5)

where n ∈ N and q ∈ R+.

Definition 16 The following expression is defined as q-analogue of the function (x−a)n

(x−a)n
q =


1 if n = 0

(x−a)(x−qa) . . . (x−qn−1a) if n ≥ 1
. (3.6)

Definition 17 [1] q-binomial coefficient: The q-analogue of binomial coefficient is de-

fined by

[
n
k

]
q

: =
[n][n−1] . . . [n− k+1]

[k]!
(3.7)

=
[n]q!

[k]q![n− k]q!
=

[
n

n− k

]
q

(3.8)

where n,k ∈ N and 0 ≤ k ≤ n.

Lemma 18 Gauss’s Binomial formula: The following expression is defined as q-analogue

of the function (x+ y)n

(x+ y)n
q =

n∑
k=0

[
n
k

]
q
q

1
2 k(k−1)xkyn−k, n ∈ N0. (3.9)
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Lemma 19 [1] Heine’s Binomial formula: The following formula

1
(1− x)n

q
= 1+

n∑
k=0

[n][n+1][n+ k−1]
[k]!

xk, n ∈ N0. (3.10)

is called Heine’s Binomial formula.

From lemma 18, let replace x by 1 and y by x.then we have the following Gauss’s Bino-

mial formula[1]

(1+ x)n
q =

n∑
k=0

[
n
k

]
q
q

1
2 k(k−1)xk, n ∈ N0.

Now, let n→∞ then we obtain infinite product given as follow:

(1+ x)∞q = (1+ x)(1+qx)(1+q2x) · · ·

Also, when |q| < 1, we have

lim
n→∞

[n]q = lim
n→∞

1−qn

1−q
=

1
1−q

(3.11)

which converges some finite limit and

lim
n→∞

[
n
k

]
q
= lim

n→∞
[n][n−1] · · · [n− k+1]

[k]!
(3.12)

= lim
n→∞

(1−qn)(1−qn−1) · · · (1−qn−k+1)
(1−q)(1−q2) . . . (1−qk)

= lim
n→∞

1
(1−q)(1−q2) · · · (1−qk)

.
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Now, assume that |q| < 1, if we apply 3.11 and 3.12 to Gauss’s and Heine’s binomial

formulas then we get the following two expressions:

(1+ x)∞q =
∞∑

k=0

q
1
2 k(k−1) xk

(1−q)(1−q2) · · · (1−qk)
(3.13)

and

1
(1− x)∞q

=

∞∑
k=0

xk

(1−q)(1−q2) · · · (1−qk)
(3.14)

The two identities above that are found by Euler relate infinite products to infinite sums.

When q = 1, the formulas 3.13 and 3.14 are undefined so they have not got ordinary

analogues.The formula 3.13 is called Euler’s first identity, E1, and the formula 3.14 is

called Euler’s second identity, E2 .

Moreover, the formula E2 3.14 becomes

∞∑
k=0

xk

(1−q)(1−q2) . . . (1−qk)
=

∞∑
k=0

(
x

1−q

)k

(1−q
1−q)(1−q2

1−q )...(1−qk

1−q )
(3.15)

=

∞∑
k=0

(
x

1−q

)k

[k]!
,

which corresponds Taylor’s expansion of the ordinary exponential function:

ex =

∞∑
k=0

xn

n!
.

Definition 20 [1] A q-analogue of the ordinary exponential function ex is defined by

ex
q := eq(x) =

∞∑
k=0

xk

[k]!
.
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Then from 3.14 and 3.15 we have

e
x

1−q
q =

1
(1− x)∞q

or

ex
q =

1
(1− (1−q)x)∞q

where |x| < 1
1−q and |q| < 1.

One can define another q-exponential function by using E1 3.13.

Definition 21 [1] Another q-analogue of the classical exponential function ex is

Ex
q := Eq(x) =

∞∑
k=0

q
1
2 k(k−1) xk

[k]!
= (1+ (1−q)x)∞q , |q| < 1.

From definitions 20 and 21 we can easily see that

eq(x)Eq(−x) = 1.

Moreover, we have

Dqeq(x) =
∞∑

k=0

Dqxk

[k]!
=

∞∑
k=1

[k]xk−1

[k]!
=

∞∑
k=1

xk−1

[k−1]!
=

∞∑
k=0

xk

[k]!
,
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and

DqEq(x) =
∞∑

k=0

q
1
2 k(k−1) Dqxk

[k]!
=

∞∑
k=1

q
1
2 k(k−1) [k]xk−1

[k]!

=

∞∑
k=1

q
1
2 (k−1)(k−2)qk−1 xk−1

[k−1]!
=

∞∑
k=0

q
1
2 k(k−1)qk xk

[k]!
,

so, we have

Dqeq(x) = eq(x) and DqEq(x) = Eq(qx).

In addition, by using E1(3.13) and E2 (3.14) we have

e1/q(x) =
∞∑

k=0

(1−1/q)kxk

(1−1/q)(1−1/q2)...(1−1/qk)

=

∞∑
k=0

q
1
2 k(k−1) (1−q)kxk

(1−q)(1−q2)...(1−qk)

and so we obtain

e1/q(x) = Eq(x).

Definition 22 [1] The following identity is called q-Jackson integral of f (x)

∫
f (x)dqx = (1−q)x

∞∑
k=0

qk f (qkx).

3.2 (w,q)-Bernoulli polynomials and the (w,q)-Euler polynomials

In this section, we define the (w,q)-Bernoulli numbers B(w)
n,q and polynomials B(w)

n,q (x,y)

and the (w,q)-Euler numbers E(w)
n,q and polynomials E(w)

n,q (x,y) as follows. see [57]
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Definition 23 [57] The (w,q)-Bernoulli numbers B(w)
n,q and (w,q)-Bernoulli polynomials

B
(w)
n,q (x,y) in two dimensions x,y are defined by the generating functions respectively:

t
weq (t)−1

=

∞∑
n=0

B
(w)
n,q

tn

[n]q!
, |t| < 2π,

t
weq (t)−1

eq (tx)eq (ty) =
∞∑

n=0

B
(w)
n,q (x,y)

tn

[n]q!
|t| < 2π

in a suitable neighborhood of t = 0, where q ∈ C, and 0 < |q| < 1.

Definition 24 [57] The (w,q)-Euler numbers E(w)
n,q and (w,q)-Euler polynomials E(w)

n,q (x,y)

in two dimensions x,y are defined by the generating functions respectively:

2
weq (t)+1

=

∞∑
n=0

E
(w)
n,q

tn

[n]q!
, |t| < π,

2
weq (t)+1

eq (tx)eq (ty) =
∞∑

n=0

E
(w)
n,q (x,y)

tn

[n]q!
, |t| < π

in a suitable neighborhood of t = 0, where q ∈ C, and 0 < |q| < 1.

From the previous definitions, one can easilly observe the following

B
(w)
n,q =B

(w)
n,q (0) , lim

q→1−
B

(w)
n,q (x,y) = B(w)

n (x+ y) , lim
q→1−
B

(w)
n,q = B(w)

n .

