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ABSTRACT 

Excellent ability of swarm intelligence can be used to solve multi-objective 

combinatorial optimization problems. Bee colony algorithms are new swarm 

intelligence techniques inspired from the smart behaviors of real honeybees in their 

foraging behavior. Artificial bee colony optimization algorithm has recently been 

applied for difficult real-valued and combinational optimization problems. 

Multiobjective quadratic assignment problem (mQAP) is a well-known and hard 

combinational optimization problem which is used in modeling of several assignment 

and scheduling problems. Benchmark mQAP instances are already solved near 

optimally using competitive metaheuristics and dedicated local search algorithms, but 

there is no absolute winner of these competitions in the sense that while a particular 

algorithm is quite successful for a kind of mQAP instance, it exhibits poor 

performance on the others. In this study, we test the performance of artificial bee 

colony optimization algorithm over multiobjective quadratic assignment problem. 

Experiments have shown that the new heuristic was effective and efficient to solve 

hard mQAP instances. 

Keywords: Multi-objective optimization, Artificial Bee Colony, Bees Algorithm, 

Multiobjective Quadratic Assignment Problem. 
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ÖZ 

Çok amaçlı bileşimsel en iyileme problemleri sürü zekasına dayalı yöntemlerle 

çözülebilir. Arı kolonisi algoritmaları son zamanlarda geliştirilen ve bal arılarının 

yiyecek ararken sergiledikleri zeki davranışlardan ilham alınan sürü zekası 

teknikleridir.  

Çok amaçlı ikinci derece  atama problemi iyi bilinen ve zor bir bilişimsel en iyileme 

problemidir.Bu problem bir çok atama ve listeleme probleminin modellenmesinde de 

yaygın olarak kullanılır. Çok amaçlı ikinci derece atama problemi için kıyas oluşturan 

örnekler metaheuristikler ve yerel  araştırma yakın kalitede algoritmalar kullanılarak 

en iyi düzeyde çözülmüşlerdir. 

 

Ancak bu çözüm yaklaşımlarının kesin bir kazananı yoktur, bir yöntem bazı 

problemleri başarıyla çözerken, başka bir problem kümesi için zayıf bir başarım 

gösterebilmektedir. Bu çalışmada yapay arı kolonisi en iyileme algonitmasının çok 

amaçlı ikinci derece atama probleminin çözümündeki başarımı  test edilmiştir. 

Yapılan deneysel çalışmalar, bu yöntemin etkili ve hesaplama karmaşıklığı 

bakımından verimli olduğunu göstermiştir. 

Anahtar Kelimeler: Çok Amaçlı Optimizasyon, Yapay Arı Kolonisi, Arı 

Algoritması, Çok amaçlı ikinci derece  atama problemi. 
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Chapter 1 

 INTRODUCTION 

As human being in a world of increasing complexity, we are faced with the problem 

of optimality in almost all daily activities. We often seek to solve these problems in a 

way that is efficient and effective from our point of view, it does not matter if we act 

consciously or not. Let’s consider the simple task of commuting between our homes 

and workplaces as an optimization problem, with the objective of reducing the time it 

takes (objective value) for the implementation of this commute. This simple, 

ordinary, and sometimes seemingly trivial task for us, as humans to solve, can be 

very difficult for a computer. 

In general optimization problems can be categorized into types of constrained and 

unconstrained problems. The first type contains the most practical applications in 

real-world, where the constraints of an optimization problem are usually handled by 

an independent (constraint-handling) mechanism [1, 2]. The second type of 

optimization problems are usually designed as benchmarks to test the performance of 

optimization algorithms over landscapes of various levels of complexity. 

Multi-objective  optimization  problems  (MOPs)  deal  with  more  than  one  

objective  function.  Due  to  the  lack  of  suitable  solution  methods  in  the  past,  a  

MOP  has  been  transformed and solved as a single objective problem.  In single 

objective optimization, the goal is to  find  one  solution  (or  in  special  cases  
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multiple  optimal  solutions). In MOPS the goal is not to find an optimal solution for 

each objective function, instead multiple points of comprises are searched for within 

the multiple objective solution space. Apart from obvious tradeoffs between cost and 

performance, the performance criteria required by some applications such as fast 

response time, small overshoot and good robustness, are also conflicting in nature 

[30, 31, 32, 33]. A general form of a MOP can be described as follows: 

(MOPs) min/max fk(x)                 k = 1, 2, . . . , t,                                                  

 
 

        s.t.gj(x)≥0     j  = 1, 2, . . . , l , 

(1.1) 
 

 hj(x)= 0                  j  = l+ 1, . . . , m, 
 

 
Di=[xi xil ≤xi ≤ xiu]                i  = 1, 2, . . . , n , 

where x  is  a  vector  of  n  decision  variables:   x =  (xi1 , xi2 , . . . , xin )
T .  The  

decision variable  space  (decision  space)  X  is bounded by sets of boundary  

constraints where  xil  and xiu are lower and upper bounds for the decision variable xi .  

A solution that does not satisfy all constraints  and  variable  bounds  is  called  an  

infeasible  solution  all  others  are  called feasible  solutions. The  set  of  all  feasible  

solutions is called the feasible  region  S̃ ⊆ X, where X = D1×  D2 × .........×Dn . 

The  main  difference between  single  and  multiobjective  optimizations  is  that,  in  

multiobjective  optimization the  objective  functions  constitute  a  multi-dimensional  

space  (objective  space  z ).   Each solution  x  maps  to  a  point z  in  the  objective  

space,  where  f(x)  =  z  =  (z1 , z2 , . . . , zt )
T
. The  mapping  transfers  an  n-

dimensional  solution  vector  into  an  t-dimensional  objective vector. This issue is 

illustrated in figure 1.1. 
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Figure 1.1: Mapping between decision and objective spaces in multiobjective  

optimization. 

