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ABSTRACT 

This thesis deals with the applications of PDM in one and d-dimensions. In the one-

dimensional case the classical as well as the quantum mechanical approach are 

discussed, and the position dependent mass formalism in one dimension is applied to 

harmonic oscillator and the quasi free particle case, i.e. where  ( ⃗)   . 

Furthermore, the extension to d-dimensions is given and applied to the d-dimensional 

Harmonic Oscillator and the d-dimensional Coulomb Potential. 

Keywords: d-dimensional, position dependent mass (PDM), constant mass (CM), 

point canonical transformation (PCT), quasi-free particle, harmonic oscillator, 

Pöschl-Teller potential. 
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ÖZ 

Bu tez konuma bağlı kütlenin d-boyuttaki uygulamalarını ele alıyor. Bir boyutta 

klasik ve kuantum mekaniksel teori tartışıldı ve konuma bağlı kütle formalizm bir 

boyutlu harmonik osilatör ve bağımsız gibi parçacık için farklı konuma bağlı kütle 

fonksyonları için uygulanmıştır. Ayrıca konuma bağlı kütle modeli d-boyuta 

genişletilmiş ve d-boyutlu harmonik osilatör ve Coulomb potansiyellerine 

uygulanmıştır. 

Anahtar sözcükler: konuma bağlı kütle, d-boyutlu konuma bağlı kütle,  sabit kütle, 

nokta kuralsal dönüşüm, bağımsız gibi parçacık, harmonik osilatör, Pöschl-Teller 

Potansiyeli. 

 

. 
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Chapter 1 

INTRODUCTION 

The Schrödinger equation for the position dependent mass (PDM) has found its way 

into standard textbooks of Quantum Mechanics [Fluegge, Schiff]. One of the obvious 

application areas of the PDM Schrödinger equation can be found in the field of solid-

state physics. PDM approach provides a very useful tool in the study of the 

semiconductors and inhomogeneous crystals [1-12], quantum dots [8], quantum 

liquids [16], etc. This theory could be extended to higher dimensions [13-15]. The 

concept of PDM is known to play an important role in the energy-density functional 

approach in quantum many-body problems in the context of nonlocal terms of the 

accompanying potential.  

Let us first consider the one dimensional case of a quantum particle with the constant 

mass (CM). The kinetic energy is given as 

  
  

   
                                                             (   ) 

where the momentum operator      
 

  
   The kinetic energy operator fails to be 

written in the form 

  
  

  ( )
                                                          (   ) 

as the commutator of momentum and position operator are non-zero. 
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Therefore, the Hermitian PDM kinetic energy operator T can be written in the one-

dimensional case can be written as 

  
 

 
 ( )   ( )    ( )                                          (   ) 

with the condition      
 

 
 . The actual combination of the parameters a and b is 

not clear. This Hermitian kinetic energy operator can be extended to D-dimensions 

[9] as 

  
 

 
 ⃗⃗⃗ 

 

 ( ⃗)
 ⃗⃗⃗                                                      (   ) 

In Chapter 2, we briefly review the classical (constant mass) CM harmonic oscillator. 

Then, the Harmonic Oscillator is discussed in the framework of PDM classically and 

quantum mechanically for different position dependent mass functions. Next, we will 

show the PDM in classical mechanics by uses PCT and connecting together with the 

case of CM, and illustrate the formalism by supposing few cases of special mass 

function, also for the Hamiltonian quantum PDM there is a special ordering in the 

kinetic term frame which is the closest to the classical picture, and solve the problem 

by ways of the correspondence between PDM and CM systems, in the framework of 

this scenario, we will have some application to obtain ground, first and second states 

wave function and probability density, for each one there is a plot. 

In Chapter 3 the quasi-free PDM, yielding the Pöschel-Teller Potential as effective 

potential, in 1d is discussed. In Chapter 3, we choose a one-dimensional (1d) position 

dependent mass function that yields a Pöschl-Teller type effective potential in 

quantum mechanics. Also, we chose the ordering ambiguity parameters as     

 
 

 
      (i.e.         ), next, we solve the 1-d Schrödinger equation, and 
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we arrive at the hypergeometric differential equation, also we find the eigen-states 

and eigenvalues. 

In Chapter 4, we study a d-dimensional quasi-free PDM in Schrödinger equation (i.e. 

free particle  ( )   ), trapped in its PDM barriers, exactly wherever inter-

dimensional degeneracies stay unchanged within the particular d-dimensional radial 

Schrödinger equation, and consequences of a power-law radial mass  ( )     . 

Also we calculate the d-dimensional PDM Schrödinger equation in the framework of 

using point canonical transformation (PCT) approach; in this part we will discuss the 

harmonic oscillator and Coulomb potential. Finally, the conclusions are given in 

Chapter 5. 
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Chapter 2 

POSITION DEPENDENT MASS HARMONIC 

OSCILATORS 

 

As a first simple application, we want to discuss the Harmonic Oscillator in the 

framework of the PDM. This study will focus on the correlation between the 

classical and the quantum case.  Exemplarily, the calculations will be carried out 

explicitly for three well-known PDM functions.  

2.1 Classical Constant Mass 

In this section, we review the classical constant mass harmonic oscillator.  

In general the Hamiltonian is given as 

  
  

  
  ( )                                                     (2.1) 

with  ( )  
 

 
        Let      , harmonic oscillator Hamiltonian becomes 

  
  

  
 

 

 
                                                        (2.2) 

where P and X are the classical momentum and variables of position. The 

Hamiltonian    can be factorized like 

                       
 

√ 
(     )                                    (2.3) 

With    fulfilling    (  ) , where (  )  denotes the complex conjugate of   . 

Most of these functions close up the particular Heisenberg together with Poisson 

brackets, i.e. 

 *      +                    *    +                                          (2.4) 

We can develop non-autonomous integrals involving motion in the type 
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                                                                        (2.5)                                

Substituting    from Eq. (2.3) into Eq. (2.5), we obtain 

    
 

√ 
(     )    .                                                (2.6) 

The new variable Q satisfies the relations    (  )   and        . As the 

Hamiltonian is really a conserved amount, so total energy E is conserved.  Let 

   √     with    being a constantly phase fixed through the initial conditions, 

we can obtain the phase trajectories of constant mass as  

 ( )       (    )                                               (2.7) 

where   √     is the radius. Eq. (2.7) becomes then 

 ( )  √      (   )                                             (2.8) 

and 

 ( )  
 

  
 ( )   √      (   )                                   (2.9)                                    

2.2 Classical PDM Harmonic Oscillator 

This part is dedicated from investigation of classical PDM harmonic oscillator 

through ways of PCT joining the problem with all the constant mass (CM) case. 

