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ABSTRACT 

On a Cosmic Landscape, the metric structure vested with two orthogonal space-like 

Killing vectors; a class of solutions of the Einstein-Maxwell’s field equations, is 

spotlighted from the global structural viewpoints of the Khan-Penrose and Bell-

Szekeres space-time continua or Cosmic Landscapes: a platform for discussing the 

motion of a test particle. A solution, spring-boarded by the Ferrari-Ibanez hybrid 

formalism, also provides a launch-pad for discussing the motion of a test particle on a 

Degenerate Cosmic Landscape. When a particle is placed along the path of two 

colliding plane waves, it will be forced to follow a geodesic, defined by the properties 

of the global structure, leading to either a singularity or a horizon. In the null- 

coordinates,(𝑢, 𝑣), the interaction region is bounded, so given the initial conditions the 

later developments are plotted numerically. The time of fall into the singularity or 

horizon is also obtained.  

Keywords: Cosmic Landscape, gravitational waves, geodesics, horizons/singularities. 
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ÖZ 

Kozmik uzayda birbirine dik iki uzaysal Killing vektörle belirlenen Khan-Penrose ve 

Bell-Szekeres (Einstein-Maxwell teorisi) uzayları içerisinde test-partikül hareketleri 

incelenmiştir. Bu yönde karışık (hibrit) bir çözüm uzayı olan Ferrari-Ibanez çözümü 

örnek alınmıştır. Bir dalga çarpışma uzayında jeodeziler üzerinde hareket eden 

partiküller tekillik veya ufuk yüzeyine ulaşmaktadır. Işıksal (𝑢, 𝑣) koordinat uzayında 

ilk şartlara bağımlı hareketlerin zaman gelişimi sayısal yöntemlerle çizilmiştir. Aynı 

yöntemle tekillik/ufuk düzlemine varış zamanı elde edilmiştir. 

 Anahtar Kelimeler: Kozmik uzay, yerçekim dalgaları, jeodeziler, uzay düzlem ve 

tekillikleri 
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Chapter 1 

1 INTRODUCTION 

The detection of B-Mode Polarization at Degree angular scales by BICEP2 [1], 

provides an undeniable proof, (see fig. 1.1) [1], a confirmation of the properties of the 

gravitational waves produced in the early universe as predicted by the inflationary 

theory. 

Figure 1.1: The B-Mode Map vs. Simulation [1] 

 

1.1 Research Background  

The journey to this milestone in the annals of the history of sciences began a couple of 

centuries ago. Passing through the corridors of the theoretical minds, and by unraveling 
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the hidden reality [2] of the cosmic mysteries [3] painted in its history [4, 5], where, 

things that glaringly seemed humanly impossible [6, 7] to the ordinary man on the 

street, are now made possible [8] through the workings of these theoretical minds; one 

simply but confirms and affirms that: “what the mind can conceive, it can achieve,” 

and “the quality of life we live is a function of how we think”. This quest was 

shouldered-on by a handful theoretical Giants [9], who through the weaponry of 

thought experiments, formulated some testable theories and principles that seems to 

govern our life and existence as we walk the sand of times [10, 4]. 

Gravity is the most elusive physical phenomenon that has overwhelmed the theoretical 

minds for centuries, of which, the modern theorists see it as a force that is not present 

in the two dimensional world but materializes along with the emergence of the illusory 

third and higher dimensions [11, 12, 2]. 

Newton’s formalism for the Universal Law of Gravitation pictures gravity as an 

attractive force that acts at a distance. The Law explains how the Moon and the 

planetary systems move in orbits around their common center of gravity. In his address 

to his celebrating fans and critics over his famous work on “The Mathematical 

Principle of Natural Philosophy,” Newton declares; “If I have seen farther, it is by 

standing on the shoulders of Giants” [9]. 

However, when confronted with a challenge on how gravity works, he looked at the 

then visible static Cosmic Landscape, as a visionary founding father of theoretical 

Physics, through the Telescopic-far-sighted power of his newly born Newtonian 

formalism; but sadly and regrettably, realizing there is still a long way to completing 

the cosmic puzzle; he then declared in a cold-hearted low tone:  
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I do not know how I may appear to the world, but to myself I seem to have 

been only like a boy, playing on the sea-shore, and diverting myself, in now 

and then finding a smoother pebble or prettier shell than ordinary, whilst the 

great ocean of truth lay all undiscovered before me [9]. 

Formulating his theory of general relativity in 1915, Einstein replaced the gravitational 

force or force of gravity that acts at a distance, with the dynamics of space-time 

continuum; gravity is seen to arise due to the curvature of the fabric of the space-time 

continuum or cosmic landscape [13] whenever matter and energy come on stage. This 

curvature deflects the trajectories or paths of particles, giving rise to a gravitational 

field; a region of space-time where gravitational influence is experienced. This 

disturbance on space-time continuum due to gravity is transmitted within the fabric of 

the cosmos in form of gravitational waves. 

Some solutions to the Einstein’s field equations enshrined in his theory of general 

relativity, are centered on the concept of gravitational waves. Among these solutions 

include the Khan-Penrose global structure [14], and the Bell-Szekeres global structure 

[15]. 

1.2 The Basic Concept 

1.2.1 What is Gravitational Wave? 

The theory of general relativity provides that gravity is the curvature of space-time 

continuum, produced by mass-energy concentrations in the fabric of space-time.  

Whenever these mass-energy concentrations move or change shape, they produce 

distortions in the space-time geometry. These ripples or undulations in the curvature 

of space-time continuum carry energy and momentum and propagate at the speed of 
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light. In this light, we see a gravitational plane wave as a region of space-time 

continuum confined between two parallel planes, in which the curvature is a non-zero 

and propagates at the speed of light through the fabrics of cosmic landscape, in the 

direction normal to the plane [16 - 19]. 

1.2.2 Sources of Gravitational Waves 

Gravitational waves are said to be produced based on the sizes or masses of the bodies 

involved over a wide range of time scales. Following [16, 20, 21], we classify 

gravitational waves based on their sources and waved forms; Periodic, Bursts, and 

Stochastic waves.  

The Periodic waves are the sinusoidal kind of waves said to be produced by rotating 

stars, binary stars, binary black holes and binaries of both stars and black holes. On 

the other hand, the Bursts are waves of short cycles. They are said to be produced by 

the collisions of stellar systems or black holes, collapse of stellar systems in 

supernovae to form either neutron stars or black holes, the coalescence of binary stars 

or neutron stars or black holes or binaries of both stellar systems and black holes, and 

accretion of stellar systems or small black holes into supermassive black holes at the 

galactic centers. 