In multi-objective optimization problems, with objectives often conflicting with each 

other, no single solution can be found to optimize all the objectives simultaneously. 

This situation is different from the case in single objective optimization problems. 

Thus, for multi-objective optimization problems, the key issue is to find a set of well 

distributed solutions each of which is a point of compromise with respect to all 

objectives. The main aim is to discover a set of solutions in which each solution is 

better than the others in at least one objective value. This property is named as Pareto 

optimality for MOPs. 

The theory of Pareto optimality was presented by Vilfredo Pareto [3] who developed 

one of the most important results in the area of multiobjective optimization. The most 

important feature of Pareto optimality is that in a multi-objective optimization 

problem a Pareto optimal solution cannot be improved without worsening at least for 

one of its objectives [4, 38]. 

 Decision Space 
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Problems with multiple objectives do not have a unique optimum solution, but a 

group of Pareto optimum solutions. A group of Pareto optimum solutions can be 

described by Pareto front. The general notion of domination used to compare two 

Pareto optimal solutions u and v is as followers: if u is not worse than v in all 

objectives, and is entirely better for one objective, then u is said to dominate v, 

written u< v. Thus u< g iff: 

ui  ≤ vi ∀i = 1, . . . , t and                                     

uj< vj for   at   least   one   j. 

The set of all non-dominated solutions from the Pareto front. The set of solutions in 

the Pareto front represents the possible optimal trade-offs among competing 

objectives.  

Within  the  context  of  multiobjective  optimization,  an  algorithm  is  said  to  have  

converged  when the set of solutions it produces is equal to the best Pareto front.  As 

it is often the case that the Pareto front is continuous and algorithms produce a finite 

set,  it is usually assumed that an  algorithm have  converged  to  the  true  Pareto  

front  when its discovered boundary  lies  a  very  small distance apart from the best 

know one. 

A nature-inspired metaheuristic optimization algorithm is a computational procedure 

that imitates several physical or biological processes such as the evolution of the 

species, the human immune system, and the social behavior of some animal groups. 

These processes are themselves optimization processes and so they naturally suggest 

computational algorithms applicable to mathematical optimization problems. e.g.,.[26, 

(1.2) 
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34, 35, 36, 37]. 

The Quadratic Assignment Problem (QAP) is considered as one of the challenging 

and more interesting combinatorial problem in presence, Due to its NP-hard nature, 

the individual problem instances are usually complex and difficult to solve exactly. 

Multiobjective quadratic assignment problem (mQAP) is a well-known and hard 

combinational optimization problem which is used in modelling of several assignment 

and scheduling problems. Benchmark mQAP instances are already solved near 

optimally using competitive metaheuristics and dedicated local search algorithms but 

there is no absolute winner of these competitions in the sense that while a particular 

algorithm exhibits quite successful for a kind of mQAP instance, it exhibits poor 

performance on the others. 

The remainder of this thesis is organized as follows: In Chapter 1  an introduction to  

the  topic and  sets out  the  objectives  of  the  research  work  carried  out. In Chapter 

2 reviews the literature to give a formal introduction to the basic concepts to be dealt 

with in this thesis about Quadratic Assignment Problem, Multiobjective Quadratic 

Assignment Problem. In Chapter 3 we introduced the Artificial Bee Colony (ABC) 

techniques.  It discusses the basics of swarm intelligence, the background of the ABC 

algorithm as well as the main control   parameters of the algorithm .In Chapter 4 

outlines the Artificial Bee Colony over Multiobjective Quadratic Assignment 

Problem, testing the algorithm on most instances in mQAP. And attempting tweaks 

on the algorithm to improve the runtime.  In Chapter 5 draws the conclusions and 

summarises the work developed in this thesis. 
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Chapter 2  

LITERATURE REVIEW 

2.1 Quadratic Assignment Problem (QAP) 

The Quadratic Assignment Problem (QAP) can be mathematically formulated as 

follows: let P (N) be set of all permutation of integers from 1 to N, 

  

 

where  N  is the  number  of facilities/locations, fij symbolizes the flow between 

facilities i and j, dij symbolizes the distance between locations i, j and π (i) represents 

the  location  of facility i in permutation π ∈ P [5]. 

2.2 Multiobjective Quadratic Assignment Problem (mQAP) 

When there are two or more flow matrices between facilities the problem will be a 

multi-objective quadratic assignment problem (mQAP). For  example, a hospital can  

requests the simultaneous minimization of the costs associated with the flow of 

physicians, patients, nurses, guests, and tools between various facilities, remembering  

that the distance between the location where the facilities are set must also be 

minimized too. 

The mQAP was formulated in [5] to broaden the QAP to encompass multiple 

objectives. QAP is a good model to solve planning for a single product in one place 

from a plant, whereas mQAP can take into consideration all the products and the 

whole plant design.  

(2.1)  


N

1j (j)(i),ji,

N

1i
d f  )min(QAP 
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Mathematically, the last functions or objective functions mQAP can be represented 

as: 

C
k
(π) =  

N

1i  

N

1j
fk

i,jdπ(i), π(j)   ,   k=1,…..,m           (2.2) 

Where: 

m is the  number  of  objectives or flows matrices, 

N   is the number of facilities/locations, 

π(i)  is  the  facility  in  the  location  i  in  permutation π, 

fk
i,j is symbolize the  flow  from  facility  assigned  to location  i  to  facility  assigned  

to  location  j within the kth flow matrix.  

2.3 Solved Method For mQAP 

Since the mQAP inception in 2002 by Knowles and Corne[5], mQAP has studied by a 

few numbers of researchers, a little was done to study the characteristics of the 

landscape and its impact on the performance of the algorithm. As yet, the research for 

mQAP is still in its early stages. One of the proposals implemented mQAP to a group 

of heterogeneous UAVs, mQAP were used to improve communications for the 

formations of drones heterogeneous by using MOMGA-II [6]. This research spans the 

search using a parallel copy of MOMGA-II and compared the efficiency and speed up 

the results to the results of a parallel series. 