E
(w)
n,q = E

(w)
n,q (0) , lim

q→1−
E

(w)
n,q (x,y) = E(w)

n (x+ y) , lim
q→1−
E

(w)
n,q = E(w)

n .

Here B(w)
n (x) and E(w)

n (x) denote the w-Bernoulli and w-Euler polynomials which are

defined by

t
wet −1

etx =

∞∑
n=0

B(w)
n (x)

tn

[n]q!
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and

2
wet +1

etx =

∞∑
n=0

E(w)
n (x)

tn

[n]q!
.

3.3 Properties of (w,q)-Bernoulli and the (w,q)-Euler polynomials

In this section, we discuss some fundamental properties and their proofs for theB(w)
n,q (x,y)

and E(w)
n,q (x,y) which are q-extensions of properties of B(w)

n (x) and E(w)
n (x).

Lemma 25 [57] For all x ∈ C, let y = 0 then B(w)
n,q (x,y) and E(w)

n,q (x,y) satisfies following

properties respectively

B
(w)
n,q (x) =

n∑
k=0

[
n
k

]
q
B

(w)
k,q xn−k, (3.16)

and

E
(w)
n,q (x) =

n∑
k=0

[
n
k

]
q
E

(w)
k,q xn−k. (3.17)

Proof. [57] The proof of (3.16) is based on the following identity

∞∑
n=0

B
(w)
n,q (x)

tn

[n]q!
=

t
weq (t)−1

eq (tx)

=

∞∑
n=0

B
(w)
n,q

tn

[n]q!

∞∑
n=0

tnxn

[n]q!

=

∞∑
n=0

n∑
k=0

B
(w)
k,q

tk

[k]q!
tn−kxn−k

[n− k]q!

=

∞∑
n=0

n∑
k=0

[
n
k

]
q
B

(w)
k,q xn−k tn

[n]q!
.

Similarly, (3.17) can be proved.
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Lemma 26 [57] (q-analogue of Differential relations) If we take q-derivative ofB(w)
n,q (x)

and E(w)
n,q (x) then we have following identities respectively:

Dq,xB
(w)
n,q (x) = [n]qB

(w)
n−1,q (x) , (3.18)

and

Dq,xE
(w)
n,q (x) = [n]qE

(w)
n−1,q (x) . (3.19)

for all x,y ∈ C.

Proof. [57] To prove (3.18) lets take the first q-derivative of the following expression

with respect to x

t
weq (t)−1

eq (tx)

Then, we have

Dq,x

(
t

weq (t)−1
eq (tx)

)
=

t
weq (t)−1

teq (tx)

= t
∞∑

n=0

B
(w)
n,q (x)

tn

[n]q!

=

∞∑
n=0

B
(w)
n−1,q(x)

tn

[n−1]q!

=

∞∑
n=0

[n]qB
(w)
n−1,q(x)

tn

[n]q!
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Therefore,

Dq,xB
(w)
n,q (x) = [n]qB

(w)
n−1,q (x) .

Similarly, one can be proved for (w,q)-Euler polynomials (3.19).

Lemma 27 [57] (q-analogue of Difference Equation) For all x ∈ C we have

wB(w)
n,q (x,1)−B(w)

n,q (x,0) = [n]q xn−1,

Proof. [57] Let us use the following identities to prove the lemma

wt
weq (t)−1

eq (tx)eq (t)− t
weq (t)−1

eq (tx) =
t

weq (t)−1
eq (tx)

(
weq (t)−1

)
= teq (tx)

Indeed,

∞∑
n=0

(
wB(w)

n,q (x,1)−B(w)
n,q (x,0)

) tn

[n]q!
= t

∞∑
n=0

tnxn

[n]q!

=

∞∑
n=0

tnxn−1

[n−1]q!

=

∞∑
n=0

[n]q xn−1 tn

[n]q!
.

It remains to compare the coefficients of tn
[n]q! .
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Lemma 28 [57] (q-analogue of Difference Equation) For all x,y ∈ C we have

wE(w)
n,q (x,1)+E(w)

n,q (x,0) = 2xn

Proof. [57] Let us use the following identities to prove the lemma

2w
weq (t)+1

eq (tx)eq (t)+
t

weq (t)+1
eq (tx) =

2
weq (t)+1

eq (tx)
(
weq (t)+1

)
= 2eq (tx)

Indeed,

∞∑
n=0

(
wE(w)

n,q (x,1)+E(w)
n,q (x)

) tn

[n]q!
= 2

∞∑
n=0

tnxn

[n]q!
=

∞∑
n=0

2xn tn

[n]q!
.

Lemma 29 [57] (q-analogue of Theorem of complement) For all x ∈ C we have

B
(w)
n,q (x) =

1
w

n∑
k=0

[
n
k

]
q

(−1)k q
1
2 k(k−1)

B
(1/w)
k,1/q (1) xn−k

Proof. [57] Let us use the following identities to prove the lemma

∞∑
n=0

B
(w)
n,q (x)

tn

[n]q!
=

tEq (−t)
w−Eq (−t)

eq (tx) =
−t

e1/q (−t)−w
e1/q (−t)eq (tx)

=
1
w

∞∑
n=0

q
1
2 n(n−1)

B
(1/w)
n,1/q (1)

(−t)n

[n]q!

∞∑
n=0

xntn

[n]q!

=

∞∑
n=0

1
w

n∑
k=0

[
n
k

]
q

(−1)k q
1
2 k(k−1)

B
(1/w)
k,1/q (1) xn−k tn

[n]q!
.
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It remains to compare the coeffcients of tn
[n]q! .

3.4 q-analoques of the addition theorems

In this section, we study on relationships between the B(w)
n,q (x,y) and E(w)

n,q (x,y). We also

discuss some elementary properties and get new formulas which are extensions of the

formulas studied by other authors like Cheon, Srivastava and Pinter, and so on. (see [6],

[11], [9]).

Theorem 30 [57] For n ∈ N0, the following relationship

B
(w)
n,q (x,y) =

1
2mn

n∑
k=0

[
n
k

]
q

mk
B

(w)
k,q (x)+w

k∑
j=0

[
k
j

]
q
m j
B

(w)
j,q (x)


×E(w)

n−k,q (my) .

holds true between the B(w)
n,q (x,y) and E(w)

n,q (x,y) .

Proof. [57] Using the following identity

t
weq (t)−1

eq (tx)eq (ty) =
2

weq
(

t
m

)
+1
· eq

( t
m

my
)

×
weq

(
t
m

)
+1

2
· t
weq (t)−1

eq (tx)
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we have

∞∑
n=0

B
(w)
n,q (x,y)

tn

[n]q!
=

1
2

∞∑
n=0

E
(w)
n,q (my)

tn

mn [n]q!

∞∑
n=0

wtn

mn [n]q!

×
∞∑

n=0

B
(w)
n,q (x)

tn

[n]q!

+
1
2

∞∑
n=0

E
(w)
n,q (my)

tn

mn [n]q!

∞∑
n=0

B
(w)
n,q (x)

tn

[n]q!

=: I1+ I2.

