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ABSTRACT 

This thesis work investigates the possibility of predicting the arrival time of the 

secondary seismic earthquake waves. Seismic waves are low frequency acoustic 

waves that are experienced prior to earthquake, they are basically two types: the 

primary wave (p-wave) and the destructive secondary wave (s-wave). These waves‟ 

approaches a destination at different times, with the p-wave experienced earlier since 

it travels at higher speed as compared to the s-wave. Knowledge of the time lag 

between this two waves recorded by a seismometer from previous earthquakes were 

used together with other parameters suspected to also influence the arrival of the 

secondary (destructive) earthquake waves which are; the magnitude from the 

propagating wave, the epicenter distance from the hypocenter, the seismic station‟s 

distance from the epicenter and the direction (in azimuths), were used for this 

prediction. The prediction model was carried out using neural network on MATLAB; 

the artificial neural network (ANN) design makes it possible to develop the 

correlation between the various parameters for the study. First, the network was 

trained with earthquake data of magnitude 6.0-7.0 Richter, validation and testing was 

carried out to measure the performance of the model. The result gave satisfactory 

performance, with regression values greater than 0.9, and the root mean square error 

(RMSE) computed were of the range of 0.1003 to 0.1148 for the most satisfactory 

network architecture. Secondly, the trained network was also tested with external 

values of magnitude range outside the values the network was earlier trained with. 

This network gave results that were not as good as the first case, so it was concluded 

that it‟s better to train the network with data from earthquake of all magnitude range. 

In general, from the experiment we concluded that the design and parameters 
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considered is possible for predicting the time-lag of these two seismic waveforms 

using artificial neural networks. 

Keywords: Earthquake, Seismic waves, P-wave, S-wave, Seismometer, Atificial 

Neural Network, Hypocenter, Epicenter, Magnitude.  
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ÖZ 

Bu çalışma, ikincil sismik deprem dalgalarının geliş zamanını tahmin etme olasılığını 

araştırmaktadır. Sismik dalgalar, depremden önce gerçekleşen düşük frekanslı 

akustik dalgalardır. Sismik dalgaların iki temel türü mevcuttur: birincil dalga (p-

dalgası) ve tahrip edici olan ikincil dalga (s-dalgası). Bu dalgalar hedefe farklı 

zamanlarda yaklaşır; p-dalgası, s-dalgasından daha hızlı bir şekilde hareket 

ettiğinden daha önce gerçekleşir. Bir sismograf aracılığıyla kaydedilen iki dalga 

arasındaki zaman farkına ek olarak, ikincil dalganın gelişini etkilemesi beklenen 

farklı parametreler de kullanılmıştır. Tahmin için kullanılan parametreler şunlardır: 

yayılmakta olan dalganın boyutu, iç merkezden merkez üssü uzaklığı, sismik 

istasyonun merkez üssünden uzaklığı ve yönü (azimuth değerinde). Tahmin modeli 

MATLAB sinir ağı kullanılarak gerçekleştirilmiştir; sinir ağı (ANN) modeli 

sayesinde çalışmadaki çeşitli parametreler arasında bir korelasyon geliştirilebilmiştir. 

Öncelikle ağ, 6.0-7.0 Richter boyutundaki deprem verileri ve doğrulama ile 

donanmıştır ve ardından modelin performansını ölçümlemek üzere bir test 

yürütülmüştür. Testin sonunda 0.9 değerinden yüksek regresyon değerleri ile tatmin 

edici sonuçlar sağlanmıştır. En etkili ağ yapısında ise, işlenen ortalama karekök 

hatası (RMSE) 0.1003 ve 0.1148 aralığında bulunmuştur. Ardından geliştirilmiş olan 

ağ, daha önce test edildiği aralık dahilindeki değerlerin dışında olan büyüklük 

değerleri ile yeniden test edilmiştir. Genel olarak, tasarım ve parametreler ile 

yürütülen deneyin sonucunda, sinir ağları kullanılarak, iki sismik dalga türü 

arasındaki zaman farkının önceden tahmin edilebildiği görülmüştür. 
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Chapter 1 

1 INTRODUCTION 

1.1 General Overview 

Earthquakes are the result of plate tectonics, and it occurs when a certain level of 

energy is release in the earth‟s crust resulting in seismic waves [1]. This energy 

forcefully tears apart the crust along the fault lines. Faults are cracks in the earth 

crust; these cracks either may be small and localized or can stretch as far as 

thousands of kilometers.  Most earthquakes are caused by sudden release of stress 

energy along faults resulting from forces that have been slowly building up, and then 

eventually become so strong and forces rocks to break underground, releasing 

energy, which then spreads out in all directions, causing great movement and 

shaking. Volcanic also causes earthquakes in regions that experience it [2]. 

Earthquake is believed to be the most destructive of the natural hazards. Its 

occurrence most often results to massive loss of lives and serious damages in the 

affected region, depending on its magnitude and the community structure around. 

The only mitigation to earthquakes is in its prediction, which unfortunately their 

occurrence is without reliable preceding events [3]. The prediction could be long 

term, medium or short term. The short-term prediction study on earthquakes has 

attracted extensive research lately; this study ranges from hours, to days and weeks. 

Most earthquake studies in the past were basically on understanding the basics: 

prediction study on this topic only started about three decades ago [4]. Thus, 
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earthquake prediction study is presently attracting high interest and its value to 

humanity is great, as they can save thousands of lives if proper evacuation and 

sensitization of the community are carried out prior to this event. 

The study of the type, frequency and size of earthquake in a region over a period of 

time is termed its seismicity. Seismologist uses various tools for this analysis, the 

most important of this is the seismograph machine (or seismometer) which detects 

and records seismic waves. For a region‟s seismicity, several factors are considered: 

Like in [5] air ionization around rock surface are studied, and useful observation 

indicates some changes prior to earthquakes. Some other factors considered include; 

geology of the area, location of faults, the earthquake history of the area, the previous 

earthquake intensities, evidence for recent fault movement and other factors [6]. All 

these factors are useful for the prediction of an impending earthquake. 

The goal of this work is to design an Artificial Neural Network (ANN) model that 

will give significantly high level of accurate generalization (prediction) for the time 

lag between the earthquake waves. This wave has two phases, the first phase 

(primary wave) experienced some minutes before the second (secondary wave) 

which is the destructive waveform. The neural network is trained with input data 

collected from seismological stations, and the performance of the model evaluated 

using statistical measures adopted in this field of study. 

