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ABSTRACT 

The history of cryptography goes to several thousand years back when ancient 

Egyptions tried to hide text by using unusual hieroglyphs instead of more ordinary ones 

here and there on a tablet. Although lot of cryptographic algorithms have been 

developed and practically used in various areas, the choice of best algorithm is still on 

focus of researchers. Since encryption/decryption is an expensive operation, the 

researchers have always tried to compromise between performance measured in terms 

of time-effectiveness and confidentiality (or secrecy) provided by cryptographic 

algorithms. The researchers have realized that the best cryptographic algorithm is 

determined by reasonable trade-off between performance and confidentiality of the 

cryptosystem. 

In this thesis we investigate performance of three cryptographic algorithms, namely Hill 

cipher, affine Hill cipher and Saeednia‟s modification. We perform comparative 

analysis of aforesaid cryptographic algorithms via measuring run times on different 

sized problems. Computer experiments are performed in MATLAB, a high-level 

technical computing language and interactive environment for algorithm development.  

Keywords: Cryptography, Hill cipher, affine Hill cipher, Saeednia‟s algorithm, linear 

transformation, permutation matrix 
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ÖZ 

Kriptografinin tarihi birkaç bin yıl önceye antik Mısırlıların alışılmadık hiyeroglifler 

kullanarak tablet üzerindeki metinleri sakladıkları döneme kadar uzanır. Günümüzde 

çok sayıda kriptografik algoritma bulunmasına ve bu algoritmaların çeşitli alanlarda 

kullanılmasına rağmen, en iyi kriptografik algoritma seçimi halen araştırmacıların 

dikkat ettikleri konulardandır. Şifreleme/şifre çözme pahalı bir işlem olduğundan, en iyi 

algoritmanın seçimi için şifreleme algoritmalarının performansı ve gizlilik arasındaki 

bağlantı zemininde seçim yapılır. İyi kriptografik algoritmanın performans ve gizlilik 

arasında makul seçim yaparak belirlenmesi konusunda araştırmacılar ortak fikir 

belirlemişlerdir.  

Bu tezde Hill şifreleme yöntemi, afin Hill şifreleme yöntemi ve Saeednia yöntemi farklı 

büyüklükte matrisler kullanarak çalışma sürelerinin ölçülmesi ve kıyaslanması şeklinde 

karşılaştırmalı olarak irdelenmiştir. Bilgisayar deneyleri için yüksek seviyeli teknik 

hesaplama dili ve algoritma geliştirme aracı MATLAB kullanılmıştır.  

Anahtar Kelimeler: Kriptografi, Hill şifreleme yöntemi, lineer transformasyon, 

permütasyon matrisi 
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Chapter 1 

INTRODUCTION 

The Hill cipher was invented by Leslie Hill in 1929. The algorithm presents an 

example of a polygraphic substitution cipher.  Hill's major contribution was the use 

of linear algebra in design and analysis of cryptosystems. Although there exist plenty 

of cryptographic techniques, Hill cipher is the only algorithm that is fully based on 

linear algebra. The Hill cipher uses matrices and matrix multiplication to represent 

the plaintext in a scrambled manner. 

Given plaintext 𝑥, Hill cipher converts 𝑥 into ciphertext 𝑦 = 𝐻 ∙ 𝑥 (mod 𝑛) where 𝑛 

is the number of letters in the alphabet. It is well-known that every cryptographic 

technique is vulnerable to attacks of unauthorized persons. Particularly, Hill cipher 

can be relatively easily broken [5]. If cryptanalyst knows 𝑚 pairs (𝑥, 𝑦) of successive 

plaintext and ciphertext, he/she can calculate the key matrix 𝐻 by computing 

𝐻 = 𝑌 ∙ 𝑋−1 mod 𝑛 , where 𝑋 and 𝑌 are 𝑚 ×𝑚 matrices of plaintext and ciphertext.  

In attempt to correct security flaws detected in Hill cipher several researchers have 

presented its variants. They have modified Hill cipher to improve its security. The 

modifications of Hill cipher are based on a variety of techniques. In [7] the authors 

suggested to use two coprime numbers for securely sharing between the participants. 

Their algorithm is too time-consuming, requiring a lot of mathematical 

manipulations. Also the algorithm is not efficient especially when dealing with a 
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bulk data, though the proposed algorithm thwarts the known plaintext attacks. In [6] 

it is suggested to make Hill cipher more secure using some random permutations of 

columns and rows of the key matrix. As it was later observed that, this cryptosystem 

is also vulnerable to known plaintext attacks, the same problem arising in Hill cipher 

[3]. An algorithm improving the security of Hill cipher introducing several random 

numbers produced by a hash chain is described in [3]. Another modification of Hill 

cipher uses an initial vector that multiplies successively by some orders of the key 

matrix to produce the corresponding key of each block [1]. As it was reported in [8] 

this algorithm also suffers from same problem, as it has several security problems. 

The present thesis is a comprehensive study of Hill cipher and its two modifications, 

namely affine Hill cipher and Saeednia‟s algorithm. Although affine Hill cipher and 

Saeednia‟s modification add more power into Hill cipher by patching the security 

holes observed in Hill cipher, they also suffer from similar security problem. 

Performance is another factor that plays important role in selection of cryptographic 

algorithms. In the current work performance is measured in terms of run time needed 

to complete task. The best strategy in selection of cryptographic algorithms is 

perhaps based on trade-off between confidentiality provided by algorithm and cost of 

the algorithm measured in terms of its time-efficiency. In the present thesis we 

compare the aforesaid algorithms in terms of time-effectiveness. We measure run 

time needed to complete encryption and decryption tasks for all three algorithms. It 

is done for different-sized key matrices. Then we compare the statistical results on 

run times for all three algorithms and make conclusions regarding their time-

effectiveness.  
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The thesis is organized as follows. In Chapter 2, we provide general information 

about cryptographic methods: We discuss taxonomy of cryptographic algorithms, 

succinctly overview classes of cryptographic algorithms based on number of the keys 

used for encryption and decryption, type of operation used to hide information, the 

way plaintext/ciphertext is processed, the number of alphabets used to create 

ciphertext. Then we review Hill cipher, affine Hill cipher and Saeednia‟s 

modification of Hill cipher, and discuss security problems observed for these 

algorithms. After that we provide results of computer experiments and make 

conclusions. The list of references is provided at the end of the thesis. 
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Chapter 2 

CRYPTOGRAPHIC METHODS 

2.1 Brief history 

Cryptography is a systematic study of hiding techniques that just started around a 

hundred years ago though it has been used for thousands of years. First known 

evidence of the use of cryptography was found in Egypt. Ancient Egyptions used 

some unusual hieroglyphs instead of more ordinary ones here and there on a tablet to 

hide the text. Over the many years many cryptographic techniques have been 

proposed and practically used in various areas. Depending on type of transformation, 

the way the plaintext and ciphertext are processed, and number of the keys used for 

encryption/decryption the cryptographic techniques can be classified into several 

important classes. Figure 2.1 demonstrates the taxonomy of cryptographic 

techniques. 

In what follows we succinctly explain each class of cryptographic techniques, and 

refer readers to [4] for detailed information.  