It is clear that

I2 =
1
2

∞∑
n=0

E
(w)
n,q (my)

tn

mn [n]q!

∞∑
n=0

B
(w)
n,q (x)

tn

[n]q!

=
1
2

∞∑
n=0

n∑
k=0

[
n
k

]
q
mk−n
B

(w)
k,q (x)E(w)

n−k,q (my)
tn

[n]q!
.

On the other hand

I1 =
1
2

w
∞∑

n=0

B
(w)
n,q (x)

tn

[n]q!

∞∑
n=0

n∑
j=0

[
n
j

]
q
m−n
E

(w)
j,q (my)

tn

[n]q!

=
1
2

w
∞∑

n=0

n∑
k=0

[
n
k

]
q
B

(w)
k,q (x)

n−k∑
j=0

[
n− k

j

]
q
mk−n
E

(w)
j,q (my)

tn

[n]q!

=
1
2

w
∞∑

n=0

m−n
n∑

j=0

[
n
j

]
q
E

(w)
j,q (my)

j∑
k=0

[
j
k

]
q
mk
B

(w)
k,q (x)

tn

[n]q!
.
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Therefore, we obtain the following relationship between B(w)
n,q (x,y) and E(w)

n,q (x,y)

∞∑
n=0

B
(w)
n,q (x,y)

tn

[n]q!
=

1
2

∞∑
n=0

n∑
k=0

[
n
k

]
q
mk−n

×

B(w)
k,q (x)+m−kw

k∑
j=0

[
k
j

]
q
m j
B

(w)
j,q (x)


×E(w)

n−k,q (my)
tn

[n]q!
.

Next, the following corollary gives us some special cases of Theorem 30.

Corollary 31 The following relationships given in [9] holds true .

Bn (x+ y) =
n∑

k=0

(
n
k

)(
Bk (y)+

k
2

yk−1
)

En−k (x) ,

Bn (x+ y) =
1

2mn

n∑
k=0

(
n
k

)
mkBk (x)+mkBk

(
x−1+ 1

m

)
+km (1+m (x−1))k−1


×En−k (my) .

for n ∈ N0 and m ∈ N

Corollary 32 [45] The following relationship holds true

Bn,q (x,y) =
n∑

k=0

[
n
k

]
q

(
Bk,q (0,y)+q

1
2 (k−1)(k−2) [k]q

2
yk−1

)
(3.20)

×En−k,q (x,0) . (3.21)

for n ∈ N0

Corollary 33 [45] For all x,y ∈C and n ∈N0 the following relationships betweenBn,q (x,y)
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and En,q (x,y) holds true.

Bn,q (x,0) =
n∑

k=0
(k,1)

[
n
k

]
q
Bk,qEn−k,q (x,0)+

(
B1,q+

1
2

)
×En−1,q (x,0) , (3.22)

Bn,q (0,y) =
n∑

k=0
(k,1)

[
n
k

]
q
Bk,qEn−k,q (0,y)+

(
B1,q+

1
2

)
×En−1,q (0,y) . (3.23)

The formulas (3.20)-(3.23) are q-analogues of the Cheon’s main result [6]. Notice that

B1,q = − 1
[2]q
, see [30], and for q→ 1−the extra term will be zero .

Theorem 34 [57] For n ∈ N0, the following relationship

E
(w)
n,q (x,y) =

n∑
k=0

[
n
k

]
q

1
[k+1]q

mk+1−n
(
wE(w)

k+1,q

(
x,

1
m

)
−E(w)

k+1,q (x)
)

×B(w)
n−k,q (my) .

holds true between the E(w)
n,q (x,y) and B(w)

n,q (x,y).

Proof. [57] Using the following identity

2
weq (t)+1

eq (tx)eq (ty) =
2

weq (t)+1
eq (tx) ·

weq
(

t
m

)
−1

t/m

× t/m

weq
(

t
m

)
−1

eq

( t
m

my
)
.
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Indeed, we have

∞∑
n=0

E
(w)
n,q (x,y)

tn

[n]q!
=

m
t

∞∑
n=0

E
(w)
n,q (x)

tn

[n]q!

w ∞∑
n=0

tn

mn [n]q!
−1


×
∞∑

n=0

B
(w)
n,q (my)

tn

mn [n]q!

= m
∞∑

n=1

w n∑
k=0

[
n
k

]
q
mk−n
E

(w)
k,q (x)−E(w)

n,q (x)

 tn−1

[n]q!

×
∞∑

n=0

B
(w)
n,q (my)

tn

mn [n]q!

= m
∞∑

n=0

w n+1∑
k=0

[
n+1

k

]
q
mk−n−1

E
(w)
k,q (x)−E(w)

n+1,q (x)

 tn

[n+1]q!

×
∞∑

n=0

B
(w)
n,q (my)

tn

mn [n]q!

= m
∞∑

n=0

(
wE(w)

n+1,q

(
x,

1
m

)
−E(w)

n+1,q (x)
)

tn

[n+1]q!

×
∞∑

n=0

B
(w)
n,q (my)

tn

mn [n]q!

=

∞∑
n=0

n∑
k=0

1
[k+1]q


n

k


q

mk+1−n
(
wE(w)

k+1,q

(
x,

1
m

)
−E(w)

k+1,q (x)
)

×B(w)
n−k,q (my)

tn

[n]q!
.

39



Corollary 35 The following relationships given in [9] holds true

En (x+ y) =
n∑

k=0

2
k+1

(
n
k

)(
yk+1−Ek+1 (y)

)
Bn−k (x) ,

En (x+ y) =
n∑

k=0

(
n
k

)
mk−n+1

k+1

×
2(

x+
1−m

m

)k+1

−Ek+1

(
x+

1−m
m

)
−Ek+1 (x)


×Bn−k (my) .

for n ∈ N0 and m ∈ N.

Next, the following corollaries gives us some special cases of Theorem 34. The relations

are q-extensions of previous corollarry studied by Luo in [9].

Corollary 36 [44] For n ∈ N0 the following relationship holds true.

En,q (x,y) =
n∑

k=0

[
n
k

]
q

2
[k+1]q

(
yk+1−Ek+1,q (0,y)

)
Bn−k,q (x,0) .

Corollary 37 [44] For n ∈ N0 the following relationship holds true.

En,q (x,0) = −
n∑

k=0

[
n
k

]
q

2
[k+1]q

Ek+1,qBn−k,q (x,0) ,

En,q (0,y) = −
n∑

k=0

[
n
k

]
q

2
[k+1]q

Ek+1,qBn−k,q (0,y) .

3.5 Location of zeros of the q-Bernoulli polynomials

We can understand the structure ofBn,q (x) andBn,q by using computer experiments. By

this way. we can easily study with Bn,q (x) and Bn,q. Also, we can examine the structure
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and properties and make some comparisons. These results are used in many areas, for

instance pure mathematics, applied mathematics, mathematical physics and so on .

In this section, we represent the figures of the q-Bernoulli polynomials. Then we find

the solutions of the Bn,q (x) = 0 by using a computer package Mathematica R⃝software.

Finally, we discuss the reflection symmetries of the Bn,q (x)see [57].