The stochastic waves are said to be produced by random fluctuations of long 

durations. The waves are said to be produced by cosmic systems such as; radiating 

binary stars, deaths of pre-galactic massive stars, vibrations of cosmic strings, and the 

Big Bang. 
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1.2.3 Interactions 

One of the spear-heading distinctions between electromagnetic waves and the 

gravitational waves is that, the first ones are oscillations of the electromagnetic field 

that propagate through space-time. While the latter ones on the other hand, are 

oscillations of the fabric of space-time itself.  

Maxwell’s field equations are said to be linear, since their solutions can be superposed, 

resulting in the phenomena, that all electromagnetic waves pass through each other 

without any interaction. On the other hand, Einstein’s field equations are said to be 

highly non-linear, and their solutions show that, as the waves pass through each other, 

there will be an emergence of a non-linear interaction through the field equations.  

However, whenever two waves of electromagnetic origin pass through each other, they 

will definitely experience a non-linear interaction between them due to their associated 

gravitational fields; since, Einstein’s theory provides that; all forms of energy have an 

associated gravitational field. 

1.2.4 Singularities and Horizons 

Singularities are said to occur when the mathematical expression that defines and 

describes the behavior of a continuous function breaks down at some particular point. 

Following [22], we categorize singularities into three basic types; Quasi-regular, non-

scalar curvature, and scalar curvature. 

 A scalar curvature singularity is such that, as the singular point is been approached 

by some relative observers, some physical quantities diverge, and all observers feel 

unbounded tidal forces. Examples include the big bang and black holes. While on 
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cosmic landscapes with a non-scalar curvature singularity, there is no curvature 

scalar divergence, yet, some components of the Riemann tensor along an incomplete 

curve do not tend to finite limits as the singularity is approached. Consequently, all 

test particles that accrete into this curvature singularity experience infinite tidal forces. 

However, relative observers can follow geodesics close to this singularity without any 

effect. On the other hand, in a space-time with quasi-regular singularity, the 

Riemann tensor appears to be completely finite in all reasonable frames. Observers 

near this singularity, including those that accrete into the singularity itself, do not at 

any point experience unbounded tidal forces. 

However, sometimes, instead of forming singularities in the interaction regions, the 

impulsive waves form horizons. A horizon in this sense is seen as a smooth, null hyper-

surface on which Killing vectors are involved with a one-way membrane [18]. 

On a general note, these forms of singularities and horizons take the center–stage in 

discussing any meaningful solutions of colliding plane waves; either electromagnetic 

plane waves, or gravitational plane waves, or a combination of both. If a test particle 

is placed on the paths of these two impulsive waves, it will be forced to enter into the 

region of interaction, following a geodesic that leads to a singularity or a horizon in a 

finite interval of proper time. 

1.3 The Scope 

The space-time of colliding plane waves admits two space-like Killing vectors. In the 

null-coordinates,(𝑢, 𝑣), we intend to analyze the behavior of a test particle through 

geodesic equations. The basic space-time continua or cosmic landscapes such as the 

Khan-Penrose and Bell-Szekeres will be treated in this work. In the null-coordinates, 

the interaction region is bounded; so, given the initial conditions, we intend to plot the 
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developments numerically. The time of fall into the singularity will be obtained also, 

numerically. The prototype space-time for colliding waves is given by  

𝑑𝑆2 = 2𝑒−𝑀𝑑𝑢𝑑𝑣 − 𝑒−𝑈+𝑉𝑑𝑥2 − 𝑒−𝑈−𝑉𝑑𝑦2 

we do not intend to consider the contribution of the cross polarization of the waves. 

As the write-up unfolds, we began by introducing the background that prompted this 

research, which includes the basic concepts involved. Subsequently, we shall look at 

the mathematical structure that involves the basic tools and equations of motion 

regarding the geodesics, Killing vectors, Euler-Lagrange formalism, Newman-Penrose 

formalism, and Einstein-Maxwell’s equations; these will form the second chapter. The 

third chapter spot-lights the global theoretical structures; Khan-Penrose, Bell-Szekeres 

and the Ferrari-Ibanez degenerate solutions. These structures provide platforms for 

discussing the motion of a test particle on the various Cosmic Landscapes that make 

up the fourth chapter. Finally, we shall summarize and conclude our discussion in the 

fifth chapter. 
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Chapter 2 

2 THE MATHEMATICAL STRUCTURE 

This chapter intends to provide some mathematical expressions that will play a vital 

role in our discussions in the subsequent chapters. I often hear my professor and 

supervisor say affirmatively, as it is acclaimed among the theoretical minds; “Tensor 

is the language of General Relativity and Cosmology.” On this note, therefore, most 

of the expressions in this work are coded in tensoral notations and connotations. 

The chapter begins with the geodesic equations, and ran through; the Killing equations, 

the Euler-Lagrange formalism, the Newman-Penrose formalism, and the Einstein-

Maxwell’s field equations. 

2.1 The Geodesic Equation 

Imagine an inertial observer defined by 𝜉, cruising steadily on a Cosmic Landscape 

relative to other inertial observers on the same cosmic landscape or space-time 

continuum. We express the system by 

𝜉ɤ = 𝜉ɤ(𝑥𝜎).                                                       (2.1) 

For constant motion, the acceleration of the system is given by 

𝑑2𝜉ɤ

𝑑𝜏2
= 0.                                                             (2.2) 

The geodesic equation that defines the system can be expressed as 

𝑑2𝑥𝜌

𝜕𝜏2
+ Г𝜎𝜂

𝜌 𝑑𝑥𝜎

𝑑𝜏

𝑑𝑥𝜂

𝑑𝜏
= 0,                                        (2.3) 

where 𝑥𝜌 are the coordinates, Г𝜎𝜂
𝜌

 is the Christoffel symbol and  𝜏 is the proper time. 
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2.2 The Killing Equation 

The Killing equation that defines the motion of a system on a Cosmic Landscape is 

given by  

𝜕𝜉𝜎

𝜕𝑥𝜌
+

𝜕𝜉𝜌

𝜕𝑥𝜎
− 2𝜉𝜂Г𝜌𝜎

𝜂
= 0,                                         (2.4) 

or 

𝜉𝜎,𝜌 + 𝜉𝜌,𝜎 − 2Г𝜌𝜎
𝜂

𝜉𝜂 = 0.                                         (2.5) 

In terms of covariant derivatives, Eqn. (2.4) takes the form 

𝜉𝜎;𝜌 + 𝜉𝜌;𝜎 = 0 ,                                                        (2.6) 

where, 𝜉𝜌 are the Killing vectors and 𝜌 = (1,2,3,4) = (𝑥, 𝑦, 𝑢, 𝑣). 

