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ABSTRACT 

In this thesis, the Maggiore's method (MM), which evaluates the transition frequency 

that appears in the adiabatic invariant from the highly damped quasinormal mode 

(QNM) frequencies, is used to investigate the entropy/area spectra of the Garfinkle-

Horowitz-Strominger black hole (GHSBH) and     Lifshitz black hole (ZZLBH). 

The complex QNM frequencies of the GHSBH and ZZLBH are computed using the 

confluent hypergeometric (CH) differential equation that arises when the scalar 

perturbations around the event horizon are considered. Although the entropy/area is 

characterized by the parameters of black holes (BHs), their quantization is shown to 

be independent of those parameters. However, both spectra are equally spaced. 

We also represent the mass calculations of the associated BHs. In this regard, we 

compute the mass of the GHSBH by using Komar’s mass integral formulation. For 

the mass of the ZZLBH, we use both Wald’s entropy formula and Brown-York 

(BY)'s quasilocal mass formalism. 

Keywords: Garfinkle-Horowitz-Strominger Black Hole,      Lifshitz Black Hole, 

Maggiore's Method, Black Hole Spectroscopy, Quasilocal Mass. 
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ÖZ 

Bu tezde, Garfinkle-Horowitz-Strominger (GHSBH) kara deliğinin ve     Lifshitz 

kara deliğinin (ZZLBH) entropi/alan spektrumlarını incelemek için, adyabatik 

invaryant içerisinde görülen geçiş frekansını, yüksek sönümlenen kuazinormal mod 

(QNM) frekanslarından elde eden Maggiore’un metodu (MM) kullanılmıştır. Olay 

ufkunun etrafında skalar pertürbasyonlar düşünüldüğü zaman ortaya çıkan konflüent 

hipergeometrik (CH) diferansiyel denklemi kullanılarak, GHSBH ve ZZLBH’a ait 

kompleks kuazinormal mod frekansları hesaplanmıştır. Entropi/alan, kara delik (BH) 

parametreleri ile karakterize edilmesine rağmen, kuantizasyonun bu parametrelerden 

bağımsız olduğu gösterilmiştir. Bununla birlikte, her iki spektrumun da eşit aralıklı 

olduğu gösterilmiştir. 

İlgili BH'ların kütle hesapları da ayrıca gösterilmiştir. Bu bağlamda, GHSBH kütlesi 

Komar’ın kütle integrali kullanılarak hesaplanmıştır. ZZLBH kütlesi için ise hem 

Wald entropi formülü hem de Brown-York (BY)'un kuazilokal kütle formalizmi 

kullanılmıştır. 

Anahtar Kelimeler: Garfinkle-Horowitz-Strominger Kara Deliği,     Lifshitz 

Kara Deliği, Maggiore Metodu, Kara Delik Spektroskopisi, Kuazilokal Kütle.  
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Chapter 1 

INTRODUCTION 

Currently, one of the greatest projects in theoretical physics is to unify general 

relativity (GR) with quantum mechanics (QM). Such a new unified theory is known 

as the quantum gravity theory (QGT) [1]. Recent developments in physics show that 

our universe has a more complex structure than that predicted by the standard model 

[2]. The QGT is considered to be an important tool that can tackle this problem. 

However, current QGT still requires further extensive development to reach 

completion. The development of the QGT began in the seventies when Hawking 

[3,4] and Bekenstein [5-9] considered the black hole (BH) as a quantum mechanical 

system rather than a classical one. In particular, Bekenstein showed that the area of 

the BH should have a discrete and equally spaced spectrum: 

             ,              ;                             (1.1) 

where   is the undetermined dimensionless constant and   is the order of unity. The 

above expression also shows that the minimum increase in the horizon area is 

        . Bekenstein [7,8] also conjectured that for the Schwarzschild BH (and 

also for the Kerr-Newman BH) the value of   is    (or    ). Following the 

seminal work of Bekenstein, various methods have been suggested to compute the 

area spectrum of the BHs. Some methods used for obtaining the spectrum can admit 

the value of   different than that obtained by Bekenstein; this has led to the 

discussion of this subject in the literature (for a review of this topic, see [10] and 

references therein). Among those methods, the Maggiore’s results [11] show a 
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perfect agreement with Bekenstein's result by modifying the Kunstatter's [12] 

formula as 

     ∫
  

  
 ,                                                 (1.2) 

where      denotes the adiabatic invariant quantity and            represents 

the transition frequency between the subsequent levels of an uncharged and static BH 

with the total energy (or mass)  . However, the researchers [13,14,15] working on 

this issue later realized that the above definition is not suitable for the charged 

rotating (hairy) BHs that the generalized form of the definition should be given by 