The position dependent mass classical Hamiltonian gets the following type 

  
  

  ( )
  ( )                                                  (2.10) 

where  ( ) is definitely an arbitrary PDM,  ( ) is the potential, that depends upon 

the   ( ), to get determined. In analogy to the CM harmonic oscillator problem, 

allow us to assume which the Hamiltonian   could be factorize again into two 

functions   (   ) from the type 

  (   )    
 

√  ( )
  ( )                                  (2.11) 

In this case and the way, we can say 
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            (  
 

√  ( )
  ( ))( 

 

√  ( )
  ( ))             (2.12) 

which can be written as 

  
  

  ( )
   ( )                                                (2.13) 

So, the potential  ( ) and also position dependent   ( ) are connected through 

 ( )     ( )                                                      (2.14) 

In analogy to the CM case, we request the operators      closes algebra of 

Heisenberg with Poisson brackets, like within constant mass case Eq. (2.4) 

 *     +  
   ( )

√  ( )
                                          (2.15) 

and  

           *    +   
   ( )

√  ( )
                                     (2.16) 

In order to continue the analogy we need condition (2.4) to be fulfilled. Therefore, 

we get from Eq. (2.15) 

 ( )  
 

√ 
∫ √ ( )      

 

 

                                    (    ) 

Alternatively, we can use the point canonical transformation PCT 

   √ ( )                         ∫ √ ( )      
 

 
                      (2.18) 

where      is a constant of integration, the potential  ( ) equal to half of    as 

 ( )  
 

 
0∫ √ ( )     

 

 
1
 

                                        (2.19) 

Previous condition fixes  ( ) like 

 ( )  
 

√ 
( )  

 

√ 
0∫ √ ( )     

 

 
1                             (2 .20) 

Finally we get the classical PDM harmonic oscillator Hamiltonian by substitution of  

Eq. (2.19) into Eq. (2.10) as 
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  ( )
 

 

 
0∫ √ ( )     

 

 
1
 

                                  (2.21) 

Obviously, this Hamiltonian has essentially the same structure as the CM 

Hamiltonian in Eq. (2.2). After applying the PCT we get 

 ( )  ∫ √ ( )     
 

 
                                            (2.22)  

and 

      (   )  
 

  
 ( )  

 

√ ( )
                                             (2.23) 

We note that the constant    can be set such that  

 (   )                                                      (2.24) 

Now, the classical PDM harmonic oscillator problem is reduced to the classical CM 

harmonic oscillator problem, in which the completely new momentum and also 

position variables usually are connected to the particular mass function be Eq. (2.22) 

and Eq. (2.23). For example, phase space trajectories  ( ) and  ( ) are specified  

 ( )     .√     (   )/                                    (2.25) 

and  

 ( )   √  √ ( ( ))    (   )                              (2.26) 

Depending on the form of  ( ) the motion can be harmonic or not.  Additionally, 

the integrals of motion in analogy to the CM case can be determined as 

   
 

√ 
,   (   )   ( )-    .                                   (2.27) 

Further, using results of Eqs. (2.22), (2.23), and Eq. (2.27) we get 

   
 

 
[  

 

√ ( )
 ∫√ ( )     ]  

           .                  (2.28)  

We focus on the relationship between the PDM and the CM classical harmonic 

oscillator, Eqs. (2.22) and (2.23) give the point canonical transformations connecting 

the PDM with the CM classical harmonic oscillator. Observe that for a few decisions 
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of  ( )  equation Eq. (2.22) may well not outline this mass characteristic domain 

 ( ) onto the entire genuine line, since, it can be obliged in the event that  ( ) 

representing the position of constant mass CM harmonic oscillator.  

2.3 Some Examples of Classical PDM Harmonic Oscillator 

Let us consider the following PDM function 

  ( )    0
      

    
1
 

                                          (2.29) 

that is a free of singularities within genuine line, (i.e.,   (  )   . It will take its 

greatest worth   (   )
  at      and also tends to value of constant    as 

         The mass function of Eq. (2.29) is represented graphically in Fig. 2.1  

 

 

 

 

 

 

Figure 2.1: Plot of the PDM   ( )    0
      

    
1
 

 for the parameters          

 

 

 

With the harmonic oscillator potential as 

  ( )  
 

 
(  ( ))

 
                                           (2.30) 

We get for the position  
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  ( )  ∫√  ( )   ∫√  .
      

    
/
 

                              (2.31) 

Integration, Eq. (2.31) yields to  

  ( )  √  ,          -                                      (2.32) 

Substituting Eq. (2.32) into Eq. (2.30), we get the potential 

  ( )  
 

 
  ,          -

                                           (2.33) 

Finally, the plot of the potential given in Eq. (2.33), as shown in Fig. 2.2, shows a 

slight deformation for the constant mass harmonic oscillator  

 

 

 

 

 

 

Figure 2.2: Plot of the effective potential   ( ) for the parameters         

 

The phase trajectories  

  

 
,          -  

 

   
.

    

      
/
 

                               (2.34) 

are presented graphically in Fig. 2.3 for certain values. 
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Figure 2.3: Plot of the phase space trajectories, if             and also 

                
 

 

The phase space trajectories look very similar to the ones for the constant mass. 

Recognize that, on the point of confinement      the constant mass is recovered. 

Another well-known position dependent mass function is 

  ( )    (    (  ))
                                               (2.35) 

The plot of   ( ) is given in Fig. 2.4. Obviously,   ( ) has no singularities, i.e. its 

domain is  (  )   . This function is again nearly constant over a huge interval 

and looks like the inversion of the previous case. Carrying out the calculations 

analogously we get for the potential and the position 

  ( )  
 

 
(  ( ))

 
                                                (2.36) 

and  

  ( )  ∫√  (    (  ))                                          (2.37) 
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Figure 2.4: Plot of PDM   ( )    (    (  ))
  for the parameters          

 

 

 

Carrying out the integral in Eq. (2.39), yields to 

  ( )  
 

 
√  sign( ) ln(      )                                 (2.38) 

Substitution of Eq. (2.38) into Eq. (2.36) gives the potential as 

  ( )  
  

   
   (      )                                               (2.39) 

The plot of the Eq. (2.39) is presented in Fig. 2.5. 