In figures 3.1−3.3 the graphs of q-Bernoulli polynomials Bn,q (x) for q = 0.5,0.9 and

0.9999, n = 1, 5, 10, 15 and 20 where −1 ≤ x ≤ 2 is given.
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Figure 3.1. Shape of Bn,0.5(x)
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Figure 3.2. Shape of Bn,0.9(x)
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Figure 3.3. Shape of Bn,0.9999
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The roots of the Bn,q (x), are plotted in figures 3.4-3.12 for n = 10,15,20 and q =

1
2 ,

9
10 ,0.9, where x ∈C and −1 ≤ x ≤ 2 .
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Figure 3.4. Zeros of B10,0.5(x)
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Figure 3.5. Zeros of B10,0.9(x)
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Figure 3.6. Zeros of B10,0.9999(x)
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Figure 3.7. Zeros of B15,0.5(x)
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Figure 3.8. Zeros of B15,0.9(x)
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Figure 3.9. Zeros of B15,0.9999(x)
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Figure 3.10. Zeros of B20,0.5(x)
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Figure 3.11. Zeros of B20,0.9(x)

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

ReHxL

ImHxL

Figure 3.12. Zeros of B20,0.9999(x)

In figures 3.4−3.12, Bn,q (x), x ∈ C have Im(x) = 0 reflection symmetry. In table 3.1,

the real roots of Bn,q (x), q = 0.5, are shown. In Table 3.2, the real roots of Bn,q (x),

Table 3.1. Approximate solutions of Bn,0.5(x) = 0
Degree n Real Zeros

10 -0.0416672, 0.296755,0.501855, 1.0
15 -0.0569424, 0.49992, 1.0
20 -0.0730929, 0.282403, 0.500003, 1.0

q = 0.9, are shown. In figure 3.13, the 3 dimensional graph of the roots of Bn,q (x), x ∈C

Table 3.2. Approximate solutions of Bn,0.9999(x) = 0, x ∈ R
Degree n Real Zeros

10 -0.369208,-0.210514, 0.290877, 0.789895, 1.29165, 1.61001
15 -0.562566, -0.394066, 0.105868, 0.60595, 1.10587, 1.6059,
20 -0.4876, -0.249796, 0.250325, 0.750206, 1.25032
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for q = 0.5 and n = 1, . . . ,20 is given Let REBn,q(x) denotes the number of real roots and
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ReHxL
-0.2
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0.0

0.1

0.2

ImHxL

0

5

10

15

20

n

Figure 3.13. 3D shape of Bn=20,0.5(x)

CMBn,q(x) denotes the number of complex roots then we obtain following identity

n = REBn,q(x)+CMBn,q(x),

where n is the degree of Bn,q (x) . See Tables 3.1 and 3.2.

3.6 Location of zeros of the q-Euler polynomials

In this section, we demonstrate the figures and find the solutions of En,q (x) = 0 by using

a computer package Mathematica R⃝software. Then, according to shapes of the roots of

En,q (x) we analyze the reflection symmetries. [57]

In figures 3.14, 3.15 and 3.16, the shapes of the En,q (x) for n= 20 and 1
2 ≤ q≤ 1 are shown

. In figures 3.17-3.19, the roots of the En,q (x) are plotted for n = 20 and q = 1
2 ,

9
10 ,0.9

where x ∈ C In table 3.3, the real roots of En,q (x), ,x ∈ C, for n = 10 and 20 and q = 0.9
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Figure 3.14. Shape of E20,0.5(x)
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Figure 3.15. Shape of E20,0.9(x)
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Figure 3.16. Shape of E20,0.9999(x)

are shown. In figure 3.20, the 3 dimensional graph of the roots of q-Euler polynomials

Table 3.3. Approximate solutions of En,0.9999(x) = 0, x ∈ R
Degree n Real zeros of En,q (x) = 0 for q = 0.9
10 -1.36555, -1.0152, -0.000225011, 0.999775, 2.01449, 2.36694
20 -2.58148, -2.00239, -1.00048, -0.000475024, 0.999525, 1.99953, 3.00139

En,q (x), for q = 0.9, n = 1, ..., 20 and x ∈C is given.
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Figure 3.17. Zeros of E20,0.5(x)
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Figure 3.18. Zeros of E20,0.9(x)
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Figure 3.19. Zeros of E20,0.9999(x)
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Figure 3.20. 3D shape of En=20,0.9999(x)

In figure 3.17, for q = 1
2 and n = 20 the En,q (x) has no complex roots.

In figures 3.17-3.19, En,q (x) , x ∈C have Im(x) = 0 reflection symmetry.

3.7 Higher order q-Frobenius-Euler Numbers and Polynomials

In this section, Let λ ∈ C with λ , 1 , n ≥ 0 and α ∈ R. Now, we consider q-extension

of higher order Frobenius-Euler numbers Hα,λn,q and polynomials, Hα,λn,q (x). We give some

properties of higher order q−Frobenius-Euler numbers Hα,λn,q and polynomials Hα,λn,q (x).

Definition 38 The higher order q-Bernoulli polynomials, Bαn,q(x), are defined in [38]

given as follows:

∞∑
n=0

Bαn,q(x)
tn

[n]q!
=

(
t

eq(t)−1

)α
eq(tx).

for q ∈ C and |q| < 1
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Definition 39 The higher order q-Euler polynomials, Eαn,q(x), are defined in [38] given

as follows:

∞∑
n=0

Eαn,q(x)
tn

[n]q!
=

(
2

eq(t)−1

)α
eq(tx).

for q ∈ C and |q| < 1.

Definition 40 The higher order q-Frobenius-Euler numbers, Hα,λn,q , and polynomials Hα,λn,q (x)

are defined, by means of the generating functions as follows:

(
1−λ

eq(t)−λ

)α
=

∞∑
n=0

Hα,λn,q
tn

[n]q!
, |t| < 2π,

and

(
1−λ

eq(t)−λ

)α
eq(tx) =

∞∑
n=0

Hα,λn,q (x)
tn

[n]q!
, |t| < 2π.

for q ∈ C and |q| < 1.

Note that lim
q→1

Hα,λn,q (x) = Hα,λn (x), where Hα,λn (x) are the ordinary higher order Frobenius-

Euler polynomials defined in [62] as follows:

(
1−λ
et −λ

)α
ext =

∞∑
n=0

Hα,λn (x)
tn

n!
, |t| < 2π.

Definition 41 The higher order q-Frobenius-Euler polynomials Hα,λn,q (x,y) in x,y are de-
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fined, by the generating functions as follows:

(
1−λ

eq(t)−λ

)α
eq(tx)eq(ty) =

∞∑
n=0

Hα,λn,q (x,y)
tn

[n]q!
, |t| < 2π.

for q ∈ C and |q| < 1.

Lemma 42 The following identity is true for n ≥ 0,

Hα,λn,q (x) =
∞∑

n=0

(
n
k

)
q
Hα,λn−k,qxk.

Proof. From the previous definition , we easily see that

∞∑
n=0

Hα,λn,q (x)
tn

[n]q!
=

∞∑
n=0

Hα,λn,q
tn

[n]q!