We define the Killing vectors as 

𝜉𝜌 = 𝜕𝜌.                                                           (2.7) 

2.3 The Euler-Lagrange Formalism 

2.3.1 The Euler-Lagrange Equations 

Consider a mechanical system defined by the action 

I = ∫ ℒ(𝑞𝑖, 𝑞̇𝑖, 𝑡)𝑑𝑡 ,                                                  (2.8) 

where, 

ℒ = ℒ(𝑞𝑖, 𝑞̇𝑖), is the Lagrangian function, 

𝑞𝑖 = Generalized coordinates, 

𝑞̇𝑖 = Generalized velocity, 

and 

i = degrees of freedom. 
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The Euler-Lagrange Equations of motion corresponding to the integral, I, is defined 

by the Lagrange equations of motion 

𝑑

𝑑𝑡
(

𝜕ℒ

𝜕𝑞̇𝑖
) −

𝜕ℒ

𝜕𝑞𝑖
= 0,                                               (2.9) 

 where, 𝑖 = 1,2, … 𝑛 . By variation Principle, we have that 

𝛿𝐼 = ∫ 𝛿 ℒ(𝑞𝑖, 𝑞̇𝑖)𝑑𝑡 = 0 .                                       (2.10) 

2.3.2 The shortest path or geodesic 

 Now, consider the Riemannian metric element  

𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2                                         (2.11) 

which defines the motion of a system on a flat space-time of infinitesimal length (𝑑𝑠). 

To transform our coordinates from the Cartesian to the null (𝑢, 𝑣) coordinates, we let  

 𝑥 = 𝑥(𝑢, 𝑣), 𝑦 = 𝑦(𝑢, 𝑣), 𝑎𝑛𝑑 𝑧 = 𝑧(𝑢, 𝑣).                    (2.12) 

In the Lagrange formalism, the shortest path or geodesics generally is regarded as the 

minimum arc length defined by the Lagrangian 

ℒ = ∫ √(𝑑𝑥)2 + (𝑑𝑦)2 + (𝑑𝑧)2
𝜌

𝜎

                                   (2.13) 

where 

𝑑𝑥 =
𝜕𝑥

𝜕𝑢
𝑑𝑢 +

𝜕𝑥

𝜕𝑣
𝑑𝑣 ⇒ 𝑑𝑥2 = (

𝜕𝑥

𝜕𝑢
)

2

𝑑𝑢2 + 2
𝜕𝑥

𝜕𝑢

𝜕𝑥

𝜕𝑣
𝑑𝑢𝑑𝑣 + (

𝜕𝑥

𝜕𝑣
)

2

𝑑𝑣2, 

and 

𝑑𝑦 =
𝜕𝑦

𝜕𝑢
𝑑𝑢 +

𝜕𝑦

𝜕𝑣
𝑑𝑣 ⇒ 𝑑𝑦2 = (

𝜕𝑦

𝜕𝑢
)

2

𝑑𝑢2 + 2
𝜕𝑦

𝜕𝑢

𝜕𝑦

𝜕𝑣
𝑑𝑢𝑑𝑣 + (

𝜕𝑦

𝜕𝑣
)

2

𝑑𝑣2,      (2.14) 

and 

𝑑𝑧 =
𝜕𝑧

𝜕𝑢
𝑑𝑢 +

𝜕𝑧

𝜕𝑣
𝑑𝑣 ⇒ 𝑑𝑧2 = (

𝜕𝑧

𝜕𝑢
)

2

𝑑𝑢2 + 2
𝜕𝑧

𝜕𝑢

𝜕𝑧

𝜕𝑣
𝑑𝑢𝑑𝑣 + (

𝜕𝑧

𝜕𝑣
)

2

𝑑𝑣2. 

Now, let 
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𝒜 ≡ (
𝜕𝑥

𝜕𝑢
)

2

+ (
𝜕𝑦

𝜕𝑢
)

2

+ (
𝜕𝑧

𝜕𝑢
)

2

 

ℬ ≡
𝜕𝑥

𝜕𝑢

𝜕𝑥

𝜕𝑣
+

𝜕𝑦

𝜕𝑢

𝜕𝑦

𝜕𝑣
+

𝜕𝑧

𝜕𝑢

𝜕𝑧

𝜕𝑣
                                       (2.15) 

𝒞 ≡ (
𝜕𝑥

𝜕𝑣
)

2

+ (
𝜕𝑦

𝜕𝑣
)

2

+ (
𝜕𝑧

𝜕𝑣
)

2

, 

such that the Lagrangian Eq. (2.13) now takes the form 

ℒ = ∫ √𝒜 + 2ℬ𝑣′ + 𝒞𝑣′2𝑑𝑢.     
𝜌

𝜎

                                (2.16) 

Now, we take the derivative of   the Lagrangian (2.16) with respect to 𝑣 and  𝑣′ such 

that 

𝑑ℒ

𝑑𝑣
=

1

2
(𝒜 + 2ℬ𝑣′ + 𝒞𝑣′2)−

1
2 (

𝜕𝒜

𝜕𝑣
+ 2

𝜕ℬ

𝜕𝑣
𝑣′ +

𝜕𝒞

𝜕𝑣
𝑣′2) , (2.17) 

and 

𝑑ℒ

𝑑𝑣′
=

1

2
(𝒜 + 2ℬ𝑣′ + 𝒞𝑣′2)−

1
2(2ℬ + 2𝒞𝑣′).                (2.18) 

Now, by substituting for Eqs. (2.17) and (2.18) into (2.9) we obtain a new Euler-

Lagrange equation of motion given by 

𝑑

𝑑𝑢
[

ℬ + 𝒞𝑣′

√𝒜 + 2ℬ𝑣′ + 𝒞𝑣′2
] − [

(
𝜕𝒜
𝜕𝑣

+ 2
𝜕ℬ
𝜕𝑣

𝑣′ +
𝜕𝒞
𝜕𝑣

𝑣′2)

2√𝒜 + 2ℬ𝑣′ + 𝒞𝑣′2
] = 0.      (2.19) 

2.4 The Newman-Penrose Formalism 

Here, we intend to look at a handful properties that will form some relevant concepts 

for building our theoretical structure in the null coordinate. The formalism is structured 

on four null vectors; 𝑙𝜌, 𝑛𝜌, 𝑚𝜌 and  𝑚̅𝜌, where 𝑥̅ denotes complex conjugate. Here 