     ∫
   

  
 ,                                               (1.3) 

where   and   denote the temperature and the entropy of the BH, respectively. Thus, 

using the first law of BH thermodynamics, Eq. (1.3) can be modified for the 

considered BH. In contrast, according to the Bohr-Sommerfeld quantization rule, 

     behaves as a quantized quantity         while the quantum number   tends to 

infinity. To determine   , Maggiore considered the BH as a damped harmonic 

oscillator that has a proper physical frequency in the form of      
    

     , 

where    and    are the real and imaginary parts of the frequency, respectively. For 

the highly excited modes (   )       , and therefore       . Hod [16,17] 

was the first to argue that the quasinormal modes (QNMs) can be used in the 

identification of the quantum transitions for the     . Subsequently, there have been 

other published papers that use the Maggiore’s method (MM) to achieve similar 

results (see for instance [18-27]). 

In this study, we first focus on the investigation of the Garfinkle-Horowitz-

Strominger black hole (GHSBH) [28] spectroscopy. This problem was previously 

studied by Wei et al. [15]. They used the QNMs of Chen and Jing [29] who studied 
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the monodromy method [30] and obtained an equal spacing of GHSBH spectra at the 

high frequency modes. The main difference between the present study and that of 

Wei et al. is the method that we employ for computing the QNMs. There are several 

methods to calculate the QNMs, such as the WKB method, the phase integral 

method, continued fractions and direct integrations of the wave equation in the 

frequency domain [31]. One of our goals in this study is to consider an 

approximation method (its details are given in the next chapters) for obtaining the 

QNMs of the GHSBH. Although this method shows some similarities with the 

monodromy method, especially, the resulting ordinary differential equations of the 

two methods are different from each other. Thus, we seek to support the study of Wei 

et al. [15] because we believe that the studies that obtain the same conclusion using 

different methods are more reliable. 

In the low-energy limit of the string theory, there is a family of solutions which 

covers the GHSBH spacetime. This geometry reveals when the electromagnetic and 

gravitational fields are enlarged to include a dilaton field. Dilaton generally couples 

to the gauge field and the metric in non-trivial form. Because of that coupling 

procedure, the resulting stringy BH is different from the Reissner-Nordström (RN) 

BH. 

To employ the MM, the QNMs (a set of complex frequencies arising from the 

perturbed BH) of the GHSBH should be computed. To achieve this, we first consider 

the Klein-Gordon equation (KGE) for a massless scalar field in the background of 

the GHSBH. After separating the angular and the radial equations, we obtain a 

Schrödinger-like wave equation, which is the so-called Zerilli equation [32]. Plots of 

the potential indicate that there exist some cases in which the effective potential may 
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diverge after the BH horizon; thus, the QNMs may not reach the observer in the far 

region. Therefore, to reliably detect the QNMs, instead of a distant observer, we 

consider a detector located in the vicinity of the BH. Namely, we assume that there is 

a probe that receives the frequencies of the QNMs and sends them to the distant 

observer via a transmission line. In the framework of this scenario, we focus our 

analysis on the near horizon region. We then derive the QNMs of the GHSBH by 

using a particular approximation method based on the fact that for the QNMs to 

exist, the outgoing waves must be terminated at the event horizon. This method is 

based on the studies [33,34] in which the QNMs are computed using the poles of the 

scattering amplitude in the Born approximation when the argument of the Gamma 

function takes a negative integer value. The method is further enhanced by the 

studies [21,24,25,35,36] in which the near-horizon form of the Zerilli equation [32] 

is reduced to a confluent hypergeometric (CH) differential equation [37]. After 

choosing the expedient solution, we consider one of the features of the CH functions 

that corresponds to the case when its variable is very small. Next, we use the well-

known pole structure of the Gamma functions [37] to define the QNMs of the 

GHSBH. Once the QNMs are obtained, we use their    term in the MM and obtain 

the GHSBH spectra. 

In the sense of Riemannian geometry, conformal gravity (CG) is an exclusive name 

for the gravity theories that are invariant under Weyl transformations. CG admits 

static and asymptotically Lifshitz BH solutions. In this thesis, we also consider a 

particular four dimensional Lifshitz BH with the dynamical exponent     that is 

the so-called     Lifshitz black hole (ZZLBH). Our interest is to study 
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spectroscopy of this BH using the MM and calculate its mass via Brown-York (BY) 

formalism [38,39] and Wald's entropy formula [40-42]. 

The thesis includes the following: In chapter 2, we first introduce the GHSBH metric 

including its mass calculation with Komar's formula and its thermodynamical 

features. We then demonstrate the method by which the massless KGE is separated 

for that geometry. Next, we express the radial equation in the form of the Zerilli 

equation with an effective potential, and then we compute the QNMs of the GHSBH. 