1.2 Motivation 

This thesis work is driven by the need for a global and dependable prediction model 

with no false alarms. As many precursory changes are not global observations; like 

the migratory birds, aquatic animal and the domestic animals (mice, dogs and cats) 
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unusual behavior, since this animals may either be responding to an entirely different 

environmental factor or they may not even be found in some of the regions prone to 

earthquakes. Measuring the arrival time for a traveling earthquake waves will present 

a more dependable and universal forecast. This method will present a global measure 

since this pattern is seen in all earthquake wave signals. 

1.3 Outline 

The second chapter deals with the on-going works in earthquake prediction, the 

factors considered for various proposed prediction models. These factors are 

evidence integrated from variety of sources; physical measurements, seismic 

measurement, geological evidence, statistical information and animal behavior. 

Chapter 3 introduces the artificial neural network (ANN) structure. The neural 

network design and how the various parameters in the structure can influence the 

training and test results of the input data. 

In the fourth chapter, series of simulation results obtained using MATLAB are 

presented and the results are analyzed. The collected data is trained on several 

configurations of the ANN network and the best performing architectures are 

highlighted. Also their performance measure by using statistical tools is presented in 

this chapter. 

Chapter 5 gives the conclusion to the result obtained from this research work and 

proposed model. The results highlight the accuracy and efficiency of the neural 

network prediction model. This chapter also states the possible future work on this 

model. 
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Chapter 2 

2 LITERATURE REVIEW 

Earthquake occurrence varies spatially; its prediction has been a goal of mankind for 

millennia [7]. Earthquake prediction means the accurate forecasting of the place, size 

and time of impending earthquakes [8]. Careful measurement of the movement along 

faults enables forecast for earthquake. These seismic activities are carried by certain 

physical measurements. The basic begins with measuring the changes in distance 

(geodetic), also creep-meters which are device to measure movement across a fault 

are used. In [9], a measure of the change in slope on earth‟s surface using a tilt-meter 

is considered. Changes in the properties of physical structures can also be measured; 

solid rocks are highly resistive but under excessive strain, they develop cracks and 

shatter thus allowing water to percolate through decreasing the resistivity, this 

change is monitored and can be used for earthquake prediction [6].  

Some studies like in [10], [11] and [12] also consider behavioral activities (seismic-

escape response) put up by some animals in response to the precursors to be helpful 

in earthquake prediction. These animals through natural selection are forced to 

develop anticipatory mechanism for predicting possible natural disasters, as survivor 

instincts far outweighs other behaviors like mating, breeding, and maintaining 

territory. The issue with the belief that certain animal do anticipate earthquakes is 

that it is poorly supported by evidence [12]. 
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 Another method is the “VAN” method that has attracted a very high level of debate. 

The name VAN is coined from the initials of three Greek scientist, Varotsos, 

Alexopoulos and Nomicos. They found that seismic electric signals (SES), which are 

variations in the earth‟s electric field occurs prior to an earthquake [13]. Depending 

on this SES‟s types, the earthquake can be predicted to occur within days to weeks 

[14], the doubt on this method is distinguishing between similar electric signals from 

other systems [15]. The researchers in [16] considered data from earthquakes of 

magnitude 3.5 and greater collected from 1970 to 2008 in Yunnan region (22-28
o
N, 

98
 
-104

o
E), and this data were used to predict earthquakes in 1999-2008 and verified 

using the support vector machine (SVM), this also yielded good results. 

For successful prediction of earthquakes, information on the place, time and 

magnitude are essential. Three different time frame grouping are also considered in 

earthquake prediction by scientist, there are; long term, intermediate and short term 

predictions. In the long-term prediction, which spans a period of ten to hundreds of 

years, seismologist assigns a movement budget, calculated through careful 

measurement of movement along faults, they find very limited use for public safety. 

Intermediate prediction spans from few weeks to few years (not up to ten years). In 

short-term prediction, specific information of the earthquakes time and location is 

given within minutes, weeks, or months and are therefore very useful for public 

safety and evacuation [17]. 

2.1 Earthquake Size and Distribution 

The place, time and magnitude of earthquake are all serious consideration in 

earthquake prediction analysis. The magnitude of an earthquake is measured using 

the Richter scale, though there is the Mercalli scale, the Richter is the most common 
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standard used and it measures the magnitude on a logarithmic scale. This means that 

for every whole number increment on the magnitude scale, the ground motion 

amplitude as recorded by a seismograph goes up ten times and also 32 times more 

energy is released [18]. Table 2.1 gives the classification of earthquakes in terms of 

their magnitude. 

Table 2.1: Earthquake magnitude classes (source UPSeis) 

Class Magnitude 

Great 8.0 and higher 

Major 7.0 - 7.9 

Strong 6.0 – 6.9 

Moderate 5.0 – 5.9 

Light 4.0 – 4.9 

Minor 3.0 – 3.9 

Very Minor < 3.0 

 

Fortunately, as the magnitude of an earthquake increases its annual occurrence 

decreases considerably. Table 2.2 presents their effect and annual frequency of 

occurrence.
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Table 2.2: Earthquake magnitude effect and annual frequency (source UPSeis) 

Magnitude Earthquake Effect Average Annually 

8.0 or 

more 

Can totally destroy communities near the 

epicenter 

One in 5-10 years 

7.0 – 7.9 Causes serious damage 20 

6.1 – 6.9 May cause a lot of damage in very populated 

areas 

100 

5.5 – 6.0 Slight damage to buildings and other structures 500 

2.5 – 5.4 Often felt, but only causes minor damage 30,000 

2.5 or less Usually not felt, but can be recorded by a 

seismograph 

900,000 

 

It is also important to know that there exist a rough relationship between earthquake 

magnitude and the rupture length. Thus if we can predict the part of a fault that 

would rupture, then we can forecast the magnitude of an impending earthquake as 

illustrated in Table 2.3 [6]. 

Table 2.3: Relating earthquake magnitude with rupture length 

Magnitude (Richter) Rupture Length (miles) 

5.5 3-6 

6.0 6-9 

6.5 9-18 

7.0 18-36 

7.5 36-60 

8.0 60-120 

 

2.2 The Earthquake Waves 

Seismic waves are low frequency waves that give out acoustic energy. They result 

from explosion, earthquake or a volcano. Seismograph is used to detect and record 
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seismic waves and this seismic measurements are the basis for short-term prediction 

[19]. There are two basic types of seismic waves; the primary wave (P-wave) and 

secondary wave (S-wave). Though a third wave exists that is called the surface wave 

(this is the resulting wave formed when the P & S-waves combines at the surface). 

The point from where the seismic wave originates within the earth‟s crust is called 

the hypocenter, the region directly above the hypocenter on the earth surface is called 

the epicenter and these are around the earth‟s fault lines. 

