

Maze Router: Collected Techniques

Nashat Salih Abdulkarim Alsandi

Submitted to the

Institute of Graduate Studies and Research
in Partial Fulfillment of the Requirements for the Degree of..

Master of Science
in

Computer Engineering

Eastern Mediterranean University

February 2015

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research…

Prof. Dr. Serhan Çiftçioğlu

Acting Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master

of Science in Computer Engineering.………..

 Prof. Dr. Işık Aybay

 Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Science in Computer

Engineering.

 Asst. Prof. Dr. Ahmet Ünveren

 Supervisor

 Examining Committee

1. Asst. Prof. Dr. Adnan Acan

2. Asst. Prof. Dr. Yiltan Bitirim

3. Asst. Prof. Dr. Ahmet Ünveren

iii

ABSTRACT

In this thesis, Maze Router Problem (MRP) solved by using Connected Component

Labeling, Depth First Search, Lee and A* Algorithms. The main goal of this research

is to find a complete set of path which directs an agent to move from the Source node

in the Maze towards a Target node in a Single-layer routing environment.

In experiments different sized Maze Router Problem (MRP) instances are solved by

using different Algorithms. From the results obtained we can conclude that Lee and

A* Algorithms finds the shortest path for all the problem instances. It can also be

concluded that A* Algorithm is the fastest Algorithm that finds the shortest path.

Keywords: Maze, Maze Router, Maze Router Problem, Connected Component

Labeling Algorithm, Depth First Search Algorithm, Lee Algorithm, A* Algorithm.

 iv

ÖZ

Bu tezde, Labirent Yönlendirici Problemi (LYP) Bağlı Bileşen Etiketleme, Derin

Öncelikli Arama, Lee ve A
*
 Algoritmaları kullanılarak çözülmüştür. Bu araştırmanın

temel amacı, tek katmanlı Labirent yönlendirme ortamında başlangıç düğümünden

hedef düğümüne ulaşılabilecek tam bir yolun bulunmasıdır.

Farklı boyutlarda bulunan Labirent Yönlendirme problemlemi örnekleri farklı

algoritmalar kullanılarak çözüldü. Elde edilen sonuçlara göre Lee ve A
*
 algoritmaları

kullanılan örnekler için en kısa youlu veren algoritmalar olmuşlardır. Aynı zamanda

A
*
 algoritmasının en kısa youlu en hızlı zamanda bulduğu tesbit edilmiştir.

Anahtar Kelimeler: Labirent, Labirent Yönlendirme, Labirent Yönlendirme

Problemi, Bağlı Bileşen Etiketleme Algoritması, Derin Öncelikli Arama Algoritması,

Lee Algoritması, A* Algoritması.

 v

ACKNOWLEDGEMENT

I would like to thank my supervisor Asst. Prof. Dr. Ahmet Ünveren for his excellent

supervision, good advices and proof reading of my thesis. His instruction and

guidance made it possible to transform this project from a sketchy concept into a

presentable thesis. And for his valuable explanations, advices, suggestions and time

he spent helping me with this work.

Finally, I would like to thank my parents and my wife Berivan Chalo for all their

support and encouragement. I am very fortunate to have a family with the

understanding and willingness to take care of almost everything so I could spend all

my time with my thesis.

 vi

TABLE OF CONTENTS

ABSTRACT…………………………………………………………………………iii

ÖZ..………………………………………………………………………………......iv

ACKNOWLEDGMENT………………………………………………………..........v

LIST OF TABLES………………………………………………………………….viii

LIST OF FIGURES …………………………………………………………………ix

1 INTRODUCTION……………………………………………………………........1

2 MAZE ROUTER PROBLEMS ………………………………………………........4

2.1 Maze Router Problem……………………………………………………........4

2.1.1 Different Type of Maze Router Problems……………………………….7

2.1.2 Related Work on Maze Router Problem …………………………..........9

2.1.3 Description and Formulation of MRP ………………………………….11

3 COLLECTED TECHNIQUES FOR THE SOLUTION OF MAZE …….………12

3.1 Introduction …………………………………………………………............12

3.2 Connected-Component Labeling Algorithm …………………………..........13

3.2.1 Finding Connected Components ……………………………………….13

3.2.2 Neighbors ………………………………………………………………14

3.2.3 How Connected Component Labeling Work ………………….............17

3.3 Depth-First Search Algorithm ………………………………………………19

3.3.1 Depth First Search Algorithm has two parts …………………………...21

3.3.2 Solving Maze Router by Depth First Search Algorithm ……………….23

3.4 Lee Algorithm ………………………………………………………….……27

3.4.1 Advantages and Disadvantages …………………………………..…….30

3.4.2 There are Three Main Steps to Solve Maze Router ………………...….30

 vii

3.5 A* Algorithm…...….………………………………………………………...33

3.5.1 Description of A* Algorithm Step by Step ………………………...…..34

3.5.2 The Main Idea of A* Algorithm ……………….……………………….35

3.5.3 Representation ……………………………………………………….....36

3.5.4 Solving Maze Router Problem by A* Algorithm………………………37

4 EXPERIMENTAL RESULTS …………………………………………………...42

4.1 Introduction …………………………………………………………………42

4.2 Solutions to the Given Problems……………………………………………..42

4.2.1 Problem 1 …………………………………………………………….....42

4.2.2 Problem 2 …………………………………………………………….....45

4.2.3 Problem 3 ……………………………………………………………….48

4.2.4 Problem 4 ……………………………………………………………….51

5 CONCLUSION ……………………………………………………………..........58

REFERENCES ……………………………………………………………………..59

 viii

LIST OF TABLES

Table 1.1: Comparison between Algorithms for Problem 1 ………………………..44

Table 1.2: Comparison between Algorithms for Problem 2 ………………………..48

Table 1.3: Comparison between Algorithms for Problem 3 ………………………..51

Table 1.4: Comparison between Algorithms for Problem 4 ………………………..57

Table 1.5: Results for all Problems………………………………………………….57

 ix

LIST OF FIGURES

Figure 1.1: The Sample Maze Routing Problem……………………………………..5

Figure 1.2: Possible Solution for Maze Routing by (Expansion, Backtrace and

Clean up)……………………………………………………………………………..6

Figure 1.3: Single-Layer Routing with (Expansion Phase and Backtrace) [7]……....7

Figure 1.4: Multi-terminal in Single-Layer (One Source and Two Target nodes)

[19]…………………………………………………………………………………...8

Figure 1.5: Illustrates two Layer-routing using two arrays and Retrace the path [7]..8

Figure 1.6: Illustrates Weighted Grid how to find the shortest path [7]…..….……...9

Figure 2.1: Collected Methods for the Solution of Maze Router Problem………....12

Figure 2.2: A path between two nodes (P1—P2) or (P3—P4)…………………….....14

Figure 2.3: A Binary Image has two possible values……………………………….15

Figure 2.4: CCL Algorithm Flowchart………………………………………….......16

Figure 2.5: The Figure shows the Connected Component Labeling Algorithm steps

for solving the Binary image…………………………………………………..…....18

Figure 2.6: The Flowchart for Depth First Search Algorithm………………..……..20

Figure 2.7: The FINDPATH(X, Y) function using Recursion to find Target node...22

Figure 2.8: Pseudo Code for Recursion case……………………………………..…22

Figure 2.9: A Simple Maze Router Problem………………………………………..24

Figure 2.10: Solving Maze Router by DFS Algorithm…………………………......26

Figure 2.11: Illustration of Expansion, Backtrace and Clean-up for Lee Algorithm.28