∞∑
n=0

tnxn

[n]q!

By Cauchy product, we get

∞∑
n=0

n∑
k=0

Hα,λn−k,q
tn−k

[n− k]q!
tkxk

[k]q!
∞∑

n=0

n∑
k=0

[
n
k

]
q
Hα,λn−k,qxk tn

[n]q!

now, let us compare the coefficients of tn
[n]q! , we have

Hα,λn,q (x) =
n∑

k=0

[
n
k

]
q
Hα,λn−k,qxk.
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Lemma 43 (Differential relation)

DqHα,λn,q (x) = [n]q Hα,λn−1,qxk.

Proof. Let’s take q-derivative of q-Frobenius-Euler polynomials Hα,λn,q (x),with respect to

x, we get

∞∑
n=0

Dq,xHα,λn,q (x)
tn

[n]q!
= Dq,x

(
1−λ

eq(t)−λ

)α
eq(tx)

= t
∞∑

n=0

Hα,λn,q (x)
tn

[n]q!

=

∞∑
n=0

Hα,λn,q (x)
tn+1

[n]q!

=

∞∑
n=1

Hα,λn−1,q(x)
tn

[n−1]q!

=

∞∑
n=1

[n]q Hα,λn−1,q(x)
tn

[n]q!

then, by comparing coefficients on both sides we get

Hα,λn,q (x) = [n]q Hα,λn−1,qxk.

Lemma 44 (Difference equation) For n ≥ 0,we have

Hα,λn,q (x,1)−λHα,λn,q (x,0) = (1−λ)Hα−1,λ
n,q (x,0).

51



Proof. By using following identities we obtain

(
1−λ

eq(t)−λ

)α
eq(tx)eq(t)−λ

(
1−λ

eq(t)−λ

)α
eq(tx) =

(
eq(tx)−λ

) ( 1−λ
eq(t)−λ

)α
eq(tx)

=
(1−λ)α(

eq(t)−λ
)α−1 eq(tx)

= (1−λ)
(

1−λ
eq(t)−λ

)α−1

eq(tx)

So, we get

Hα,λn,q (x,1)−λHα,λn,q (x,0) = (1−λ)Hα−1,λ
n,q (x,0).

52



Chapter 4

ON TWO DIMENSIONAL q-BERNOULLI AND q-GENOCCHI

NUMBERS AND POLYNOMIALS

The main aim of this chapter is to investigate two dimensional generalized q-Genocchi

polynomials. We discuss q-extensions of some properties of Gn,q (x,y) like Srivastava

and Pintér’s results given in [11]. It should be mentioned that probabilistics proof

the Srivastava-Pintér addition theorems were given recently in [39]. Furthermore, we

demonstrate the figures and find the solutions of Gn,q (x) by using a computer package

Mathematica R⃝software. Then, according to shapes of the roots of Gn,q (x) we analyze

the reflection symmetries . (see [57])

Definition 45 In [56] the q-Bernoulli numbers Bn,q and polynomials Bn,q (x,y) in two

dimensions x,y are defined by the generating functions:

(
t

eq (t)−1

)
=

∞∑
n=0

Bn,q
tn

[n]q!
, |t| < 2π,

(
t

eq (t)−1

)
eq (tx)eq (ty) =

∞∑
n=0

Bn,q (x,y)
tn

[n]q!
, |t| < 2π.

Definition 46 In [56] the q-Genocchi numbers Gn,q and polynomials Gn,q (x,y) in two
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dimensions x,y are defined by the generating functions:

(
2t

eq (t)+1

)
=

∞∑
n=0

Gn,q
tn

[n]q!
, |t| < π,

(
2t

eq (t)+1

)
eq (tx)eq (ty) =

∞∑
n=0

Gn,q (x,y)
tn

[n]q!
, |t| < π.

From the previous definitions, one can easilly observe the followings

Bn,q =Bn,q (0,0) , lim
q→1−
Bn,q (x,y) = Bn (x+ y) , lim

q→1−
Bn,q = Bn,

Gn,q =Gn,q (0,0) , lim
q→1−
Gn,q (x,y) =Gn (x+ y) , lim

q→1−
Gn,q =Gn.

Here Bn (x) and Gn (x) denote the classical Bernoulli and Genocchi polynomials are de-

fined by

( t
et −1

)
etx =

∞∑
n=0

Bn (x)
tn

n!
and

(
2t

et +1

)
etx =

∞∑
n=0

Gn (x)
tn

n!
.

4.1 Properties of q-Genocchi polynomials

In this section, we discuss some fundamental properties and their proofs for the q-

Genocchi polynomials Gn,q (x,y).

First of all we idefine a new q-extension of the following funtion (x⊕ y)n .

Definition 47 [56] The function (x⊕ y)n has the following q-extension given as follow

(x⊕ y)n
q :=

n∑
k=0

[
n
k

]
q
xkyn−k, n ∈ N0.
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One can easily derive the following fundamental properties of the q-Genocchi polyno-

mials from Definition 46.

Property 1. Summation formulas for the q-Genocchi polynomials:

Lemma 48 [56] The following formula is q-extension of summation formula

Gn,q (x,y) =
n∑

k=0

[
n
k

]
q
Gk,q (x⊕ y)n−k

q ,

Proof. [56] Let us use the following identity to prove lemma

(
2t

eq (t)+1

)
eq (tx)eq (ty) =

∞∑
k=0

Gk,q
tk

[k]q!

∞∑
n=0

tnxn

[n]q!

∞∑
n=0

tnyn

[n]q!

=

∞∑
k=0

Gk,q
tk

[k]q!

∞∑
n=0

 n∑
k=0

tkxk

[k]q!
.
tn−kyn−k

[n− k]q!


=

∞∑
k=0

Gk,q
tk

[k]q!

∞∑
n=0

 n∑
k=0

[
n
k

]
q
xkyn−k

 tn

[n]q!

=

∞∑
k=0

Gk,q
tk

[k]q!

∞∑
n=0

(x⊕ y)n−k
q

tn

[n]q!

=

∞∑
n=0

n∑
k=0

[
n
k

]
q
Ek,q (x⊕ y)n−k

q
tn

[n]q!

Lemma 49 [56] We have following identity

Gn,q (x,y) =
n∑

k=0

[
n
k

]
q
Gk,q (x)yn−k.

for all x,y ∈ C .
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Proof. [56] By using following identity we get

(
2t

eq (t)+1

)
eq (tx)eq (ty) =

∞∑
n=0

Gn,q(x)
tn

[n]q!

∞∑
n=0

tnyn

[n]q!

=

∞∑
n=0

∞∑
k=0

Gk,q(x)
tk

[k]q!
tn−kyn−k

[n− k]q!

=

∞∑
n=0

n∑
k=0

[
n
k

]
q
Gk,q(x)yn−k tn

[n]q!
.

Lemma 50 [56] For all x,y ∈ C we have

Gn,q (x) =
n∑

k=0

[
n
k

]
q
Gk,qxn−k.

Proof. [56] The proof is readily derived from Definition 46.