Hui Li and Dario Landa- Silva they applied an elitist GRASP metaheuristic algorithm 

called mGRASP/MH to tackle the mQAP (multi-objective quadratic assignment 

problem). In the proposed approach, elitist-based greedy randomized construction, 

cooperation between solutions, and weight-vector adaptations are used to accelerate 

convergence and diversify the search [7]. Also another models of the flow of 

execution in the constellation of communications satellites [8]. In [5], they applied to 
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the problem of facilities planning, where there is a flow of over a single type of agent. 

An execution of hybrid SPEA2 and ACO algorithms is tested with all of a next-ascent 

hill climber and number of various lengths of tabu search (TS) on the mQAP [9]. 

 An evolutionary multiobjective optimization with a segment-based external memory 

support for the mQAP was proposed by Adnan Acan and Ahmet Ünveren[10]. In 

their comprehensive comparison, the performance is compared with a well-known 

multiobjective genetic algorithm MOGA. 

In [11], they presented a fuzzy particle swarm algorithm over mQAP. In the fuzzy 

scheme, the representations of the position and velocity of the particles in the 

conventional PSO is extended from the real vectors to fuzzy matrices. 

An eempirical comparison of memetic algorithm strategies on the multiobjective 

quadratic assignment problem [12]. They took the view that the two components were 

competing for the limited usage of search time, and compared several different 

strategies on a wide range of instances of the multiobjective quadratic assignment 

problem. 

In[13]. A hybrid genetic/immune strategy to tackle the multiobjective quadratic 

assignment problem. They compared GISMOO algorithm with two well-known 

multiobjective algorithms (NSGAII, PMSMO) on benchmark mQAP problems. The 

largest difference among GISMOO and other two algorithms lies in the environmental 

selection and the way in which the immune metaphor is used in a Pareto GA to 

identify and emphasize the solutions located in less crowded regions found during the 
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iteration process of the algorithm. 

In[14]. Deon Garrett and Dipankar Dasgupta they have shown a correlation between 

the advantage obtained through a hybrid MOEA versus a simpler iterated local search 

algorithm and the distribution offspring generated via recombination. As the 

correlation objectives creases, thus allowing the embedded local search procedure to 

exploit these good initial locations to find improved pareto optima.  

In[15],they propose a multi-objective quadratic assignment instance generator that 

aggregates several small multi-objective QAP instances into a larger mQAP instance. 

Both the component mQAP instances and the cost of the elements outside these 

components have, by design, the identity permutation as the optimal solution. They 

give mild conditions under which the resulting composite mQAP instances have 

identity permutation as the optimum solution. They show that composite bQAP 

instances are more difficult than the uniform random bQAPs, and in addition, they 

have a known optimum solution.   
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Chapter 3 

THE ARTIFICIAL BEE COLONY (ABC) ALGORITHM 

3.1 The basics of Swarm Intelligence 

In any biological or natural swarm system, there are two principal notions, namely 

division of labor and self-regulation. These are needed as adequate properties to get 

swarm intelligent behavior like distributed problem solving, self-organization and 

adaptation to a certain environment [16]. 

The definition of self-regulation could be as a set of dynamical techniques, which 

leads to structures at the global level for the system through the interactions between 

the components of the low-level. Those techniques create the basic bases of the 

interactions among the components of the system. The bases guarantee that the 

interactions are performed based on purely domestic information without any 

relationship to the universal pattern. Bonabeauet al. [17] marked by four fundamental 

characteristics on self-regulation: “Positive feedback, negative feedback, fluctuations 

and Multiple interactions”.  

a- The first component of self-regulation is the positive feedback into 

system; inflate a best solution that employees have discovered. 

Recruiting other agents to exploit these work a rounds are good. 

b- The second component of self-regulation is the negative feedback; it 

operates on reducing the implications of positive feedback and help to 

find a parallel mechanism. An instance in negative feedback is the 
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numbers of propelled foragers. 

c- The Third component of self-regulation is fluctuations or in other words 

randomness. This helps to add an uncertainty factor into the system and 

leads discovering new solutions to problems under consideration. 

d- The last component of self-regulation is the multiple interactions: 

should there be a minimum number of individuals who are able to 

interact together to transform activities at the local level into one 

coherent organism. 

Inside the swarm, there are various tasks, which are executed simultaneously by 

specialist individuals. This type of phenomenon is called division of labor. 

Simultaneous work on a task by individual’s that are specialist in cooperating is 

thought to be more effective than the sequential task performance by non-specialist 

individuals. 
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3.2 Bees in Nature 

Artificial bee colony algorithms are inspired from behaviors of natural bees and have 

emerged as a promising tool and a strong optimization instrument. Many groups of 

researchers have formulated different versions of this algorithm over a couple of years 

independently. In this respect, the behavioral paradigm of self-regulation was 

suggested for the colony of honeybees by Seeley in 1995 [18]. The foraging behavior 

in a bee colony remained a mystery for a lot of years until Von Frisch constructed a 

method as an integral part of the bees waggle dance [19]. In some of his experiences, 

he found out that bee truly have own color visibility and attracted through smell 

deposited via hive mates. 

Honey bees dance, may be the most interesting in their own biology as well one of the 

coolest behaviors in the animal world. The worker bees that came back to the comb 

with pollen grains or nectars, use the waggle dance language to inform the other 

workers on the discovered nutrition. This information indicates the distance and 

direction with movements in particular. 

Nakrani and Tovey[20], proposed for the first time Honey Bee Algorithm (HBA) to 

know the way to customize computers between different clientsand web-hosting 

servers. A Virtual Bee Algorithm (VBA) has been developed to solve numerical 

optimization problems by Yang[21].  