The Primary (P-wave) is the fastest of them, travelling at 1.6 to 8 kilometers per 

second in propagating medium depending on its density and elasticity [20]. When 

they pass through gasses, liquids and solids, their effect is to move this medium back 

and forth, example on rocks; they expand and contract the rock particles. 

The Secondary waves (S-waves) also called shear waves travels slower than the 

primary-waves and causes a displacement perpendicular to its travel path. They 

travel with so much energy and so are the destructive earthquake waveform and can 

only travel through solid earth crust. It stops whenever it meets a liquid medium like 

the earth water bodies (the seas). Figure 2.1 gives a pictorial representation of these 

waveform.
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Figure 2.1: Schematic description of a travelling P & S-waves  

This research work focus on the prediction of the arrival time of the S-wave after a 

P-wave has been detected (Ts-Tp) using artificial neural network. Figure 2 highlights 

how this time lag is obtained from a seismograph. 

 

 

 

 

 

 

 

Figure 2.2: Depiction of P and S-wave time lag 

2.3 Artificial Neural Network 

A Neural Network is a massively parallel distributed processor made up of simple 

processing units that have a natural tendency for storing experimental knowledge and 

making it available for use. It is the type of Artificial Intelligence technique that 

mimics the behavior of the human brain [21].  The human brain is a highly complex 

structure, building up its own rules through experience that occurs over time. An 

artificial neural network resemblance to the brain is seen in these two capabilities; a 

neural network acquires knowledge through a learning process (training) and it has 

S-waves 

Expansion Compression Undisturbed 

P-waves-
    

Direction of movements 

P-waves S-waves 

Ts-Tp 
Noise 

Arrival time of first P-wave 
Arrival time of first S-waves 
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interneuron connection weights (just like the synaptic cleft of biological neurons) 

which carry impulse (information) to other neurons and processing unit. These 

capabilities make a neural network a very reliable tool. 

In the biological neuron the process of signal transmission begins by diffusion of 

chemicals across the synaptic cleft, which then travels along the dendrites to the cell 

body. In the cell body this information is stored until it exceeds a certain threshold, 

and then these impulse (inputs) is fired to other neurons which it is connected to 

along the axon. The simple perceptron of the neural network models this behavior in 

this way: first it receives the input values (xo-xn) with connection for each input 

having weights (wo-wn) ranging from 0-1. These inputs are summed and when it 

exceeds the threshold, the signal is then sent to the output [22]. The perceptron learns 

by adjusting its weight to approach the target output.  The resemblance of the 

perceptron to the biological neuron is further highlighted in the Figures 2.3 and 2.4.
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Figure 2.3: A simple biological neuron 

 

 

 

Figure 2.4: A simple perceptron 

2.4 The Learning Process for Artificial Neural Network (ANN) 

The ability of a neural network to learn is its primary significance, and then improve 

its performance in the process. This takes some time, entailing several iterations in 

the learning process. 

Just like the human neurons, the artificial neural network learning follows this 

sequence; first it is stimulated, next it varies its free parameters because of the 

stimulation and then finally the artificial neural network responds. 

There are two learning paradigms, which are; 

(i) The Supervised learning and 

(ii) Unsupervised learning 

Output 

Body- add it‟s inputs 

input 

input 

Σ 
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2.4.1 The Supervised Learning 

The supervised learning can also be termed „learning with a teacher‟. Illustration for 

this kind of learning uses a teacher. The teacher is believe to have full knowledge of 

the system, this knowledge is given in a set of input-output mapping, but the neural 

network does not know this. A training process for the teacher and the neural 

network is fixed; the teacher is expected to provide the desired response of an input 

set to the neural network for that training. This desired response is the optimum 

action expected of the neural network. Errors may still exist (the error for the system 

is the difference the desired response and the actual response), so the neural network 

tries to adjust its parameters base on the input vector and error signal iteratively, with 

the aim  of making the network emulate the teacher. Thus, the knowledge of the 

system is transferred from the teacher to the neural network to a certain degree 

measured with statistical tools. When the neural network is trained to a satisfactory 

level, the teacher can now leave the neural network to completely deal with the 

system itself [21]. 

2.4.2 Unsupervised Learning 

Under this learning method, the neural network is not taught by any teacher. The 

relationship between the input and the target values are not known and the training 

data set contains only input values, so there is need for right selection of examples 

for specific training. Usually the examples are selected using similarity principle 

[22]. 

Unsupervised learning looks into the way systems learn to represent input patterns in 

ways to reflect the structure of the entire collection of the inputs. For this method of 

learning, there are no explicit target outputs associated with the inputs [23]. 
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Unsupervised learning cases are much more common in the human brain than 

supervised learning. For instance we have around 106 photoreceptors in each of the 

eye with their activities changing continuously with the visual world around to 

provide the information available to identify objects by their color, shape and 

distance without any prior supervised learning. Unsupervised learning works with 

observable patterns input patterns. 

This thesis work uses a supervised learning strategy.  
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Chapter 3 

3 METHODOLOGY 

This design modeling and implementation is carried out using the Neural Network 

tools on MATLAB software. The MATLAB neural network toolbox provides a 

range of function for modeling non-linear complex systems. This toolbox supports 

supervised learning with feedforward networks, radial bias networks and dynamic 

networks. Also, it supports unsupervised learning with the self-organizing maps 

(SOM). This design implementation is better on MATLAB because of its easy matrix 

manipulation, implementation of algorithm, plotting of data, interfacing with 

programs in other languages and good user interface. 

The goal of this work is to successfully design a model to predict P-wave and S-wave 

arrival time lag. The measured output which is the expected time lag from the arrival 

of the primary wave to that of the secondary wave will be tested and compared 

against real data from past earthquakes. Thus, this research work begins with data 

collection. 

3.1 Data Collection 

This is the first stage of this research. There are various techniques for collection of 

data used for research study purpose. This primary data can come from one or more 

of the following sources; 

(i) Observations 

(ii) Questionnaires and Surveys 
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(iii) Interviews 

(iv) Focus groups  

(v) Oral history and Case studies 

(vi) Documentation and Records 

 In this work, documentation and records method was used. The collected data were 

gotten from the World Data Center for Seismology, Beijing: 

http://www.csndmc.ac.cn/wdc4seis@bj/earthquakes/csn_phases_p001.jsp. The 

design only worked with those data from January, 2012 to August, 2014. A total of 

1478 readings were sampled, and they were all of the magnitude range of 6.0-7.0 on 

the magnitude scale. The data is then split into two sets; the first is the training set 

which is made up of data collected in 2012 with 1178 data sets from 58 cases across 

the globe, while the second is the test data collected in 2014 and 300 data sets from 

28 cases were considered. This makes a total of 86 earthquakes cases that were 

analyzed in this study. This collected data is what is fed to the designed Neural 

Network MLP model. 