,Property 2. Difference equation:

Lemma 51 [56] We have following difference property

Gn,q (x,1)+Gn,q (x,0) = 2[n]q xn−1.

for all x,y ∈ C
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Proof. [56] By using following identity we get

Gn,q (x,1)+Gn,q (x,0) =
(

2t
eq (t)+1

)
eq (tx)eq (t)+

(
2t

eq (t)+1

)
eq (tx)

=

(
2t

eq (t)+1

)
eq (tx)

(
eq (t)+1

)
= 2teq(tx)

= 2t
∞∑

n=0

tnxn

[n]q!

= 2
∞∑

n=0

tnxn−1

[n−1]q!

= 2
∞∑

n=0

tnxn−1

[n]q!
[n]q

=

∞∑
n=1

2xn−1 [n]q
tn

[n]q!
.

Property 3. Differential relation:

Lemma 52 [56] We have

Dq,xGn,q (x) = [n]qGn−1,q (x) .

for all x,y ∈ C.
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Proof. [56] It follows from the following relation

Dq,x

(
2t

eq (t)+1

)
eq (tx) =

(
2t

eq (t)+1

)
teq (tx)

= t
∞∑

n=0

Gn,q (x)
tn

[n]q!

=

∞∑
n=0

[n]qGn−1,q (x)
tn

[n]q!
.

4.2 Explicit relationship between the q-Genocchi and the
q-Bernoulli polynomials

In this section we prove relationships between the q-Genocchi polynomials Gn,q (x,y)

and the q-Bernoulli polynomials Bn,q (x,y).

Theorem 53 [56] For n ∈ N0, the q-Genocchi and the q-Bernoulli polynomials has the

following relationship

Gn,q (x,y) =
n∑

k=0

[
n
k

]
q

1
[k+1]q

mk−n+1
(
Gk+1,q

(
x,

1
m

)
−Gk+1,q (x)

)
×Bn−k,q (my) .

Proof. [56] Using the following identity

2t
eq (t)+1

eq (tx)eq (ty) =
2t

eq (t)+1
eq (tx) ·

eq
(

t
m

)
−1

t

× t

eq
(

t
m

)
−1
· eq

( t
m

my
)
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we have

∞∑
n=0

Gn,q (x,y)
tn

[n]q!
=

m
t

∞∑
n=0

Gn,q (x)
tn

[n]q!

 ∞∑
n=0

tn

mn [n]q!
−1


×
∞∑

n=0

Bn,q (my)
tn

mn [n]q!

= m
∞∑

n=1

 n∑
k=0

[
n
k

]
q
mk−n
Gk,q (x)−Gn,q (x)

 tn−1

[n]q!

×
∞∑

n=0

Bn,q (my)
tn

mn [n]q!

= m
∞∑

n=0

 n∑
k=0

[
n+1

k

]
q
mk−n−1

Gk,q (x)−Gn+1,q (x)


× tn

[n+1]q!

∞∑
n=0

Bn,q (my)
tn

mn [n]q!

= m
∞∑

n=0

(
Gn+1,q

(
x,

1
m

)
−Gn+1,q (x)

)
tn

[n+1]q!

×
∞∑

n=0

Bn,q (my)
tn

mn [n]q!

=

∞∑
n=0

n∑
k=0

[
n
k

]
q

1
[k+1]q

mk−n+1
(
Gk+1,q

(
x,

1
m

)
−Gk+1,q (x)

)

×Bn−k,q (my)
tn

[n]q!
.
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Corollary 54 [28] For n ∈ N0, m ∈ N the following relationship holds true.

Gn (x+ y) =
n∑

k=0


n

k

 2
k+1

(
(k+1)yk −Gk+1,q (y)

)
Bn−k (x) , (4.1)

Gn (x+ y) =
n∑

k=0


n

k

 1
mn−k−1 (k+1)

(4.2)

×
[
2(k+1)Gk

(
y+

1
m
−1

)
−Gk+1

(
y+

1
m
−1

)
−Gk+1 (y)

]
(4.3)

×Bn−k,q (mx)

between the ordinary Genocchi polynomials and the ordinary Bernoulli polynomials.

Corollary 55 [28] For n ∈ N0 the Gn,q (x,y) and Bn,q (x,y) has the following relation-

ship:

Gn,q (x,y) =
n∑

k=0

[
n
k

]
q

2
[k+1]q

[
[k+1]q q

1
2 k(k−1)yk −Gk+1,q (y)

]
×Bn−k,q (x) .

In Corollary 55, by setting y = 0 we obtain the following explicit relationships:

Corollary 56 [28] For n ∈ N0 the Gn,q (x) and Bn,q (x) has the following relationship:.

Gn,q (x) = −
n∑

k=0

[
n
k

]
q

2
[k+1]q

Gk+1,qBn−k,q (x) ,
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Corollary 57 [28] For n ∈ N0 the Gn,q and Bn,q has the following relationship:

Gn,q = −
n∑

k=0

[
n
k

]
q

2
[k+1]q

Gk+1,qBn−k,q.

Theorem 58 [56] For n ∈ N0, the Bn,q (x,y) and the Gn,q (x,y) has the following rela-

tionship:

Bn,q (x,y) =
1
2

n∑
k=0

[
n
k

]
q
mk−n

×


1

[k+1]q
Bk+1,q(x)+m−k

×
k∑

j=0

[
k
j

]
q

1
[ j+1]q

m jB j+1,q(x)


×Gn−k,q (my) .

Proof. [56] Using the following identity

t
eq (t)−1

eq (tx)eq (ty) =
t

eq (t)−1
eq (tx)

2t

eq
(

t
m

)
+1

×eq

( t
m

my
) eq

(
t
m

)
+1

2t

we have

∞∑
n=0

Bn,q (x,y)
tn

[n]q!
=

1
2t

∞∑
n=0

Bn,q (x)
tn

[n]q!

×
∞∑

n=0

Gn,q (my)
tn

mn [n]q!

∞∑
n=0

tn

mn [n]q!

+
1
2t

∞∑
n=0

Bn,q (x)
tn

[n]q!

∞∑
n=0

Gn,q (my)
tn

mn [n]q!

= I1+ I2.
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It is clear that

I2 =
1
2t

∞∑
n=0

Bn,q (x)
tn

[n]q!

∞∑
n=0

Gn,q (my)
tn

mn [n]q!

=
1
2

∞∑
n=0

Bn+1,q (x)
tn

[n+1]q!

∞∑
n=0

Gn,q (my)
tn

mn [n]q!

=
1
2

∞∑
n=0

n∑
k=0

[
n
k

]
q
mk−n 1

[k+1]q
Bk+1,q (x)Gn−k,q (my)

tn

[n]q!
.

On the other hand

I1 =
1
2t

∞∑
n=0

Bn,q (x)
tn

[n]q!

×
∞∑

n=0

Gn,q (my)
tn

mn [n]q!

∞∑
n=0

tn

mn [n]q!

=
1
2

∞∑
n=0

Bn+1,q (x)
tn

[n+1]q!

×
∞∑

n=0

n∑
j=0

[
n
j

]
q
m−n
G j,q (my)

tn

[n]q!