2.2 Symmetric vs Asymmetric Cryptography 

In this thesis we repeatedly refer to Alice and Bob, the commonly used placeholder 

names, which are used as archetypal characters throughout the thesis to explain the 

major principles of cryptography. For example, "Alice sends an encrypted message 

to Bob" is understood as "Party A sends an encrypted message to Party B. "The main 
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logic behind of the symmetric cryptography can be explained introducing the 

following example. 

 

 

 

 

 

 

 

Figure 2.1: Taxonomy of cryptographic techniques. 

Let us assume that Alice wants to send secret message to Bob. Alice uses a key to 

encrypt the message since the message is confidential. Bob is the only one who 

should gain access to the message. Alice sends ciphertext together with the key to 

Bob. Bob uses the key and same cipher to decrypt the message. In this example Alice 

and Bob share the key, that is called symmetric key. Alice and Bob are the only ones 

who are allowed to know the secret key and read the message. No one else is allowed 

to know the secret key and read the encrypted message. This is the way how 

confidentiality is achieved in symmetric cryptography. The way asymmetric-key 

cryptography works is detailed in Figure 2.2. 
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          (a)       (b) 

 

         (c)          (d) 

 

(e)      (f) 

Figure 2.2: Schematic illustration of symmetric cryptography. (a) The easiest way for 

Alice to send a private message to Bob is via postal mail. (b) Alice knows that the 

postman is eager to read the mail she will send. Thus, Alice decides to develop a way 

to send secret messages to Bob so that nobody being able to read them. (c) Alice 

buys lockbox with two identical keys, puts the message inside a lockbox and sends 

the lockbox to Bob. She realizes that she needs to send the key to Bob. Since the 

postman is curious to open the lockbox and take a copy of the key. Alice thereby 

meets Bob at a nearby bar to give him one of the keys. It is inconvenient, but she 

only has to do it once. (d) After Alice gets home she uses her key to lock her 

message into the lockbox. (e) Then she sends the lockbox to Bob. What the mailman 

could do is to look at the lockbox, hide the lockbox so that Bob doesn‟t get the 

message, but what is for sure there is no way for postman to read the message, as he 

cannot open the lockbox. (f) On the other hand, Bob can simply use the identical key 

to unlock the lockbox and read the message. It is somewhat like handshaking in 

sense that Bob can use the same method for securely replying since Alice and Bob 

have identical keys. 
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 (a)           (b) 

 

(c)           (d) 

 

(e)          (f) 

   

(g)      

Figure 2.3: Schematic illustration of asymmetric cryptography. (a) This time, Alice 

and Bob do not meet at all. First Bob gets a lock and a matching key. (b) Then Bob 

sends the unlocked lock to Alice, keeping the key in secret. (c) Alice gets a lockbox, 

puts the message in it. (d) After that she locks the lockbox with Bob‟s lock and mails 

it to Bob. (e) She is sure that the mailman is not capable anymore to read the 

message as he has no way to open the lock. Bob receives the lockbox, opens it with 

the key and reads the message. (f) The above principle works if the messages are sent 

in one direction. To make the communication link bidirectional Alice firstly buys a 

blue lock, a key and then mails the lock to Bob so that he can reply. Alice sends Bob 

one of the keys. (g) Alice and Bob are now able to communicate in terms of 

symmetric-key lockbox. 

In asymmetric cryptography a pair of keys is used to encrypt/decrypt a message. One 

of the keys called a public-key that is known to everybody. Another key referred as a 

private-key is known to the recipient of the message. In asymmetric cryptography, 
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anyone can encrypt messages using the public key, but only the holder of the paired 

private key can decrypt it. Private-key is always kept in secret, while public-key is 

publicly shared with the others. 

Returning to our coined example, Alice and Bob both get a pair of keys (𝐾𝑈𝐴, 𝐾𝑅𝐴) 

and (𝐾𝑈𝐵, 𝐾𝑅𝐵) one is public key and another is private key. Each of them keeps 

private key in secret and publishes public key. When Alice wants to send a message 

𝑋 confidentially to Bob, and wants to be sure that only Bob may be able to read it 

Alice encrypts the message with Bob‟s public key 𝑌 = 𝐸𝐾𝑈𝐵
(𝑋) and sends ciphertext 

𝑌 to Bob. On receipt of the ciphertext 𝑌 Bob decrypts it with his own private key, 

and recovers the original plaintext as 𝑋 = 𝐷𝐾𝑅𝐵
 𝑌 = 𝐷𝐾𝑅𝐵

(𝐸𝐾𝑈𝐵
 𝑋 ). The logic 

behind of asymmetric-key cryptography is carefully detailed in Figure 2.3. 

Over the many hundred years number theory was one the purest branches of 

mathematics and it remained so until second half of 20
th

 century when modern 

cryptography has started developing. Public-key cryptography has turned number 

theory into area of applied mathematics which particularly played important role in 

developing RSA algorithm, the only fully described and practically implemented 

public-key algorithm. RSA, stands for Ron Rivest, Adi Shamir and Leonard 

Adleman, who were originally developed the algorithm in 1977. Particularly, 

selection of pair of keys in RSA is done in terms of primality test. Since RSA 

operates with large primes, fast and trustful primality test algorithms are of ultimate 

interest in public key cryptography.  
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If 𝑝 and 𝑞 are two primes, block of plaintext in RSA algorithm takes value less than 

𝑛 = 𝑝 ∙ 𝑞, meaning that block size is defined by log2𝑛. Given plaintext 𝑀 and 

ciphertext 𝐶, encryption and decryption is carried out as 

𝐶 = 𝑀𝑒(mod 𝑛),      (1) 

𝑀 = 𝐶𝑑 mod 𝑛 =  𝑀𝑒 𝑑 mod 𝑛 = 𝑀𝑒∙𝑑(mod 𝑛). (2) 

RSA uses corollary to Euler‟s Theorem: Given two prime numbers, 𝑝 and two 

integers, 𝑛 and 𝑚 such that 𝑛 = 𝑝𝑞 and 0 < 𝑚 < 𝑛 arbitrary integer 𝑘, the following 

is valid:  

𝑚𝑘𝜑 𝑛 +1 = 𝑚𝑘 𝑝−1  𝑞−1 +1 = 𝑚(mod 𝑛),   (3) 

where 𝜑(𝑛) is Euler‟s totient function defined as the number of integers that are less 

than or equals to 𝑛 and that are coprime to 𝑛.  Thus, 𝑒 and 𝑑 can be easily found from 

(2) and (3) as follows: 

 𝑒𝑑 = 𝑘𝜑 𝑛 + 1, 

 𝑒𝑑 ≡ 1(mod 𝜑(𝑛)), 

 𝑑 ≡ 𝑒−1(mod 𝜑(𝑛)).      (4) 

Thus, 𝑒 is chosen according to identity gcd 𝜑 𝑛 , 𝑒 = 1, 1 < 𝑒 < 𝜑(𝑛), mean 

while 𝑑 is determined from (4). The private and public key are defined as  𝑑, 𝑛  and 

{𝑒, 𝑛} respectively. Once public and private key are determined, encryption and 

decryption can be performed in accordance with (1) and (2). 

2.3 Classical vs Modern Methods 

We distinguish between classical and modern symmetric cryptographic ciphers. 