In particular, for the near–horizon region, we show how the Zerilli equation reduces 

to a CH differential equation, which yields the QNMs of the GHSBH spacetime. 

Finally, we apply the MM to obtain the quantum spectra of the entropy/area of the 

GHSBH.  

Chapter 3 is devoted to the computation of the QNMs and the quantum spectra of the 

ZZLBH. We briefly introduce the ZZLBH metric. We calculate its mass by 

following the BY formalism. The obtained mass expression is also verified over the 

Wald's entropy formula [40-42] which yields the mass via the first law 

thermodynamics:        . We separate the KGE on the ZZLBH geometry and 

obtain the radial wave equation. After having the near–horizon form of the Zerilli 

equation, we calculate the QNMs of the ZZLBH with the aid of CH differential 

equation. Subsequently, we employ the MM and derive the entropy/area spectra of 

the ZZLBH.  

We present our conclusions in chapter 4. Throughout the thesis, the units     

     are used. 
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Chapter 2 

QUANTIZATION OF THE GHSBH 

2.1 GHSBH Spacetime 

In this section, we represent the geometrical and thermodynamical properties of the 

GHSBH.  

The four-dimensional Einstein-Maxwell-dilaton action (in the low-energy limit of the 

string field theory) describing the dilaton field   coupled to a U(1) gauge field is 

given by 

  ∫   √  [                ],                         (2.1) 

where        
   in which     is the Maxwell field associated with a      

subgroup of        or Spin (32)/   [28]. Meanwhile, the action is expressed within 

the Einstein frame. After applying the variational principle to the above action, we 

obtain the following field equations:  

  ( 
      )   ,                                             (2.2) 

    
 

 
        ,                                           (2.3) 

                               
 
 

 

 
    

     .          (2.4) 

Their solutions are expressed by the following static and spherically symmetric 

metric: 

             
   

    
        ,                             (2.5) 
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where     is the standard metric on the  -sphere. The metric functions are given by 

       
  

 
 ,                                                (2.6)                                

            ,                                            (2.7) 

where the physical parameter   is defined by 

  
       

  
,                                                  (2.8) 

in which  ,   and    describe the magnetic charge, mass and the asymptotic 

constant value of the dilaton field, respectively. Besides,       represents the 

event horizon of the GHSBH. In this spacetime, the dilaton is governed by 

          (  
  

 
),                                        (2.9) 

and the Maxwell field reads 

            .                                          (2.10) 

For the electric charge case, one can simply apply the following duality 

transformations: 

 ̃   
 

 
       

  
      and        .                              (2.11) 

Since the    part of the GHSBH metric (2.5) is identical to the Schwarzschild BH, 

the surface gravity [41] naturally coincides with the Schwarzschild's one 

         
√ 

 

 
         

      

 
 

 

  
 ,                         (2.12) 

where the timelike Killing vector is    [       ]. Therefore, the Hawking 

temperature    of the GHSBH reads 

   
  

  
 

 

   
 .                                             (2.13) 
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Therefore, the Hawking temperature of the GHSBH is independent of the amount of 

the charge. But, the similarity between the GHSBH and the Schwarzschild BH is 

apparent since the radial coordinate does not belong to the areal radius. So, the 

entropy of the GHSBH is different than the Schwarzschild BH's entropy: 

    
 

  
 

          

 
,                                         (2.14) 

In fact, at extremal charge   √      i.e.    , the BH has a vanishing area and 

hence its entropy is zero. The extremal GHSBH is not a BH in the ordinary sense 

since its area has become degenerate and singular: it is indeed a naked singularity. 

Unlike the singularity of RN, which is timelike, this singularity is null and whence 

outward-directed radial null geodesics cannot hit it. For a detailed study of the null 

geodesics of the GHSBH, one may refer to [43]. On the other hand, one can easily 

prove that the first law of thermodynamics (               in which the 

electric potential on the horizon is given by     
 

 
 ) for the GHSBH is satisfied. 

Energy notion always plays an important role in all physical theories. In GR, when 

we consider a static, asymptotically flat (AF) spacetime with the normalized timelike 

Killing vector   , the total mass of the vacuum spacetime in the exterior region (near 

infinity) can be defined by the following integral [41,44] 

  
  

  
∫     

 ,                                              (2.15) 

          
  ,                                              (2.16) 

                
     (   

     
   ).                          (2.17) 

Here    ,    and       are the surface tensor, the contravariant derivative and the 

covariant Levi-Civita tensor, respectively.   is the mass provided by the limit when 



9 
 

the two dimensional sphere approaches to infinity. The covariant Levi-Civita tensor 

is given by [45] 

      √        ,                                         (2.18) 

where       is the Levi-Civita tensor for Minkowski spacetime and      [   ] 

where     is the metric tensor. 