Also, the phase trajectories has the form  

  

   
   (      )  

 

   

  

      
                                        (2.40) 
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Figure 2.5: Plot of the effective potential   ( )  
  

   
   (      ) for the 

parameters         
 

 

 

In the third case, we consider the mass function as 

  ( )  
  

  (  ) 
                                                 (2.41) 

which is plotted in Fig. 2.6 

 

 

 

 

 

Figure 2.6: Plot of the PDM    ( )  
  

  (  ) 
 for the parameters         

 

The particular mass function in Eq. (2.41) has two singularities, restricting the 

domain to  (  )  .
  

 
 
 

 
/  
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The potential of the last case is 

  ( )  
 

 
 (  ( ))                                                (2.42) 

Also, the variable 

  ( )  ∫√
  

  (  ) 
                                                 (2.43) 

So, after integration, Eq. (2.43) becomes 

                                          ( )  
√  

 
      (  )                                             (2.44) 

The variable is not divergent, takes values just on the interval[ 
√   

  
 
√   

  
], 

substituting Eq. (2.44) into Eq. (2.42), the limited potential of range like 

  ( )  
  

   
       (  )                                            (2.45) 

 

 

 

 

 

 

 

Figure 2.7: Plot of the effective potential   ( )  
  

   
       (  ) for the parameters 

        
 

 

2.4 Quantum PDM Harmonic Oscillators 

Now let us consider the quantum PDM Hamiltonian. We start here again with the 

Hamiltonian of the Schrödinger equation for one dimension (       ) 
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  .
  

  
 

 

 
    /                                              (2.46) 

in which   and     
 

  
 are position and also momentum operators respectively, 

for that coordinate indication. Now Eq. (2.46) becomes 

  
 

 
. 

  

   
   /       

 

 
 ,                                (2.47) 

where       are the creation and annihilation operators respectively, and defined as 

   
 

√ 
.
 

  
  /                     

 

√ 
. 

 

  
  /                              (2.48) 

Hamiltonian   and Eq. (2.48) together, close the Heisenberg algebra 

,     -  
 

 
,         -  

 

 
(,     -  ,    -)                     (2.49) 

or after that 

   ,     -   
 

 
(,   -  ,   -)                                       (2.50) 

Finally 

   ,     -                      ,    -      .                             (2.51) 

Now, if     is the Hamiltonian Eigenstate, and using relations of commutation 

                (     ) 
                                                 (2.52) 

and 

             (     ) 
                                                     (2.53) 

From Eq. (2.52) and Eq. (2.53),    
  
 and    

  
 are Eigenstates of Hamiltonian with 

eigenvalues      and        

Since, difference of energy between two Eigenstates is          if      and  

         .  
 

 
/   .   

 

 
/                                (2.54) 

The ground state energy for our case has the form 

   
 

 
                                                        (2.55) 

and the eigenstate functions are given by 
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  ( )     
 
 

 
    ( )                                             (2.56) 

where   ( ) is the Hermite polynomial. And    is the normalization 

∫   
 
( )   

 

  
                                                      (2.57) 

Substituting Eq. (2.56) into Eq. (2.57) 

∫    
 
 

 
    ( )

 

  
   

 
 

 
    ( )      

 ∫   
 ( )   

 
 

     

     
              (2.58) 

If         or 0 and       , we can get expression of normalization    

     

{
 
 

 
 

 

√ 
 
     

                  

 

√ 
 
       

                   
                                         (2.59) 

From Eq. (2.59) we need that   ( ) is orthogonal at different  , thus there exist 

only one option of          and Eq. (2.56) becomes 

  ( )  
 

√ 
 
     

  
 

 
    ( )  

 

√  
(  )   ( )                       (2.60) 

After this short review for the quantum harmonic oscillator, allow us to suppose the 

hermitian PDM kinetic energy  

    
 

 
   

  
    

  
                                                (2.61) 

with      
 

 
   Thus, the PDM Hamiltonian has the form 

        ( )                                                  (2.62) 

Substituting kinetic value into Eq. (2.62) one finds 

    
 

 
   

  
    

  
     ( )                              (2.63) 

in which   ( ) is the same as in classical case. 

Now, we use the supersymmetric approximation to structure potential   ( )  Assume 

   can be factorized into terms of linear operators (  
 ) 
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 ,                                          (2.64) 

with   being the number operator of harmonic oscillator and,   
  and   

  have the 

form 

  
  

 

√ 
   

  
     ( )

  
   

 

√ 
   

  
     ( ) 

                                       (2.65) 

As we know,   ( ) is a position dependent function. Also Eq. (2.65) can be written 

as 

  
  

 

√ 
0
 

√ 

 

  
 

 

√ 
(   )  1    ( )

  
   

 

√ 
0
 

√ 

 

  
 

 

√ 
(   )  1    ( ) 

                               (2.66) 

Let,   
 

√ 

 

  
 be a new differential operator. Then    

  take a simple structure 

  
  

 

√ 
,   (     )-    

  
   

 

√ 
,   (     )-     

                                    (2.67) 

Eq. (2.64) implies that   ( ) and   ( ) are connected in the following form 

  ( )  
 

√ 
[
    

 
  (     )     ]    

  
 

 
                     (    ) 

The commutation of ,  
    

 - is 

,  
    

 -  ,  
   

    
   

 -  √    
    

 
(     )                    (    ) 

These (  
 ) must satisfy the Heisenberg algebra, we discover the accompanying 

interpretation for the   ( )  

  ( )  [∫√       
    

 
(    )

 

 

]                                  (    ) 

where,    is the constant of integration and must be option (including within case of 

classical) in this way where the origins in the potential happen at    . So, actually 

the form of the potential is 
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  ( )  
 

 
[.∫√      

 

 

/

 

 
    

 
(     )  (

    

 
    )

 

 ]        (    ) 

Evidently for    
 

 
, the quantum and classical potentials coincide with CM 

harmonic oscillator. With    
 

 
      

 

 
  and Eq. (2.65) we can determine the 

Hamiltonian PDM harmonic oscillator as following 

   
 