=
1
2

∞∑
n=0

n∑
k=0

[
n
k

]
q

1
[k+1]q

mk−n
Bk+1,q (x)

×
n−k∑
j=0

[
n− k

j

]
q
G j,q (my)

tn

[n]q!

Let use the following combinatorial property

(
n
k

)(
n− k

j

)
=

(
n
j

)(
n− j

k

)

and replace k by j we have
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I1 =
1
2

∞∑
n=0

m−n
n∑

j=0

[
n
j

]
q
G j,q (my)

×
n− j∑
k=0

[
n− j

k

]
q

1
[k+1]q

mk
Bk+1,q (x)

tn

[n]q!
.

then replace j by n− k and k by j we obtain

I1 =
1
2

∞∑
n=0

m−n
n∑

k=0

[
n
k

]
q
Gn−k,q (my)

×
n− j∑
k=0

[
k
j

]
q

1[
j+1

]
q

m j
B j+1,q (x)

tn

[n]q!

Therefore

∞∑
n=0

Bn,q (x,y)
tn

[n]q!
= I1+ I2 =

1
2

∞∑
n=0

n∑
k=0

[
n
k

]
q
mk−n

×

 1
[k+1]q

Bk+1,q (x)+m−k
k∑

j=0

[
k
j

]
q

1[
j+1

]
q

m j
B j+1,q (x)


×Gn−k,q (my)

tn

[n]q!
.

4.3 Location of zeros of the q-Genocchi polynomials

In this section, we demonstrate the figures of the q-Genocchi polynomials Gn,q (x).and

find the solutions of theGn,q (x)= 0 by using a computer package Mathematica R⃝software.

Then, according to shapes of the roots of Gn,q (x) we analyze the reflection symmetries

of the Gn,q (x) ( see[56]).

63



In figures 4.1-4.3, the shapes of the Gn,q (x) for n = 20 and 1
2 ≤ q ≤ 1 are shown.
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Figure 4.1. Shape of G20,0.5(x)
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Figure 4.2. Shape of G20,0.9(x)
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Figure 4.3. Shape of G20,0.9999(x)

The roots of theGn,q (x), are plotted in figures 4.4, 4.5 and 4.6 for n= 20 and q= 1
2 ,

9
10 ,0.9

, where x ∈C.

In figures 4.4, 4.5 and 4.6, for n = 20, q = 1/2,0.9 and 0.9999 Gn,q (x), x ∈ C have

Im(x) = 0 reflection symmetry.

In table 4.1, the real roots of Gn,q (x), for n = 20 and q = 0.5,0.9 and 0.9 are given.

Table 4.1. Approximate solutions of Gn,q(x) = 0, x ∈ R
q Real zeros of Gn,q (x) = 0 for n = 20
0.5 0.504495, 0.630159, 0.99995
0.9 -0.99901, 0.02681, 1.027078
0.9 -2.357442, -1.5004759, -0.50045, 0.4995, 1.4995, 2.4995759, 3.3565
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Figure 4.4. Zeros of G20,0.5(x)
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Figure 4.5. Zeros of G20,0.9(x)
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Figure 4.6. Zeros of G20,0.9999(x)

Let n is the degree of Gn,q (x), REGn,q(x) denotes the number of real roots and CMGn,q(x)

denotes the number of complex roots then we obtain following relationship:

n = REGn,q(x)+CMGn,q(x),

See Table 4.1.

65



REFERENCES

[1] Kac V. and Cheung P., Quantum Calculus, Universitext, Springer-Verlag, Newyork,

2002.

[2] G. E. Andrews, R. Askey and R. Roy Special functions, volume 71 of Encyclope-

dia of Mathematics and its Applications, Cambridge University Press, Cambridge,

1999.

[3] L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948) 987–

1000.

[4] L. Carlitz, q-Bernoulli and Eulerian numbers, Trans. Amer. Math. Soc. 76 (1954)

332–350.

[5] L. Carlitz, Expansions of q-Bernoulli numbers, Duke Math. J. 25 (1958) 355–364.

[6] G.-S. Cheon, A note on the Bernoulli and Euler polynomials, Appl. Math. Lett. 16

(3) (2003) 365–368.

[7] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions

(translated from French by J.W. Nienhuys), Reidel, Dordrecht, Boston, 1974.

[8] Q.-M. Luo, H.M. Srivastava, Some relationships between the Apostol–Bernoulli

and Apostol–Euler polynomials, Comput. Math. Appl. 51 (2006) 631–642.

[9] Q.-M. Luo, Some results for the q-Bernoulli and q-Euler polynomials, J. Math.

Anal. Appl. 363 (2010) 7–18.

66



[10] H.M. Srivastava, J. Choi, Series Associated with the Zeta and Related Functions,

Kluwer Academic Publishers, Dordrecht, Boston, London, 2001.

[11] H.M. Srivastava, Á. Pintér, Remarks on some relationships between the Bernoulli

and Euler polynomials, Appl. Math. Lett. 17 (2004) 375–380.

[12] Q.-M. Luo, H.M. Srivastava, q-extensions of some relationships between the

Bernoulli and Euler polynomials, Taiwanese Journal Math., 15, No. 1, pp. 241-

257, 2011.

[13] M. Cenkci and M. Can, Some results on q-analogue of the Lerch Zeta function,

Adv. Stud. Contemp. Math., 12 (2006), 213-223.

[14] M. Cenkci, M. Can and V. Kurt, q-extensions of Genocchi numbers, J. Korean

Math. Soc., 43 (2006), 183-198.

[15] M. Cenkci, V. Kurt, S. H. Rim and Y. Simsek, On (i,q)-Bernoulli and Euler num-

bers, Appl. Math. Lett., 21 (2008), 706-711.

[16] J. Choi, P. J. Anderson and H. M. Srivastava, Some q-extensions of the Apostol-

Bernoulli and the Apostol-Euler polynomials of order n, and the multiple Hurwitz

Zeta function, Appl. Math. Comput., 199 (2008), 723-737.

[17] J. Choi, P. J. Anderson and H. M. Srivastava, Carlitz’s q-Bernoulli and q-Euler

numbers and polynomials and a class of q-Hurwitz zeta functions, Appl. Math.

Comput., 215 (2009), 1185-1208.

[18] T. Kim, Some formulae for the q-Bernoulli and Euler polynomial of higher order,

J. Math. Anal. Appl., 273 (2002), 236-242.

67



[19] T. Kim, q-Generalized Euler numbers and polynomials, Russian J. Math. Phys. 13

(2006), 293-298.

[20] T. Kim, On the q-Extension of Euler numbers and Genocchi numbers, J. Math.

Anal. Appl., 326 (2007), 1458-1465.

[21] T. Kim, q-Bernoulli numbers and polynomials associated with Gaussian binomial

coefficients, Russian J. Math. Phys., 15 (2008), 51-57.

[22] T. Kim, The modified q-Euler numbers and polynomials, Adv. Stud. Contemp.

Math., 16 (2008), 161-170.