3.2 The Multilayer Perceptron (MLP) 

The MLP consist of three layers; the input layer, the hidden layer and the output 

layer as shown in Figure 3.1. The inputs propagate through the network layer by 

layer. Supervised learning is the learning method adopted for training in MLP and it 

uses the error back propagation algorithm which is the learning rule base on error 

correction. 

There are basically two passes through the layers of the network in the error back 

propagation learning: the forward pass and the backward pass. The input nodes 

http://www.csndmc.ac.cn/wdc4seis@bj/earthquakes/csn_phases_p001.jsp
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Wjn 

receive the input vectors in the forward pass and propagate it layer by layer through 

the network. All the synaptic weights remain fixed in the forward pass. For the 

backward pass, the synaptic weights are then adjusted following an error correction 

rule; the rule adopts a propagation of the error signal backwards against the direction 

of the synaptic connections of the network, which then adjust these weights. This is 

the idea behind the error back propagation which is most times simply referred to as 

back propagation. 

  

 

 

 

Figure 3.1: The MLP architecture 

 

 

 

 

Figure 3.2: A detailed perceptron process 

In Figure 3.2, the input neurons buffers the inputs xi (x1,x2,…,xi,…xn) to the neurons 

in the hidden layer. Summation of inputs is done in each neuron j of the hidden layer, 

where also, these inputs are weighted with the interneuron connection weights wji 
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and the output yj computed as a threshold function of the sum. The output neuron 

performs same computation. 

 
    (∑   

 

   

  ) 
(3.1) 

The transfer function f  can be a sigmoidal, hyperbolic or a simple threshold function. 

The selected transfer function gives extra information for the back propagation 

training algorithm. In the MLP structure, the threshold function is a continuous 

derivative. The goal is to minimize the error function, which is achieved by finding 

the squared error of the network. 

In backpropagation, which is a gradient descent algorithm and adopted in the MLP 

training, the training weights are adapted as follows: 

             (3.2) 

The parameter   is the learning rate, it is user designated and it determines the level 

of modification to the link weights and node biases base on the change rate and 

direction. 

A “momentum” term is added to help the network skip over the local minima and 

successfully reach the global minimum, while still maintaining the change rate and 

direction. This is adopted into the weight update equation as shown below: 

     (   )               ( ) (3.3) 

For the output neurons, 

 
  (

  

     
)(  

( )
   ) 

(3.4) 

For the hidden neurons, 

   (        )(∑       ) (3.5) 
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And training continues until the error function reaches a certain minimum. 

The parameters considered for this prediction work are; 

1. The distance (D) 

2. The azimuths (Az) 

3. The magnitude (M) 

4. The depth (Ep) 

5. The measured time lag (Ts-Tp) 

3.2.1 The Distance (D) 

This is the representation of the distance from the earthquake‟s source and the 

seismological station (point of observation). This distance is given in degree which is 

the method for representing distances in spherical trigonometry, since the earth is a 

sphere, the shortest distance between two points on its surface is an arc and not a 

line. For this research work, the recorded distance tabulated in excel are given on the 

first column of the sheet.  

3.2.2 The Azimuth (Az) 

This is a clockwise measurement referenced from the earth‟s true north, also in units 

of degrees. This angle is measured clockwise starting with zero degrees at the true 

north. This is given on the second column of the excel sheet for all the cases 

3.2.3 The Magnitude (M) 

This magnitude is for the primary wave as recorded by the seismograph at the 

station. This first case of this experiment considers measurements for earthquake 

magnitude range 6-0 to 7.0 on the magnitude scale (strong earthquakes). For the 

second case, we are going to consider analysis for magnitude of 3.0 to 4.0 (Minor 

earthquakes) and those of 9.0 to 10.0 (great earthquakes). 
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3.2.4 The Depth (D) 

This is the distance from the earthquake‟s hypocenter (wave origin) to the epicenter. 

This distance is given in kilometers and it is the last of the input values recorded on 

column 4 of the excel sheet. 

3.2.5 The Time Lag (Ts-Tp) 

This is time difference between the arrival of the first primary wave and the first 

secondary wave signals. Figure 2.2 gives a schematic depiction of how the time lag 

is computed. This time lag is recorded in seconds to express the difference in the 

arrival times. It is the only output value for the network. 

3.3 Designing the Neural Network 

The design for a neural network on MATLAB adopts certain systematic procedures. 

Depending on what is to be built and the nature and size of the collected data, certain 

parameters have to be adjusted. In general, these five basic steps in Figure 3.3 are 

followed;
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Figure 3.3: Flowchart for developing MLP using MATLAB 

3.3.1 Importation of the data 

The MATLAB function “xlsread” is used to import the data from the saved excel 

sheet. The data are first grouped in two sets; the training set and the testing set. The 

training set consist of 58 earthquake cases and 1178 data sets (stations) were 

considered, and while the testing set has 28 cases and from 300 stations worldwide. 

3.3.2 Preprocessing of Data 

In the preprocessing stage, normalization of the data set is applied. This is necessary 

considering the range of values of the parameter, since the parameters in 

consideration largely varies. For instance the azimuth measured in degrees has a 

minimum value of zero while the distance has a maximum value 80000 meters, 

therefore normalization is very necessary for this data set. When a variable of large 

values is mixed with those of small values, the network becomes confused with the 

values and this may lead it to reject the smaller values [24]. 

Start 

Importation of Data 

Pre-processing of 

Building the Network 

Testing the Network 

Training the Network 

End 
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3.3.3 Building the Network 

In MATLAB the built-in “newff” function is used to develop the MLP model. This 

tool allows the user to change the various parameters (the number of hidden layers, 

the number of neurons in each of these layers, learning rate, momentum constant, 

training function, the transfer function, and the performance functions). Initialization 

of the weights is automatic using these commands.  

3.3.3.1 The number of hidden layers 

For this design a single hidden layer is used. Provided there is sufficient number of 

hidden neurons in a single hidden layer, it can implement any multi-layer feed 

forward network.   

3.3.3.2 The number of hidden neurons 

This is a very important consideration for the network architecture and goes a long 

way in affecting the network‟s performance; too few hidden layer neurons will result 

in underfitting. This means that the number of neurons is not adequate to detect the 

signals in the data set. Also the use of too many hidden neurons has its own 

problems; first, the network will experience overfitting. Overfitting is when a 

network with high information processing capability is exposed to limited 

information in the training set that makes it insufficient to train all the hidden layer 

neurons. Secondly, it can unnecessarily slow the network. 