𝑙 = 𝑙𝜌𝑑𝑥𝜌 , 𝑛 = 𝑛𝜌𝑑𝑥𝜌, 𝑚 = 𝑚𝜌𝑑𝑥𝜌 ,                            (2.20) 

both 𝑙𝜌, and 𝑛𝜌 are real, while  𝑚𝜌 is complex. Pending on an event, we define 

𝑙𝜌 and nρas the ongoing and the outgoing null normals respectively, while 
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𝑚𝜌 and 𝑚̅𝜌 assume the role of tangential null vectors. We adopt the two sets of 

signatures and normalization curvatures 

(+, −, −, −), for 𝑙𝜌𝑛𝜌 = 1, and 𝑚𝜌𝑚̅𝜌 = −1,                   (2.21) 

and 

(−, +, +, +), for 𝑙𝜌𝑛𝜌 = −1, and 𝑚𝜌𝑚̅𝜌 = 1.                  (2.22) 

The null vectors satisfy the following conditions, for the signature (+2) 

𝑙𝜌𝑙𝜌 = 𝑛𝜌𝑛𝜌 = 𝑚𝜌𝑚𝜌 = 0, 

𝑙𝜌𝑚𝜌 = 𝑛𝜌𝑚𝜌 = 0, 

𝑙𝜌𝑛𝜌 = −1,                                                             (2.23) 

𝑚𝜌𝑚̅𝜌 = +1, 

𝑙𝜌𝑛𝜌 = 1, 

𝑚𝜌𝑚̅𝜌 = −1. 

For the time-like and space-like unit vectors, (𝑡𝜌 , 𝑠𝜌, 𝑒𝜃
𝜌

, 𝑒𝜙
𝜌

), we have 

𝑙𝜌 =
1

√2
(𝑡𝜌 + 𝑠𝜌), 

𝑛𝜌 =
1

√2
(𝑡𝜌 − 𝑠𝜌), 

𝑚𝜌 =
1

√2
(𝑒𝜃

𝜌
+ 𝑖𝑒𝜙

𝜌
), 

𝑡𝜌𝑡𝜌 = −1, 

                                 𝑠𝜌𝑠𝜌 = +1,                                                      (2.24)                                                                                                                          

𝑒𝜃
𝜌

𝑒𝜃𝜌 = +1, 

𝑒𝜙
𝜌

𝑒𝜙𝜌 = +1. 

The global metric in terms of the null vectors now takes the form 

𝑔𝜌𝜎 = −𝑙𝜌𝑛𝜎 − 𝑛𝜌𝑙𝜎 + 𝑚𝜌𝑚̅𝜎 + 𝑚̅𝜌𝑚𝜎                  (2.25) 

or 
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𝑔𝜌𝜎 = −𝑙𝜌𝑛𝜎 − 𝑛𝜌𝑙𝜎 + 𝑚𝜌𝑚̅𝜎 + 𝑚̅𝜌𝑚𝜎.                 (2.26) 

 

2.5 The Einstein-Maxwell’s Equations 

We define the scale-invariant quantities for the electromagnetic waves as 

ɸ0
∘ = ɸ0B−1, 

ɸ1
∘ = ɸ1(AB)−

1

2,                                           (2.27) 

ɸ2
∘ = ɸ2A−1, 

where ɸ𝑛
∘  are scale-invariant quantities of the electromagnetic waves. Using the 

Szekeres line element [15] defined by 

𝑑𝑠2 = 2𝑒−𝑀𝑑𝑢𝑑𝑣 − 𝑒−𝑈(𝑒𝑉𝑐𝑜𝑠ℎ𝑊𝑑𝑥2 − 2𝑠𝑖𝑛ℎ𝑊𝑑𝑥𝑑𝑦 + 𝑒−𝑉𝑐𝑜𝑠ℎ𝑊𝑑𝑦2), (2.28) 

and by following some transformations [15, 22, 24], we obtain the Maxwell’s 

Equations as 

ɸ1,𝑣
∘ = (2𝜌∘ −

1

2
𝑀,𝑣) ɸ1

∘ ,                                  (2.29)  

                           ɸ2,𝑣
∘ = −𝜆∘ɸ0 + 4𝛼∘ɸ1

∘ + (𝜌∘ − 𝑖𝐸∘)ɸ2
∘ ,                        (2.30) 

ɸ0,𝑢
∘ = −(𝜇∘ − 𝑖𝐺∘)ɸ0

∘ − 4𝛼̅∘ɸ1
∘ + 𝛿∘ɸ2

∘ ,                       (2.31) 

ɸ1,𝑢
∘ = − (2𝜇∘ −

1

2
𝑀,𝑢) ɸ1

∘ ,                              (2.32) 

ɸ2,𝑣
∘ =

1

2
(𝑈𝑣 + 𝑖𝑉𝑣𝑠𝑖𝑛ℎ𝑊)ɸ2

∘ −
1

2
(𝑖𝑊𝑢 + 𝑉𝑢𝑐𝑜𝑠ℎ𝑊)ɸ0

∘ ,       (3.33) 

ɸ0,𝑢
∘ =

1

2
(𝑈𝑢 − 𝑖𝑉𝑢𝑠𝑖𝑛ℎ𝑊)ɸ0

∘ +
1

2
(𝑖𝑊𝑣 − 𝑉𝑣𝑐𝑜𝑠ℎ𝑊)ɸ2

∘ ,      (3.34) 

where 

ɸ1 =
1

2
𝐹𝜌𝜎(𝑙𝜌𝑛𝜎 + 𝑚𝜌𝑚̅𝜎) = 0                               (2.35) 

throughout the space-time continuum. 