 
√ 
 

   
 

√ 
  

 

 
.∫√      

 

 

/

 

      
 

 
                  (    ) 

where 

   
 

√ 
.√  
 

 
 

√ 
  ∫ √      

 

 
/  

   
 

√ 
. √ 

 
  

 

√ 
  ∫ √      

 

 
/  

                                  (2.73) 

In our work, there are two algebraic properties for   : (i) the spectrum    of the 

Hamiltonian   is the constant case as the constant mass harmonic oscillator, (ii) also, 

the actual wave functions   ( ) are denoted through 

  ( )  
 

√  
(  )    ( )                                                  (    ) 

We know that,   ( ) can be ground state and defined as the particular wave function 

annihilated through     

    ( )  
 

√ 
.√ 
 

  
 

√ 
  ∫√      

 

 

/  ( )                      (    ) 

Integrate this mathematical expression, we make substitution 

  ( )  √ 
 

   .∫√      

 

 

/                                           (    ) 

Then Eq. (2.73) converts into 
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√ 
.  ∫√      

 

 

/  .∫√      

 

 

/                            (    ) 

Note, that the last expression is same as the ground state (  ) to the constant mass. If 

  can be swapped through integral of square root for this function of mass (with the 

variable change   ∫√      , and   
 

  
), the rest for our wave functions 

may be produced through the use of continuously the particular operator    to the 

ground state 

  ( )  √ 
  

√  
.  ∫√      

 

 

/

 

  .∫√      

 

 

/            (    ) 

By comparing Eq. (2.78) with Eq. (2.60),   ( ) can be wave functions for the 

position dependent mass are denoted of   ( ) constant mass wave functions, with 

the following type 

  ( )  √ 
 

   .∫√      

 

 

/                                     (    ) 

Let  

 ( )  ∫√                                                      (    ) 

where  ( )   ( )  and the range of   ( ) is   ( )  Then  

∫   ( )  
      ∫    ( )  

                                      (    ) 

2.5 Some Examples of Quantum PDM Harmonic Oscillator 

Here, the cases of some mass functions already used in classical approach. In this 

division we have also some figures showing the effective potential  ( ) and also 

some wave functions   ( ), also we will have the probability densities   ( )  
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   ( )  
   for all of them, with    . As our first case, consider the mass function 

  ( ) given in Eq. (2.29). So, the wave functions has the form 

  ( )  
 

√ 
 

     

√ 
 

  
 

 
    ( )                                      (    ) 

where,   ( ) denotes the Hermite polynomials. Now we need to find   by use mass 

function   ( ) 

  ∫
      

    
                                                     (    ) 

Integration, Eq. (2.83) yields to 

                                                                  (    ) 

Substituting Eq. (2.84) into Eq. (2.82) we get the general form of the wave functions 

for the first case 

  ( )  
 

√ 
 

     

√
      

    
  

 

 
,          -   (          )           (    ) 

If     and   ( )     we get the ground state wave function (see Fig. 2.8.a) 

  ( )  
 

 
 

 

√
    

    
  

 

 
,          -                                       (    ) 

and the probability density for the ground state   ( )     ( )  
  (see Fig. 2.8.b) 

  ( )    
 

 
 
 

√
    

    
  

 

 
,          -                                       (    )   
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Figure 2.8: (a) Plot of the ground state   ( ), (b) Plot of the probability 

density   ( )  chosen as          
 

 

 

If     and   ( )      we get the first state wave function (see Fig. 2.9.a) 

  ( )  
√ 

 

 

 
 

 

√
    

    
  

 

 
,          -  (          )               (    ) 

and the probability density for the first state   ( )     ( )  
    (see Fig. 2.9.b) 

  ( )   
√ 

 

 

 
 
 

√
    

    
  

 

 
,          -  (          )                 (    )   

 

 

 

 

 

 

 

Figure 2.9: (a) Plot of the first state   ( )  (b) Plot of the probability density   ( )  
chosen as         
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If     and   ( )         the second state wave function as (Fig. 2.10.a) 

  ( )  
√ 

 

 

 
 

 

√
    

    
  

 

 
,          -  (          )                 (    ) 

and the probability density for the second state   ( )     ( )  
  (see Fig. 10.b) 

  ( )   
√ 

 

 

 
 
 

√
    

    
  

 

 
,          -  (          )                     (    )   

 

 

 

 

 

 

 

 

Figure 2.10: (a) Plot of the second state   ( ), (b) Plot of the probability density 

  ( )  chosen as          
 

 

 

In our second case, let’s consider the mass function   ( ) given in Eq. (2.35). So, 

we need to find   by use mass   ( ) 

  ∫    (  )   ∫        (  )                                   (    ) 

Integration of Eq. (2.92) yields to 

  
 

 
       (  )                                                      (    ) 

So, the general form of the wave functions in the second case is 

  ( )  
 

√ 
 

     

√        
 

 
0
 

 
       (  )1

 

  (
 

 
       (  ))             (    ) 
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If     and   ( )     we get the ground state wave function (see Fig. 2.11.a) 

  ( )  
 

 
 

 

√    (  )   
 

 
0
 

 
       (  )1

 

                                           (    ) 

and the probability density for the ground state   ( )     ( )  
   (see Fig. 2.11.b) 

  ( )   
 

 
 
 

√    (  )   
 

 
0
 

 
       (  )1

 

                                       (    )   

 

 

 

 

 

 

 

 

Figure 2.11: (a) Plot of the ground state   ( ), (b) Plot of the probability density 

  ( ), chosen as          
 

 

 

If     and   ( )      we get the first state wave function  

  ( )  
√ 

 

 

 
 

 

√    (  )   
 

 
0
 

 
       (  )1

 

 [
 

 
       (  )]             (    ) 

and its probability density  

  ( )   
√ 

 

 

 
 
 

√    (  )   
 

 
0
 

 
       (  )1

 

 0
 

 
       (  )1              (    )   

If     and   ( )         we get the second state wave function as 

  ( )  
√ 

 

 

 
 

 

√    (  )   
 

 
0
 

 
       (  )1

 

 (
 

 
       (  ))

 

             (    ) 
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and the probability density for the second state   ( )     ( )  
  

  ( )   
√ 

 

 

 
 
 

√    (  )   
 

 
0
 

 
       (  )1

 

 .
 