Classical ciphers as earliest forms of secret writing require a little more than local 

pen and paper and based on processing of text prepared in natural languages such as 

English, French, etc. It is well-known that ciphertext produced by a classical cipher 
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always reveals statistical information about the plaintext, which makes it easy for 

unauthorized party to break the code and recover the plaintext. 

As it is believed that frequency analysis method was proposed by Arab 

mathematician Al-Kindi, who is also known as Alkindus, in the 9
th

 century [2]. The 

main idea behind of the frequency analysis method is to discover similarities 

between known relative frequencies of the letters, combinations of two-letters, three-

letters, etc. and those in a plaintext, and guess the plain letters by using brute-force 

attack consequently substituting the cipher letters by candidate plain letters. What is 

true is that although partially recovered plaintext is not fully readable it may still 

contain essential information about plaintext. One obvious result of the frequency 

analysis method is that if a single alphabet is under consideration nearly all ciphers 

became more or less readily breakable by any informed attacker. This is why ciphers 

based on use of a single alphabet although still enjoy popularity today, mostly remain 

as puzzles. Frequency analysis method has remained as the most powerful method 

until the development of the polyalphabetic cipher. The monoalphabetic and 

polyalphabetic ciphers are detailed in Subsection 2.3. 

Modern cryptographic methods are based on processing of digital information. The 

development of digital computers and electronics has changed the outlook on 

cryptography. Transition from natural language to binary or boolean alphabet made it 

possible to develop much more complex ciphers. Furthermore, computers are 

capable to encrypt/decrypt multimedia data that is made of text, image and voice 

information. All these data are representable in binary format. This is essential 

departure from the classical ciphers which are applicable for documents prepared in 
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natural languages only. Modern ciphers are characterized along several dimensions 

such as block size, F-function, number of rounds and S-box. 

Unlike classical methods, which generally manipulate with characters or small 

groups of characters, modern methods split text into groups (or blocks) and process 

group-wise (or block-wise). Nowadays, block size of 32-, 64- or even 128-bit is 

rather reasonable choice in real life applications. There is direct proportional 

relationship between block size and message confidentiality. The level of message 

confidentiality increases with increase of block size. On the other hand, the cost of 

the algorithm, which is measured in terms of time required to complete the task, also 

increases with increase of the block size. So, there must be a reasonable compromise 

between level of confidentiality and price spent to break the cipher. As complex the 

cipher becomes it is more difficult to break it, hence more time and effort should be 

spent to break it.  

The key size is just another parameter that essentially affects the outcome in modern 

cryptographic methods. Some researchers claim that in modern techniques the key 

but not the encryption/decryption algorithm is of primary interest. The key size is in 

direct proportional relationship with the confidentiality. Increase of the key size 

increases the level of confidentiality. The key size of 64- and 128-bit is quite 

reasonable compromise in sense of security and time-effectiveness of 

encryption/decryption processes.             

In modern cryptography, it is quite customary to repeat core of the algorithm called 

round until reaching desired level of secrecy. It must be noticed all rounds have the 

same structure. Round is a mixture of Boolean operations and substitutions of the 
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message fragments that integrates diffusion and confusion principles, techniques 

used for hiding statistical properties of the key and plaintext inside ciphertext. 

Greater the number of rounds, it is more difficult to perform cryptanalysis. The 

following criterion remains true in practical applications: the number of rounds is 

chosen so that known cryptanalytic efforts require greater effort than a simple linear 

cryptanalysis.  

One common misconception concerning public-key encryption is that public-key 

encryption is more secure compared to conventional encryption. The level of 

confidentiality depends on such parameters as key length, inner structure of 

encryption algorithm, etc. In fact, none of two types of cryptography is superior to 

another from the point of view of resisting cryptanalysis. There is nothing in 

principle about either conventional or public-key encryption that makes one superior 

to another from the point of view of resisting cryptanalysis. 

Modern cryptographic methods are tightly related with such notions as integrity 

checking, sender/receiver identity authentication, digital signatures. Let us have a 

closer look at the way identity authentication is accomplished in public-key 

cryptography. Let us notice that authentication is the process of confirming the 

identity of a person. Assume Alice wants to send message 𝑋 confidentially to Bob, 

and meantime wants to authenticate the message. Initially Alice and Bob respectively 

generate a pair of keys, one is public and another is private {𝐾𝑈𝐴 , 𝐾𝑅𝐴} and 

{𝐾𝑈𝐵 , 𝐾𝑅𝐵}. Each of them publishes own public key and keeps private key in secret. 

Public-key cryptography allows us to encrypt the message with any of the keys, 

while only the other key can be used to decrypt it. Since Alice knows Bob‟s public 

key 𝐾𝑈𝐵 and own public and private keys {𝐾𝑈𝐴 , 𝐾𝑅𝐴}, she has two choices for 
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encryption: She either encrypts message 𝑋 with Bob‟s public key 𝐾𝑈𝐵 and sends 

ciphertext 𝑌 = 𝐸𝐾𝑈𝐵
(𝑋) to Bob or uses own private key 𝐾𝑅𝐴 to authenticate the 

plaintext 𝑋. In the former case the ciphertext can be decrypted with Bob‟s private 

key only. Since Bob keeps his private key in secret he is the person who can decrypt 

ciphertext and read the original message. On receipt of the ciphertext 𝑌 Bob decrypts 

it and recovers the plaintext 𝑋 = 𝐷𝐾𝑅𝐵
(𝑌). In the latter case authenticated message 

can be “discovered” by Alice‟s public key 𝐾𝑈𝐴. Another important observation is 

that it is hard if not impossible to alter the message without access to Alice‟s private 

key, so the message is authenticated both in terms of source and data integrity. Since 

Bob has access to Alice‟s public key 𝐾𝑈𝐴, he can easily detect her digital signature 

on the message by implementing 𝑋 = 𝐷𝐾𝑈𝐴
(𝐸𝐾𝑅𝐴

(𝑋)). This is the way how message 

authentication and its detection are accomplished in public-key cryptography.   

Alice however can provide both the authentication and confidentiality by using 

following schema:  

Encryption: 𝑍 = 𝐸𝐾𝑈𝐵
(𝐸𝐾𝑅𝐴

(𝑋)), 

Decryption: 𝑋 = 𝐷𝐾𝑈𝐴
(𝐷𝐾𝑅𝐵

(𝑍)). 

The above two formulae are read as follows. Alice digitally signs message 𝑋 with 

own private key, after this she encrypts the message with Bob‟s public key. 

Ciphertext is then sent to Bob. The ciphertext can be decrypted with Bob‟s private 

key only and thereby he is the only person who can decrypt the ciphertext. Thus, Bob 

decrypts the ciphertext and then using Alice‟s public key finds Alice‟s digital 

signature on the message.  
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2.4 Substitution vs Transposition Ciphers 

In academic literature researchers distinguish between two types of classical 

cryptographic methods. All classical encryption methodsare based on either 

substitution of the elements in the plaintext by another elements or rearrangements of 

the elements in accordance to predefined templates. The former methodis called 

substitution cipher while latter method named transposition method. Some 

cryptosystems are hybrid involving multiple stages of substitutions and 

transpositions. 