Honey-Bee Mating Optimization (HBMO) algorithm who was later applied to 

reservoir modelling and clustering proposed by Afshar et al. [22]. Artificial Bee 

Colony (ABC) for numerical function optimization and a comparison was developed 

http://beeinnature.com/
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by Karaboga [23]. These bee algorithms are nowadays becoming more and more 

popular [24]. 

3.3   ABC algorithm 

The ABC algorithm is a meta heuristic algorithm that depends on swarm intelligence 

rather than evolutionary proceedings. 

There are three fundamental elements of the ABC Model: 

a- Food Sources: For determining the source of food,  forager bees assesses 

many of the relevant properties with a food source such as proximity to the 

cell, the richness of energy, have a taste of nectar. 

b- Unemployed foragers: Containing of two kinds, these are scouts and 

onlookers. 

Their liability is to explore and exploit the food source. Two options are 

available for unemployed foragers:  

- Becoming Scout, randomly find new dietary sources around the nest, 

- Becoming onlooker, determining the amount of nectar food source after 

viewing waggle dances of bee employees, and in accordance to non-profit, 

determine the source of food 

C- Employed foragers: the number of employed bees is equivalent to the number 

of food sources in all parts of the hive. The employed bees whose food sources 

were exhausted by bees become scouts [16]. 
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Figure 3.1: The three component of an ABC algorithm: employed, onlooker and 

scout bees. 

Every cycle of the searching, consisting of three steps:  

- Moving the employees and onlookers bees on the food sources. 

- Calculate the amounts of nectar and determine scout bees and forwarded to 

potential food sources. 

- A food sources positions represent a potential solution to the problem to be 

optimized. The amount of nectar food source complies with the quality of the 

solution posed by this food source [25].  

Onlookers are placed on food sources using the selection process on the basis of 

probability [25].  

Each bee colony has scouts that are explorers of the colony. Explorers do not have 

any direction whereas looking for food. They are primarily means to find any type of 
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food sources. As a result of such behavior, scouts are characterized by low average in 

quality food source and also lower search costs. Sometimes, Scouts can accidentally 

discovery rich food, completely unknown food sources. In status of artificial bees, 

the artificial scouts could be rapid discovery of a possible solution. In this work, only 

one of the employed bees were selected and categorized as the scout bee. The 

selection is controlled by a control parameter called "limit". If a solutions 

representing a food sources is not improved by a beforehand number of trials, then 

that food source is abandoned through its employed bees and the employed bees are 

converted to a scout. Number of trials for the release of the source of food is equal to 

the valuable of the "limit" which is significant control parameter of ABC [26]. 

Flowchart description of ABC algorithm is given in Figure 3.2.  
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Figure 3.2: Flow chart of ABC algorithm 
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3.4 Control Parameters of ABC algorithm 

- Number of Bees in aColony (NP) 

Number of bees in Colony identifies the number of solutions being investigated at 

one time. Number of bees must be linked to the intricacy of the problem. 

- The Improvement Limit for a Solution (IL) 

That is a hypersensitive parameter, affecting how “deep” a bee seeks to look close to 

reaching a specific solution and used when being stuck in domestic minimums. If the 

value of this parameter is high, it indicates that the number of tries a bee does in the 

vicinity of a given solution is high, which also means that the bee will be stuck for a 

long time before considering a certain solution as abandoned and trying a different 

search region. 

- Maximum Number of  Iterations (Imax) 

This parameter does not impact the optimization process immediately, but is utilized 

to set an higher limit for the period needed for optimization. The value should be 

sufficient to give the ABC optimization adequate period to converge. 

- Number of Independent Runs (r) 

The number of autonomous runs ought to be adequate in order to get representative 

results and examine the deviation of these results. 
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3.5 Steps of the Artificial Bee Colony (ABC) Algorithm 

ABC algorithm is a repetitive process. On the assumption that the number of food 

sources, NS, is equivalent to the half of the gross number of bees in the colony(since 

the number of employed bees be equivalent to those of the onlooker bees), and D is 

the dimension of every solution vectors; 

1) Random population of solution vectors equivalent for a number of food 

sources (X1, X2,…, XNS) been initialized, where Xi={xi1,xi2, …,xiD} and every 

solution vector is created using: 

                        xij= xminj+rand [0, 1]. (xmaxj- xminj) 

for  j =1, 2,…,D and i =1, 2, …, NS,                            (3.1) 

Where  xmaxj  and xminj  representing consecutive the  upper and lower  

bounds to the dimensionj. Afte rsetting of the population, validate every 

solution assigned to the corresponding step size. Thereafter, is to assess the 

fitness of each food source that conforms to its Punishable cost . 

2) Every employed bee is looking in the neighborhood of the current food 

source to identify the new food source vi  by using:  

     vij= xij+ϕij(xij- xkj)                                                (3.2) 

Where: k ϵ {1,2,…,NS} and j ϵ {1,2,…,D} are randomly selected indexes . 

ϕi jis a random number between[-1,1], that helps to increase the 

hybridization process. Parameter values created by Eq.(3.2) which exceed 

their limit values are set to their limit values and validate each solution and 

set to the corresponding step size. 

3) After generating the new food source, the nectar amount of it would be 

evaluated and a greedy selection would be performed. That is, if found the 

quality of the new food source is better than the present situation, the 
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employed bee leaves its present situation and move to a new food source. 

Further clarification, if the fitness of the new food sources equals or better 

than of Xi, the new food sources takes the location of Xi in the population, it 

will become a new member. 

4) First an onlooker bee chooses a food sources via evaluating the data that 

accepted from all of the employees bee.  

      The probability ( pi ) of selecting the foods our cells presented by (Karboga, 

2005): 

                             (3.3) 
 

Where: the fi is a fitness value of the source of food Xi. After choosing 

source of food, the onlooker generate an new source of foods by Eq.(3.2). 