[23] T. Kim, L. C. Jang and H. K. Pak, A note on q-Euler numbers and Genocchi num-

bers, Proc. Japan Acad. Ser. A Math. Sci., 77 (2001), 139-141.

[24] T. Kim, Y.-H. Kim and K.-W. Hwang, On the q-extensions of the Bernoulli and

Euler numbers. related identities and Lerch zeta function, Proc. Jangjeon Math.

Soc., 12 (2009), 77-92.

[25] T. Kim, S.-H. Rim, Y. Simsek and D. Kim, On the analogs of Bernoulli and Eu-

ler numbers, related identities and zeta and L-functions, J. Korean Math. Soc., 45

(2008), 435-453.

[26] T. Kim, Note on q-Genocchi numbers and polynomials, ADV. Stud. Contemp.

Math. (Kyungshang) 17 (2008), no. 1, 9-15.

[27] T. Kim, A note on the q-Genocchi numbers and polynomials, J. Inequal. Appl.

2007, Art. ID 71452, 8 pp.doi:10.1155/2007/71452.

68



[28] N. I. Mahmudov, q-Analogues of the Bernoulli and Genocchi Polynomials and the

Srivastava-Pinter Addition Theorems, Discrete Dynamics in Nature and Society

Volume 2012 (2012), Article ID 169348, 8 pages, doi:10.1155/2012/169348.

[29] H. Ozden and Y. Simsek, A new extension of q-Euler numbers and polynomials

related to their interpolation functions, Appl. Math. Lett., 21 (2008), 934-939.

[30] O-Yeat Chan, D. Manna, A new q-analogue for bernoulli numbers, Preprint,

oyeat.com/papers/qBernoulli-20110825.pdf

[31] G. M. Phillips, On generalized Bernstein polynomials. Numerical analysis, 263–

269, World Sci. Publ., River Edge, NJ, 1996.

[32] C. S. Ryoo, J. J. Seo and T. Kim, A note on generalized twisted q-Euler numbers

and polynomials, J. Comput. Anal. Appl., 10 (2008), 483-493.

[33] Y. Simsek, q-Analogue of the twisted l-series and q-twisted Euler numbers, J. Num-

ber Theory, 110 (2005), 267-278.

[34] Y. Simsek, Twisted (h,q)-Bernoulli numbers and polynomials related to twisted

(h,q)-zeta function and L-function, J. Math. Anal. Appl., 324 (2006), 790-804.

[35] Y. Simsek, Generating functions of the twisted Bernoulli numbers and polynomi-

als associated with their interpolation functions, Adv. Stud. Contemp. Math., 16

(2008), 251-278.

[36] H. M. Srivastava, T. Kim and Y. Simsek, q-Bernoulli numbers and polynomials as-

sociated with multiple q-Zeta functions and basic L-series, Russian J. Math. Phys.,

12 (2005), 241-268T.

69



[37] Y. Simsek, I. N. Cangul, V. Kurt, and D. Kim, q-Genocchi numbers and poly-

nomials associated with q-Genocchi-type l-functions, Adv. Difference Equ. 2008

(2008), Art. ID

[38] N. I. Mahmudov, A new class of generalized Bernoulli polynomials and Eu-

ler polynomials, arXiv:1201.6633v1, Submitted for publication. 815750, 12 pp.

doi:10.11555.2008/85750

[39] H. M. Srivastava and C. Vignat, Probabilistic proofs of some relationships between

the Bernoulli and Euler polynomials, European J. Pure Appl. Math. 5 (2012), 97–

107.

[40] Jan L. Cieslinski, Improved q-exponential and q-trigonometric functions, Applied

Mathematics Letters,Volume 24, Issue 12, December 2011, Pages 2110–2114.

[41] Gabaury S. and Kurt B., Some relations involving Hermite-based Apostol-

Genocchi polynomials, App. Math. Sci., 6 (2012), 4091-4102.

[42] Kim D. S., Kim T. and Lee S.-Hi, A note on q-Frobenius-Euler numbers and poly-

nomials, Adv. Studies Theo. Phys., vol. 17, 18(2013), 881-889.

[43] Kupershmidt B. O., Reflection symmetries of q-Bernoulli polynomials, J. Nonlin-

ear Math. Phys., 12 (2005), 412-422.

[44] Mahmudov N. I., On a class of q-Bernoulli and q-Euler polynomials, Adv. Differ.

Equ., 2013:108, doi:10.1186/1687-1847-2013-108.

[45] Mahmudov N. I. and Keleshteri M. E., On a class of generalized q-Bernoulli and

q-Euler polynomials, Adv. Difference Equ. 2013,2013:115.

70



[46] V. Kurt, New identities and relations derived from the generalized Bernoulli poly-

nomials, Euler polynomials and Genocchi polynomials. Advances in Difference

Equations 2014, 2014:5

[47] V. Kurt, “A new class of generalized q-Bernoulli and q-Euler polynomials,” in

Proceedings of the International Western Balkans Conference ofMathematical Sci-

ences, Elbasan, Albania, May 2013.

[48] Daeyeoul Kim, Burak Kurt, and Veli Kurt, “Some Identities on the Generalized q-

Bernoulli, q-Euler, and q-Genocchi Polynomials,” Abstract and Applied Analysis,

vol. 2013, Article ID 293532, 6 pages, 2013. doi:10.1155/2013/293532

[49] S. Nalci and O. K. Pashaev, q-Bernoulli Numbers and Zeros of q-Sine Function,

http://arxiv.org/abs/1202.2265v1.

[50] H. M. Srivastava and C. Vignat, Probabilistic proofs of some relationships between

the Bernoulli and Euler polynomials, European J. Pure Appl. Math. 5 (2012), 97–

107.

[51] S. Araci, J. J. Seo, and M. Acikgoz, “A new family of qanalogue of Genocchi

polynomials of higher order,” Kyungpook Mathematical Journal. In press.

[52] B. Kurt, “A further generalization of the Bernoulli polynomials and on the 2D-

Bernoulli polynomials B(α)
n,q,” Applied Mathematical Sciences, vol. 4, no. 47, pp.

2315–2322, 2010.

[53] P. Natalini and A. Bernardini, “A generalization of the Bernoulli polynomials,”

Journal of Applied Mathematics, no. 3,pp. 155–163, 2003.

71



[54] R. Tremblay, S. Gaboury, and B.-J. Fug‘ere, “A new class of generalized Apostol-

Bernoulli polynomials and some analogues of the Srivastava-Pint´er addition theo-

rem,” Applied Mathematics Letters, vol. 24, no. 11, pp. 1888–1893, 2011.

[55] R. Tremblay, S. Gaboury, and B. J. Fegure, “Some new classes of generalized

Apostol Bernoulli and Apostol-Genocchi polynomials,” International Journal of

Mathematics and Mathematical Sciences, vol. 2012, Article ID 182785, 14 pages,

2012.

[56] N. I. Mahmudov, A. Akkeleş and A. Öneren, "On two Dimensional q-Bernoulli

and q-Genocchi Polynomials: Properties and location of zeros" Journal Of Com-

putational Analysis And Applications, Vol. 16, NO. 2, 2014, 282-293.
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