It is believed that one of the earliest examples of substitution cipher is due to Julius 

Ceasar. When encrypting with Ceasar‟s cipher each letter of the plaintext is 

substituted with the letter standing three places further in the alphabet. When 

decrypting with Ceasar‟s cipher each cipher letter is replaced according to the same 

principle but in reverse order. The substitution is performed in wrapped-around 

manner, with the first letter of the alphabet following the last letter when encrypting 

and vice versa when decrypting. For instance, Ceasar‟s cipher replaces a plaintext 

fragment “meetmeafterthetogaparty” with ciphertext “phhwphdiwhuwkhwrjdsduwb”. 

It must be noticed that number of the shift positions is a key to the cipher. 

Ceasar‟s cipher can be easily extended if we substitute a letter with the letter 

standing any 𝑘 places further. So, that the general Caesar algorithm is expressed as 

𝐶 = 𝐸 𝑝 =  𝑝 + 𝑘 mod (26) where 𝑘 is in the range 1 to 25. Likewise, decryption 

is simply expressed as 𝑝 = 𝐷 𝐶 =  𝐶 − 𝑘 mod (26).  Cryptanalyst needs to try all 

25 keys to break the general Ceasar‟s cipher. 
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2.5 Monoalphabetic vs Polyalphabetic Ciphers 

A monoalphabetic substitution cipher is based on use of a single alphabet. It must be 

noticed that alphabet is an ordered sequence of letters. Any rearrangement of the 

letters in known alphabets results in a new alphabet which is different than the 

original alphabet from point of view considered in cryptography. Consider English 

alphabet. Each of 26! distinct rearrangements of English letters leads to a new coding 

scheme. A monoalphabetic cipher uses single replacement scheme for all letters of 

the plaintext. This is the reason why it is relatively easy to break monoalphabetic 

cipher. In fact simple linear cryptanalysis is good enough to break monoalphabetic 

cipher. 

Polyalphabetic ciphers are specifically developed to overcome the above mentioned 

weakness provided by monoalphabetic ciphers. In polyalphabetic cipher multiple 

alphabets are alternatively used for substituting the plain letters by successive cipher 

letters. It is quite cumbersome task to collect statistical information on relative 

frequencies of the cipher letters since they apparently belong to different alphabets 

and cryptanalyst does not know which letter belongs to which alphabet. It is essential 

that number of alphabets used to create ciphertext could be easily determined if 

cryptanalyst knew the length of the keyword. What is interesting the key length but 

not the keyword itself is of primary importance. Once cryptanalyst knows the key 

length he/she can easily reduce whole task of breaking the polyalphabetic cipher into 

n monoalphabetic tasks and reserve then reperately. There exist several tricks for 

discovering the key length. Let us assume that cryptanalyst somehow deters the 

length of the keyword. Next he/she collects each n th letter, and separates the 

ciphertext into n classes with each class determined by single letter of the keyword. 
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After application the brute force analysis to groups of letters specified by a keyword 

letter the cryptanalyst recovers the plaintext.  

Vigenere algorithm is a well-known and the simplest among polyalphabetic ciphers. 

Vigenere algorithm that is based on English alphabet uses 26 rules or distinct 

alphabets, each obtained from the previous by shifting the letters of the alphabet by 

one position to the right in a circular manner such that A follows Z. Each alphabet is 

pointed out by a key letter. A key letter is indeed a cipher letter that substitutes one 

of the plaintext letters. Given plainletter 𝑦 and the key letter 𝑥, Vigenere algorithm 

substitutes 𝑦 by the cipherletter that is at the intersection of the row pointed by 𝑥 and 

the column pointed by 𝑦. 

Here is example illustrating encryption process by Vigenere cipher. Let “encrypt” be 

the key word and “cryptography” be the plaintext. Related table is shown in Table 

2.1. The associated ciphertext created by Vigenere algorithm is “pvagrhvvnryw”. 

Table 2.1: Vigenere table created by key word “encrypt”. 

 
PLAINTEXT LETTERS 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

K 

E 

Y

W

O 

R

D 

E E F G H I J K L M N O P Q R S T U V W X Y Z A B C D 

N N O P Q R S T U V W X Y Z A B C D E F G H I J K L M 

C C D E F G H I J K L M N O P Q R S T U V W X Y Z A B 

R R S T U V W X Y Z A B C D E F G H I J K L M N O P Q 

Y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X 

P T U V W X Y Z A B C D E F G H I J K L M N O P Q R S 

T P Q R S T U V W X Y Z A B C D E F G H I J K L M N O 

2.6 Stream vs Block Ciphers 

A stream cipher that symbol-wise processes the text. Block ciphers encrypts fixed-

length block of bits using an unvarying transformation. Stream ciphers encrypt 

streams of bits with varying length and use varying transformation on each bit. 
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Caesar cipher is perhaps the most famous cipher mentioned in academic literature. It 

is believed that Julius Ceasar sent scrambled messages to his  In a substitution 

cipher, each character of the plain text (plain text is the message which has to 

be encrypted) is substituted by another character to form the cipher text (cipher text 

is the encrypted message). The variant used by Caesar was a shift by 3 cipher. Each 

character was shifted by 3 places, so the character „A‟ was replaced by „D‟, „B‟ was 

replaced by „E‟ and so on. The characters would wrap around at the end, so „X‟ 

would be replaced by „A‟. 
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Chapter 3 

HILL CIPHER AND ITS MODIFICATIONS 

Hill cipher was developed by its inventor Lester Hill in 1929 [4]. Hill cipher is 

known to be the first polygraphic cipher. The method is based on linear matrix 

transformation of a message space. Given a plaintext message 𝑝 = (𝑝1, 𝑝2,… ) where 

𝑝𝑖  is a letter in some alphabet and invertible 𝑚×𝑚 matrix 𝐻, Hill cipher represents 

𝑝𝑖  by numeric value 𝑥𝑖 ∈ 𝑍𝑛(𝑍𝑛 =  0,1,… , 𝑛 − 1 ) and encrypts plaintext as 

𝑦 = 𝐻 ∙ 𝑥 (mod 𝑛), where 𝑥 and 𝑦 are plaintext and ciphertext column vectors.  

Similarly, 𝑦 is decrypted as 𝑥 = 𝐻−1 ∙ 𝑦 (mod 𝑛), where 𝐻−1 is the inverse of 𝐻. 

That is, 𝐻 ∙ 𝐻−1 = 𝐻−1 ∙ 𝐻 = 𝐼 holds, where 𝐼 is the identity matrix. 

The following exemplifies Hill cipher for 𝑛 = 26, 𝐻 =  
6 24 1

13 16 10
20 17 15

  and 

𝐻−1 =  
8 5 10

21 8 21
21 12 8

 . The plaintext 𝑥 =  𝐴𝐶𝑇 = (0 2 19) is encrypted as  

𝑦 = 𝐻 ∙ 𝑥  mod 26 =  15 14 7 = (𝑃𝑂𝐻). Likewise, the ciphertext 𝑦 =  15 14 7  

is decrypted as 𝑥 = 𝐻−1 ∙ 𝑦  mod 26 =  0 2 19 = (𝐴𝐶𝑇). 