5) If a nominee solution, represented by a food source cannot be further improved 

through a predetermined number of trials, the food source is considered 

abandoned and the employed bee linked with a food source become a 

scouts. The scout randomly generating a new food sources vi  by using: 

vij= xminj+rand [0, 1]. (xmaxj- xminj) 

                                           for   j=1, 2,…, D                                              (3.4) 

The abandoned food source is replaced by the randomly generated food source and 

validated to its corresponding step size. In the ABC algorithm, the predetermined 

number of trials for a abandoning a food source was discussed, also in this algorithm 

at most one employed bee at each cycle can become a scout. 
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Chapter 4  

RESULTS  

4.1 Test Data for the Multiobjective QAP 

In experimental evaluations, artificial bee colony (ABC) algorithm framework is 

applied to solve a set of twenty-two multi-objective quadratic assignment problem 

(mQAP) instances created by Knowles and Corne [5] and are available at 

http://www.cs.man.ac.uk/~jknowles/mQAP/. Table 1 illustrates a detailed description 

of parameters of the test suite problems. 

The name of every instance of mQAP is presented through naming conventions 

KCnn-mfl-itype   

Where: 

- nn represents to the  number of facilities/locations, 

- m is the  number of objectives or flows, and 

- itype shows the instance type where the uni symbolized to the uniformly 

random and rl is symbolized to the real-life distribution[5]. 
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Table 1: Attributes of mQAP test suite problems used in experimental evaluations. 

Test Name 
Instance 

Category 

#of 

Locations 

#of 

Flows 

KC10-2fl-1uni Uniform 10 2 

KC10-2fl-2uni Uniform 10 2 

KC10-2fl-3uni Uniform 10 2 

KC20-2fl-1uni Uniform 20 2 

KC20-2fl-2uni Uniform 20 2 

KC20-2fl-3uni Uniform 20 2 

KC30-3fl-1uni Uniform 30 3 

KC30-3fl-2uni Uniform 30 3 

KC30-3fl-3uni Uniform 30 3 

KC10-2fl-1rl Real-like 10 2 

KC10-2fl-2rl Real-like 10 2 

KC10-2fl-3rl Real-like 10 2 

KC10-2fl-4rl Real-like 10 2 

KC10-2fl-5rl Real-like 10 2 

KC20-2fl-1rl Real-like 20 2 

KC20-2fl-2rl Real-like 20 2 

KC20-2fl-3rl Real-like 20 2 

KC20-2fl-4rl Real-like 20 2 
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KC20-2fl-5rl Real-like 20 2 

KC30-3fl-1rl Real-like 30 3 

KC30-3fl-2rl Real-like 30 3 

KC30-3fl-3rl Real-like 30 3 

 

 

4.2 Tabu Search of mQAP 

In general, metaheuristics for permutation problems need hybridization with a 

problem specific local search method to intensify search process around potentially 

promoting solutions. 

Tabu search was suggested by Fred Glover [28] as a meta-heuristic optimization 

method. One of the applications of tabu search to QAP was scheduled to Skorin-

Kapov [29]. 

The most famous local search for QAP is the robust tabu search (RoTS) of Taillard 

[27]. RoTS is based on the 2-opt improvement strategy that swaps two elements of a 

permutation and accepts the new offspring if its fitness is better than that of its parent. 

Accordingly in the case of QAP, 2-opt neighborhood of a permutation is defined by a 

set of permutations that can be reached through an exchange two facilities. TS 

procedure starts from an initial feasible solution φ, and selects a best-quality solution 

between the neighbors of Ƴ obtained by permuting all points of (r, s) facilities ∈  Ƴ . 

Assuming that the offspring generated is π, its elements are defined by, 
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π (k) = φ (k)∀ k≠ r, s 

π (r) = φ (s) 

π (s) =φ (r). 

For symmetrical matrices with a null-diagonal, written the cost   Δ (φ, r, s) of the 

value of a move is given by: 

Δ (φ, r, s) =  

N

1i  

N

1j
    ( Fi. j Dφ( I )φ( j ) - Fi ,j Dπ( I )π( j ) ) 

= 2 .  

N

srk ,
( Fs,k – Fr,k ) ( Dφ( s )φ( k )  - Dφ( r )φ( k ) ). 

To compute the cost Δ (π, µ, v) in a constant time that the moved units µ and v are 

different from r or s, we use the value Δ (φ, µ, v) computed in the previous step and 

find: 

Δ (π, µ, v) = Δ (φ, µ, v) 

+ 2 (Fr µ  -  Fr v +  Fs µ  - Fs v ) ( Dπ( s) π( µ ) - Dπ( s ) π( v ) + Dπ( r ) π( µ ) - Dπ( r ) π( v ) ). 

The value of moves which don’t involve the nodes in the previous swap can be 

calculated in the time O (1). There are O (N
2
) of these moves. 

The value of moves which involve the nodes in the previous swap must be calculated 

from scratch. There are O (N) of these moves and the complexity of calculating each 

is O (N). 

In the case of Artificial Bee Colony algorithm, 2-opt is applied as follows. A swap 

continues if it leads to a decrease cost or such other. One time the fixed swap is made, 

the 2-opt on the present solution π is stopped. If all potential swaps are checked and it 

brings any improvement, the 2-opt will cease and the ABC algorithm will resume 

their next step.  
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An alternative is the implementation of local search method for QAP so that structure 

is checked whole neighborhood and a swap that brings the maximum decrement in 

cost is determined. This swap would be made persistent if it is found to bring the 

maximum decrement in cost .The overhead for this option is high and hence this puts 

the option at a disadvantage. 

The  2-opt best-improvement local search is integrated with a Tabu List .The main 

objective of TL is to make sure that the local search moves which have been 

performed before are not reiterated for a period of time. 