The non-zero Christoffel symbols that we need for calculating     are 

   
  

          

 
,                                                 (2.19) 

   
  

      

     
 .                                                    (2.20) 

Substituting the timelike Killing vector    [       ] into Eq. (2.17), one can 

easily find the non-zero components of the surface tensor as follows 

         
      

 
 

  

   
 

 

  
 .                                 (2.21) 

Thus, from Eq. (2.16), the integrant of Eq. (2.15) becomes 

         
        

 
    .                                   (2.22) 

After evaluating the integral (2.15), the GHSBH mass is found as 

  
 

  
∫   
  

 
∫         
 

 
 

  

 
  .                         (2.23) 

So we prove that the   seen in the metric function (2.6) is nothing but the mass of 

the GHSBH. 
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2.2 Separation of the KGE on the GHSBH Geometry 

In this section, we derive the Zerilli equation and its corresponding effective 

potential for a massless scalar field propagating in the GHSBH background. 

To obtain the GHSBH spectra via the MM, we shall first consider the massless scalar 

field   satisfying the KGE: 

 

√  
  (√        )   .                                      (2.24) 

The chosen ansatz for the scalar field    has the following form 

                    
      ,             ;                    (2.25) 

in which   and   
       represent the frequency of the propagating scalar wave and 

the spheroidal harmonics with the eigenvalue         respectively. Here,   and    

denote the magnetic quantum number and orbital angular quantum number, 

respectively. After some algebra, the radial equation can be reduced to the following 

form 

* 
  

    
     +            ,                                   (2.26) 

which is nothing but the Zerilli equation [32]. Employing the tortoise coordinate    

defined as 

   ∫
  

    
 ,                                                 (2.27) 

we get 

         (
 

  
  ),                                      (2.28) 

or inversely, one can also obtain 

    [      ] ,                                          (2.29) 
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where    
(
  

  
  )

 and      represents the           function or the       

function [46]. It can be checked that 

                                         .                        (2.30) 

The effective or the so-called Zerilli potential      is given by 

     
    

       
*       

  

       
               +.              (2.31) 

Figure 1 shows the effect of the  –parameter on the effective potential. In that figure, 

we plot       versus    with    ,     at various values of  . It is apparent from 

Figure 1 that when  –parameter assumes values higher than one, the effective 

potential diverges at a specific point that is within the event horizon and the spatial 

infinity. This means that the scalar waves do not always reach the observer located at 

the spatial infinity. Therefore, to obtain the QNMs for each time, it is better to focus 

our analysis on the near-horizon region of the GHSBH.  

Figure 1: The plot of the effective potential       versus   . The physical parameters 

are chosen as     and    . Different line styles belong to different  -values. 
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2.3 Spectroscopy of the GHSBH 

The QNMs are conventionally defined as the solutions of the perturbational wave 

equation, such as Eq. (2.24), which have the following boundary conditions: the 

waves travel purely inward (ingoing) at the event horizon and purely outward 

(outgoing) at the spatial infinity. The latter condition is generally suitable for the 

effective potentials, which have a bumpy shape that dies off at both ends as in the 

Zerilli potential of the Schwarzschild BH [32]. However, as illustrated in Figure 1, 

depending on the value of the  –parameter, the potential (2.31) can diverge and thus 

stop the waves that originate from the BH and propagate toward the spatial infinity. 

For this reason, in this section we follow up the particular method [21,33-36] that 

considers only the small perturbations in the vicinity of the event horizon, and then 

analyze how the outgoing waves terminate there. In particular, we shall derive an 

analytical formula for the discrete spectrum of the QNM frequencies. 

The metric function      can be expanded to series around the event horizon as 

follows 

                         [      
 ]     ,              (2.32) 

where       . After substituting this new variable into Eq. (2.31) and performing 

the Taylor expansion around    , the near–horizon form of the potential becomes 

        [                          ],           (2.33) 

where the parameters are given by 

  
 

 
,       

  

  
,       

 

 
,        

     

  
,       

  

  
,              (2.34) 

with 

      ,                       .                             (2.35) 
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Furthermore, the near–horizon limit of the tortoise coordinate (2.28) becomes 

   
 

  
   ,                                                (2.36) 

which enables us to obtain the near-horizon form of the Zerilli equation (2.26) as 

follows: 

            

   
          

  
                .               (2.37) 

The above differential equation has two separate solutions: 

      
  

       [   ( ̃  ̃     )     ( ̃  ̃     )],               (2.38) 

where  ( ̃  ̃     ) and  ( ̃  ̃     ) are called CH functions [37] of the first and 

second kinds, respectively. The parameters of the functions are given by 

 ̃  
 ̃

 
  

 

    
,                                               (2.39) 

 ̃    
  

 
,                                                  (2.40) 

where  

            ,                                         (2.41)  

  
 

 √ 
√         (  

 

   ).                             (2.42) 

The following limiting forms of the CH functions are needed for our analysis [47]. 