Figure 2.12: Pseudo code for Lee Algorithm [26]………………………………….29

Figure 2.13: Expansion from the Source node to the Target node and find the goal.31

Figure 2.14: Illustration Backtrace Work…………………………………………...32

 x

Figure 2.15: Illustration Clean-up on Grid map without Path mark….……………..32

Figure 2.16: General Pseudocode for A* Algorithm ………………………………34

Figure 2.17: Example of the A* Algorithm. The nodes colored in light gray are the

Open List, and the dark gray nodes denotes the Close List, and the orange nodes

denotes the final path from S to T ………………………………………………….37

Figure 2.18: A Simple Maze Problem………………………………………………38

Figure 2.19.1: Illustration A* Algorithm Step by Step for solving Maze Router

Problem………………………………………………………………………….…..40

Figure 2.19.2: Illustration A* Algorithm step by step for solving Maze Router

Problem………………………………………………………………………...........41

Figure 3.1: Maze Router Problem 1 with (5x5)………..……………………………43

Figure 3.2: Maze Router Problem solved by CCL Algorithm……………………....43

Figure 3.3: Maze Router Problem solved by DFS Algorithm.……………………...43

Figure 3.4: Maze Router Problem solved by Lee Algorithm.………………………44

Figure 3.5: Maze Router Problem solved by A* Algorithm………………………..44

Figure 3.6: Maze Router Problem 2 with (10x10)………………………………….45

Figure 3.7: Maze Router Problem solved by CCL Algorithm…………………….. 46

Figure 3.8: Maze Router Problem solved by DFS Algorithm………………………46

Figure 3.9: Maze Router Problem solved by Lee Algorithm.………………………47

Figure 3.10: Maze Router Problem solved by A* Algorithm.……………………...47

Figure 3.11: Maze Router Problem 3 with (20x20)………...…………………….....49

Figure 3.12: Maze Router Problem solved by CCL Algorithm.……………………49

Figure 3.13: Maze Router Problem solved by DFS Algorithm……………………..50

Figure 3.14: Maze Router Problem solved by Lee Algorithm……………………...50

Figure 3.15: Maze Router Problem solved by A* Algorithm.……………………...51

 xi

Figure 3.16: Maze Router Problem 4 with (40x40)………..…………………….....52

Figure 3.17: Maze Router Problem solved by CCL Algorithm…………………….53

Figure 3.18: Maze Router Problem solved by DFS Algorithm……………………..54

Figure 3.19: Maze Router Problem solved by Lee Algorithm..…………………….55

Figure 3.20: Maze Router Problem solved by A* Algorithm ……………………...56

 1

Chapter 1

INTRODUCTION

The topic of Maze is very old, the earliest Mazes that known were of the Egyptian

Labyrinth [1]. But many people consider the labyrinth is synonymous with Maze.

Yet contemporary scholars note that there's a difference between a Maze and

Labyrinth. Maze is a very complicated puzzle because it has many routes and

directions, but the labyrinth has a single path, non-branching route, which leads to

the purpose. A Labyrinth in this sense has an unambiguous route to the center and

returning, and it isn't designed to be difficult to navigate. But it developed throughout

the centuries. As a global education and wisdom level increased, Mazes became very

popular as a fun and entertainment tool and also as a very interesting domain from

the mathematical point of view. Mazes have been applied more and more often with

the reality of life, it grew up in parallel with the personal computers [2].

In this thesis, collected techniques have been used for the solution of Maze Router

Problem (MRP). Connected Component Labeling (CCL) Algorithm uses connected

pixel by pixel search from the top to bottom and left to right to find the best solution

for the given Maze Router Problem (MRP). Every contiguous pixel that shares the

same set of intensity values identifies connected pixel regions. The definition of the

Connected Component Labeling relies on pixels' neighbor. The current pixel has two

systems Connected-Component if use 4-neighbours, CCL is said to be 4-connected

 2

or use 8-neighbours, CCL is said to be 8-connected [3]. When it is given the data to

the CCL Algorithm, the new intended outcome will be provided.

Depth First Search (DFS) Algorithm is a systematic way to find out the solution of

Maze Router Problem (MRP). In the First Depth of searching Algorithm, nodes are

explored if connected with previous node and wall between nodes was opened. If any

wall is closed, ―Backtracks" Algorithm and go to another node, and the search will

be repeated [4]. The process goes until has discovered all the nodes that are reachable

from the „S‟ node to „T‟ node. The strategy of the DFS Algorithm is to search

―deeper‖ in the Maze whenever possible until finding the first path to be discovered

[5].

Lee Algorithm is one of the possible solutions for Maze Routing Problem (MRP) and

was firstly defined by the Chaster Lee in 1961 [6]. This Algorithm represents the

routing Single-Layer as a grid map, where each grid map point can contain

connections to adjacent grid map points and finding a way between two terminals.

This Algorithm also guarantees to find the shortest path between the Source node and

Target node. Starting from the Source node the adjacent grid map nodes are

progressively labeled one by one according to the node ―neighborhood‖ from the

Source node until to the Target node. A good property of Lee‘s Algorithm is that it

guarantees to find the shortest path between two points in Maze Router Problem

(MRP) if such a path does exist [7].

Finally, A* Algorithm can be defined as starts out by looking at a neighbor, to

estimate the cost of each of adjacent. The neighbor with the lowest cost is chosen to

be the next node. This process continues until it gets to the Target node. And

 3

heuristics Equation are used to make smarter choices when determining which

direction to search in a Maze Router Problem (MRP), if the heuristic is consistent.

The function finds the fitness of the A* Algorithm given in equation (1.1).

F = G + H Eq. (1.1)

Where value F consisted of the collection of values of G and H for all neighbors. G

is the cost of movement from the Source node to the current node and H is an

estimation of the cost from the labeled grid point to the Target. Then nodes that are

closer to the Target node have lower costs than nodes that are further from the Target

node, this biases the search in the direction of the Target [8].

The proposed Algorithms for solving Maze Router Problem (MRP) are Connected

Component Labeling, Depth First Search, Lee and A* Algorithms. The Maze Router

Problem (MRP) is a complex problem as it contains many routes. In Maze Router

Problem (MRP), the agent moves from the Source node and passes within each node

until to the Target node is reached. The goal of the Agent is to reach the purpose.

The arrangements of the remaining chapters are as follows: in Chapter 2, Maze

Router Problem will be explained. In Chapter 3, CCL, DFS, Lee and A* Algorithms

are explained in detail. In Chapter 4, the experimental results that are discovered by

using the described Algorithms are shown. Finally, conclusion is discussed in

Chapter 5.