The working mechanism of TL is as follows. At every particular time, a maximum of 

20 local search moves can be stored in TL. These local search moves will be stored in 

TL for a certain period of time. Once a move is expired, it is discarded to make room 

for a new move. The addition of moves is done such that no duplication is permitted 

in TL. A move in TL has the structure [a, b, c, d, e]. a and b denote the facilities to be 

swapped and c and d denote the locus of that two facilities designates the staying 

duration of that move in TL. 

When a local search move is to be performed, the local search algorithm will first 

traverse through TL to check if this move has been performed before and hence 

identical move is avoided. A strict checking mechanism is employed whereby a move 

candidate is compared symmetrically against all the moves in TL. 

Local search begins from some of the first assignment and trying over and over again 

to improve the present assignment due to local changes. In case of finding the best 

assignment in the neighborhood of the present assignment, thus replaces the present 

assignment and the search continues. 
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Aspiration function calculates how good a new solution should be to accept it even 

though it is on a tabu list.  The length of the tabu list, construction of the 

neighborhood, and the aspiration function are implementation-specific parameters of 

this method. Tabu search is not a probabilistic method. However, the search 

preformed from one initial solution x0 may be not thoroughly enough. Various 

methods are applied to diversify the tabu search.  Tahe simplest ay to do it is by 

restarting the search from random initial solutions. 

4.3 Experimental Results 

The results of 2-objective QAP’s instances with 10 locations &facilities are 

compared with the true Pareto-optimal set, which is available from Knowles source 

[5]. 

The results of 2&3-objective QAP’s instances with 20 and 30 locations & facilities 

are compared with the ABC by running the algorithm ten runs (ABC 10 data runs). 

For all instances the Control Parameters of ABC algorithm as follows: 

NP=600 the number of colony size (employed bees + onlooker bees). 

FoodNumber=NP/2 the number of food sources equals the half of the colony size. 

maxCycle=5000 the number of cycles for foraging {a stopping criteria}. 
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Figure 4.1: The ABC result for 2-objective QAP  (KC10-2fl-1uni) test problem with  

uniformly random distribution. 

In Figure 4.1 shows how the ABC approximated Pareto-front set performed to 

(KC10-2fl-1uni) compared with the true Pareto-optimal set, which is available from 

Knowles source. The non-dominated solutions found by ABC approximated Pareto-

front set almost the same set of non-dominated to the ones on the true Pareto-optimal 

set. In this respect, the number of points on the ABC algorithm is 13 solutions while 

the number of non-dominated solutions found by Knowles is 13. 

 

  

 

    Pareto optimal set        o 

ABC approximated Pareto-front set   o 

IGD = 65 

Objective 1 

O
b
je

ct
iv

e 
 2

 



 

 

 

27 
 

 

 
Figure 4.2: The ABC result for 2-objective QAP (KC10-2fl-2uni) test problem        

with uniformly random distribution. 

In Figure 4.2 shows how the ABC approximated Pareto-front set performed to 

(KC10-2fl-2uni) compared with the true Pareto-optimal set, which is available from 

Knowles source. The non-dominated solutions found by ABC approximated Pareto-

front set almost the same set of non-dominated to the ones on the true Pareto-optimal 

set. In this respect, the number of points on the ABC algorithm is 1 solutions while 

the number of non-dominated solutions found by Knowles is 1. 
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Figure 4.3: The ABC result for 2-objective QAP (KC10-2fl-3uni) test problem with 

uniformly random distribution. 

In Figure 4.3 shows how the ABC approximated Pareto-front set performed to 

(KC10-2fl-3uni) compared with the true Pareto-optimal set , which is available from 

Knowles source . The non-dominated solutions found by ABC approximated Pareto-

front set almost the same set of non-dominated to the ones on the true Pareto-optimal 

set. Considering the performances in terms of the number of Pareto points computed, 

the score of ABC approximated Pareto-front is 130 while that of Knowles is 130. 
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Figure 4.4: The ABC result for 2-objective QAP (KC10-2fl-1rl) test problem with  

real-life distribution. 

In Figure 4.4 shows how the ABC approximated Pareto-front set performed to 

(KC10-2fl-1rl) compared with the true Pareto-optimal set , which is available from 

Knowles source . The non-dominated solutions found by ABC approximated Pareto-

front set almost the same set of non-dominated to the ones on the true Pareto-optimal 

set. Considering the performances in terms of the number of Pareto points computed, 

the score of ABC approximated Pareto-front is 58 while that of Knowles is 58. 
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Figure 4.5: The ABC result for 2-objective QAP (KC10-2fl-2rl) test problem with 

real-life distribution. 

 

In Figure 4.5 shows how the ABC approximated Pareto-front set performed to 

(KC10-2fl-2rl) compared with the true Pareto-optimal set, which is available from 

Knowles source . The non-dominated solutions found by ABC approximated Pareto-

front set almost the same set of non-dominated to the ones on the true Pareto-optimal 

set the number of Pareto points computed by algorithm and Pareto optimal set of 

Knowles are 15 and 15, respectively. 
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Figure 4.6 : The ABC result for 2-objective QAP (KC10-2fl-3rl) test problem       

with real-life distribution. 
 

In Figure 4.6 shows how the ABC approximated Pareto-front set performed to 

(KC10-2fl-3rl) compared with the true Pareto-optimal set, which is available from 

Knowles source. The non-dominated solutions found by ABC approximated Pareto-

front set are very close to the ones on the true Pareto-optimal set. In this respect, the 

number of points on the ABC algorithm is 40 solutions while the number of non-

dominated solutions found by Knowles is 55. 
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Figure 4.7 : The ABC result for 2-objective QAP (KC10-2fl-4rl) test problem with 

real-life distribution. 