In [25], a suggestion of the following rule-of thumb is given for selecting the number 

of hidden layer neurons; 

1. Choose a number between the size of the output and the size of the input 

layer 

2. Select the number to be 2/3 the size of the input layer, plus the size of the 

output layer. 
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3. The number of hidden neurons should be less than twice the size of the input 

layer. 

It should be noted that this rules only provides a starting point for consideration. 

Following this, the number of hidden neurons was adjusted from two (2) up to seven 

(7) and then with 10 & 20 hidden neurons. 

3.3.3.3 The Learning rate (η) 

For this experiment we used values ranging from 0.1-0.9. It determines the level of 

modification to the link weights and node biases base on the change rate and 

direction.  

3.3.3.4 The Momentum constant (µ) 

The “momentum” term is added to help the network skip over the local minima and 

successfully reach the global minimum, while still maintaining the change rate and 

direction. 

3.3.4 Training the Network 

This is the stage where the network is taught how to generalize for the presented data 

set. For training, a set of data is presented to the network. These data sets consist of 

input-output pairs. The neural network then learns from the input and updates its 

weight, this is why it is termed a supervised learning, since the neural network is 

taught what the output should be from the input set introduced to it. The updated set 

is necessary since the main goal of the training process is to minimize the error. For 

feedforward networks, the performance is rated by the value of the mean square 

error, thus by adjusting the weights, what the neural network is trying to achieve is 

the possible minimum mean square error it can get to. This is user defined, for the 

neural network‟s goal in this work we used 0.01 and 0.001 in some cases.  Slowly the 

neural network learns from the training set and improves on its generalization ability 
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so as to later yield result (network output) when it is fed with unseen data (testing 

input data) [21]. 

The nntool box (neural network toolbox) in MATLAB splits the data to three 

different set; the training set, the validation set and the testing set. From the training 

sets, the network is able to update the weight of the network during the training. The 

network also utilizes the validation set during the training, this set has just the input 

fed to the network, and the network is observed throughout the training. If the 

number of validation failure increases up to a particular value the training is stopped. 

When it stops, the network returns the minimum number of validation errors. Next is 

the test set which is used for testing the performance of the trained network. If this 

set reaches a minimum mean square error at a significantly farther iteration than the 

validation set, performance of the neural network will be unsatisfactory.  

The architecture used has four (4) inputs neuron, one (1) hidden layer with hidden 

number of neurons varied from 3-7, 10 & 20. Each of this architecture was trained 

and tested with a learning rate (η) of 0.1 to 0.9.  The network was observed while 

varying the number of neurons in the hidden layer, the momentum constant and also 

the learning rate for 9 different structures and the best performing structures selected. 

The training is stopped whenever any of the network‟s performance parameter is 

met. 

3.3.5 Testing the Network 

After training is completed, the network is tested with unseen data and the output is 

compared with the target (measured result). This is to check how well the network 

can generalize (predict output from the unseen inputs). Checking the performance is 

carried out using statistical measures on the obtained results: the root mean square 
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error (RMSE), the mean absolute error (MAE) and the mean bias error (MBE) are 

computed for the experimental result. 

3.3.5.1 The Root Mean Square Error (RMSE) 

The RMSE is obtained by squaring the difference between the measured output and 

the predicted value, and next is finding the average over the sample. Finally the 

square root of this is taken. It is the most commonly standard metric used to model 

error forecast in geoscience. Since the difference is squared, it is notice that the 

RMSE gives more weight to errors with larger absolute error values than those of 

smaller absolute error values. Thus, in analysis where large errors are not desired it is 

particularly very useful. It provides information on short term performance and is 

computed as; 

 

       √
   

 
 ∑(   ) 
 

   

 

(3.6) 

where,  

n= number of samples 

             t= target output (measured value) 

             O= network output (predicted value)              

3.3.5.2 The Mean Absolute Error (MAE) 

In words, this is the absolute value of the difference between the predicted value and 

the measured value, averaged over the sample. It measures accuracy for continuous 

variables, measuring the average value of the errors in a set of forecast. MAE 

weights the individual differences equally and is usually smaller in magnitude than 

the RMSE. It is computed as; 
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(3.7) 

If MAE=RMSE, it means all the errors in the sample are of the same magnitude.  

3.3.5.3 The Mean Bias Error (MBE) 

The MBE is the mean deviation of predicted values (produced from testing the 

network) to the measured value. It provides information on the long term 

performance of the model, the lower the value of the MBE the better is the long term 

model prediction. 

 
    

 

 
 ∑(   )

 

   

 
(3.8) 

For every simulation, the computed values are recorded in excel and used to evaluate 

the system performance. The performance of the trained network on tested data is the 

focus, it is most important measure of the training success.
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Chapter 4 

4 RESULTS AND DISCUSSION 

The experimental set-up used MATLAB neural network toolbox on a personal 

computer (PC). The PC‟s is an Inspiron 15 3000 series, with a 4GB RAM, 64-bit 

operating system, and x64-based processor of Intel core i3 at 1.90GHz processing 

speed. The entire experiment took several iterations; different network variations are 

investigated to get the architecture with optimum performance.  

The first architecture used a 4-2-1 structure (four inputs, two hidden neurons and one 

output). The test was carried out varying the learning rate (η) from 0.1 to 0.9 and 

saving the performance result. Also we made adjustment to the momentum constant 

(µ) and the results obtained at 0.01 & 0.001 are given in the table. The third 

parameter that was constantly varied is the number of hidden neurons (N). This study 

uses the RMSE, MAE & MBE values for the performance measure which are 

already explained in section 3.3.5 of this work. The computed data for the network 

architecture is tabulated in Table 4.1, also this setup process is maintained for all the 

architecture tested. The results are all tabulated and discussed in this section of the 

work
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 Table 4.1: Performance result using two hidden neurons 

N=2 

µ=0.01 Test error statistics µ=0.001 Test error statistics 

η RMSE MAE MBE η 

 
RMSE MAE MBE 

0.1 0.1241 0.0955 0.1241 0.1 0.2139 0.154 -0.0247 

0.2 0.1391 0.1059 -0.007 0.2 0.2138 0.1549 -0.0276 

0.3 0.1069 0.0944 -0.0234 0.3 0.2196 0.1585 -0.0223 

0.4 0.1396 0.1148 -0.0822 0.4 0.2157 0.1561 -0.0239 

0.5 0.1104 0.0977 -0.0222 0.5 0.2191 0.1578 -0.0211 

0.6 0.1033 0.0902 -0.0578 0.6 0.2223 0.1464 0.0123 

0.7 0.1085 0.087 -0.0239 0.7 0.22 0.1596 -0.0209 

0.8 0.1027 0.0915 -0.031 0.8 0.2207 0.1484 0.0038 

0.9 0.1118 0.0936 0.0253 0.9 0.2145 0.153 -0.0242 

        

Average 0.1152 0.096733  Average 0.2177 0.1543  

 

For the experiment with the 4-2-1 and 4-3-1 architectures of Table 4.1 & Table 4.2, 

the best RMSE values are obtained at a learning rate of 0.8 & 0.7 respectively. 