Also, by Following [15, 22, 24, 25], the Einstein’s field equations in component form 

can be outlined as 
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𝑈𝑢𝑣 = 𝑈𝑢𝑈𝑣,                                                      (2.36) 

                       2𝑈𝑣𝑣 = 𝑈𝑣
2 + 𝑊𝑣

2 + 𝑉𝑣
2𝑐𝑜𝑠ℎ2𝑊 − 2𝑈𝑣𝑀𝑣 + 4ɸ0

∘ ɸ0
∘ ,          (2.37) 

                       2𝑈𝑢𝑢 = 𝑈𝑢
2 + 𝑊𝑢

2 + 𝑉𝑢
2𝑐𝑜𝑠ℎ2𝑊 − 2𝑈𝑢𝑀𝑢 + 4ɸ2

∘ ɸ2
∘ ,         (2.38) 

2𝑉𝑢𝑣 = 𝑈𝑢𝑉𝑣 + 𝑈𝑣𝑉𝑢 − 2(𝑉𝑢𝑊𝑣 + 𝑉𝑣𝑊𝑢)𝑡𝑎𝑛ℎ𝑊 + 2(ɸ0
∘ ɸ2

∘ + ɸ2
∘ ɸ0

∘ )𝑠𝑒𝑐ℎ𝑊, (2.39) 

               2𝑊𝑢𝑣 = 𝑈𝑢𝑊𝑣 + 𝑈𝑣𝑊𝑢 + 2𝑉𝑢𝑉𝑣𝑠𝑖𝑛ℎ𝑊𝑐𝑜𝑠ℎ𝑊 + 2𝑖(ɸ0
∘ ɸ2

∘ − ɸ2
∘ ɸ0

∘ )(2.40) 

and 

                        2𝑀𝑢𝑣 = 𝑈𝑢𝑉𝑣 + 𝑊𝑢𝑊𝑣 + 𝑉𝑢𝑉𝑣𝑐𝑜𝑠ℎ2𝑊.                     (2.41) 

Finally, following [22], we obtain the scale-invariant components of the Weyl tensor 

as 

Ѱ0
∘ = −

1

2
[(𝑉𝑣𝑣 − 𝑈𝑣𝑉𝑣 + 𝑀𝑣𝑉𝑣)𝑐𝑜𝑠ℎ𝑊 + 2𝑉𝑣𝑊𝑣𝑠𝑖𝑛ℎ𝑊]

+
1

2
𝑖(𝑊𝑣𝑣 − 𝑈𝑣𝑊𝑣 + 𝑀𝑣𝑊𝑣 − 𝑉𝑣

2𝑐𝑜𝑠ℎ𝑊𝑠𝑖𝑛ℎ𝑊)                         (2.42) 

Ѱ1
∘ = 0                                                 (2.43) 

Ѱ2
∘ =

1

2
𝑀𝑢𝑣 −

1

4
𝑖(𝑉𝑢𝑊𝑣 − 𝑉𝑣𝑊𝑢)𝑐𝑜𝑠ℎ𝑊                        (2.44) 

Ѱ3
∘ = 0                                                 (2.45) 

Ѱ4
∘ = −

1

2
[(𝑉𝑢𝑢 − 𝑈𝑢𝑉𝑢 + 𝑀𝑢𝑉𝑢)𝑐𝑜𝑠ℎ𝑊 + 2𝑉𝑢𝑊𝑢𝑠𝑖𝑛ℎ𝑊]

−
1

2
𝑖(𝑊𝑢𝑢 − 𝑈𝑢𝑊𝑢 + 𝑀𝑢𝑊𝑢 − 𝑉𝑢

2𝑐𝑜𝑠ℎ𝑊𝑠𝑖𝑛ℎ𝑊).                      (2.46) 

It is important to note at this juncture, that whenever the gravitational waves Ѱ0 and 

Ѱ4 interact, a new Weyl component Ѱ2 emerges. 
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Chapter 3 

3 THE THEORETICAL GLOBAL STRUCTURES 

This chapter embraces the mathematical tools and concepts developed in the preceding 

chapters to build-up some global structures or space-time continua that will serve as 

frameworks, within which our subsequent discussion on the particles’ motion can be 

explicitly and conveniently done. Here, we begin with the Khan-Penrose space-time 

continuum, which I suppose, is the simplest structure to construct so far. Subsequently, 

we shall discuss the Bell- Szekeres global structure, and then cap-it-up by looking at 

the Ferrari-Ibanez Degenerate solutions. 

3.1 The Khan-Penrose Global Structure 

In this structure [14], we consider two approaching plane impulsive gravitational 

waves by using two metrics to describe them. Firstly, we shall use the Brinkmann-

Penrose-Takeno line element [22], to discuss the approaching waves on the flat 

background. Secondly, we shall use the Rosen’s transformed metric [14], to discuss 

the interactions of the two impulsive waves. 

3.1.1 The approaching waves 

Here, we shall consider two impulsive waves approaching from the opposing sides of 

the space-time. We define the approaching wave from the left side of the space-time 

in figure (3.1) by the line element 

𝑑𝑠2 = 2𝑑𝑢𝑑𝑟 + 𝛿(𝑢)(𝑋2 − 𝑌2)𝑑𝑢2 − 𝑑𝑋2 − 𝑑𝑌2              (3.1) 

where, 𝛿(𝑢) is the impulsive wave component, 𝑢 is the null coordinate and We make 

𝑢 = 0 on the hyper-surface. 
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In the same vein, we define the second wave approaching from the right side by the 

line element  

𝑑𝑠2 = 2𝑑𝑣𝑑𝜌 + 𝛿(𝑣)(𝑋2 − 𝑌2)𝑑𝑣2 − 𝑑𝑋2 − 𝑑𝑌2               (3.2) 

where, 𝛿(𝑣) is the wave component, 𝑣 is the null coordinate on the hyper-surface 

where 𝑣 = 0. 

For the impulsive wave approaching from the left, we carry out the following 

transformations 

𝑢 = 𝑢, 

𝑟 = 𝑣 −
1

2
Θ(𝑢)(1 − 𝑢)𝑥2 +

1

2
Θ(𝑢)(1 + 𝑢)𝑦2, 

𝑋 = (1 − 𝑢Θ(𝑢))𝑥 ,                                          (3.3) 

and 

𝑌 = (1 + 𝑢Θ(𝑢))𝑦,                                                     

where, Θ(𝑢), is the Heaviside step function. Putting Eq. (3.3) into (3.1) we obtain 

𝑑𝑠2 = 2𝑑𝑢𝑑𝑣 −  (1 − 𝑢Θ(𝑢))
2

𝑑𝑥2 − (1 + 𝑢𝛩(𝑢))
2

𝑑𝑦2.       (3.4) 

The component describing the gravitational wave here is given by 

Ѱ4 = 𝛿(𝑢).                                                (3.5) 

In the same vein, we wish to carry out a similar transformations for the opposing wave 

approaching from the right side by letting 

𝑣 = 𝑣, 

𝜌 = 𝑢 −
1

2
Θ(𝑣)(1 − 𝑣)𝑥2 +

1

2
Θ(𝑣)(1 + 𝑣)𝑦2, 

𝑋 = (1 − 𝑣Θ(𝑣))𝑥,                                         (3.6) 

and 

𝑌 = (1 + 𝑣Θ(𝑣))𝑦.                                                    

Putting Eq. (3.6) into (3.2) gives 
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𝑑𝑠2 = 2𝑑𝑢𝑑𝑣 −  (1 − 𝑣Θ(𝑣))
2

𝑑𝑥2 − (1 + 𝑣𝛩(𝑣))
2

𝑑𝑦2.         (3.7) 

Now, we let the component describing this gravitational wave be defined by 

Ѱ0 = 𝛿(𝑣).                                               (3.8) 

3.1.2 Regional description 

We now split the space-time into four regions and impose some boundary conditions 

peculiar to the regions that describe our global structure (see Figure. 3.1). Region I is 

characterized by a flat background, with 𝑢 < 0 𝑎𝑛𝑑 𝑣 <  0 and the line elements in 

(3.4) and (3.7) now take the form 

𝑑𝑠2 = 2𝑑𝑢𝑑𝑣 − 𝑑𝑥2 − 𝑑𝑦2.                                     (3.9) 

Region II is a single 𝑢-wave with boundary conditions 𝑢 ≥ 0 , 𝑣 < 0  and Θ(𝑢) = 1. 