       ( ̃  ̃  )        ,                                 (2.43) 

       ( ̃  ̃  )  
 ( ̃  )

   ̃ 
    ̃  

 (   ̃)

 (   ̃  ̃)
  (     ̃) ; 

    ̃    ,        ̃   .                                     (2.44) 

By using them, we obtain the near–horizon (    ) behavior of the solution (2.38) 

as 
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     [     
 (   ̃)

 (   ̃  ̃)
]  

  

     
 ( ̃  )

   ̃ 
  

  

   .                  (2.45) 

and using Eq. (2.36), we represent it as the superposition of the ingoing and outgoing 

waves: 

      [     
 (   ̃)

 (   ̃  ̃)
]         

 ( ̃  )

   ̃ 
      .                (2.46) 

Since the QNMs impose that the outgoing waves must spontaneously terminate at the 

horizon, the second term must be vanished. This is possible with the poles of the 

Gamma function of the denominator seen in the second term. In short, if we set  

 ̃    ,           the outgoing waves vanish and hence we read the frequencies 

of the QNMs of the GHSBH. The result is given by 

   
 

   
                                                (2.47) 

Now,   is called the overtone quantum number or the so-called resonance parameter 

[48]. From Eq. (2.47), one can immediately examine why the real part of      

depends on the angular momentum quantum number  , unlike the results given in 

[16,17,29]. Actually, in the literature, it remained unclear whether the  -

independence for the real parts of the QNM frequencies is universal or not. Because, 

there are also some studies that the effect of the angular quantum number on the real 

part of    is highlighted (see for instance [49-53]). 

For the highly excited states (    and therefore      ), we have  

          
    

 
.                                    (2.48) 

Substituting this into Eq. (1.3), we obtain 
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 .                                               (2.49) 

Acting upon the Bohr-Sommerfeld quantization rule (         ), we find the 

entropy spectrum as 

      .                                                  (2.50) 

Furthermore, since   
 

  
  we can also read the area spectrum: 

        .                                              (2.51) 

Thus, the minimum area spacing becomes 

          ,                                            (2.52) 

which represents that the entropy/area spectra of the GHSBH are evenly spaced. 
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Chapter 3 

QUANTIZATION OF THE ZZLBH 

3.1 The ZZLBH Spacetime  

In this section we give a brief introduction about the four dimensional Lifshitz 

spacetimes and particularly consider one of their metrics, which is the ZZLBH. 

The Lifshitz spacetimes have received considerable attraction for being invariant 

under anisotropic scale and characterizing gravitational dual of strange metals [54]. 

Lifshitz spacetimes are described by the following line element 

       
   

   
    

  

  
    

  

  
  ⃗ ,                                  (3.1) 

where   is the length scale in the geometry,   denotes the dynamical exponent and  ⃗ 

shows the spatial vector. The action corresponding to the Einstein-Weyl gravity [55] 

is given by 

  
 

  ̃ ∫ √     (     
 

 
 |    | ) ,                       (3.2) 

where 

 ̃    ,                                                     (3.3) 

|    |                     
 

 
  ,                       (3.4) 

and   
       

       
. For CG that is the limiting case of the Einstein-Weyl gravity,    

goes to infinity. For this condition, it can be seen that the static, asymptotically 

Lifshitz BH solutions are available for both     and     [55,60]. Besides, it is 
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also found that     and     Lifshitz BHs exist in the Horava-Lifshitz gravity 

[55,60].  