Table 4.2: Performance result using three hidden neurons 

N=3 

µ=0.01 Test error statistics µ=0.001 Test error statistics 

η 

 

RMSE MAE MBE η RMSE MAE MBE 

0.1 0.1126 0.0925 -0.0243 0.1 0.2009 0.1474 -0.0024 

0.2 0.1148 0.0937 -0.0219 0.2 0.2117 0.1517 -0.0233 

0.3 0.1085 0.0954 -0.0256 0.3 0.2056 0.1392 -0.0505 

0.4 0.1108 0.089 -0.0253 0.4 0.2155 0.1546 -0.0223 

0.5 0.1046 0.0927 -0.0252 0.5 0.2026 0.1491 -0.0037 

0.6 0.108 0.0934 -0.004 0.6 0.2252 0.1556 -0.024 

0.7 0.1067 0.0944 -0.0332 0.7 0.2164 0.1542 -0.0258 

0.8 0.115 0.0946 -0.0235 0.8 0.2037 0.139 -0.0463 

0.9 0.1091 0.0959 -0.0237 0.9 0.21 0.1483 -0.0343 

        

Average 0.1100 0.0935  Average 0.2102 0.1488  
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Table 4.3: Performance result using four hidden neurons 

N=4 

µ=0.01 Test error statistics µ=0.001 Test error statistics 

η RMSE MAE MBE η RMSE MAE MBE 

0.1 0.1072 0.0937 -0.0079 0.1 0.2132 0.1526 -0.0236 

0.2 0.107 0.0931 -0.0488 0.2 0.2109 0.1497 -0.0093 

0.3 0.1053 0.0931 -0.0272 0.3 0.2154 0.1555 -0.0226 

0.4 0.1088 0.0955 -0.0222 0.4 0.2078 0.1468 -0.0268 

0.5 0.1049 0.0886 -0.036 0.5 0.2144 0.1535 -0.0356 

0.6 0.1092 0.0953 -0.0188 0.6 0.2118 0.1513 -0.0291 

0.7 0.1153 0.0969 -0.0172 0.7 0.2109 0.1497 -0.0093 

0.8 0.1078 0.0961 -0.0273 0.8 0.2078 0.1468 -0.0268 

0.9 0.1037 0.0816 -0.0405 0.9 0.212 0.1519 -0.0324 

        

Average 0.1066 0.0927  Average 0.2116 0.1509  

 

For the experiment in Table 4.3, the best result is seen to be at 0.1037 also with the 

momentum constant of 0.01. At the same momentum constant we also obtained the 

best RMSE value of 0.1003 in Table 4.4. 

Table 4.4: Performance result using five hidden neurons 

N=5 

µ=0.01 Test error statistics µ=0.001 Test error statistics 

η RMSE MAE MBE η RMSE MAE MBE 

0.1 0.1003 0.0867 -0.0661 0.1 0.2173 0.1555 -0.0222 

0.2 0.1138 0.0996 -0.0452 0.2 0.2193 0.1532 -0.0134 

0.3 0.1167 0.0958 -0.0672 0.3 0.2142 0.153 -0.0259 

0.4 0.1052 0.0924 -0.0201 0.4 0.2123 0.1515 -0.0197 

0.5 0.1073 0.0879 -0.025 0.5 0.2162 0.1341 0.0455 

0.6 0.1101 0.0979 -0.0264 0.6 0.2191 0.1582 -0.0232 

0.7 0.1039 0.088 -0.0596 0.7 0.2103 0.1385 0.0059 

0.8 0.1104 0.0879 -0.0206 0.8 0.2123 0.1537 -0.0424 

0.9 0.1131 0.0924 -0.0249 0.9 0.2162 0.1556 -0.0258 

        

Average  0.1089 0.0921  Average 0.2152 0.1504  
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Table 4.5: Performance result with six hidden neurons 

N=6 

µ=0.01 Test error statistics µ=0.001 Test error statistics 

η RMSE MAE MBE η RMSE MAE MBE 

0.1 0.1065 0.0899 -0.0054 0.1 0.2193 0.1468 -0.0054 

0.2 0.1072 0.0931 -0.0225 0.2 0.2123 0.1499 -0.0372 

0.3 0.1053 0.0931 -0.0272 0.3 0.2137 0.1547 -0.0428 

0.4 0.1105 0.0984 -0.0282 0.4 0.2122 0.1392 -0.0494 

0.5 0.1109 0.097 -0.0201 0.5 0.2015 0.1296 0.0019 

0.6 0.1083 0.0963 -0.0385 0.6 0.2195 0.1556 -0.0158 

0.7 0.1065 0.0941 -0.0234 0.7 0.213 0.1531 -0.0595 

0.8 0.1092 -0.0234 -0.0329 0.8 0.2233 0.1548 -0.0186 

0.9 0.1065 0.0942 -0.0258 0.9 0.2208 0.1539 -0.0183 

        

 0.1079 0.0814   0.2151 0.1486  

 

In Table 4.5 the learning rate of 0.3 and momentum constant of 0.01, the minimum 

RMSE value of 0.1053 is obtained. In Table 4.6, the best value was obtained at the 

learning rate of 0.1. 