Hill cipher is vulnerable to cryptanalysis. The cryptanalyst usually sits in tight loop 

and tries to possess the plaintext of some messages and the corresponding ciphertext 

of those messages to deduce the key. If cryptanalyst succeeds with gaining access to 

the flow of messages then he can easily decrypt any new messages encrypted with 



19 

 

the same key. The system can be obviously broken, knowing only 𝑚 distinct 

plaintext and ciphertext pairs (𝑥, 𝑦) and by computing 𝐻 = 𝑌 ∙ 𝑋−1 mod 𝑛 , where 

𝑋 and 𝑌 are the matrices composed of 𝑚 columns of 𝑥 and 𝑦, respectively. 

Whenever 𝑋 is invertible the opponent can obviously compute the unknown key as 

𝐻 = 𝑌 ∙ 𝑋−1 mod 𝑛  and consequently break the cipher. If the 𝑋 is not invertible 

then cryptanalyst keeps on collecting 𝑚 plaintext and ciphertext pairs until the 

resulting matrix is invertible. When 𝑚 is unknown, cryptanalyst might try the 

procedure for 𝑚 = 2,3,4 until the key is found.  

The affine Hill cipher was proposed to overcome this drawback [5]. The affine Hill 

cipher is a secure variant of Hill cipher in which the concept of Hill cipher is 

extended by mixing it up with an affine transformation. Similar to the Hill cipher the 

affine Hill cipher is polygraphic cipher, encrypting/decrypting 𝑚 letters at a time. 

Given key matrix 𝐻 and vector 𝑉, in affine Hill cipher the encryption expression is 

represented by 𝑦 = 𝐻 ∙ 𝑥 + 𝑉 (mod 𝑛). Similarly, the decryption is performed by 

𝑥 = 𝐻−1 ∙  𝑦 − 𝑉 (mod 𝑛). The following example illustrates the way encryption 

and decryption is performed in affine Hill cipher. The following example exemplifies 

affine Hill cipher. Let 𝑛 = 26, 𝐻 =  
6 24 1

13 16 10
20 17 15

 , 𝐻−1 =  
8 5 10

21 8 21
21 12 8

  and 

𝑉 =  
5
0
7
 . The encryption 𝑥 =  𝐴𝐶𝑇 = (0 2 19) is possessed by  

𝑦 = 𝐻 ∙ 𝑥 + 𝑉  mod 26 =  
6 24 1

13 16 10
20 17 15

  
0
2

19
 +  

5
0
7
  mod 26 =  

20
14
14

 . 

Likewise, the decryption is performed as follows: 
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𝑥 = 𝐻−1 ∙ (𝑥 − 𝑉)  mod 26 =  
8 5 10

21 8 21
21 12 8

 ∙   
15
14
7
  mod 26 =  

0
2

19
 . 

Suppose Alice chooses affine Hill cipher to send confidential message to Bob. 

Firstly, she selects a pair (𝐻, 𝑉) to encrypt the plaintext. Then she sends ciphertext as 

well as  𝐻, 𝑉  to Bob. When Bob receives ciphertext and a pair (𝐻, 𝑉) he creates 𝐻−1 

and then decrypts the ciphertext with (𝐻−1, 𝑉). 

In 2000, Saeednia proposed an interesting modification of Hill cipher [6]. The main 

idea behind of his algorithm is to modify the key matrix each time Hill cipher is 

implemented. Encrypting a message by a one-time used matrix would make the 

algorithm more secure compared to the original Hill cipher and affine Hill cipher. 

Assume Alice decides to send confidential message of size 𝑚 × 𝑠 to Bob, and she 

chooses Saeednia‟s algorithm to encrypt the message. Then she firstly selects 

random permutation 𝜋 of size 𝑚 and creates 𝑚 ×𝑚 permutation matrix 𝑃𝜋  by 

permuting the rows of identity matrix of the same size. Such a matrix is always row 

equivalent to an identity matrix. Then she creates its inverse 𝑃𝜋
−1 by permuting the 

columns of the identity matrix. Likewise, 𝑃𝜋
−1 is column equivalent to the row-

permuted matrix. After that, she creates one-time used matrix 𝐻𝜋  from the key 

matrix 𝐻 as 𝐻𝜋 = 𝑃𝜋
−1 ∙ 𝐻 ∙ 𝑃𝜋 . She further encrypts 𝑥 as 𝑦 = 𝐻𝜋 ∙ 𝑥  mod 𝑛   and 

sends a pair (𝑦, 𝜋′ ) to Bob where 𝜋′ = 𝐻 ∙ 𝜋 (mod 𝑛). Upon receipt of the message, 

Bob computes permutation 𝜋 from 𝜋′  and 𝐻−1 as follows 𝜋 = 𝐻−1 ∙ 𝜋′  (mod 𝑛). 

Bob next calculates (𝐻−1)𝜋 = 𝑃𝜋
−1 ∙ 𝐻−1 ∙ 𝑃𝜋  and decrypts the ciphertext as 𝑥 =

(𝐻𝜋)−1 ∙ 𝑦 (mod 𝑛) keeping in mind that (𝐻𝜋)−1 = (𝐻−1)𝜋 . 
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It should be noticed that the permutation of any pair of rows (or columns) of matrix 

𝐻 yields a matrix whose inverse is obtained by the permutation of the same columns 

(or rows) of 𝐻−1. This is the reason why Bob does not need to use transposition 

algorithm to find (𝐻𝜋)−1; it can be easily obtained from equality (𝐻𝜋)−1 = (𝐻−1)𝜋 . 

This observation essentially decreases computational cost of Saeednia‟s algorithm. 

Below we exemplify encryption and decryption with Saeednia‟s algorithm for 

𝜋 =  
1
2

2
1

3
3
 , 𝐻 =  

6 24 1
13 16 10
20 17 15

  and 𝑥 =  
0
2

19
 . By using permutation matrix 

𝑃𝜋 =  
0 1 0
1 0 0
0 0 1

  and its inverse 𝑃𝜋
−1 =  

0 1 0
1 0 0
0 0 1

  we obtain 

𝐻𝜋 = 𝑃𝜋
−1 ∙ 𝐻 ∙ 𝑃𝜋 =  

0 1 0
1 0 0
0 0 1

 ∙  
6 24 1

13 16 10
20 17 15

 ∙  
0 1 0
1 0 0
0 0 1

 =

 
16 13 10
24 6 1
17 20 15

 . 

After that we encrypt the plaintext as follows 

𝑦 = 𝐻𝜋 ∙ 𝑥  mod 𝑛  =  
16 13 10
24 6 1
17 20 15

 ∙  
0
2

19
  mod 26 =  

8
5

13
 . 

Decryption is carried out as follows 

(𝐻𝜋)−1 = (𝐻−1)𝜋 = 𝑃𝜋
−1 ∙ 𝐻−1 ∙ 𝑃𝜋 =  

0 1 0
1 0 0
0 0 1

 ∙  
8 5 10

21 8 21
21 12 8

 ∙  
0 1 0
1 0 0
0 0 1

 . 