Here, we especially take our attention to     case that produces the four 

dimensional ZZLBH. Its metric [55] is given by 

             
 

      
           

 ,                           (3.5) 

where the metric function      is described by 

       
 

  
 

     

   
.                                         (3.6) 

In Eq. (3.5),      
  

   

                 corresponds to different geometrical 

structures depending on the  –value. When    ,      
  represents 2–sphere, which 

is our choice in this chapter. Furthermore, one can set      in      
  and get the 

unit hyperbolic plane, and     stands for the  –torus. Spacetime (3.5) has always a 

curvature singularity at    . Moreover, this singularity becomes naked when 

   . There is an event horizon for      solution: 

   
 

 
*√          +.                                       (3.7) 

Since   
  is positive, it is required to be       . As mentioned before, our focus 

is on "    solution with     " which yields that     . So, now the metric 

function (3.6) can be rewritten as 

       
  

 

  
.                                              (3.8) 

The Ricci scalar (    
 
) and Kretschmann scalar (        

    ) of the 

ZZLBH metric are given by 



18 
 

  
  

 

   
 

 

  
 

 

 
,                                               (3.9) 

  
   

     
    

   
 

  
   

   
 

 

 
.                                  (3.10) 

As it is clear from above, while     both scalars diverge that proves the existence 

of the singularity at    . In addition to this, while    ,    
 

 
 and   

 

 
 

which show that ZZLBH is a non-asymptotically flat (NAF) spacetime. By using the 

following formula of the surface gravity [41] 

   ( 
 

 
        

               )
  ⁄

,                            (3.11) 

we get 

        
  

 
 

 

 
 .                                           (3.12) 

Therefore, the Hawking temperature    of the ZZLBH reads 

   
 

  
 

 

  
 .                                               (3.13) 

So, the entropy of the ZZLBH becomes 

                                            
  

 
    

 .                                             (3.14) 

3.1.1 Mass Calculation of the ZZLBH via the BY Formalism 

The concept of quasilocal mass (   ) was proposed by physicists about forty years 

ago to measure the energy of a given compact region by a closed spacelike 2-surface. 

GR unifies space and time, and this union, which is the so-called spacetime has a 

curvature that represents the gravitational force. Energy–mass matchup is 

fundamental in the GR. The energy/mass of a given compact region by a closed 
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spacelike 2–surface (hypersurface ∑;      
 ) is measured by the     definition. In 

general,     computation is valid for NAF BH geometries. 

In this section, we will consider BY formalism for calculating the      of the 

ZZLBH. In this formalism, a spherically symmetric  –dimensional metric solution 

[38,39] is given by 

              
   

     
        

 ,                          (3.15) 

which formulates the     with the following definition [56,57]  

    
   

 
        [            ]                           (3.16) 

where   is the radius of hypersurface   and         is an optional non-negative 

reference function providing zero energy for the spacetime. If we adopt the BY 

metric (3.15) to our  –dimensional ZZLBH metric (3.5), we get the following 

matching. 

     √     √   ,         
    

    
 

 

 
√   ,                 (3.17) 

where   
  
 

  
 and       

 

 
. The reference  -function is found as 

                  
 

 
.                                     (3.18) 

After substituting Eq. (3.17) into Eq. (3.16) and making a straightforward 

calculation, one can obtain the mass of the ZZLBH as 

                
  
 

 
.                                             (3.19) 

Therefore, the event horizon reads 

             √ .                                                 (3.20) 
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3.1.2 Mass Calculation of the ZZLBH via the Wald’s Entropy Formula 

In this section, we will introduce the Wald's entropy calculation [40,41]. We shall 

derive the mass of the ZZLBH by using the first law of the thermodynamics: 

      . Then, we will compare this result with the BY's mass (3.19). 

It is convenient to start with the timelike Killing vector    which describes the 

symmetry of time translation in the spacetime. The Wald's entropy is then defined by 

  
  

 
∫    
 

√  ,                                          (3.21) 

where 

      
   

 

   
,                                            (3.22) 

    
 

 
(         ),                                        (3.23) 

where    is the outward unit normal vector of hypersurface Σ, which satisfies 

   
   . And   is the induced metric on the hypersurface Σ of a horizon, which is 

now a  -sphere with         . On the other hand,    is the four-vector velocity 

defined as the proper velocity of a fiducial observer moving along the orbit of   . 

And     is called the Noether potential [58,59]: 

           (    )   (   
    )  ,                         (3.24) 

where 

      
 

   
               .                             (3.25) 

The timelike Killing vector of the metric (3.5) is given by      
 

  
 . The 

normalization constant   should be normalized at the AF Minkowski spacetime (at 

spatial infinity) over the condition:     
      . Thus, we obtain 

              .                                                    (3.26) 
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The four-vector velocity    is defined as  

   
 

 
  ,                                                  (3.27) 

with   √     . Thus 

   
 

√     
 
.                                                (3.28) 

Meanwhile, using Eq. (3.26) the surface gravity   can be calculated by the following 

expression [42] 

         
√

            

   
 

 

 
.                                (3.29) 

Since    , the surface gravity yields   
 

 
 as it is found in Eq. (3.12). For the 

metric (3.5) we obtain the outward unit normal vector as 

   
 

   
 

√     
 
                                             (3.30) 

Thus, the non-zero components of     tensor (3.23) are 

          
 

 
                                            (3.31) 

It is worth to note that the Wald's entropy is independent of the normalization of   , 

since the Noether potential and the surface gravity are proportional to the 

normalization constant of   . Hence, this constant does not appear in the entropy 

formula. 