 
       (  )/

 

            (     )   

Now let’s consider the mass function   ( ) given in Eq. (2.41). So, we need to find 

  by use mass   ( ) 

  
 

 
      (  )                                                    (     ) 

So, the general form of the wave function becomes 

  ( )  
 

√ 
 

     

 

√  (  ) 
 

  
 

 
0
 

 
      (  )1

 

  ( )               (     ) 

If     and   ( )     we get the ground state wave function (see Fig. 2.12.a) 

  ( )  
 

 
 

 

 

√  (  ) 
 

  
 

 
0
 

 
      (  )1

 

                              (     ) 

and the probability density for the ground state   ( )     ( )  
   (Fig. 2.12.b) 

  ( )   
 

 
 
 

 

√  (  ) 
   

 

 
0
 

 
      (  )1

 

                                    (     )   

 

 

 

 

 

 

 

 

Figure 2.12: (a) Plot of the ground state   ( )  (b) Plot of the probability density 

  ( )  chosen as          
 

 

 

If     and   ( )      we get the first state wave function (see Fig. 2.13.a)  
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  ( )  
√ 

 

 

 
 

 

 

√  (  ) 
 

 
 
 

 
0
 

 
      (  )1

 

 [
 

 
      (  )]               (     ) 

and the probability density for the first state   ( )     ( )  
  (see Fig. 2.13.b) 

  ( )   
√ 

 

 

 
 
 

 

√  (  ) 
   

 

 
0
 

 
      (  )1

 

 0
 

 
      (  )1                    (     )   

 

 

 

 

 

 

 

 

Figure 2.13: (a) Plot of the first state   ( )  (b) Plot of the probability density   ( ), 
chosen as          
 

 

 

If     and   ( )         the second state wave function as (see Fig. 2.14.a) 

  ( )  
√ 

 

 

 
 

 

 

√  (  ) 
 

  
 

 
0
 

 
      (  )1

 

 (
 

 
      (  ))

 

                (     ) 

and the probability density for the second state   ( )     ( )  
   (see Fig. 2.14.b) 

  ( )   
√ 

 

 

 
 
 

 

√  (  ) 
   

 

 
0
 

 
      (  )1

 

 .
 

 
      (  )/

 

                  (     )   
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Figure 2.14: (a) Plot of the second state   ( )  (b) Plot of the probability density 

  ( ), chosen as          
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Chapter 3 

QUANTUM QUASI-FREE PDM 

In the position dependent mass PDM Schrödinger equation, the mass and momentum 

operator no longer commute. The general representation for the kinetic operator was 

introduce by Von- Roos 

  
 

 
[ ( )    ( )    ( )   ( )    ( )    ( ) ]                     (   ) 

and the Von- Roos vagueness parameters       are compelled by the condition 

                                                                     (   ) 

Also in this chapter, suppose the PDM particle model as  

 ( )  
  

(      ) 
                                                        (   ) 

 

 

 

 

 

 

 

 

 

Figure 3.1: Plot of the position dependent mass  ( )  
  

(      ) 
 , chosen as 

      as well as a variety of values with the level parameter A. If     the mass 

function becomes constant, but if     , this mass function becomes very sensitive 

with respect to position  
 

𝐴    

𝐴    

𝐴    

  𝐴     
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Utilizing quantum mechanics Von- Roos Hamiltonian operator      ( )  for 

the free particle   ( )     So Hamiltonian becomes    , as we know, T is the 

kinetic and given in Eq. (3.1) and     
 

  
      with      In a clear way, one 

may demonstrate that the relating Schrödinger equation  

  ( )    ( )                                                         (   ) 

However, PCT is 

  ( )  √ ( )     ( )  ∫√
  

(      ) 
                                       (   ) 

Taking integral gives 

 ( )  
 

 
                                                                       (   ) 

With the substitution  ( )   ( )
 

   ( ) along with the PCT the PDM Schrödinger 

equation transforms to  

 

 
(   

   
   ( )

 ( ) 
  

  ( ) 

 ( ) 
) ( )    ( )                         (   ) 

with 

  
 

 
(    )                  [

 

  
  (     )   ]                 (   ) 

Note that,   is eliminated using the Von Roos constraint in Eq. (3.2). For the first and 

second derivative of  ( ) from Eq. (3.3) we get 

  ( )   
    

  

(      ) 
                                                           (   ) 

and  

   ( )  
     

   

(      ) 
 

    
 

(      ) 
                                    (    ) 

respectively. Substitution into Eq. (3.7) gives 
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(   

  
   

  

(     )       (
  

√  

)  
  

  
  ) ( )    ( )      (    ) 

We introduce a variables change of the form   
  

√  
 to get the one dimensional 

Schrödinger equation for a Pöschl-Teller like potential [6] 

( 
 

   
  
  

 (     )

      ( )
) ( )    ( )                           (    ) 

where  

  
 

  
 

 

  

(     )                                                         (    ) 

and the effective potential has the form 

     
 (     )

      ( )
 

 

   

 (   )

    ( )
                                                   (    ) 

where  (   )   (     )  

 

 

 

 

 

Figure 3.2: Plot of the effective potential      
 

   

 (   )

    ( )
 and position dependent 

mass function  ( )  
  

(      ) 
  together. Chosen as              

 

 

Now, Substituting Eq. (3.13) into Eq. (3.12) 

𝑉𝑒𝑓𝑓  
 

 𝑚 

𝜆(𝜆   )

𝑐𝑜𝑠 (𝒵)
 

𝑚(𝑥)  
𝑚 

(  𝐴 𝑥 ) 
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( 
 

   
  
  

 

   

 (   )

    ( )
) ( )  [(

 

  
 

 

  
) (     )]  ( )            (    ) 

If we set      
 

 
   and    

 

 
  and substituting into Eq. (3.8), we get        

If we set      
 

 
     and       and substituting into Eq. (3.8), we get     and     

as 

  
 

 
                

 

  
                                                             (    ) 

Substituting Eq. (3.16) into Eq. (3.15) 

 

   
(   

  
 (   )

    ( )
) ( )  [(

 

  
 

 

  
) (
 

 
 
  

  
)] ( )             (    ) 

or 

 

   
(   

  
 (   )

    ( )
) ( )  (

 

  
 

 

   
) ( )                       (    ) 