Table 4.6: Performance result with seven hidden neurons 

N=7 

µ=0.01 Test error statistics µ=0.001 Test error statistics 

η RMSE MAE MBE η RMSE MAE MBE 

0.1 0.1049 0.0915 -0.0553 0.1 0.2175 0.1387 -0.0318 

0.2 0.1202 0.0995 -0.0236 0.2 0.2161 0.1562 -0.0244 

0.3 0.1157 0.0962 -0.025 0.3 0.2162 0.156 -0.0457 

0.4 0.1311 0.0991 -0.0373 0.4 0.2113 0.1497 -0.0395 

0.5 0.1143 0.0937 -0.0251 0.5 0.2126 0.1475 -0.0431 

0.6 0.1167 0.0959 -0.0253 0.6 0.2155 0.1574 -0.0541 

0.7 0.1104 0.0979 -0.0247 0.7 0.2152 0.153 -0.0284 

0.8 0.1052 0.0935 -0.0252 0.8 0.2222 0.1528 -0.0193 

0.9 0.1075 0.0938 -0.0163 0.9 0.2257 0.1571 -0.0181 

        

 0.114 0.0957   0.2169 0.152044  
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Table 4.7: Performance result with ten hidden neurons 

N=10 

µ=0.01 Test error statistics µ=0.001 

 

Test error statistics 

η RMSE MAE MBE η RMSE MAE MBE 

0.1 0.1188 0.0998 -0.0439 0.1 0.2142 0.1497 -0.0252 

0.2 0.1052 0.0841 -0.0463 0.2 0.2268 0.162 -0.0329 

0.3 0.1045 0.098 -0.0202 0.3 0.2262 0.1629 -0.0228 

0.4 0.1092 0.0951 -0.0217 0.4 0.2172 0.1568 -0.0305 

0.5 0.1047 0.0918 -0.0227 0.5 0.2267 0.1625 -0.025 

0.6 0.1178 0.1009 -0.0676 0.6 0.2272 0.1602 -0.0138 

0.7 0.1121 0.1087 -0.0252 0.7 0.2238 0.1565 -0.0404 

0.8 0.2086 0.1591 -0.0928 0.8 0.2086 0.1591 -0.0928 

0.9 0.2181 0.1565 -0.0334 0.9 0.2181 0.1565 -0.0334 

        

Average 0.1321 0.1104  Average 0.2210 0.1585  

 

These further test with the 4-10-1 & 4-20-1 architectures of Table 4.7 and Table 4.8 

respectively, are to show the resulting effect on our performance values when the 

number of hidden neurons are increased. These networks gave higher average values 

as compared to the others. 

Table 4.8: Performance result with twenty hidden neurons 

N=20 

µ =0.01 Test error statistics µ =0.001 Test error statistics 

η RMSE MAE MBE η RMSE MAE MBE 

0.1 0.1132 0.0971 -0.0414 0.1 0.224 0.1576 -0.0047 

0.2 0.1426 0.1167 -0.0265 0.2 0.2184 0.1525 -0.015 

0.3 0.1108 0.0956 -0.0188 0.3 0.2225 0.1518 -0.012 

0.4 0.2499 0.1085 0.0027 0.4 0.2228 0.1503 0.0117 

0.5 0.1268 0.1093 -0.0322 0.5 0.2287 0.1617 -0.0118 

0.6 0.1261 0.1077 -0.0501 0.6 0.2306 0.1596 -0.0258 

0.7 0.1091 0.096 -0.0401 0.7 0.2151 0.1528 -0.0139 

0.8 0.1217 0.0984 -0.0124 0.8 0.2195 0.1455 -0.0308 

0.9 0.1096 0.0796 -0.0193 0.9 0.214 0.1484 -0.022 

        

Average 0.1344 0.1010  Average 0.2217 0.1534  
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The RMSE and MAE values are seen to be a lot better using a momentum constant 

of 0.01 (µ=0.01). Also from the tables, we can deduce that the best overall RMSE 

value was at five (5) hidden neurons with a learning rate of 0.1 and at the momentum 

constant of 0.01, while the test using the three (3) hidden neurons gave the best 

RMSE with the momentum constant of 0.001 value at a learning rate of 0.1.  

The average values were computed just to show the effect of changing the learning 

rate at each number of hidden neurons for the two momentum constants considered 

(µ=0.01 & 0.001). For µ=0.01, the architecture with four (4) hidden neurons gave the 

least average over the nine (9) learning rate of 0.1-0.9 (which is considered the best 

value), while the architecture with three (3) hidden neurons had the least average 

RMSE value for µ=0.001. Figure 4.1 shows this comparison. 

 
Figure 4.1: RMSE values for different number of hidden neurons 

We also notice how the difference RMSE values and the MAE values of the various 

architecture maintained a range of 0.01-0.04 for the different architectures using 
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µ=0.01, and 0.05-0.07 for µ=0.001. The RMSE value is always larger than the MAE 

value, which is consistent with standard observation, and also the smaller the 

difference the lesser is the variance in the individual errors. Thus for this experiment, 

we can conclude that using a momentum constant of 0.01 gives a better result than 

using 0.001. 

Another observation from the table is the fact that the RMSE and MAE values were 

considerably consistent from N=2 to N=7, this indicates that optimal performance of 

the network was within this range.  

The performance plot of the training (which is called by the „plotperf‟ command in 

MATLAB) also indicates a good training. The performance plots selected for N=5 

for µ=0.01, and N=3 for µ=0.001 is shown in the figures 4.2 and 4.3. 
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Figure 4.2: The performance plot for N=5 at µ=0.01 

The plot in Figure 4.2 shows that the best validation was reached at epoch 7, even 

though the training still proceeded for seven more epochs and with a mean square 

error (MSE) of 0.024839. Also the test plot is noticed to be similar with that of the 

validation, this indicates that there is no major problem with the training. 
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Figure 4.3: The performance plot for N=3 at µ=0.001 

From Figure 4.3 we see how the curves are very similar and also how the best 

validation s at a mean square error (MSE) of 0.047033 at epoch 37 (the circled point 

in the graph).The training also continued for 50 more epochs before stopping. 

Another performance tool which was observed is the regression plot, this gives the 

linear regression between the output and the target points for the experiment.
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Figure 4.4: Schematic of the regression plot at N=3 for µ=0.01 

The regression plot of Figure 4.4 shows the regression value (R) for the training, 

validation, test and all combined with values of 0.99001, 0.99708, 0.98585 & 

0.99047 respectively. 
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In Figure 4.5, the R-values are all greater than 0.9, this is an indication of a very 

good fit for the training data and it shows how very close the output of the network 

and the target (measured) values are. The few scattered plot indicates that those 

points show poor fit. The solid line from the origin represents the best fit linear 

regression line. The dotted line represents a perfect result, values where output 

equals target. 