It was reported in [3] that Saeednia‟s algorithm has the same problem as the original 

Hill cipher. By collecting 𝑚 pairs of (𝜋, 𝜋′) and simultaneously solving 𝑚 equations 
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𝜋 = 𝐻 ∙ 𝜋′ , a cryptanalyst can obtain the key matrix 𝐻. Further, he can use 𝑃𝜋  and 

𝑃𝜋
−1 to calculate 𝐻𝜋 . In the same paper it was noticed that Saeednia‟s algorithm is 

time consuming since it is based on frequent use of matrix operations. Matrix 

operations require a lot of time to compute when the matrix size is large enough.  
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Chapter 4 

COMPUTER EXPERIMENTS 

To analyze the time-effectiveness of Hill algorithm and its modifications we 

performed a series of computer experiments on PC/Windows 7 platform using an 

interactive environment and high-level computing tool MATLAB. The relative time-

effectiveness of above three methods is assessed in terms of run times spent for 

encryption and decryption. The steps carried out in computer experiments are 

outlined below.  

The main steps of Hill cipher are indicated below: 

Encryption 

1. Select invertible matrix 𝑯. 

2. Calculate 𝒚 = 𝑯 ∙ 𝒙 (mod 𝒏). 

Alice sends (𝒚,𝑯) to Bob. 

Decryption 

1. Calculate 𝑯−𝟏. 

2. Calculate 𝒙 = 𝑯−𝟏 ∙ 𝒚 (mod 𝒏). 

The affine Hill cipher is represented by the following steps: 

Encryption 

1. Select invertible matrix 𝑯. 
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2. Select vector 𝑽.  

3. Calculate 𝒚 = 𝑯 ∙ 𝒙 + 𝑽 (mod 𝒏). 

Alice sends 𝑯,𝑽, 𝒚 to Bob. 

Decryption 

1. Calculate 𝑯−𝟏. 

2. Calculate 𝒙 = 𝑯−𝟏(𝒚 − 𝑽). 

The main steps of Saeednia‟s method are as follows: 

Encryption 

1. Select random permutation 𝝅. 

2. Select matrix 𝑯. 

3. Calculate permutation matrix 𝑷𝝅 by permuting the rows of identity matrix 𝑰. 

4. Calculate permutation matrix 𝑷𝝅
−𝟏 by permuting the columns of identity 

matrix 𝑰. 

5. Calculate 𝑯𝝅 = 𝑷𝝅
−𝟏 ∙ 𝑯 ∙ 𝑷𝝅. 

6. Calculate 𝒚 = 𝑯𝝅 ∙ 𝒙 (mod 𝒏) 

7. Calculate 𝝅′ = 𝑯 ∙ 𝝅 (mod 𝒏) 

Alice sends 𝝅′ , 𝑯, 𝒚 to Bob.  

Decryption 

1. Calculate 𝑯−𝟏. 

2. Calculate 𝝅 = 𝑯−𝟏 ∙ 𝝅′  (mod 𝒏). 

3. Calculate permutation matrix 𝑷𝝅 by permuting the rows of identity matrix 𝑰. 

4. Calculate permutation matrix 𝑷𝝅
−𝟏 by permuting the columns of identity 

matrix 𝑰. 

5. Calculate (𝑯−𝟏)𝝅 = 𝑷𝝅
−𝟏 ∙ 𝑯 ∙ 𝑷𝝅. 
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6. Calculate 𝒙 = (𝑯𝝅)−𝟏 ∙ 𝒚  mod 𝒏 . 

We measured run times separately for encryption and decryption procedures. For 

each matrix size we performed a series of computer experiments. We collected the 

results of computer experiments and calculated average run time for each matrix size. 

The results of computer experiments for encryption and decryption are illustrated in 

Table 4.1 and Table 4.2 respectively. The encryption and decryption run times for 

Hill cipher, affine Hill cipher and Saeednia‟s modification are respectively 

represented in Figures 4.1 - 4.4 using blue, brown and green shapes. In these figures 

Series 1, Series 2 and Series 3 respectively stand for the results for Hill cipher, affine 

Hill cipher and Saeednia‟s algorithm. 

Pairwise comparison of time-effectiveness of the three algorithms are shown for 

encryption in Table 4.3 and for decryption in Table 4.4. Simulation results in Tables 

4.1 - 4.4 show that encryption and decryption with Saeednia‟s algorithm requires 

essentially more time compared to affine Hill cipher and Hill cipher. This is expected 

result because Saeednia‟s algorithm involves a lot of matrix operations which 

increases its run time. Bar charts and line charts drawn for simulation results clearly 

demonstrate increasing tendency for all three algorithms: Rate of increase in 

Saeednia‟s modification (green shapes) is much more than that in former two 

algorithms (blue and brown shapes). 

On the other hand, Tables 4.1 – 4.4 reveal that the difference between Hill cipher 

(blue shapes) and affine Hill cipher (brown shapes) is hard to see by the naked eye-  

the maximum and average difference between run times of affine Hill cipher and Hill 
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cipher is 0.0629 and 0.0362 sec for encryption and 0.1058 and 0.0591 for decryption, 

which is negligibly small.  

Although Saeednia‟s modification is strongest in sense of confidentiality among three 

algorithms considered in the present thesis, it is the worst in terms of time-efficiency. 

On the other hand, Hill cipher and affine Hill cipher take more or less same time for 

encryption and decryption. However, affine Hill cipher is a bit more secure than Hill 

cipher. 

Table 4.1: Results of computer experiments: Run times for encryption by Hill cipher, 

affine Hill cipher and Saeednia‟s algorithms. 

.Algorithm 

Matrix size, m 

10 20 30 40 50 60 70 80 90 100 

.Hill.cipher .0.1248 .0.2652 .0.2841 .0.3193 .0.3276 .0.3337 .0.3349 .0.3451 .0.3512 .0.3588 

.Affine.Hill.cipher .0.1327 .0.2741 .0.3039 .0.3544 .0.3756 .0.3756 .0.3948 .0.4047 .0.4123 .0.4217 

.Saeednia‟s.modification .0.1560 .0.2761 .0.3423 .0.3947 .0.4507 .0.5311 .0.6122 .0.7013 .0.7707 .0.8576 
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Figure 4.1: Bar chart representation of run times for encryption by Hill cipher,  

affine Hill cipher and Saeednia‟s algorithms. 

 

Figure 4.2: Line chart representation of run times for encryption by Hill cipher,  

affine Hill cipher and Saeednia‟s algorithms. 

Table 4.2: Results of computer experiments: Run times for decryption by Hill 

cipher,.affine.Hill.cipher.and.Saeednia‟s.algorithms.
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Figure 4.3: Bar chart representation of run times for decryption by Hill cipher,  

affine Hill cipher and Saeednia‟s algorithms. 

 

 
Figure 4.4: Line chart representation of run times for decryption. 

 

……Table 4.3: Pairwise comparison of algorithms regarding encryption run times. 

Pairwise comparison of algorithms 
Difference between run times 

Maximum Average  

Saeednia‟s vs Hill 0.4988 0.2048 

Saeednia‟s vs affine Hill 0.4359 0.1619 

Affine Hill vs Hill 0.0629 0.0362 
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……Table 4.4: Pairwise comparison of algorithms regarding decryption run times. 