Eq. (3.18) divided by 
 

   
 becomes 

   
  ( )  (

 (   )

    ( )
 
    

  
  ) ( )                                 (    ) 

or  

   
  ( )  (

 (   )

    ( )
 
      

 

  
) ( )                                (    ) 

Finally, we get the Schrödinger equation as 

   ( )  (   
 (   )

    ( )
) ( )                                          (    ) 

where     
      

 

  
. Let us introduce a new variable 

      ( )                                                              (    ) 

 The first and the second derivative of Eq. (3.22) are given by 

        ( )    ( )                                                        (    ) 

As we know,   
  ( )    

  ( )    (   ( ))    (  ( )     ) we get 
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  ( )      ( )(    )

     ( )  
                                   (    ) 

Substituting      and     into Eq. (3.24) we get 

  
  ( )      (  √ √   )

 
 (     )                        (    ) 

or, Eq. (3.25) finally becomes  

   ( )     (   )    (     )                                   (    ) 

Substituting Eq. (3.26) into Eq. (3.21) 

  (   )    (     )    (   
 (   )

 
)                       (    ) 

or  

 (   )    (
 

 
  )   (

 (   )

  
 
  

 
)                        (    ) 

Splitting off a fitting power of     by setting 

   
 
   ( )                                                           (    ) 

The first and the second derivative of Eq. (3.29) are 

    
 
     

 

 
 
 
 
                                                        (    ) 

and  

     
 
        

 
 
       

 

 
(
 

 
  ) 

 
 
                                       (    ) 

Substituting Eqs. (3.29), (3.30) and Eq. (3.31) into Eq. (3.28) one finds  

 (   ) [ 
 
        

 
 
      

 

 
(
 

 
  ) 

 
 
    ]   

(
 

 
  ) [ 

 
     

 

 
 
 
 
    ]  (

 (   )

  
 
  

 
) 0 

 
   ( )1             (    ) 

Divided by   
 
  , Eq. (3.32) becomes 
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 (   )     (   )   
 

 
(
 

 
  )   (   )   

(
 

 
  )   

 

 
(
 

 
  )      

 

 
(
 (   )

 
   )            (    ) 

From the last equation we get 

         
 

 
       [(  

 

 
)  (   ) ]                        (    ) 

and 

 

 
(
 

 
  )    (   )  

 

 
(
 

 
  )       

 

 
(
 (   )

 
   )   

 

 
[(   )

 

 
(
 

 
  )  

 

 
(
 

 
  )  

 

 
( (   )     )]             (    ) 

Also, Eq. (3.35) becomes 

 

 
*
 

 
(
 

 
  )  

 (   )

 
 
 

 
(
 

 
  )  

  

 
(
 

 
  )  

   

 
+    

 
 

 
,     -                                                            (    ) 

Now, substituting Eq. (3.36) and Eq. (3.34) into Eq. (3.33), we get the 

hypergeometric differential equation, and given by 

 (   )    [(  
 

 
)  (   ) ]    

 

 
,     -                      (    ) 

Complete solution of Eq. (3.37) may be written  

         (    
 

 
    )    .

 

 
  /    (

 

 
   

 

 
   

 

 
    )               (    ) 

where 

  
 

 
(   )              

 

 
(   )                            (    ) 

As we know,       ( ) and    
  

√  
  and from Eq. (3.6) we have  ( )  

 

 
         which all imply 
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      (
 

√  

 

 
       )      (

 

√  
       )               (    )   

Since, 

    (
 

√  

 

 
       )  

 

     
                          (    )  

Eq. (3.38) becomes  

  ( )         (    
 

 
   

 

     
)   

  .
 

 
  /       (

 

 
   

 

 
   

 

 
   

 

     
)             (    ) 

such that,      at         

Recall, the original Pöschl-teller potential has the form [6] 

  
    

  
 *

 (   )

     (    )
 

 (   )

     (    )
+  .   (    )  

 

 
/         (    ) 

with   being a reciprocal length,        As the potential goes to infinity at 

 (    )    and  (    )  
 

 
 we get the boundary condition     at these 

points. It can be shown that the Schrödinger equation 

   

   
 
  

  
 (   )                                             (    ) 

can be integrated in closed form. So let as write the eigenfunctions as  

         (    )   
    (    )                                 (    ) 

    at the boundaries. Defining the independent variable 

       (    )                                               (    ) 

and with   in the form 

  ∑   
 

 

                                                         (    ) 

From Eqs. (3.43), (3.44),(3.45) and (3.46) we obtain the recurrence relation 
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    ,(     )(     )   (   )-   

  [ (     )
  

  

    
 ]                                         (    ) 

From the condition of stopping the recurrence relation, we obtain the Energy 

eigenvalue 

   
    

  
(      )                                       (    ) 

So we can easily convert this original process to obtain the eigenenergy in our case 

by taking          and           , our eigenvalue has the form  

   
 

  
(      )                                                 (    ) 

 

 

 

 

 

 

 

Figure 3.3: Plot of the effective potential      
 

   

 (   )

    ( )
 and the Energy 

eigenvalue    
 

  
(      )   together. Chosen as                 

 

 

𝑛    

𝑛    

𝑛    

𝑛    

𝑛    
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Chapter 4 

SOLUTIONS OF PDM SCHRODINGER EQUATION IN 

d-DIMENSIONS 

 

4.1 d-Dimensional Quasi-free PDM Schrödinger Equation 

All of us look at the free particle (i.e.,  ( )   ), having a PDM  ( )  
  

(      ) 
 

within the d-dimensional Schrödinger equation. The PDM  ( )      ( ), and 

       and      in Eq. (1.1) of Tanaka [21]. The Schrödinger Hamiltonian 

would likely study (using atomic units       ) 

  
 

 
( ⃗⃗

 

 ( )
)   ⃗⃗    

  

    
( ⃗⃗

 

 ( )
  ⃗⃗)                     (   ) 

and also supposing the actual d-dimensional spherical symmetric formula, together 

with  

 ( ⃗)   
 (   )

 ⁄        ( )      

 (   )                                (   ) 

From Hamiltonian Eq. (4.1) would certainly result in the subsequent time 

independent d-dimensional for the radial Schrödinger equation form 

,
  

   
 
  (    )

  
 
  ( )

 ( )
(
   

  
 
 

  
)    ( ) -     ( )              (   ) 

where      (   )  ⁄  if     also,   can be the angular momentum quantum 

number, and             is actually the radial quantum number, and also 

  ( )  
 

  
 ( ). However, the radial part of Schrödinger equation together with 

CM and angular momentum    is actually written as 
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,
  

   
 
  (    )

  
     -  ( )                                     (   ) 

where     is the energy eigenvalue. 