 4

Chapter 2

MAZE ROUTER PROBLEM

2.1 Maze Router Problem

Maze Router Problem (MRP) is a connection routing problem that represents the

entire network as a grid map; some routes on the grid map are blocked. Maze Router

Problem (MRP) is guaranteed to find the path if the connection exists. However, in

practice, it is found that many Maze Routing Algorithms are slow and needs large

memory requirements [26].

The Maze Router Problem (MRP) was firstly defined by Chester Lee in 1961[6]. In

1974, Frank Rubin came up with a new method that solves Maze Router Problem

(MRP) in a fast way [9]. Maze Router Problem (MRP) was initially intended for

routing on a Single-Layer route, even though later in this chapter we will see that it

has the extension to be used on multiple layer routes. The computational complexity

of Maze Router Problem (MRP) depends on the sizes and existing paths. The main

goal of Maze Router Problem (MR) is to find the shortest path between „S‟ node and

„T‟ node and guarantees to find a path between two terminals of the connection

exists.

A sample Maze Router Problem (MRP) is given in Figure 1.1. The Maze Router

Problem (MRP) has two terminal nodes such as Source node ‗S‟ and Target node ‗T‟.

And some Parts of this grid map are blocked by components. The agent expands in

 5

the form of a wave from starting node to other nodes. The first wave that reaches the

Target node determines the connecting path which is the feasible path between

terminals in the Maze Router Problem (MRP).

Figure 1.1: The Sample Maze Router Problem

The Maze Router (MR) Problem first searches to find the nodes that are closest to the

Source node. And then proceeds in a Breadth-first search by diagnosing the nodes

switching to other nodes that have been already diagnosed as it is shown in the

Figure (1.2) from (B) to (C). The line is made when the Target node has been

discovered, and the diagnosing is quitted. It should find out the shortest path to go,

Backtrace the Source node from the intended node. And determine the path which

has been already used by marking the path as shown in the Figure (1.2) from (D) to

(E). It should Cleaned up all distance marks from other grid nodes accept the selected

path as shown in (F) of the Figure (1.2). In short, the Maze Router Problem will

 6

always find a path if one exists, and the path found is guaranteed to be of the shortest

path.

Figure 1.2: Possible Solution for Maze Router Problem by (Expansion, Backtrace

and Clean up)

 7

2.1.1 Different type of Maze Router Problems

 Two terminals in Single-Layer Routing: The basic mechanics of

Maze Router Problem (MRP) to have one Source and one Target nodes. In

this mechanics, the shortest path to the Target node from the Source node is

found after the expansion phase, and when the path has been found it is

Backtrace to the Source node ‗S‘. Then the Clean-up phase is executed as

depicted in Figure 1.3. However this thesis is focuses on this type of

mechanism [7].

A. Expansion Phase B. Backtrace

Figure 1.3: Single-Layer Routing with (Expansion Phase and Backtrace) [7]

 Multi Terminals in Single-Layer Routing: It has many Target ‗T‘

nodes with a single Source ‗S‘ in a single layer. Its function is to find out a

path that starts from the Source to the closest Target node [19]. As shown in

the Figure 1.4.

 8

Simple Multi-Terminals

in Grid
Find the first Target

Backtrace and go to find

second Target

Figure 1.4: Multi-terminal in single layer (One Source and Two Target nodes) [19]

 Multi-layers Routing: It has Three-dimensional grids. It is a model

which is used to take the property of multi-layer routing. This model can take

the varying parasites from the first layer to second layer routing [7]. In the

Figure 1.5 below illustrates two layer-routing using two arrays.

A. 3D array B. Layer-1 C. Layer-2 D. Retrace the path.

Figure 1.5: Illustrates two layer-routing using two arrays and Retrace the path [7]

 Weighted cost: It is started with spreading out of the identified node

wave to find out the shortest path length. Discovering the neighbor of

identified node will be maximized when the searching is allowed in the

 9

identified node. They will be stopped if there are not any waves to spread out

[7]. Figure 1.6 illustrates how Weighted Grid defined to find the shortest

path.

Figure 1.6: Illustrates Weighted Grid to find the shortest path [7].

2.1.2 Related work on Maze Router Problem

The Maze Router Problem (MRP) is one of the important problems which are solved

using many different Algorithms, which work on two Terminals in Single-Layer

routing.

H. C. Lee and Fikret Ercal [11], have showed a way of applying time-efficient

Algorithm to solve the Maze Router Problem on a Reconfigurable mesh (RMESH)

architecture. Where Reconfigurable mesh (RMESH) architectures are excellent

 10

candidates to solve the Maze Router Problem efficiently. They used fast Algorithm

for Maze Routing on an RMESH. The result indicates that a large percentage of the

shortest path that exists between two randomly selected terminals fall into one of the

categories studied. This confirmed the author‘s practical significance of our

Algorithms.

Y. Wu, M. Tsai and T. Wang [12], came up with two practical Optical Proximity

Correction (OPC) Maze Router Problems and solved the two problems by modifying

the Lee Algorithm. The Optical Proximity Correction (OPC) is employed to correct

the process variation of the diffraction effect. Both Algorithms solved the problems

in an optimal way, and they have both been implemented. The results from the

Algorithms demonstrate their effectiveness. However, the effort, to solve the issues

in Maze Router Problem, has only been implemented on two-layer routing models.

Although they can be applied to Multiple-Layer including both reserved and

unreserved layer models. The self-interactive effect will be considered in the future

for more accurate calculation.

 S. Hur, A. Jagannathan, and J. Lillis [20], have proposed an Algorithm that speeds

up the techniques for time-driven Maze Router Problem by using a multigraph

model. The multigraph model is generally and naturally captures the optimization

techniques like the wire sizing through alternate edges. The basic Algorithm is a

straightforward labeling Algorithm which uses a pseudo-polynomial runtime and has

been found to be impractical if implemented naively.

 11

2.1.3 Description and Formulation of MRP

The constraint for the problem must be considered to obtain a feasible solution so as

to have a complete solution for the MRP. For this reason, the objective, feasibility

and formulation of the Maze Router Problem are illustrated below.

The objective of Maze Router Problem is to find the shortest path. As mentioned

before, at the end of a tour, the result is the path length.

A feasible solution of a MRP is when it visits or goes to all the nodes ones or more

times till it reaches the Target node.

In the formulation we can calculate the distance between the nodes using the

Euclidean Distance since our objective is to find the shortest path. The Euclidean

Distance between Current node and Target node can be given in equation (2.1).

Path(X, Y) = √(∑ (

 Eq. (2.1)

Xi = {x1 … xn} and Yi = {y1 … yn},

Where Path(X, Y) is the distance between Source node „S‟ with coordinates (x1, y1)

and Target node „T‟ with coordinates (xt , yt) and Path represents the distance from

„S‟ to „T‟.

 12

Chapter 3

COLLECTED TECHNIQUES FOR THE SOLUTION OF

MAZE ROUTER

3.1 Introduction

In this chapter, four Algorithms Connected Component Labeling, Depth First Search,

Lee and A* will be used for the solution of the Maze Router Problem. Figure 2.1

shows the Collected Methods for the Solution of Maze Router Problem.

Figure 2.1: Collected Methods for the Solution of Maze Router Problem

 13

3.2 Connected Component Labeling Algorithm

Connected Component Labeling (CCL) Algorithm is an Arithmetic application of

graph theory. It is used in computer vision to discover connected regions in binary

images [3][10].