We obtain 24 non-zero components of      : 
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.
   

 
/  

                          

 

   
0
      

  

   
1  

                          

 

   
0
      

  

        
1 (3.32) 

                          

 

   
(

 

       
)  

                          

  

   
0

 

      
       

1  

                          

  

   
0

 

      
  
1  

                                         

One can check that the covariant derivative of       

   
      ,                                                (3.33) 

which means the second term of the Noether potential (3.24) is vanished. So, we 

have 

           (    )            ,                           (3.34) 

where          that results in 

          
  
 

  
.                                          (3.35) 

After substituting Eqs. (3.32) and (3.33) into Eq. (3.34), we compute the non-zero 

components of the Noether potential as 

          
  
 

   
.                                           (3.36) 
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Finally, the entropy (3.21) of the ZZLBH is calculated as 

     
  

  

  
,                                              (3.37) 

which is in consistence with the Bekenstein-Hawking entropy. Hence, the mass of 

the ZZLBH can now be derived from this entropy by using the following integral 

  ∫   ,                                                (3.38) 

where        ⁄  (see Eq. (3.13)). After evaluating the above integral, the mass is 

found to be 

  
  
 

 
,                                                    (3.39) 

which is nothing but the mass (3.19) obtained in the BY formalism. Consequently, 

we may rewrite the metric function (3.8) as follows 

       
  

  
 .                                            (3.40) 

3.2  Separation of the KGE on the ZZLBH Geometry 

In this section, we solve the eigenvalue problem presented by the KGE with the 

boundary conditions at the horizon and spatial infinity in order to compute the 

frequency of QNMs, and the entropy/area spectra of the ZZLBH by using the MM 

[11]. 

In order to derive the spectra of ZZLBH, it is convenient to start with the massive 

KGE, which is given by 

 

√  
  (√        )     .                                  (3.41) 

The ansatz of the scalar field   can be chosen as 

  
 

 
          

      ,            ,                          (3.42) 
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where      is the radial function. After substituting Eq. (3.42) into Eq. (3.41), the 

radial part of the equation reduces to the Zerilli equation [32] given by 

* 
  

    
     +            ,                                (3.43) 

where the effective potential      is obtained as 

         ,
      

  
 

 

 
*      

     

  
+    - ,                     (3.44) 

and the tortoise coordinate    can be found by the following integral definition 

    ∫
  

     
 ,                                             (3.45) 

which results in 

     (
  

  
   ),                                           (3.46) 

where the above form of    is valid for     . One may check that the limits of    

are as follows 

        
        and              .                         (3.47) 

Similarly, the limits of the Zerilli potential (3.44) are  

                 and                  
 

 
.                   (3.48) 

It is obvious that the potential never terminates at the spatial infinity. Even, it tends 

to diverge at the spatial infinity when the scalar particle is very massive (   ).  
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Figure 2: The plot of the effective potential       versus   . The physical parameters 

are chosen as     and        . Different lines belong to different  -value. 

 

3.3  Spectroscopy of the ZZLBH 

In this section, we will follow the particular approximation method [36,37,41,43,46], 

described in detail in the section 2.3, and apply it to the ZZLBH geometry to obtain 

its entropy/area spectra. 

It can be seen that expansion of the function 
     

 
 around the event horizon is 

     

 
 

  

 
      

 

  
*
     

 
+|

    
        [      

 ],             (3.49) 

which can be expressed in terms of the surface gravity 

           
     

 
    ,                                              (3.50) 

where       . After substituting Eq. (3.50) into Eq. (3.44) and performing 

Taylor expansion around    , we derive the near–horizon form of the Zerilli 

potential as 

         [                           ],          (3.51) 
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with parameter   
 

  
. Furthermore, the near–horizon limit of the tortoise coordinate 

(3.46) becomes 

   
 

  
   ,                                               (3.52) 

which authorizes us to obtain the near–horizon form of the Zerilli equation (3.41) as 

            

             

  
                                (3.53) 

Eq. (3.53) has two separate solutions: 

      
  

      ⁄ [   ( ̅  ̅  )     ( ̅  ̅  )],                 (3.54) 

where  ( ̅  ̅  ) and  ( ̅  ̅  ) are the CH functions [37] of the first and second 

kind, respectively. The parameters of the functions are given by 

 ̅  
 ̅

 
 

 