In Figure 4.7 shows how the ABC approximated Pareto-front set performed to 

(KC10-2fl-4rl) compared with the true Pareto-optimal set, which is available from 

Knowles source. The non-dominated solutions found by ABC approximated Pareto-

front set are nearly to the ones on the true Pareto-optimal set. Considering the 

performances in terms of the number of Pareto points computed, the score of ABC 

approximated Pareto-front is 42 while that of Knowles is 53. 
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Figure 4.8: The ABC result for 2-objective QAP (KC10-2fl-5rl) test problem            

with real-life distribution. 

In Figure 4.8 shows how the ABC approximated Pareto-front set performed to 

(KC10-2fl-5rl) compared with the true Pareto-optimal set, which is available from 

Knowles source. The non-dominated solutions found by ABC approximated Pareto-

front set are very close to the ones on the true Pareto-optimal set. Considering the 

performances in terms of the number of Pareto points computed, the score of ABC 

approximated Pareto-front is 43 while that of Knowles is 49. 
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Figure 4.9 : The ABC result for 2-objective QAP (KC20-2fl-1uni) test problem with 

uniformly random distribution. 

In Figure 4.9 shows how the Pareto-front (single run) performed to (KC20-2fl-1uni) 

compared to the data from computed Pareto optimal set ( 10  runs).  The non-

dominated solutions found by Pareto-front (single run) are close to the ones on the 

computed Pareto optimal (10 runs). In this respect, the number of points on the 

Pareto-front set (single run) is 36 solutions while the number of non-dominated 

solutions found by (10 runs) is 60. 
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Figure 4.10: The ABC result for 2-objective QAP (KC20-2fl-2uni) test problem with 

uniformly random distribution. 

In Figure 4.10 shows how the Pareto-front  (single run) performed to (KC20-2fl-

2uni) compared to the data from Pareto optimal (10 runs).  The non-dominated 

solutions found by  Pareto-front  (single run) are outperforms to the ones on the 

computed Pareto optimal ( 10 runs). Considering the performances in terms of the 

number of Pareto points computed, the score of  Pareto-front set (single  run) is 6  

while that of (10 runs) is 7. 
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Figure 4.11 : The ABC result for 2-objective QAP (KC20-2fl-3uni) test problem with 

uniformly random distribution. 

In Figure 4.11 shows how the Pareto-front set (single run) performed to (KC20-2fl-

3uni) compared to the data from Pareto optimal set (10 runs).  The non-dominated 

solutions found by Pareto-front set (single run) are very close to the ones on the 

Pareto optimal set (10 runs). The number of Pareto points computed by Pareto-front 

set (single run) and Pareto optimal set (10 runs) are 216 and 221, respectively. 
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Figure 4.12 : The ABC result for 2-objective QAP (KC20-2fl-1rl) test problem with 

real-life distribution. 
 

In Figure 4.12 shows how the Pareto-front set (single run) performed to (KC20-2fl-

1rl) compared to the data from Pareto optimal set ( 10 runs). The non-dominated 

solutions found by Pareto-front set (single run) are nearly to the ones on the Pareto 

optimal set (10 runs). The number of Pareto solutions calculated by Pareto-front set 

(single run) and Pareto optimal set (10 runs) are 48 and 68, respectively. 
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Figure 4.13: The ABC result for 2-objective QAP (KC20-2fl-2rl) test problem with 

real-life distribution. 

In Figure 4.13 shows how the Pareto-front set (single run) performed to (KC20-2fl-

2rl) compared to the data from Pareto optimal set (10 runs).  The non-dominated sets 

found by Pareto-front set (single run) are very close to the ones on the Pareto optimal 

set (10 runs). Considering the performances in terms of the number of Pareto points 

computed, the score of  Pareto-front set (single  run) is 48  while that of (10 runs) is 

74. 
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Figure 4.14 : The ABC result for 2-objective QAP (KC20-2fl-3rl) test problem with 

real-life distribution. 

In Figure 4.14 shows how the Pareto-front set (single run) performed to (KC20-2fl-

3rl) compared to the data from Pareto optimal set (10 runs).  The non-dominated sets 

found by (single run) are near to the ones on the (10 runs). In this respect, the number 

of solutions on the Pareto-front set (single run) is 92 solutions while the number of 

non-dominated solutions found by (10 runs) is 168. 
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Figure 4.15 : The ABC result for 2-objective QAP (KC20-2fl-4rl) test problem with 

real-life distribution. 
 

In Figure 4.15 shows how the Pareto-front set (single run) performed to (KC20-2fl-

4rl) compared to the data from Pareto optimal set (10 runs).  The non-dominated sets 

found by (single run) are close to the ones on the (10 runs). The number of Pareto 

points computed by Pareto-front set (single run) and Pareto optimal set (10 runs) are 

34 and 68, respectively. 
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Figure 4.16 : The ABC result for 2-objective QAP (KC20-2fl-5rl) test problem with 

real-life distribution. 
 

In Figure 4.16 shows how the ABC Pareto-front set (single run) performed to 

(KC20-2fl-5rl) compared to the data from Pareto optimal set (10 runs). The non-

dominated sets found by (single run) are close to the ones on the (10 runs). In this 

respect, the number of solutions on the Pareto-front set (single  run) is 65 solutions 

while the number of non-dominated solutions  found by (10 runs) is 111 . 
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Figure 4.17 : The ABC result for 3-objective QAP (KC30-2fl-1uni) test problem with 

real-life distribution. 
 

In Figure 4.17 shows how the Pareto-front set (single run) performed to (KC30-3fl-

1uni) compared to the data from Pareto optimal set (10 runs).  The non-dominated 

sets found by (single run) are very close to the ones on the (10 runs). In this respect, 

the number of solutions on the  Pareto-front set (single run) is 28 solutions while the 

number of non-dominated solutions found by (10 runs) is 34. 
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Figure 4.18: The ABC result for 3-objective QAP (KC30-3fl-2uni) test problem with 

uniformly random distribution. 
 