Here, the line element (3.4) takes the form  

 𝑑𝑠2 = 2𝑑𝑢𝑑𝑣 − (1 − 𝑢)2𝑑𝑥2 − (1 + 𝑢)2𝑑𝑦2.               (3.10) 

Region III is a single  𝑣-wave with the boundary conditions 𝑣 ≥ 0 𝑎𝑛𝑑 𝑢 < 0 and 

Θ(𝑣) = 1. By imposing these conditions, the line element Eq. (3.7) now takes the form 

𝑑𝑠2 = 2𝑑𝑢𝑑𝑣 −  (1 − 𝑣)2𝑑𝑥2 − (1 + 𝑣)2𝑑𝑦2.              (3.11) 

Region IV is the interaction region with the boundary conditions 𝑢 ≥ 0 𝑎𝑛𝑑 𝑣 ≥ 0.  

Here, we shall use the Rosen’s metric element [14] given by 

𝑑𝑠2 =
2𝑡3𝑑𝑢𝑑𝑣

𝑟𝑤(𝑝𝑞 + 𝑟𝑤)2
− 𝑡2 (

𝑟 + 𝑞

𝑟 − 𝑞
) (

𝑤 + 𝑝

𝑤 − 𝑝
) 𝑑𝑥2 − 𝑡2 (

𝑟 − 𝑞

𝑟 + 𝑞
) (

𝑤 − 𝑝

𝑤 + 𝑝
) 𝑑𝑦2. (3.12) 

Now, we wish to transform this metric element by letting 

Θ(𝑢) = 1, 

Θ(𝑣) = 1, 

𝑝 = 𝑢Θ(𝑢) = 𝑢, 

𝑞 = 𝑣Θ(𝑣) = 𝑣, 

𝑟2 = 1 − 𝑝2 ⇒ (1 − 𝑝2)
1
2 = (1 − 𝑢2)

1
2

 , 
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𝑤2 = 1 − 𝑞2 ⇒ 𝑤 = (1 − 𝑞2)
1
2 = (1 − 𝑣2)

1
2,                       (3.13) 

𝑡2 = 1 − 𝑝2 − 𝑞2 = 𝑟2 − 𝑞2 = 𝑤2 − 𝑝2, 

and 

𝑡2 = 1 − 𝑢2 − 𝑣2 ⇒ 𝑡 = (1 − 𝑢2 − 𝑣2)
1
2. 

Using this transformations, the line element (3.12) now takes the form 

𝑑𝑠2 = 2
(1 − 𝑢2 − 𝑣2)

3
2

√1 − 𝑢2√1 − 𝑣2(𝑢𝑣 + √1 − 𝑢2√1 − 𝑣2)
2 𝑑𝑢𝑑𝑣

− (1 − 𝑢2 − 𝑣2) [
(1 − 𝑢√1 − 𝑣2 − 𝑣√1 − 𝑢2)

(1 + 𝑢√1 − 𝑣2 + 𝑣√1 − 𝑢2)
𝑑𝑥2   

+
(1 + 𝑢√1 − 𝑣2 + 𝑣√1 − 𝑢2)

(1 − 𝑢√1 − 𝑣2 − 𝑣√1 − 𝑢2)
𝑑𝑦2].                                           (3.14) 

This line element becomes the basic metric element valid for defining and describing 

the geodesics of particles on the Khan-Penrose global structure (see Figure 3.1). 
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Figure 3.1: The Khan-Penrose Global structure for colliding impulsive gravitational 

waves in the null(𝑢, 𝑣) coordinates. Region I is flat space-time, regions II and III are 

the single-waves, while region IV is the interaction region. 

3.2 The Bell-Szekeres Global Structure 

In this structure [15, 22], we x-ray a scenario that describes the collision and 

subsequent interaction of two step electromagnetic plane waves. We shall split the 

space-time into four regions as we did in Figure (3.1) as we observe the two impulsive 

waves from the opposing sides of the space-time. The approaching wave in region II 

is described by a line element in Brinkmann metric form by 

 𝑑𝑠2 = 2𝑑𝑢𝑑𝑟 + 𝑎2Θ(𝑢)(𝑋2 + 𝑌2)𝑑𝑢2 − 𝑑𝑋2 − 𝑑𝑌2        (3.15) 

where 

ɸ22 = 𝑎2Θ(𝑢).                                           (3.16) 

The opposing wave in region II is described by the line element in Brinkmann metric 

form by 
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𝑑𝑠2 = 2𝑑𝑣𝑑𝜌 + 𝑏2Θ(𝑣)(𝑋2 + 𝑌2)𝑑𝑣2 − 𝑑𝑋2 − 𝑑𝑌2      (3.17) 

where 

                                                  ɸ00 = 𝑏2Θ(𝑣).                                         (3.18)       

Now, we shall transform our line element such that 

 𝑋 = 𝑥𝑐𝑜𝑠𝑎𝑢𝜃 ⇒  𝑥 =
𝑋

𝑐𝑜𝑠𝑎𝑢𝜃
 , 

𝑌 = 𝑦𝑐𝑜𝑠𝑎𝑢𝜃 ⇒  𝑥 =
𝑌

𝑐𝑜𝑠𝑎𝑢𝜃
 , 

and 

𝑟 = 𝑣 −
1

2
[𝑐𝑜𝑠𝑎𝑢𝜃𝑠𝑖𝑛𝑎𝑢𝜃(𝑥2 + 𝑦2)].                     (3.19) 

By imposing some boundary conditions on the various regions, we know that region I 

is a flat space-time with  𝑢 < 0, 𝑣 < 0. The line elements in (3.15) and (3.17) now take 

the form 

𝑑𝑠2 = 2𝑑𝑢𝑑𝑣 − 𝑑𝑥2 − 𝑑𝑦2.                             (3.20) 