The binary image, containing nodes and connecting edges, where is constructed from

relevant input data. The connectivity is determined for a node in the binary image

with 4-connected or 8-connected nodes [13]. In this section, the information is

presented in the labeling stage. After the first node when the connected component

was found, all the connected nodes of that connected component were labeled before

going onto the next node in the binary image. Moreover, the binary image was

divided into sub-groups and each group has different values, so after that, the original

information can be recovered and processed in the way that CCL Algorithm makes

two passes over the binary image. Firstly, the pass should be made to assign

temporary labels and record equivalences. Secondly, another pass should be made to

replace each temporary label by the smallest label of its equivalence class. The

labeling process scans the image, node-by-node from Northwest to Southeast, in

order to identify the connected node regions, i.e. areas of the neighboring node that

share the same set of intensity values. In this thesis, 4-connected methods are used to

find the path.

3.2.1 Finding Connected Components

Two nodes in the image are 'connected' if a path can be discovered for which the

value of the image function is the same all along in the path. Figure 2.2 shows how to

Find a path between two nodes.

 14

Figure 2.2: A path between two nodes (P1—P2) or (P3—P4)

3.2.2 Neighbors

Consider the definition of the term 'neighbor'. Two common definitions:

1. 4-neighbors (4-connected) { [i+1,j], [i-1,j], [i ,j-1], [i ,j+1] }

 X(i-1, j)

X(i, j-1) X(i, j) X(i, j+1)

X(i+1, j)

2. 8-neighbors (8-connected)

{[i+1, j], [i-1, j], [i, j-1], [i, j+1], [i+1, j+1], [i+1, j-1], [i-1, j+1], [i-1, j-1]}

X(i-1, j-1) X(i-1, j) X(i-1, j+1)

X(i, j-1) X(i, j) X(i, j+1)

X(i+1, j-1) X(i+1, j) X(i+1, j+1)

 15

A binary image is an array of two-dimensional that has two possible values for each

node “0” or “1”. In this thesis, two colors are used which are black and white. The

white represent number “1” and black represent number “0” as shown in the Figure

2.3.

0 1

Figure 2.3: A binary image has two possible values

CCL Algorithm starts by selecting the first point, then scan it as the current point. It

then check if the current point is a foreground point, if yes then it checks if any

reference neighbors pixel is a foreground point. If yes, then it assign old label to the

current point and also check for another point, after checking for another point it

checks if the point is the last point, if it‘s the last point it stop searching and the final

path is found, if the point checked is not the last one the algorithm will move to the

next point on the right of the current then scan the point and repeat the steps all over

until the final path is found as shown in the flowchart given Figure (2.4).

 16

Figure 2.4: CCL Algorithm Flowchart

 17

3.2.3 How Connected Component Labeling work

A Connected Component Labeling Algorithm is the process for analyzing binary

images includes the following steps. Firstly, a forward scan is executed from

Northwest to Southeast, to assign a label to each current node in a simple binary

image. When found, non-background current node will have a background as shown

in (a) of the Figure (2.5). Secondly, when the connected component is found the

value one is given to "currentLabelCount". Where "currentLabelCount" is an

Interface holds one function that takes a Bitmap as an input and returns a collection

of discovered objects, where the initial value of "currentLabelCount" is 1. And all

the connected nodes of that connected component are determined before moving to

the next node in the image as shown in (b - d) of the Figure (2.5). Thirdly, if a new

node is found which is not connected with the previous node then increment

"currentLabelCount" by 1 and assign label to that node. That node has a different

label as shown in (e) of the Figure (2.5). When new node connected with previous

node and If this node is a forward node and not already labeled, then give it a

"currentLabelCount" and add it to the first component in the queue as shown in (f) of

the Figure (2.5). All neighbors for the current node are non-connected with parent

label value then increment value for "currentLabelCount" by 1 and assign label to

the current node as shown in (g - h) of the Figure (2.5). Finally, after completing the

scan the CCL Algorithm gives labels to all the nodes in the image. Finally, same

labeled nodes will give all the connected paths in the binary image as shown in (i) of

the Figure (2.5). The flowchart of the CCL Algorithm is given in Figure 2.4.

 18

Figure 2.5: Connected Component Labeling Algorithm steps

 19

3.3 Depth First Search Algorithm

A Depth First Search Algorithm (DFS) is a systematic method to find all the nodes

reachable from the Source node 'S' to the Target node 'T' in the Maze. The Depth

First Search method was published in 19th century by French mathematician Charles

P. [14], as a strategy for solving Mazes [15][16]. This approach is one of the simplest

methods for solving a Maze. Consider the area of the Maze being a large grid map of

nodes. Where each node has four neighbors, starting from the Source node and keep

digging paths in one of the four-directions, North, East, South and West, until you

can‘t go any further. When a blocked way is found, the agent is Backtrack to find a

previous node with an unvisited neighbor. This process is repeated until path is

discovered. The ―Backtracking‖ is a general Algorithm for finding solutions to

some computational problems. And is an important tool for solving constraint

satisfaction problems, such as Maze, and many other puzzles [5][17][18]. This

technique guarantees to find a path in the Maze.

This method will find a path and is fast for all types of Mazes. With Depth First

Search (DFS) Algorithm move can be made in four directions. Writing '*' symbol

when it tries a new direction, and delete a '*' symbol when it fail to find a path. It

writes 'x' symbol when using Backtrace Algorithm, and a single solution will be

printed out when it find the Target node. This Algorithm will always find a solution

if it exists, but will not necessarily be the shortest solution.

 20

Figure 2.6: The Flowchart for Depth-First Search Algorithm

From the Figure (2.6) the DFS Algorithm starts by checking if the current node is the

goal node, if yes path have been found, if not it move to the next neighbor then check

if the wall is closed, if it is closed then it mark current node with ‗X‘ and move to

previous current node then check if the wall is closed, if not it then checks if the

 21

current node is the last node, if it is then there is no path and if the current node is not

the last node the algorithm will move to the next current node and repeat the whole

process again.

3.3.1 Depth First Search Algorithm has two cases

Recursion case and the Base case.

 Recursion case:

The Recursive is a process return, where allows the function to be returned

several times, since it calls itself during its execution. Functions that

incorporate Recursion are the named Recursive functions. In order to have

our Algorithm recursive, we need to view the problem in terms of related to

subproblems. That means we need to find the path they start from the Source

node 'S' to Target node 'T' in a Maze, where each node has four neighbors,

and keep digging paths in one of the four-directions, North, East, South and

West. However, recursion must be incorporated accurately, since it can lead

to an infinite circle if no condition is met that will stop the function.

Assume that the Source node 'S' has the position i=a, j=b in the Maze Router

(MR) Problem. What we now want to know is whether it has a path from the

position in coordinates (a, b) to the Target node 'T' in coordinates (e, d). If

there is a path to the Target node from i=a, j=b, then there is a path from the

source node 'S' to the Target node 'T' as shown in (a) of the Figure (2.7).