Now, we apply to the Eq. (4.3) the following transformation  

   ( )                 ( )   ( ) ( ( ))                                     (   ) 

would certainly result in  ( )   ( )   ( ), manifested by the requirement of a 

disappearing coefficient of the first-order derivative of  ( ( )) (hence a one-

dimensional form of the Schrödinger equation is achieved), and also   ( )   ( ) 

to avoid position dependent energies-multiplicity (i.e.,    ( )   ( )    ⁄ ). So, 

we get the following condition on transformation Eq. (4.5) to be a PCT 

 ( )  ∫√ ( )    ( )   ( )
 

                                  (   )

 

 

 

This in effect indicates 

, 
 

 

  

   
     ( ( ))-        ( ( ))          ( ( ))                 (   ) 

and with an effective potential written as 

    ( ( ))  
  (    )

    ( )
   ( )                               (   ) 

where  

  ( )  
   ( )

  ( ) 
 
   ( ) 

   ( ) 
 
  ( )(   )

   ( ) 
                      (   ) 

Now, consequences associated with asymptotically disappearing mass setting   goes 

to infinity. A free particle (i.e., ( )   ) together with an asymptotically 

disappearing PDM  ( )  
  

(      ) 
 would experience an effective potential 

    ( ( ))  
  

 
*
 (   )

    (  ) 
 
 (   )

    (  )
+  

  

 
              (    ) 
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Now, from the our PDM  ( )  
  

(      ) 
 and which under PCT Eq. (4.6) 

 ( )  ∫√
 

(      ) 
                                             (    )

 

 

 

Integration of Eq. (4.11) implies 

 ( )  
 

 
      (  )        (  )                 (    ) 

The first and the second derivative of  ( )  
  

(      ) 
 as 

  ( )   
    

(      ) 
            ( )  

      

(      ) 
 

    

(      ) 
          (    ) 

Substitution Eq. (4.13) with Eq. (4.12) into Eq. (4.9) 

  ( )   (   )      (  )  
  

 
(    )                        (    ) 

Now, substitution Eq. (4.10) into Eq. (4.7) and such settings, says 

, 
 

 

  

   
 
  

 
*
 (   )

    (  ) 
 
 (   )

    (  )
+-        ( )         ( )                 (    ) 

where 

 (   )    (    )      (   )     (    )         
 

 
         (    ) 

Eq. (4.15) is actually a standard one-dimensional type of the Schrödinger equation 

having a generalized trigonometric Pöschl-Teller effective potential.  

We will apply the previous processes to the particular trigonometric Pöschl-Teller 

effective potential, and it has the form 

     
  

 
*
 (   )

    (  ) 
 
 (   )

    (  )
+                            (    ) 

If    , Eq. (4.17) written as 

     *
 (   )

     (  ) 
 

 (   )

     (  )
+                                 (    ) 
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Now, using the general solution of the Schrödinger equation        ( )         ( ) 

as Eq. (4.15), which reads  

      ( )      (  )    (  ) ,      *
 

 
 √

 

 
 
 

 
 √

 

 
   

 

 
     (  )+   

       (  )      *
     

 
 √

 

 
 
     

 
 √

 

 
 
 

 
       (  )+-     (    ) 

where      . We can find now the Radial wavefunction       ( ) of  , which 

satisfy boundary conditions        ( )        .
 

  
/     Since,       ( )     it 

turns out that      So, Eq. (4.19) becomes 

      ( )        (  )    (  )   

        (             
 

 
     (  ))                      (    ) 

where  
 

 
 √

   
 
       

and 

    
  

 
(     )

  
  (       )

 

 
                                (    ) 

Now, from the boundary condition       ( )        .
 

  
/   , seeing that 

described by simply Salem and Montemayor (look Eq. (4.7) in [22]). Therefore 

would certainly produce 

       
  

 
((  

 

 
     )

 

  )                        (    ) 

where   √(     )      

Also, the radial Schrödinger equation has the form 

      ( )    ̃     (    ) 
 

 
(       )   

        (      
 

 
      

  

    
)                        (    ) 
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where       and      
 

 
  

However, if       (the requirement proposed through relation Eq. (4.16) 

whenever        ) the particular effective potential in Eq. (4.15) collapses 

directly into 

    ( ( ))  
  

 

 (   )

    (  )
                                        (    ) 

which in turn admits a defined solution 

       (   
 

 
)
 

 
  

 
                                           (    ) 

and 

      ( )       (  )       (         
 

 
     (  ))              (    ) 

Consequently is exactly the same as Eq. (4.25) 

         (   
 

 
)
 

 
  

 
                                           (    ) 

also, the radial Schrödinger equation as 

   ( )    ̃(    )  
 

 
(       )   

        (      
 

 
      

  

    
)                             (    ) 

where   
(   )

 
  

4.1.1 Consequences of a power-law mass  ( )      

The radial PDM  ( )       the actual PCT function in Eq. (4.6) implies 

 ( )  ∫√        √ ∫    ⁄    
 

 

 
 √ 

(   )
 (   )  ⁄ )

 

 

 

or 

 
(   )

 
 ( )   √ ( )                                (    ) 
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and also Eq. (4.9) gives 

  ( )   
 

  
(
 (        )

    ( )
)   

 

 
(
 (        )

 (   )    ( )
)                (    ) 

Now, the particular d-dimensional position dependent effective mass Schrödinger 

equation is usually written by [10]  

 ⃗⃗⃗ (
 

 
 ⃗⃗⃗  ( ⃗))   ,   ( )- ( ⃗)                                 (    ) 

where    ( ) is pertaining to d-dimensional spherical symmetry. Now,  ( ⃗) is 

the wave function, it’s presented an angular momentum L may be prepared as [13-

17] 

 ( ⃗)   
 (   )

 ⁄   ( )         
 (            )                          (    ) 

On the other hand, we have 

 ⃗⃗⃗ 
 

 
 ⃗⃗⃗  ( ⃗)  ( ⃗⃗⃗ 

 