Region II, is a single 𝑢-wave with boundary conditions 𝑢 ≥ 0, 𝑣 < 0. By imposing 

these conditions, the line element (3.15) now takes the form 

𝑑𝑠2 = 2𝑑𝑢𝑑𝑣 − 𝑐𝑜𝑠2𝑎𝑢(𝑑𝑥2 + 𝑑𝑦2).                       (3.21) 

Region III is a single  𝑣-wave with the boundary conditions 𝑢 < 0, 𝑣 ≥ 0. By imposing 

these conditions on the line element (3.17) we obtain 

𝑑𝑠2 = 2𝑑𝑢𝑑𝑣 − 𝑐𝑜𝑠2𝑏𝑣(𝑑𝑥2 + 𝑑𝑦2).                 (3.22) 

Region IV is considered here as the interaction region, therefore, we intend at this 

juncture to impose some boundary conditions that will determine the properties of the 

global structure. We shall begin by integrating Eq. (2.36) to obtain 

𝑈 = − log(𝑓(𝑢) + 𝑔(𝑣)), 

𝑒−𝑈 = 𝑒log(𝑓(𝑢)+𝑔(𝑣)), 

therefore 
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𝑒−𝑈 = 𝑓(𝑢) + 𝑔(𝑣) .                                              (3.23) 

Now, we let  

𝑓 =
1

2
− 𝑠𝑖𝑛2𝑎𝑢, 

𝑔 =
1

2
− 𝑠𝑖𝑛2𝑏𝑣 .                                                (3.24) 

At, 𝑢 = 0, 𝑣 ≥ 0, 𝑉 = 𝑊 = 𝑀 = 0,  𝑎𝑛𝑑 ɸ0 = 𝑏, we find from Eq. (3.24) that 

𝑓 =
1

2
− 𝑠𝑖𝑛2𝑎𝑢, 𝑢 = 0 ⇒ 𝑓 =

1

2
 , 

and  

𝑔 =
1

2
− 𝑠𝑖𝑛2𝑏𝑣, 𝑣 ≠ 0 ⇒ 𝑔 =

1

2
+ 𝑐𝑜𝑠2𝑏𝑣 − 1, 𝑐𝑜𝑠2𝑏𝑣 − 1 = −𝑠𝑖𝑛2𝑏𝑣, 

therefore 

𝑔 = −
1

2
+ 𝑐𝑜𝑠2𝑏𝑣.                                      (3.25) 

Putting Eq. (3.25) into (3.23) yields 

𝑈 = −log (
1

2
−

1

2
+ 𝑐𝑜𝑠2𝑏𝑣) = −log(𝑐𝑜𝑠2𝑏𝑣), 

or 

𝑈 = −2log 𝑐𝑜𝑠2𝑏𝑣.                                         (3.26) 

At  𝑣 = 0, 𝑢 ≥ 0, 𝑉 = 𝑊 = 𝑀 = 0  𝑎𝑛𝑑 ɸ2 = 𝑎; Eq. (3.24) shows that 

𝑔 =
1

2
− 𝑠𝑖𝑛2𝑏𝑣, 𝑣 = 0 ⇒ 𝑔 =

1

2
, 

𝑓 =
1

2
− 𝑠𝑖𝑛2𝑎𝑢, 𝑢 ≠ 0 ⇒ 𝑔 =

1

2
+ 𝑐𝑜𝑠2𝑎𝑢 − 1, 𝑐𝑜𝑠2𝑎𝑢 − 1 = −𝑠𝑖𝑛2𝑎𝑢, 

hence 

𝑓 = −
1

2
+ 𝑐𝑜𝑠2𝑎𝑢.                                         (3.27)   

Putting Eq. (3.27) into (3.23) yields 
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𝑈 = −log (−
1

2
+

1

2
+ 𝑐𝑜𝑠2𝑎𝑢) = −log(𝑐𝑜𝑠2𝑎𝑢), 

or 

𝑈 = −2log𝑐𝑜𝑠2𝑎𝑢.                                             (3.28) 

Now, we let, 𝑊 = 𝑀 = 0, ɸ2 = 𝑎, ɸ0 = 𝑏; from Eqs. (2.29-2.41) we obtain 

𝑈 = − log cos(𝑎𝑢 − 𝑏𝑣) − log cos(𝑎𝑢 + 𝑏𝑣)        (3.29) 

and 

𝑉 = log cos(𝑎𝑢 − 𝑏𝑣) − log cos(𝑎𝑢 + 𝑏𝑣).           (3.30) 

Therefore, the metric of the interaction region (IV) now takes the form 

𝑑𝑠2 = 2𝑑𝑢𝑑𝑣 − 𝑐𝑜𝑠2(𝑎𝑢 − 𝑏𝑣)𝑑𝑥2 − 𝑐𝑜𝑠2(𝑎𝑢 + 𝑏𝑣)𝑑𝑦2.      (3.31) 

This is the basic line element (3.31) valid for defining and describing the geodesics of 

any test particle on the Bell-Szekeres global structure. 

3.3 The Ferrari-Ibanez Degenerate Solutions 

3.3.1 The metric description 

This is a type D class of solutions of Einstein’s problems, where two space-like Killing 

vectors play a vital role in the formation of Cauchy horizons and singularities, in 

respect to the boundary conditions. The basic idea here is to metal-cast a 

Schwarzschild black-hole-like solution into the mold of Khan-Penrose Global 

structure, with the sole aim of describing the nature of the Cauchy horizons and the 

singularities formed in the interaction region; giving rise to the two degenerate 

solutions. 