The training stops whenever any of the performance goal is met.  
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Figure 4.5: Schematic of the regression plot at N=3 for µ=0.001 
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Figure 4.6: Overview of the MATLAB nntool training 

Further testing was carried out but this time to check the generalization of the system 

for inputs outside the training set. The initial test input with patterns for earthquakes 

of magnitude 6.0-7.0 were now replaced with patterns of magnitude 3.0-4.0 and 9.0-

10.0. This is to show the performance of the model for lower and higher magnitude 

earthquakes. For this analysis, only the 4-5-1 (the notation means, 4 inputs, 5 hidden 

neurons and 1 output) & 4-3-1 architecture which had the best performance for the 

initial patterns were considered and the results tabulated as shown. 
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Table 4.9: Test results with external values 

Earthquake Magnitude(3.0-4.0) 

Architecture Test error statistics at  

µ=0.01 

Test error statistics at  

  µ=0.001 

 RMSE MAE MBE RMSE MAE MBE 

4-5-1 0.2333 0.1665 -0.0428 0.2147 0.1554 -0.0428 

4-3-1 0.2423 0.179 -0.0832 0.2243 0.1527 -0.1527 

       

Earthquake Magnitude (9.0-10.0) 

Architecture Test error statistics at  

µ=0.01 

Test error statistics at  

µ=0.001 

 RMSE MAE MBE RMSE MAE MBE 

4-5-1 0.2227 0.1595 -0.0212 0.2207 0.1752 -0.0612 

4-3-1 0.2958 0.1692 -0.0109 0.2225 0.1614 -0.242 

 

The performance statistic measure gives satisfactory results. This indicates that the 

model can also do well for patterns outside the ones used in the training so long the 

parameters are unchanged as seen in Table 4.9. 

It had been observed that in the previous patterns, the RMSE value increases when 

we test using the momentum constant of 0.001 compared to the test with value of 

0.01, but for these two newly introduced sets (for the earthquakes of lower and those 

of higher magnitudes) we notice it is the reverse.  Also direct comparison of the 

statistical measures gives a better performance for the previous pattern, this is the 

obvious expectation, since the training was carried out with patterns of the same 

magnitude.  

Another observation was in the fitting of the error curve. Though the curve shape is 

considered satisfactory, but in comparison, the previous pattern still has a better fit. 
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Figure 4.7 plot shows the best performance to be at epoch 4 with a mean squared 

error (MSE) of 0.075756. We see that the MSE value this time is much higher than 

those of the first cases with test samples sharing same magnitude with those of the 

training data.
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Figure 4.7: Performance plot with external input patterns of magnitude (3.0-4.0) 
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Chapter 5 

5 CONCLUSION 

This research work presents a novel idea of the possibility of earthquake prediction 

using the time-lag between primary and secondary earthquake waves (P & S-waves). 

The neural network was trained to a level that it was able to recognize a good 

relationship between the input parameters (distance, azimuth, depth of the source 

wave and the magnitude of the received primary wave) & the output (time-lag 

between the P & S-waves). 

The model proves to be dependable considering the performance measure. For 

further designs, the simulation with a momentum constant of 0.01 should be applied 

for training the set, since this as seen in the tables gave a better result. Also for 

practical systems, it will be advisable to conduct the training on all range of 

earthquake data available, so that optimum results can be obtained with all the data 

set, because we observed the model giving better results when tested with data range 

with which it had earlier been trained with compared to the result from sets outside 

this range.  

It is also advisable to run the trainings several times for each set of parameters. This 

is a way of helping the system to achieve the global minimal at least in one of the 

running times. The average values after running several tests should also be 

recorded. 
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This model can be built into seismograph machines or used to design other sensor 

nodes. This makes the model an idea that is not just restricted to a region, as it can be 

applied in all regions experiencing earthquakes to reduce its effects. For instance, if a 

10-30 minutes prior warning is received, it will go a long way to mitigate the effects: 

flights to such regions can be cancelled, the people around can be informed to avoid 

places with crowded buildings, place large objects on lower shelves, secure objects 

such as books, lamps, framed photos and other objects that may become flying 

hazards with adhesives and hooks to keep them in place.  

5.1 Future Works 

Most of the readings were taken from seismic stations that are very far from the 

earthquake‟s epicenter. Future study will consider the deployment of smaller sensing 

machines or nodes like wireless sensor nodes (WSNs) distributed around the earth‟s 

fault lines. 

Also the training set will accommodate data for all magnitude range so as to be able 

to obtain the optimum result for any testing set. 
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Appendix A: Sample of Collected data 

Latitude 

(◦) 

Longitude 

(◦) 

Distance 

(◦) 

Azimuth 

(◦) 

Magnitude Depth 

(m) 

Ts-Tp 

(sec) 

32.09 132.11 9.4 267 6.2 20000 104 

32.09 132.11 10.9 311 6.2 20000 120 

32.09 132.11 11.3 273 6.2 20000 128 

32.09 132.11 11.9 327 6.2 20000 135 

32.09 132.11 12.7 352 6.2 20000 147 

32.09 132.11 12.8 338 6.2 20000 139 

32.09 132.11 13.1 292 6.2 20000 154 

32.09 132.11 13.8 242 6.2 20000 158 

32.09 132.11 15.1 306 6.2 20000 174 

32.09 132.11 15.3 269 6.2 20000 182 

32.09 132.11 18.3 247 6.2 20000 206 

32.09 132.11 18.7 304 6.2 20000 203 

32.09 132.11 19.5 282 6.2 20000 227 

32.09 132.11 19.7 302 6.2 20000 211 

32.09 132.11 22.9 262 6.2 20000 238 

32.09 132.11 23.7 287 6.2 20000 254 

32.09 132.11 23.9 242 6.2 20000 261 

32.09 132.11 24.2 275 6.2 20000 271 

32.09 132.11 26.6 262 6.2 20000 265 

32.09 132.11 27.1 295 6.2 20000 311 

32.09 132.11 35.1 277 6.2 20000 332 

32.09 132.11 35.1 302 6.2 20000 347 

32.09 132.11 45.9 295 6.2 20000 401 

14.58 73.59 149 335 6.7 80000 620 

14.58 73.59 152.3 334 6.7 80000 227 

14.58 73.59 153.4 351 6.7 80000 415 
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Appendix B: The nntool program code 

Training_Data=xlsread('training.xlsx');                

Testing_Data=xlsread('testing.xlsx');                

Training_Set=Training_Data(1:1178,1:4);        

Training_Target_Set=Training_Data(1:1178,5);    

Testing_Set=Testing_Data(1:300,1:4);                

Testing_Target_Set=Testing_Data(1:300,5);      

net= newff(pn,tn,4,{'logsig'});                                          

net=configure(net,pn,tn);                                         

net.trainparam.min_grad=0.00000001; 

net.trainParam.epochs=1000; 

net.trainParam.goal=0.001; 

net.trainParam.mu=0.1; 

net.trainParam.lr=0.1;     

net.trainParam.max_fail=50; 

net=train(net,pn,tn)                                         

yn=(Testing_Set'); 

zn=(Testing_Target_Set'); 

y=sim(net,yn);                                               

Yj=mapstd('reverse',y,zs);                                                        

  

http://net.trainparam.mu/
http://net.trainparam.lr/