 
)  [ ⃗⃗⃗  ( ⃗)]  

 

 
  
   ( ⃗)                           (    ) 

Consider 

( ⃗⃗⃗ 
 

 
)  [ ⃗⃗⃗  ( ⃗)]   

         
 (            )

 
 *
  

 
(
   

 
 
 

 
 
  ( )

  
)+      (    ) 

and  

 

 
  
   ( ⃗)  

         
 (            )

 
  

*
  

   
 
 (     )  (   )(   )  ⁄

  
+  ( )                 (    ) 

Substitution of Eq. (4.4) along with Eq. (4.5) into Eq. (4.1) we are able to get the 

adopting the d-dimensional radial PDM Schrödinger equation 

,
  

   
 
  

 
(
   

 
 
 

 
  

 

  
)  

 (     )  (   )(   )  ⁄

  
  

  ,   ( )-+ ( )                                         (    ) 
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where    
  ( )

  
  and E is the energy eigenvalue. However, this d-dimensional 

radial Schrödinger equation together with CM, the particular potential function 

 ( )  the energy spectrum   and angular momentum   have the form 

,
  

   
 
 (     )  (   )(   )  ⁄

  
  ,   ( )-- ( )         (    ) 

Invoking a transformation     through a mapping function    ( )   and 

rewriting the wave function in the form of 

 ( )   ( )  ( )                                                    (    ) 

We obtain a transformed Schrödinger equation with constant mass 

,
  

   
 ( 

  

 
 
   

  
)
 

  
 (

   

 
 
   

 

  

 
)   

* (     )  
(   )(   )

 
+ (
  

 
)

 

  

      (  ) [   ( ( ))]} ( )                                                 (    ) 

By comparing Eq. (4.39) with Eq. (4.36), we can identify the next conditions within 

the Eq. (4.38), to become a point canonical transformation PCT 

 ( )  (
  

 
)

 

 

                                                         (    ) 

and  

 ( )    
 (     )  (   )(   )  ⁄

    
  

(  ) 

 
[ ( ( ))   ]  

(   )  

    
 

 

  
   

* (     )  
(   )(   )

 
+ (
  

 
)

 

 
 

  
, ( )   (  )-        (    ) 

where  
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 ( )  
   

 
  
 

 
(
  

 
)

 

                                                        (    ) 

4.2 Application to the d-Dimensional Harmonic Oscillator 

The particular d-dimensional harmonic oscillator while using the wave functions and 

energy spectrum is actually written by [18] 

   (     
 

 
)                                                   (    ) 

and  

 ( )  
 

 
                                                              (    ) 

The wave functions 

  ( )    ( 
  )

  (   )  ⁄
    * 

  

 
  +   (     

 

 
     )                  (    ) 

where  .     
 

 
     / means confluent hypergeometric functions. Now we 

assume the PDM  ( )     , take PCT function  ( )    , where (       )    

real parameters. If     
 

 
 with      i.e., 

(  ) 

 
 const, we discussed in this 

Chapter. Now substituting them into Eq. (4.41) 

 ( )  
  

 
 ( ( ))  

 

 
                                          (    ) 

and energy spectrum is 

   
  

 
   

   

 
 (    ( ) 

 

 
)                                    (    ) 

and the wave functions has the form 

 ( )    (  )
(    ⁄ )( ( ) (   )  ⁄ )   ⁄    

   0 
 

 
    1  (    ( )  

 

 
      )          (    ) 

where   can be a real potential parameter,       (   ), and  ( ) fulfills with 

situation, and that is proven as 
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   (     )   (   )(   )      

(   ) ,  (     )  (   )(   )-      (     )         (    ) 

Especially, we acquire      such as,   is position independent and next get     

in terms of Eq. (4.49). It is straight to obtain out that Eqs. (4.46)-(4.48) agree with 

Eqs. (4.43)- (4.45). For     we get for the potential 

 ( )  
 

 
                                                                 (    ) 

the energy spectrum 

     (     ( ) 
 

 
)                                          (    ) 

 the wave function  

 ( )    (
  

 
 )

   ( )      

  

   [ 
  

 
  ]  (     ( )  

 

 
 
  

 
  )              (    ) 

where   ( ) has the form 

    (      )   (   )(   )    

        (     )                               (    ) 

4.3 Application to the d-Dimensional Coulomb potential 

The Coulomb potential d-dimensional together with the wave functions and energy 

spectrum is actually written by [19] 

 ( )   
 

 
                                                          (    ) 

and the energy spectrum 

   
  

 (    (   )  ⁄ ) 
                                     (    ) 

for the Coulomb wave functions  

  ( )    (  )
  (   )  ⁄     ,   -  (              )        (    ) 
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where   
 

    (   )  ⁄
  The PDM and PCT function for this case are the same as 

harmonic oscillator ( ( )       ( )         
 

 
 ) and      Substituting 

them into Eq. (4.40) and Eq. (4.41),  

 ( )   
 

      
                                                (    ) 

and the energy spectrum has the form 

    
    

(   ) 
 

 

( ( )   (   )  ⁄ ) 
                            (    ) 

The Coulomb wave function as 

  ( )     
.  

(   )

 
/(    ⁄ )   ⁄    [       ⁄ ]       

 (     ( )             ⁄ )                            (    ) 

where   can be real potential parameter, and  ( ) satisfies together with Eq. (4.49), 

as well as   

  
    

(   ) 
 

 

    (   )  
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Chapter 5 

  CONCLUSION 

The problem of the PDM is discussed in this thesis exhaustingly. The starting point 

of the discussion of the PDM was selected as the classical harmonic oscillator under 

the PDM. The classical harmonic oscillator was solved for several PDM functions. 

Then this approach was also expanded to the quantum domain, also calculating the 

wave functions and the probability densities in for different PDM functions. In this 

quantum domain, obviously the behavior is of PDM is significantly different. In 

Chapter 3, the problem of a quasi-free PDM is reduced to the solution of the 

Schrödinger equation for a Pöschl-Teller like potential. A generalization to d 

dimensions is given in Chapter 4. Furthermore, we close Chapter 4 with the 

application of the d-dimensional potential mass problem to the d-dimensional 

harmonic oscillator. Chapter 5, closes this thesis with the conclusions. 
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