To find a path from position i=2, j=4 to the target node 'T', we can use

function FINDPATH(i, j) to try to find a path from the North, East, and South

of i=a, j=b. FINDPATH(i, j) function pseudo code is given in Figure 2.8.

 22

Note that can't use FINDPATH(i, j) function from the West direction because

the wall is closed as shown in (b) of the figure (2.7).

Figure 2.7: The FINDPATH(i, j) function using Recursion to find Target node

Figure 2.8: Pseudo Code for Recursion and Base case.

FINDPATH (i, j)

beginning

if (i, j outside maze) return false;

if (i, j is find Target node) return true;

if (i, j is close wall) return false;

mark x, y as part of solution path;

if (FINDPATH (i, j-1) ~= true) return false;  North

if (FINDPATH (i+1, j) ~= true) return false;  East

if (FINDPATH (i, j+1) ~= true) return false;  South

if (FINDPATH (i-1, j) ~= true) return false;  West

unmark i, j as not part of solution path;

return false;

end

 23

 Base case:

It is not enough to know how to use FINDPATH(i, j) function recursively to

advance through the Maze. They also need to discover when FINDPATH(i, j)

function must end. One such base case is to stop when it approaches the

Target node 'T'. The other base cases have to know what to do with invalid

nodes. For example, they have mentioned how to search North of the current

node, but disregarded whether the North node is legal.

All these steps together complete Depth First Search Algorithm that discovers

and marks a path from Source node 'S' to the Target node 'T', if the

connection exists. The path will be called at least once for each node in the

Maze that is tried as part of the path.

Path marking will be done with the '*' symbol and unmarking with the 'x'

symbol.

3.3.2 Solving Maze Router by Depth First Search Algorithm

Assume that The Simple Maze Router Problem has two terminal nodes. It determines

the Source node 'S' in North West in coordinates (i=1, j=1) and the Target node 'T' in

the South East in coordinates (i=5, j=5). Nodes in the Maze will either be open or

blocked with the wall, the mark '.' Symbol is the open wall the agent can move, and

mark '|' symbol is used as closed wall the agent can't move to this way then need to

choose another direction as shown in the Figure 2.9.

 24

Figure 2.9: A Simple Maze Router Problem

In any given moment, the agent can move only one step to one selected direction.

Moves are:

• move to North: (i, j)  (i, j-1)

• move to East: (i, j)  (i+1, j)

• move to South: (i, j)  (i, j+1)

• move to West: (i, j)  (i-1, j)

The agent can only move to nodes without wall blocked and must stay within the

Maze. The agent should search for a path from the Source node 'S' to the Target node

'T' until it finds one or until it exhausted all possibilities. In addition, it should print

the path it finds in the Maze.

The agent started from NorthWest in coordinates (i=1 and j=1) move one by one step

to East direction. The path can be marked by the '*' symbol. A path refers to either a

 25

partial path, marked while the agent is still searching as shown in the Figure 2.10

from (a) to (b). An important capability that the Depth First Search parts of the

Algorithm will give us is the ability to backtracking. In the node that has coordinates

(i=4 and j=1) the agent is stopped because the East wall for the current node was

closed, and then the Algorithm is processed to find which direction is open. Firstly, it

will try to find a path to the Target node 'T' from the point North that has coordinates

(i=4, j=0), by calling FINDPATH(i=4, j=0). Since the North position is not open, the

FINDPATH(i=4, j=0) will return false. And then it will go backward to the previous

node to FINDPATH(i=4, j=1) and resume at the step only after it went North.

Secondly, it will go to check South wall for the current node, calling

FINDPATH(i=4, j=2). This node is not open, so it will backtrack to the previous

node and resume at the step just after it went South. Finally, it will go to the West

direction that has coordinates (i=4, j=1), by calling FINDPATH(i=3, j=1). Since the

West direction is the last direction to search from (i=4, j=1). It will unlabel

coordinates (i=4, j=1) with the 'x' symbol. And then backtracks to the previous node,

FINDPATH(i=3, j=1) as shown in the Figure (2.10) from (c) to (e). Will continued

this mechanism In the Maze Router Problem until it find Target node 'T' that has

coordinates (i=5, j=5) and then stopped it. And then print the path from Source node

'S' to Target node 'T' as shown in (f) of the Figure (2.10).

 26

Figure 2.10: Solving Maze Router Problem by DFS Algorithm

 27

3.4 Lee Algorithm

Lee Algorithm is another Algorithm that solves Maze Router Problem (MRP) [6].

The Maze Routing Problem is defined on the single layer as a grid map for this

Algorithm. Each grid node may have at most four neighbors. It searches for the

shortest path between two terminal nodes and guarantees to find a path from the

Source node to the Target node if the connection exists. Lee router Algorithm

connects a Source node to the Target node in three main steps: Expansion,

Backtracking, and Clearance. Firstly, Expansion performs a breadth-first search from

the Source node until the location of Target node, thus, all nodes have been visited

[22]. During the search each unvisited node is checked and then numbered by its

length from the Source node to the Target node. Occupied nodes cannot be crossed

directly, and router must divert around them as it is shown in the Figure (2.11) from

(a) to (b). Secondly, Backtracking runs if expansion locates the Target node.

Backtracking starts from the Target node and iteratively finds its neighboring node,

chooses the neighbor that has a lower value and occupies it until it reaches the

Source node as it is shown in (c) of the Figure (2.11). Finally, Cleaning-up of all the

distance marks from other grid nodes except the selected path should be used as it is

shown in (d) of the Figure (2.11).

 28

Figure 2.11: Illustration of Expansion, Backtrace and Clean-up for Lee Algorithm

The Figure (2.12) shows the pseudocode for Lee Algorithm which is represented by

Initialization, Wave expansion, Backtrace, and Clearance to find the shortest path

from Source node 'S' to the target node 'T‟ from the Maze Router Problem.

 29

Figure 2.12: Pseudo code for Lee Algorithm [26]

Input: A grid map of two-dimensions (N x N) with Initial blockages, if any marked.

The Grid map has two-terminals to be routed.

Output Grid map with all nodes routed, if possible.

Starting

For each node in the grid map do

1. Initialization : CCS (current node set) = Source node;

 NCS (neighbor node set) = Q;

 WaveCounter = 1;

2. Label all node in CCS with value of WaveCounter;

If Target node has been added to NCS then

Goto step 5;

3. Wave Expansion: for each node in CCS, add all its unexpanded neighbors to

NCS;

4. If NCS is empty then

 this Grid map is not routable;

 Goto step 6;

Else

 CCS = NCS;

 NCS = Q;

 WaveCounter = WaveCounter +1;

 Goto step 2;

5. Backtrack: Retrace the shortest path to the source node, starting from the

Target node, by considering neighboring nodes in the descending order of

labels. It have more than one node with label L-1 that are adjacent to a node

with label L, and then choose the one that causes no change in direction in the

path traced out so far.

6. Clearance: Reset all labeled nodes, except those used for the path just found,

to be empty.

End for

End

 30

3.4.1 Advantages and Disadvantages

 Advantages:

i) Guarantee to find connection between two terminals if it exists.

ii) Guarantee minimum path.

 Disadvantages:

i) Requires large memory for dense layout.

ii) Slow. Because the wave expansion phase take many of the time.