Pairwise comparison of algorithms 
Difference between run times 

Maximum Average  

Saeednia‟s vs Hill 0.9516 0.3208 

Saeednia‟s vs affine Hill 0.8458 0.2619 

Affine Hill vs Hill 0.1058 0.0591 
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Chapter 5 

CONCLUSION 

It is the aim of the present thesis to provide a comparative analysis of cryptographic 

algorithms in terms of time-effectiveness. The analysis is done for Hill cipher, affine 

Hill cipher and Saeednia‟s algorithm.  

The main outcomes of this thesis are summarized as follows:  

1. Encryption and decryption with Saeednia‟s algorithm requires essentially 

more time compared to affine Hill cipher and Hill cipher. 

2. Encryption and decryption run times for affine Hill cipher and Hill cipher are 

negligibly small, not showing essential difference.  

3. Since Saeednia‟s modification provides more confidentiality compared to 

remaining two algorithms but takes more encryption/decryption time, and 

that affine Hill cipher a bit more secure than Hill cipher, there should be a 

reasonable trade-off in selection of cryptographic algorithm. The best choice 

depends on level of confidentiality of a particular application and traffic 

between sender and receiver.  
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Appendix A: Hill Cipher Encryption 

HILL CIPHER ENCRYPTION (10x10) 

>> t=cputime 

a=0+100*rand(10,10) 

b=round(a) 

x=0+25*rand(10,1) 

k=round(x) 

g=b*k 

l=mod(g,26) 

zaman=cputime-t 

t  = 0.1248 

 

**************************************************** 

HILL CIPHER ENCRYPTION (20x20) 

>> t=cputime 

a=0+100*rand(20,20) 

b=round(a) 

x=0+25*rand(20,1) 

k=round(x) 

g=b*k 

l=mod(g,26) 

zaman=cputime-t 

t  = 0.2652 

**************************************************** 

HILL CIPHER ENCRYPTION (50x50) 

>> t=cputime 

a=0+100*rand(50,50) 

b=round(a) 

x=0+25*rand(50,1) 

k=round(x) 

g=b*k 

c=inv(b) 

y=0+25*rand(50,1) 

j=c*y 

l=round(j) 

p=mod(l,26) 

zaman=cputime-t 

t = 0.3276 

**************************************************** 

HILL CIPHER ENCRYPTION (100x100) 

>> t=cputime 

a=0+100*rand(100,100) 
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b=round(a) 

x=0+25*rand(100,1) 

k=round(x) 

g=b*k 

l=mod(g,26) 

zaman=cputime-t 

t = 0.3588 
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Appendix B: Hill Cipher Decryption 

HILL CIPHER DECRYPTION (10x10) 

>> t=cputime 

a=0+100*rand(10,10) 

b=round(a) 

x=0+25*rand(10,1) 

k=round(x) 

g=b*k 

c=inv(b) 

y=0+25*rand(10,1) 

j=c*y 

l=round(j) 

p=mod(l,26) 

zaman=cputime-t 

t = 0.1872 

**************************************************** 

HILL CIPHER DECRYPTION (20x20) 

>> t=cputime 

a=0+100*rand(20,20) 

b=round(a) 

x=0+25*rand(20,1) 

k=round(x) 

g=b*k 

c=inv(b) 

y=0+25*rand(20,1) 

j=c*y 

l=round(j) 

p=mod(l,26) 

zaman=cputime-t 

t = 0.3744 

**************************************************** 

HILL CIPHER DECRYPTION (50x50) 

>> t=cputime 

a=0+100*rand(50,50) 

b=round(a) 

x=0+25*rand(50,1) 

k=round(x) 

g=b*k 

c=inv(b) 

y=0+25*rand(50,1) 

j=c*y 

l=round(j) 

p=mod(l,26) 
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zaman=cputime-t 

t = 0.3888 

**************************************************** 

HILL CIPHER DECRYPTION (100x100) 

 

>> t=cputime 

a=0+100*rand(100,100) 

b=round(a) 

x=0+25*rand(100,1) 

k=round(x) 

g=b*k 

c=inv(b) 

y=0+25*rand(100,1) 

j=c*y 

l=round(j) 

p=mod(l,26) 

zaman=cputime-t 

t = 0.4056 
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Appendix C: Affine Hill Cipher Encryption 

AFFINE HILL CIPHER ENCRYPTION (10x10) 

t=cputime 

a=0+100*rand(10,10) 

b=round(a) 

x=0+25*rand(10,1) 

k=round(x) 

l=b*k 

m=0+25*rand(10,1) 

n=round(m) 

p=l+n 

r=mod(p,26) 

zaman=cputime-t 

t = 0.1327 

**************************************************** 

AFFINE HILL CIPHER ENCRYPTION (20x20) 

t=cputime 

a=0+100*rand(20,20) 

b=round(a) 

x=0+25*rand(20,1) 

k=round(x) 

l=b*k 

m=0+25*rand(20,1) 

n=round(m) 

p=l+n 

r=mod(p,26) 

zaman=cputime-t 

t = 0.2741 

**************************************************** 

AFFINE HILL CIPHER ENCRYPTION (50x50) 

>> t=cputime 

a=0+100*rand(50,50) 

b=round(a) 

x=0+25*rand(50,1) 

k=round(x) 

l=b*k 

m=0+25*rand(50,1) 

n=round(m) 

p=l+n 

r=mod(p,26) 

zaman=cputime-t 

t = 0.3756 
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**************************************************** 

AFFINE HILL CIPHER ENCRYPTION (100x100) 

>> t=cputime 

a=0+100*rand(100,100) 

b=round(a) 

x=0+25*rand(100,1) 

k=round(x) 

l=b*k 

m=0+25*rand(100,1) 

n=round(m) 

p=l+n 

r=mod(p,26) 

zaman=cputime-t 

t = 0.4217 
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Appendix D: Affine Hill Cipher Decryption 

AFFINE HILL CIPHER DECRYPTION (10x10) 

t=cputime 

y=0+25*rand(10,1) 

k=round(y) 

m=0+25*rand(10,1) 

n=round(m) 

p=k-n 

a=0+100*rand(10,10) 

b=round(a) 

c=inv(b) 

l=c*p 

r=mod(l,26) 

zaman=cputime-t 

t = 0.2184 

*************************************************** 

AFFINE HILL CIPHER DECRYPTION (20x20) 

t=cputime 

y=0+25*rand(20,1) 

k=round(y) 

m=0+25*rand(20,1) 

n=round(m) 

p=k-n 

a=0+100*rand(20,20) 

b=round(a) 

c=inv(b) 

l=c*p 

r=mod(l,26) 

zaman=cputime-t 

t = 0.4202 

**************************************************** 

AFFINE HILL CIPHER DECRYPTION (50x50) 

t=cputime 

y=0+25*rand(50,1) 

k=round(y) 

m=0+25*rand(50,1) 

n=round(m) 

p=k-n 

a=0+100*rand(50,50) 

b=round(a) 

c=inv(b) 

l=c*p 

r=mod(l,26) 
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zaman=cputime-t 

t = 0.4603 

**************************************************** 

AFFINE HILL CIPHER DECRYPTION (100x100) 

t=cputime 

y=0+25*rand(100,1) 

k=round(y) 

m=0+25*rand(100,1) 

n=round(m) 

p=k-n 

a=0+100*rand(100,100) 

b=round(a) 

c=inv(b) 

l=c*p 

r=mod(l,26) 

zaman=cputime-t 

t = 0.5114 
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Appendix E: S. Saeednia’s Algorithm Encryption 