In Figure 4.18 shows how the Pareto-front set (single run) performed to (KC30-3fl-

2uni) compared to the data from Pareto optimal set (10 runs).  The non-dominated 

sets found by  (single run) are nearly to the ones on the (10  runs). The number of 

Pareto points computed by Pareto-front set (single run) and Pareto optimal set (10  

runs) are 8 and 12, respectively. 
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Figure 4.19: The ABC result for 3-objective QAP (KC30-3fl-3uni) test problem with 

uniformly random distribution. 

In Figure 4.19 shows how the Pareto-front set (single run) performed to (KC30-3fl-

3uni) compared to the data from Pareto optimal set (10 runs).  The non-dominated 

sets found by (single run) are very close to the ones on the (10 runs). Considering the 

performances in terms of the number of Pareto points computed, the score of  Pareto-

front set (single  run) is 25  while that of (10 runs) is 43. 

  

 

          

 

 

  

 

 Best Pareto optimal   (10 runs)   o 

Computed Pareto-front (single run )   o 

IGD = 27467 

O
b
je

ct
iv

e 
 3

 

Objective 1 
Objective 2 



 

 

 

45 
 

Figure 4.20: The ABC result for 3-objective QAP (KC30-3fl-1rl) test problem with 

real-life distribution. 

In Figure 4.20 shows how the Pareto-front set (single run) performed to (KC30-3fl-

1rl) compared to the data from Pareto optimal set (10 runs). In this respect, the 

number of solutions on the  Pareto-front set (single  run) is 195 solutions while the 

number of non-dominated solutions  found by ( 10 runs) is 198 . 
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Figure 4.21 : The ABC result for 3-objective QAP (KC30-3fl-2rl) test problem with 

real-life distribution. 

 

In Figure 4.21 shows how the Pareto-front set (single run) performed to (KC30-3fl-

2rl) compared to the data from Pareto optimal set (10 runs). The non-dominated sets 

found by (single run) are very close to the ones on the (10 runs). Considering the 

performances in terms of the number of Pareto points computed, the score of  Pareto-

front set (single  run) is 195  while that of (10 runs) is 198. 
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Figure 4.22: The ABC result for 3-objective QAP (KC30-3fl-3rl) test problem with 

real-life distribution. 
 

In Figure 4.22 shows how the Pareto-front set (single run) performed to (KC30-3fl-

3rl) compared to the data from Pareto optimal set ( 10  runs). The non-dominated sets 

found by (single run) are nearly to the ones on the (10 runs). The number of Pareto 

points computed by Pareto-front set (single run) and Pareto optimal set (10 runs) are 

105 and 137, respectively. 
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The IGD-metric can assess the quality of approximation sets with respect to both 

convergence and diversity. The IGD values found by the five algorithms are shown 

in Tables 2. From these results, it is evident that ABC and mGRASP outperforms the 

three other algorithms in terms of both performance indicators on all mQAP 

instances. The superiority of ABC is due to the stronger selection pressure to move 

 
IGD Values 

Test Name ABC mGRASP MOEA NSGA2 SPEA2 

KC10-2fl-1uni 65 460 2211 6590 7795 

KC10-2fl-2uni 0 0 4915 11284 13196 

KC10-2fl-3uni 27 6 147 2393 4387 

KC10-2fl-1rl 9709 3555 45512 318513 382993 

KC10-2fl-2rl 25188 10460 128988 212026 226922 

KC10-2fl-3rl 12725 2403 37239 300822 357818 

KC20-2fl-1uni 195 21360 12058 53492 58575 

KC20-2fl-2uni 2509 58830 16987 66425 64604 

KC20-2fl-3uni 7.9 6677 4878 35764 44289 

KC20-2fl-1rl 11641 1980730 433020 2914559 2623621 

KC20-2fl-2rl 116820 1259521 192956 1895681 1520627 

KC20-2fl-3rl 2516 653760 153859 1594337 1534329 

KC30-3fl-1uni 37842 54552 20578 141325 167422 

KC30-3fl-2uni 66768 110308 26415 161061 163284 

KC30-3fl-3uni 27467 36927 16133 127932 154106 

KC30-3fl-1rl 1781407 3350333 474028 5962007 7018525 

KC30-3fl-2rl 1440891 2837723 421962 4538068 4986717 

KC30-3fl-3rl 1009255 1658247 395310 4072323 4503648 

Table 2: Comparison of Results 
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towards the POF by having competition among individuals. Among the five 

algorithms, NSGA2 and SPEA2 show the worst performance with respect to 

minimizing the IGD values. The main reason for this might be that no local search is 

used to improve offspring solutions in these two approaches. 

 

  



 

 

 

50 
 

Chapter 5 

CONCLUSIONS AND FUTURE RESEARCH  

DIRECTIONS 

An artificial bee colony optimization algorithm is implemented for the solution of 

multiobjective quadratic assignment problem. Problem specific search operators are 

also within the scope of the implemented algorithm. 

Experimental evaluations using well-known benchmark problem instances exhibited 

that the implemented algorithm is a powerful alternative for the solution of 

multiobjective quadratic assignment problem. Assessment with respect to inverted 

generational distance has also showed that the developed method is better than 

several well-known metaheuristics. This point is illustrated in Table 2 that clearly 

shows that the implemented algorithm outperforms widely known metaheuristics 

MOEA, NSGA2 and SPEA2. 

Another observation from Table 2 is the success of the presented algorithm with 

respect to problem size and number of objectives. As expected, IGD scores increase 

with increasing problem size and number of objectives. However, relative powers of 

ABC compared to its competitors remain higher for all problem sizes. 

 

Future work is planned to hybridize the ABC algorithm with other metaheuristics 
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and local search methods. Also using the presented method for the solution other 

hard optimization problems is also within the future work plans. 
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