3.4.2 There are three main steps to solve Maze Router Problem

 Expansion:

It searches for a shortest-path connection between the Source and Target

nodes, i.e. labeling each node with its distance from the Source node, the

expansion phase will eventually reach the destination node if a connection is

possible. The Expansion uses a breadth-first search Algorithm to find the

Target node from the Source node, and all nodes have been visited if the wall

is open shown the Figure 2.13 from (b) to (c). During the search each node is

checked whether it is unvisited, and then numbered by its distance from the

„S‟. If it is a blocked node, it cannot be cross directed and routing must divert

around them. Thus, the Target node can be found by using the shortest path

shown in (d) of the Figure 2.13.

 31

Figure 2.13: Expansion from the Source node to the Target node and find the goal

 Backtrace:

The Backtrace starts when Target is reached, and the Algorithm starts from

the Target node and looks for nodes with the minimum number to add to the

chosen pathway in order to obtain the shortest path between the terminals and

the formed connection. Usually the routing is performed in ascending order

of distance, i.e. lowest routes first. This guarantees the shortest pathways,

which commonly have more alternatives. Not displacing the shorter ones

from their original positions is shown in (a-b) of the Figure 2.14.

 32

Figure 2.14: Illustration Backtrace work

 Clean-up:

In this step it should Clean-up all distance marks from other nodes except the

selected path shown in the Figure 2.15.

Figure 2.15: Illustration Clean-up on Grid map without Path mark

 33

3.5 A* Algorithm

A* is a Pathfinding Algorithm, one of the faster way to make agent find its way in

the Maze Router Problem. It is the process of plotting an efficiently traversable path

between nodes. A* Algorithm combines features of uniform-cost search and pure

heuristic search to compute efficiently the optimal solutions. It is generally

outperformed by the Algorithms that can pre-process the grid map to attain better

performance. For A* to be superior to another Algorithm it needs to be able to find

the shortest path [23][24].

It was first described in 1968 by Peter H., Nils N. And Bertram R. of Stanford

Research Institute (now SRI International)[25]. It is an extension of Dijkstra's

Algorithm [8]. A* is a search Algorithm that finds the shortest path between two

node, Source nodes and Target node in the grid map. A* Algorithm chooses the next

node which should have least cost as a heuristic function from the current node. If

the current node has more than one least cost nodes, we can choose the nearest one as

the next node. Usually, a good heuristic function obtains solution in a short time. The

fitness of the A* Algorithm given in equation (3.1).

F (n) = G (n) + H (n) Eq. (3.1)

 Where the value of F consisted of the collection of values of G and H for every

node. G is the cost of movement from the Source node to the current node, H is an

estimation of the cost from the labeled grid map to the Target node. The node that is

closer to the Target node has lower costs than nodes that are further from the Target,

this biases the search in the direction of the Target [8]. As a heuristic function, H has

a relationship with whether the method is A* Algorithm or not. The pseudocode for

A* Algorithm is given in Figure 2.16.

 34

Figure 2.16: General pseudocode for A* Algorithm

3.5.1 Description of A* Algorithm step by step

1. Add the beginning node to the open list.

2. Repeat the following:

a. Look for the lowest F cost node on the open list. We refer to this as

the current node.

b. Switch it to the closed list.

c. For each of the four node neighbors to this current node.

• If it is a blockage, or it is on the closed list, ignore it.

Initialize array open_list[]

Initialize array closed_list[]

Put the Source node on the open_list[]

While the open_list[] is not empty

{

 Find the node with the least value of F on the open_list[], call it „q‟

 pop q off the open_list[]

 For each successor

 If successor is the Target node, stop the search

 successor_G = q_G + distance between successor and q

 successor_H = distance from goal to successor

 successor_F = successor_G + successor_H

 If a node with the same position as successor is in the open_list[]

 which has a lower F than successor, skip this successor

 If a node with the same position as successor is in the closed_list[]

 which has a lower F than successor, skip this successor

 otherwise, add the node to the open_list

 End

 push q on the closed_list[]

}

 35

• If the current node is not on the open list, add to the open list.

Get the current node the parent of this node. Take the F, G, and H

costs of the node.

• If it is on the open list now, compare to see if this path to that

node is better, using G cost. A lower G cost suggests that this is a

better path. If so, change the parent of the node to the current node

and recalculate the G and F scores of the node.

d. Stop when you: Add the Target node to the closed list. In that case,

the path has been found, or Fail to find the Target node „T‟, and the open

list is empty. In this case, there is no path.

3. Save the path. Go backward from the Target node go from each node

to its parent square until you reach the starting square. That is your path.

 3.5.2 The main idea of A* Algorithm

1. Seek F‘s values from nodes that have not been searched, and use an

ascending stack to save them.

2. Choose the smallest one as current node;

3. Pull out the head element from the queue, figure out the values of all current

node neighbors, and then put F in stack;

4. Loop 1 to 3 steps until stack is empty or we had found the Target.

 When the shortest path between two nodes on the grid map have been found using

Euclid function. As shown in the below Equation (3.2).

Euclid distance H (n) = √((

 Eq. (3.2)

H is an estimation of the cost value between two nodes, from the current node to the

Target node in the grid map. And (x1, x2, y1, and y2) are the coordinates for two

 36

nodes, where (x1, y1) the current node coordinates and (x2, y2) the Target node

coordinates. By the Euclid distance will find the shortest path quickly.

3.5.3 Representation

A* Algorithm uses a Best-First Search method and finds a minimum cost from

Source node 'S' to Target node 'T'. As A* Algorithm traverses the grid map, it

follows a path of the lowest required total cost or distance, preserving a sorted

priority queue of alternate path segments along the way. It uses a heuristic cost

function of the current node to determine the order in which the exploration visits

nodes in the Maze Router Problem. The cost function is a sum of two values. Firstly,

the past path cost function, which is the known distance from the Source node 'S' to

the current node. Second, a future path cost function, which is an admissible

"heuristic" distance from the current node to the Target node 'T'. The H(n) part of the

F(n) function must be an admissible heuristic; that is, it must not overestimate the

distance to the Target node. In such a case, A* can be, roughly speaking,

implemented more efficiently, no node needs to be processed more than once. Thus,

fewer nodes are visited and hence less computation time is needed as it is shown in

the Figure 2.17.

 37

Figure 2.17: Example of the A* Algorithm. The nodes colored in light gray are the

Open List, and the dark gray nodes denotes the Close List, and the orange nodes

denotes the final path from ‗S‟ to ‗T‟

3.5.4 Simple example to A* Algorithm

In this section, a simple Maze Router Problem will be used to find out the shortest

path between two terminals with A* Algorithm; the size of the Maze is (11x11). The

black color represents a blocked node, and the white color – nonblocked node. The

Source node 'S' in the northwest has (1, 1) as its coordinates, and the Target node 'T'

in the southeast has (9, 9) as its coordinates. Depending on the costs, the moves in

the Maze can be not only horizontal or vertical, but also diagonal. This Algorithm

defines the two variables (G and H). G is the cost to move from the Source node to

the Current node. While H is an estimation of the cost to move from the Current

node to the Target node using the Euclid distance [26]. Moreover, the two lists have

been used: Open List containing the nodes to explore, and Closed List containing the

processed nodes as it is shown in Figure (2.18) below.