S. SAEEDNIA‟S ALGORITHM ENCRYPTION (10x10) 

t=cputime 

a=eye(10) 

a(10,10)=0 

a(1,1)=0 

a(1,10)=1 

a(10,1)=1 

a(8,8)=0 

a(2,2)=0 

a(8,2)=1 

a(2,8)=1 

a(6,6)=0 

a(3,3)=0 

a(6,3)=1 

a(3,6)=1 

a(5,5)=0 

a(4,4)=0 

a(5,4)=1 

a(4,5)=1 

b=inv(a) 

x=0+25*rand(10,10) 

k=round(x) 

l=a*k*b 

p=0+25*rand(10,1) 

r=round(p) 

v=l*r 

y=mod(v,26) 

zaman=cputime-t 

t = 0.1560 

**************************************************** 

S. SAEEDNIA‟S ALGORITHM ENCRYPTION (20x20) 

>> t=cputime 

a=eye(20) 

a(20,20)=0 

a(1,1)=0 

a(1,20)=1 

a(20,1)=1 

a(12,12)=0 

a(4,4)=0 

a(4,12)=1 

a(12,4)=1 

a(6,6)=0 

a(3,3)=0 

a(6,3)=1 
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a(3,6)=1 

a(9,9)=0 

a(15,15)=0 

a(15,9)=1 

a(9,15)=1 

b=inv(a) 

x=0+25*rand(20,20) 

k=round(x) 

l=a*k*b 

p=0+25*rand(20,1) 

r=round(p) 

v=l*r 

y=mod(v,26) 

zaman=cputime-t 

t = 0.2521 

**************************************************** 

S. SAEEDNIA‟S ALGORITHM ENCRYPTION (50x50) 

>> t=cputime 

a=eye(50) 

a(50,50)=0 

a(1,1)=0 

a(1,50)=1 

a(50,1)=1 

a(12,12)=0 

a(28,28)=0 

a(4,28)=1 

a(28,4)=1 

a(36,36)=0 

a(30,30)=0 

a(36,30)=1 

a(30,36)=1 

a(9,9)=0 

a(45,45)=0 

a(45,9)=1 

a(9,45)=1 

b=inv(a) 

x=0+25*rand(50,50) 

k=round(x) 

l=a*k*b 

p=0+25*rand(50,1) 

r=round(p) 

v=l*r; 

y=mod(v,26) 

zaman=cputime-t 

t = 0.4507 

**************************************************** 
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S. SAEEDNIA‟S ALGORITHM ENCRYPTION (100x100) 

>> t=cputime 

a=eye(100) 

a(100,100)=0 

a(1,1)=0 

a(1,100)=1 

a(100,1)=1 

a(12,12)=0 

a(28,28)=0 

a(4,28)=1 

a(28,4)=1 

a(95,95)=0 

a(30,30)=0 

a(95,30)=1 

a(30,95)=1 

a(27,27)=0 

a(45,45)=0 

a(45,27)=1 

a(27,45)=1 

a(61,61)=0 

a(63,63)=0 

a(61,63)=1 

a(63,61)=1 

b=inv(a) 

x=0+25*rand(100,100) 

k=round(x) 

l=a*k*b 

p=0+25*rand(100,1) 

r=round(p) 

v=l*r; 

y=mod(v,26) 

zaman=cputime-t 

t = 0.8576 
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Appendix F: S. Saeednia’s Algorithm Decryption 

S. SAEEDNIA‟S ALGORITHM DECRYPTION (10x10) 

>>  t=cputime 

a=eye(10) 

a(10,10)=0 

a(1,1)=0 

a(1,10)=1 

a(10,1)=1 

a(8,8)=0 

a(2,2)=0 

a(8,2)=1 

a(2,8)=1 

a(6,6)=0 

a(3,3)=0 

a(6,3)=1 

a(3,6)=1 

a(5,5)=0 

a(4,4)=0 

a(5,4)=1 

a(4,5)=1 

b=inv(a) 

x=0+25*rand(10,10) 

k=inv(x) 

m=a*k*b 

q=0+25*rand(10,1) 

v=m*q 

s=round(v) 

y=mod(s,26) 

zaman=cputime-t 

t = 0.2571 

**************************************************** 

S. SAEEDNIA‟S ALGORITHM DECRYPTION (20x20) 

>> t=cputime 

a=eye(20) 

a(18,18)=0 

a(4,4)=0 

a(4,18)=1 

a(18,4)=1 

a(8,8)=0 

a(11,11)=0 

a(8,11)=1 

a(11,8)=1 

a(6,6)=0 

a(13,13)=0 

a(6,13)=1 
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a(13,6)=1 

a(5,5)=0 

a(14,14)=0 

a(5,14)=1 

a(14,5)=1 

b=inv(a) 

x=0+25*rand(20,20) 

k=inv(x) 

m=a*k*b 

q=0+25*rand(20,1) 

v=m*q 

s=round(v) 

y=mod(s,26) 

zaman=cputime-t 

t = 0.5001 

**************************************************** 

S. SAEEDNIA‟S ALGORITHM DECRYPTION (50x50) 

>> t=cputime 

a=eye(50) 

a(48,48)=0 

a(12,12)=0 

a(12,48)=1 

a(48,12)=1 

a(38,38)=0 

a(17,17)=0 

a(38,17)=1 

a(17,38)=1 

a(25,25)=0 

a(37,37)=0 

a(25,37)=1 

a(37,25)=1 

a(15,15)=0 

a(24,24)=0 

a(15,24)=1 

a(24,15)=1 

a(21,21)=0 

a(16,16)=0 

a(21,16)=1 

a(16,21)=1 

a(11,11)=0 

a(23,23)=0 

a(11,23)=1 

a(23,11)=1 

b=inv(a) 

x=0+25*rand(50,50) 

k=inv(x) 

m=a*k*b 

q=0+25*rand(50,1) 
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v=m*q 

s=round(v) 

y=mod(s,26) 

zaman=cputime-t 

t = 0.7096 

**************************************************** 

S. SAEEDNIA‟S ALGORITHM DECRYPTION (100x100) 

>>  t=cputime 

a=eye(100) 

a(90,90)=0 

a(2,2)=0 

a(2,90)=1 

a(90,2)=1 

a(8,8)=0 

a(17,17)=0 

a(8,17)=1 

a(17,8)=1 

a(65,65)=0 

a(37,37)=0 

a(65,37)=1 

a(37,65)=1 

a(45,45)=0 

a(24,24)=0 

a(45,24)=1 

a(24,45)=1 

a(61,61)=0 

a(16,16)=0 

a(61,16)=1 

a(16,61)=1 

a(21,21)=0 

a(63,63)=0 

a(21,63)=1 

a(63,21)=1 

b=inv(a) 

x=0+25*rand(100,100) 

k=inv(x) 

m=a*k*b 

q=0+25*rand(100,1) 

v=m*q 

s=round(v) 

y=mod(s,26) 

zaman=cputime-t 

t = 1.3572 

 