√ 
,                                               (3.55) 

 ̅    
  

 
,                                               (3.56) 

     √  ,                                             (3.57) 

where 

  
 

 
,  

 

 
[           ]-,                                (3.58) 

   *      
  

 
  +.                                      (3.59) 

By using the limiting forms of the CH functions given in Eqs. (2.43) and (2.44), we 

obtain the near horizon     behavior of the solution Eq. (3.54) as follows 

     *     
     ̅ 

     ̅  ̅ 
+  

  

     
   ̅   

   ̅ 
  

  

   .                       (3.60) 

Using Eq. (3.52), we represent it as the superposition of the ingoing and outgoing 

waves: 
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      *     
     ̅ 

     ̅  ̅ 
+         

 ( ̅̅  )

   ̅ 
      .                 (3.61) 

Since the QNMs impose that the outgoing waves spontaneously terminate at the 

horizon, the second term of Eq. (3.61) vanishes. This scenario is enabled by the poles 

of the Gamma function in the denominator of the second term. Specifically, if 

 ̅    ,          , the outgoing waves vanish and we can read the frequencies 

of the QNMs of the ZZLBH. The result is 

            
   

√ 
.                                       (3.62) 

As aforementioned before,   is the resonance parameter [48]. Therefore, the 

transition frequency between two highly damped neighboring states is  

          
    

 
,                                      (3.63) 

where    
  

  
 is the Hawking temperature of the ZZLBH given in Eq. (3.13). 

Consequently, substituting Eq. (3.63) into the adiabatic invariant quantity (1.3), we 

obtain the entropy spectrum of the ZZLBH as follows 

      .                                                  (3.64) 

Since   
 

  
, we can also read the area spectrum: 

        ,                                               (3.65) 

which yields the minimum spacing of the area as 

          .                                             (3.66) 

We deduce that the spacings of the entropy/area spectra are evenly spaced as found 

by Bekenstein [9]. Our findings encourage the Kothawala et al.'s hypothesis [18] 
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signifying that the BHs have equally spaced area spectrum in Einstein's gravity 

theory.  
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Chapter 4 

CONCLUSION 

In this thesis, the quantum spectra of the GHSBH and ZZLBH are investigated via 

the MM that is based on the adiabatic invariant formulation (1.3) of the BHs. We 

have therefore attempted to find the QNM of the GHSBH and the ZZLBH. The 

massless (massive) KGE for the GHSBH (for the ZZLBH) geometry has been 

separated into the angular and the radial parts. In particular, the Zerilli equations 

(2.26) and (3.43) with their effective potentials (2.31) and (3.44) of the associated 

geometries have been obtained.  

From Figure 1 illustrated in chapter 2, it is clear that depending on the value of the 

 –parameter, the effective potential may diverge beyond the event horizon. In such a 

case, the scalar waves of the QNMs cannot reach the observer located in the far 

region. We have therefore employed the particular method for finding the QNMs at 

the near horizon region. According to this method, the Zerilli equation is well 

approximated by a CH differential equation. After some straightforward calculations 

including the limiting forms of the CH functions, we then obtained the QNMs of the 

GHSBH. To this end, we used the poles of the Gamma functions. We then applied 

the MM to the highly damped QNMs to derive the entropy/area spectra of the 

GHSBH. The obtained spectra are equally spaced and are independent of the 

physical parameters of the GHSBH as concluded in the study of Wei et al. [15]. 
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Moreover, our results support the Kothawala et al.'s conjecture [18] stating that the 

BHs in Einstein's gravity theory have equi-spaced area spectrum.  

In chapter 3, the quantum spectra of the ZZLBH are investigated through the MM. 

As described in chapter 2, we have considered the near–horizon form of the Zerilli 

equation of the ZZLBH, which is Eq. (3.53). Then, we have approximated Eq. (3.53) 

to another CH differential equation and by this way we have managed to read the 

frequency of the QNMs of the ZZLBH (3.62). The obtained entropy/area spectra, 

which are represented in Eqs. (3.64) and (3.65) are found to be equi-spaced.  

As a final remark, our calculations have revealed that the value of the dimensionless 

constant ε is 16π. This result may be questioned because it is different from the 

expected value of 8π. In fact, this difference helps us understand why Bekenstein [8] 

defined a somewhat ambiguous definition of ξ as of the order of unity. Considering 

the Heisenberg uncertainty principle, Bekenstein gave a flexible definition for ξ. 

Thus, a ξ–value of two is acceptable in the computation of the BH spectroscopy. 

However, as stated by Hod [16,17] in the subject of the BH quantization, the 

spacings between two neighboring levels may be different depending on which 

method is applied.  
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