 38

Figure 2.18: A Simple Maze Router Problem

A* Algorithm Start with the Source node in the Open List and nothing in the Closed

List. The first round of this Algorithm starts by processing our first node from the

open list, which is the Source node and removes it from the Open List and appends it

to the Closed List. Retrieve the list of neighbor‘s node and we start processing them.

The Source node has four neighbor nodes whose coordinates are (1, 0), (0, 1), (2, 1)

and (1, 2). (1, 0) and (0, 1) are the blocked node so we add to Close List. But (2, 1)

and (1, 2) are reachable or not in the Closed List, so we process them. And calculate

values of G and H for them. G = 1 as we need to processing two node East and South

from the Source node. Then found the value of H = 10.6 by using Euclid distance,

 39

and use the value of H and G to find the sum value for F = G + H = 1 + 10.6 = 11.6.

And choose the minimum cost for F between two nodes, if the numbers are equal we

choose the node that is located on the eastern side. Then removed Source node from

the Open List and add to Close List then add neighbor‘s node to the open list as

shown in Figure (2.19) from (a) to (b). Then continue with the node in the Open List

having the lowest cost F(n)= G (n) + H (n). And remove the current node it from the

Open List and add to Close List and add neighbor's nodes that have the minimum

cost to Open List as shown in (c) of the Figure (2.19). The node with coordinates (3,

7) has three neighbors, one node in the Closed List and two nodes in the Open List:

(3, 6) and (4, 7). The first node removed from the Open List is (4, 7) because F is

equal to 18.3. This proves that this Algorithm is better as shown in the Figure (2.19)

from (d) to (e). The next node processing in the Open List is (9, 9) coordinates and it

is the Target node, so we have found our path. It is easy to display the path. We just

have to follow the agent up to the starting node. Our path is highlighted in blue on

the Maze as shown in (f) of the Figure 2.19.

 40

a. Add Source node to Close List

and Process two neighbors node

b. Choose the East neighbor node

and add current node to Close

List

c. Choose minimum cost value
d. The current node has two node in

the Open List

Figure 2.19.1: Illustration A* Algorithm step by step for solving Maze Router

Problem

 41

e. The East neighbor node has

minimum cost value

f. Find Target node and Determine

The shortest path

Figure 2.19.2: Illustration A* Algorithm step by step for solving Maze Router

Problem

 42

Chapter 4

EXPERIMENTAL RESULTS

4.1 Introduction

In this chapter, the experimental results show how to use the four Algorithms

described in the previous chapter to solve the Maze Router Problem, and find

shortest path „S‟ node to „T‟ node. Ten problems of different sizes were used. Only

four of them will be given in this chapter.

4.2 Solutions to the given problems

In this part, four problems with different sizes are used to determine the Source node

and Target node in solving Maze Router Problem. The results in the Table (1.5)

shows the shortest distance and execution time of the Algorithms used for the

solution of the given problems.

4.2.1 Problem1

The Problem 1 is a 5x5 sized of Maze Router Problem as shown in the Figure (3.1),

with Source node located in (x=1, y=1) and Target node located in (x=5, y=5). In the

process of finding the shortest path between „S‟ node and „T‟ node on a Maze, the

Connected-Component Labeling, Depth-First Search, Lee and A* Algorithms have

been used.

 43

Figure 3.1: Maze Router Problem 1 with (5x5)

Figure 3.2: Maze Router Problem solved by CCL Algorithm

Figure 3.3: Maze Router Problem solved by DFS Algorithm

 44

Figure 3.4: Maze Router Problem solved by Lee Algorithm

Figure 3.5: Maze Router Problem solved by A* Algorithm

Table 1.1: Comparison between Algorithms for Problem 1

Problem 1 CCL DFS Lee A*

Distance 13 11 11 11

Elapsed time per second 2.2744 0.0013 0.0886 0.0500

From the Table (1.1) and Figures (3.2, 3.3, 3.4, 3.5) for problem 1, we can observe

that DFS, Lee and A* Algorithms can solve the Maze Router Problem with the shorts

 45

distance. As a result we can conclude from Table (1.1) that DFS solves the given

problem in a fast way with shortest distance.

4.2.2 Problem 2

The Problem 2 is a 10x10 sized of Maze Router Problem as shown in the Figure

(3.6), with Source node located in (x=1, y=1) and Target node located in (x=10,

y=10). In the process of finding the shortest path between „S‟ node and „T‟ node on a

Maze, the Connected-Component Labeling, Depth-First Search, Lee and A*

Algorithms have been used.

Figure 3.6: Maze Router Problem 2 with (10x10)

 46

Figure 3.7: Maze Router Problem solved by CCL Algorithm

Figure 3.8: Maze Router Problem solved by DFS Algorithm

 47

Figure 3.9: Maze Router Problem solved by Lee Algorithm

Figure 3.10: Maze Router Problem solved by A* Algorithm

 48

Table 1.2: Comparison between Algorithms for Problem 2

Problem 2 CCL DFS Lee A*

Distance 21 21 19 19

Elapsed time per second 2.2044 0.0050 0.1138 0.0913

From the Table (1.2) and figures (3.7, 3.8, 3.9, 3.10) above, we can observe that Lee

and A* Algorithms solve the Maze Router Problem with the shorts distance. As a

result, we can conclude from Table (1.2) that A* Algorithm solves the given problem

in the fastest way with the shortest distance.

4.2.3 Problem 3

The Problem 3 is a 20x20 sized of Maze Router Problem as shown in the Figure

(3.11), with Source node located in (x=1, y=1) and Target node located in (x=20,

y=20). In the process of finding the shortest path between „S‟ node and „T‟ node on a

Maze, the Connected-Component Labeling, Depth-First Search, Lee and A*

Algorithms have been used.

 49

Figure 3.11: Maze Router Problem 3 with (20x20)

Figure 3.12: Maze Router Problem solved by CCL Algorithm

 50

Figure 3.13: Maze Router Problem solved by DFS Algorithm

Figure 3.14: Maze Router Problem solved by Lee Algorithm

 51

Figure 3.15: Maze Router Problem solved by A* Algorithm

Table 1.3: Comparison between Algorithms for Problem 3

Problem 3 CCL DFS Lee A*

Distance 51 43 43 43

Elapsed time per second 2.2852 0.0391 0.1730 0.1474

From the Table (1.3) and Figures (3.12, 3.13, 3.14, 3.15) we can observe that DFS,

Lee and A* Algorithms solve the Maze Router Problem with the shorts distance. As

a result, we can conclude from Table (1.3) that DFS Algorithm solves the given

problem in the fastest way with the shortest distance.

4.2.4 Problem 4

The Problem 4 is a 40x40 sized of Maze Router Problem as shown in the Figure

(3.16), with Source node located in (x=1, y=1) and Target node located in (x=40,

 52

y=40). In the process of finding the shortest path between „S‟ node and „T‟ node on a

Maze, the Connected-Component Labeling, Depth-First Search, Lee and A*

Algorithms have been used.

Figure 3.16: Maze Router Problem 4 with (40x40).

 53

Figure 3.17: Maze Router Problem solved by CCL Algorithm

 54

Figure 3.18: Maze Router Problem solved by DFS Algorithm

 55

Figure 3.19: Maze Router Problem solved by Lee Algorithm

 56

Figure 3.20: Maze Router Problem solved by A* Algorithm

 57

Table 1.4: Comparison between Algorithms for Problem 4

Problem 4 CCL DFS Lee A*

Distance 115 115 85 85

Elapsed time per second 2.7019 0.5485 1.1926 0.7084

From the results obtained, we notice that both A* and Lee Algorithms solves this

problem with minimum distance. As a result, we can conclude from Table (1.4) that

A* Algorithm solves the given problem in the fastest way with the shortest distance.

Table 1.5: Results for all problems

 Problem CCL DFS Lee A*

Problem 1
Distance 13 11 11 11

Time 2.2744 0.0013 0.0886 0.0500

Problem 2
Distance 21 21 19 19

Time 2.2044 0.0050 0.1138 0.0913

Problem 3
Distance 51 43 43 43

Time 2.2852 0.0391 0.1730 0.1474

Problem 4
Distance 115 115 85 85

Time 2.7019 0.5485 1.1926 0.7084

The Table (1.5) shows the results of A* and Lee Algorithms applied for all the four

problems. In each row of the table name of the problem is stated, and it shows that

these Algorithms are finds the shortest path between two terminal nodes in all

problems.

 58

Chapter 5

CONCLUSION

In this thesis, we described the several Algorithms to solve the Maze Router

Problem, and found the shortest path between the two terminal nodes, Source and

Target. The Maze Router Problem was represented as a single-layer with the given

size and terminal nodes. Furthermore, from the experimental results we can conclude

that the Depth First Search, Lee and A* Algorithms are the most successful

Algorithms in solving Maze Router Problem (MRP). However, Lee and A*

Algorithms found the shortest path for all the problems in our experiments,

moreover, A* Algorithm found the shortest path in the fastest possible ways in all the

problems, while neither the Depth First search Algorithm nor the Connected

Component Labeling Algorithm could not find the shortest path in all the problems.

Moreover, the Connected Component Labeling Algorithm is very slow. Thus, the

methods that we have used to solve the Maze Router Problem can only be

implemented in the single-layer routing model.

 59

REFERENCES

[1] Lee Krystek, ―Amazing Mazes‖, Last modified, in 2001.

"http://www.unmuseum.org/maze.htm".

[2] Luigi Di S. and Andrea B., ―A Simple and Efficient Connected Components

Labeling Algorithm‖, IEEE Trans, pp. 322–327, in Sep 29, 1999.

[3] Michael Dillencourt, ―A General Approach to Connected-Component Labeling

for Arbitrary Image Representations‖, Journal of the ACM (JACM), pp. 253-280,

Vol. 39 Issue 2, in April 1992.

[4] Vytautas Čyras, ―Artificial Intelligence: The Labyrinth Problem Depth First

Search‖, Vilnius University: Faculty of Mathematics and Informatics, pp. 28-30,

in May 13, 2014.

[5] Thomas H., Charles E., Ronald L., and Clifford S., ―Introduction to Algorithms,

2nd‖, ―MIT Press and McGraw-Hill‖, ―Depth First Search‖, pp. 540–549, in 2001.

[6] Lee, Y., "An Algorithm for Path Connections and Its Applications", IRE

Transactions on Electronic Computers, EC-10 (2): pp. 346–365, in 1961.

[7] Huang-Yu Chen and Yao-Wen Chang, ―Global and Maze Routing‖, Verification

and Test. America, pp. 687-700, in 2009.

[8] P. H., N. N., and B. R., ―A formal basis for the heuristic Determination of

minimum cost paths‖, IEEE Trans, Vol. SCC-4, pp. 100–107, in July 1968.

[9] R. F., ‖ The Lee path connection Algorithm‖, IEEE Trans. On computers, VOL.

 c-23, no. 9, pp. 907-914, in Sept. 1974.

 60

[10] H. S. and M. T., "Efficient Component Labeling of Images of Arbitrary

Dimension Represented by Linear Bintrees", IEEE Trans. on Pattern Analysis and

Machine Intelligence, pp. 10-579, in 1988.

[11] H. C. Lee and Fikret Ercal, ―Fast Algorithms for Maze Routing on an RMESH‖,

Department of Computer Science University of Missouri, in 1996.

[12] Yun-Ru Wu, Ming-Chao Tsai and Ting-Chi Wang, ‖Maze Routing with OPC

consideration‖, IEEE Trans, Vol. 1, pp. 198 – 203, in Jan 18, 2005.

[13] R. Fisher, S. Perkins, A. Walker and E. Wolfart, "Connected Component

Labeling", in 2003. "http://homepages.inf.ed.ac.uk/rbf/HIPR2/label.htm".

[14] Charles P. Trémaux, ―Trémaux tree and Planarity", Electronic Notes in Discrete

Mathematics, pp. 169–180, in March 2008.

[15] Even, Shimon, ―Graph Algorithms‖, Cambridge University Press, pp. 46–48, in

2011.

[16] R. S., ―Algorithms in C++: Graph Algorithms‖, Pearson Education, in Jan 6,

2002.

[17] Donald K., ―The Art of Computer Programming‖, Addison-Wesley, in 1968.

[18] Kinniment D.J., "Performance comparison of conventional and backtracking

Algorithms in circuit routing", Electronic Circuits and Systems, IEE Proceedings G,

Vol. 127, Issue: 6, pp. 309 - 312, in Nov 11, 2008.

[19] Rob A. Rutenbar, ‖ASIC Layout: Routing by Maze Search ―, CMU, pp. 18-760,

in Spring 1999.

 61

[20] S. Hur, A. Jagannathan, and J. Lillis, ―Timing-Driven Maze Routing‖, IEEE

TRANS, Vol. 19, pp. 234–241, NO. 2, in Feb 2000.

[21] Hightower and D., ―The Lee router revisited‖, ICCAD, pp.136-139, in 1993.

[22] Ian Watson, Chris Kirkham and Mikel Luján, ―A Study of a Transactional

Parallel Routing Algorithm‖, IEEE Trans, pp. 388-398, in Sept. 2007.

[23] Daniel D., Peter S., D. Schultes and D. Wagner, "Engineering route planning

Algorithms", Springer Berlin Heidelberg, Vol. 5515, pp. 117–139, in 2009.

[24] Z., W., Ch., R. L., "Finding shortest paths on real road networks: the case for

A*", International Journal of Geographical Information Science, pp. 531–543 in

2009.

[25] H. E., Nilsson J. and Raphael B. "A Formal Basis for the Heuristic

Determination of Minimum Cost Paths", IEEE Trans on Systems Science and

Cybernetics, pp. 100-107, in Feb 12, 2007.

[26] R. Venkateswaran and P. Mazumder, ―Routing Algorithms for VLSI Design‖,

University of Michigan, Computer Science and Engineering Division, Department of

Electrical Engineering and Computer Science, in 1991.