Here, the line element that defines this global structure [22, 26, 27], is given by 

𝑑𝑠2 = 𝜁(1 + 2𝜌𝑠𝑖𝑛𝜓 + 𝑠𝑖𝑛2𝜓)(𝑑𝜓2 − 𝑑𝜆2)

− (
1 − 𝑠𝑖𝑛2𝜓

1 + 2𝜌𝑠𝑖𝑛𝜓 + 𝑠𝑖𝑛2𝜓
) (𝑑𝑥 − 2𝜂𝑠𝑖𝑛𝜆𝑦)2

− 𝑐𝑜𝑠2𝜆(1 + 2𝜌𝑠𝑖𝑛𝜓 + 𝑠𝑖𝑛2𝜓)𝑑𝑦2,                                               (3.32) 
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where 

𝑋𝜇 = 𝑋𝜇(𝜓, 𝜆),                                                  (3.33) 

while,  𝜁, 𝜌 𝑎𝑛𝑑 𝜂 are constants; satisfying the condition that 𝜌2+𝜂2 = 1. Now, we let 

𝜁 = 1, 𝜂 = 0, 𝑎𝑛𝑑 𝜌 = ±1, such that the line element (3.32) reduces to  

𝑑𝑠2 = (1 + 𝜌𝑠𝑖𝑛𝜓)2(𝑑𝜓2 − 𝑑𝜆2) − (
1 − 𝜌𝑠𝑖𝑛𝜓

1 + 𝜌𝑠𝑖𝑛𝜓
) 𝑑𝑥2

− 𝑐𝑜𝑠2𝜆(1 + 𝜌𝑠𝑖𝑛𝜓)2𝑑𝑦2.                                                                  (3.34) 

We now carry out some transformations by changing our coordinates. Here, we let 

𝜓 = 𝑡, 

𝜆 = 𝑧 ,                                                          (3.35) 

𝑋𝜇 = 𝑋𝜇(𝑡, 𝑧).                                                            

In the light of this transformation, the line element (3.34) can be expresses as 

𝑑𝑠2 = (1 + 𝜌𝑠𝑖𝑛𝑡)2(𝑑𝑡2 − 𝑑𝑧2) − (
1 − 𝜌𝑠𝑖𝑛𝑡

1 + 𝜌𝑠𝑖𝑛𝑡
) 𝑑𝑥2

− 𝑐𝑜𝑠2𝑧(1 + 𝜌𝑠𝑖𝑛𝑡)2𝑑𝑦2.                                                                  (3.36) 

Now, we wish to change the metric signature by invoking the properties of Eqs. (2.21) 

and (2.22) such that 

𝑔𝜇𝜈 = (+, −, −, −) → 𝑔𝜇𝜈 = (−, +, +, +).              (3.37) 

At this point, the line element (3.36) takes the form 

𝑑𝑠2 = −(1 + 𝜌𝑠𝑖𝑛𝑡)2(𝑑𝑡2 − 𝑑𝑧2) + (
1 − 𝜌𝑠𝑖𝑛𝑡

1 + 𝜌𝑠𝑖𝑛𝑡
) 𝑑𝑥2 + 𝑐𝑜𝑠2𝑧(1 + 𝜌𝑠𝑖𝑛𝑡)2𝑑𝑦2, 

and  

𝑑𝑠2 = (1 + 𝜌𝑠𝑖𝑛𝑡)2(𝑑𝑧2 − 𝑑𝑡2) + (
1 − 𝜌𝑠𝑖𝑛𝑡

1 + 𝜌𝑠𝑖𝑛𝑡
) 𝑑𝑥2

+ 𝑐𝑜𝑠2𝑧(1 + 𝜌𝑠𝑖𝑛𝑡)2𝑑𝑦2.                                                                  (3.38) 

This metric element defined by Eqn. (3.38) is valid for the formation of Cauchy 

horizons when  𝜌 = 1, and for the formation of singularities when  𝜌 = −1. 
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3.3.2 Metric transformation 

Following the Khan-Penrose global structure discussed in section (3.1), region (IV) 

becomes the interaction region, where horizons and singularities are formed. In order 

to metal-cast our line element to be valid for defining and imposing the properties of 

the Khan-Penrose global structure, we wish to carry out the following transformations 

by letting 

𝑢 = (
𝑡 − 𝑧

2
), 

𝑣 = (
𝑡 + 𝑧

2
), 

𝑧 = 𝑣 − 𝑢,                                                         (3.39) 

𝑡 = 𝑢 + 𝑣, 

𝑑𝑡 = 𝑑𝑢 + 𝑑𝑣, 

 𝑑𝑧 = 𝑑𝑣 − 𝑑𝑢, 

and 

(𝑑𝑧2 − 𝑑𝑡2) = (𝑑𝑣2 − 2𝑑𝑢𝑑𝑣 + 𝑑𝑢2) − ( 𝑑𝑢2 + 2𝑑𝑢𝑑𝑣 + 𝑑𝑣2) = −4𝑑𝑢𝑑𝑣, 

therefore 

(𝑑𝑧2 − 𝑑𝑡2) = −4𝑑𝑢𝑑𝑣.                                    (3.40)  

In the light of these transformations in Eqs. (3.39) and (3.40), our line element (3.38) 

now takes the form 

𝑑𝑠2 = −4[1 + 𝜌 sin(𝑢 + 𝑣)]2𝑑𝑢𝑑𝑣 + [
1 − 𝜌𝑠𝑖𝑛(𝑢 + 𝑣)

1 + 𝜌𝑠𝑖𝑛(𝑢 + 𝑣)
] 𝑑𝑥2

+ 𝑐𝑜𝑠2(𝑢 − 𝑣)[1 + 𝜌𝑠𝑖𝑛(𝑢 + 𝑣)]2𝑑𝑦2.                                          (3.41) 

In order to completely transform the line element (3.41) suitable for the Khan-Penrose 

structure, we now define the Heaviside step function as function of 𝑢 and 𝑣 such that 

 Θ = Θ(𝑢) 𝑎𝑛𝑑   Θ = Θ(𝑣).                                   (3.42) 
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Now, we let 𝑢 → 𝑢Θ(𝑢) 𝑎𝑛𝑑 𝑣 → 𝑣Θ(𝑣), such that the line element  (3.41) takes the 

form 

𝑑𝑠2 = −4[1 + 𝜌 sin(𝑢Θ(𝑢) + 𝑣Θ(𝑣))]
2

𝑑(𝑢Θ(𝑢))𝑑(𝑣Θ(𝑣))

+ [
1 − 𝜌𝑠𝑖𝑛(𝑢Θ(𝑢) + 𝑣Θ(𝑣))

1 + 𝜌𝑠𝑖𝑛(𝑢Θ(𝑢) + 𝑣Θ(𝑣))
] 𝑑𝑥2

+ 𝑐𝑜𝑠2(𝑢Θ(𝑢) − 𝑣Θ(𝑣))[1 + 𝜌𝑠𝑖𝑛(𝑢Θ(𝑢) + 𝑣Θ(𝑣))]
2

𝑑𝑦2.    (3.43) 

3.3.3 Regional description 

Now, we shall split the space-time continuum into four regions (see Figure 3.2) as we 

impose some boundary conditions on the line element (3.43). Region I is a flat space-

time with  𝑢 < 0, 𝑣 < 0. Region II is a single 𝑢-wave space-time with 0 ≤ 𝑢 <
𝜋

2
, 𝑣 <

0. Region III is a single 𝑣-wave space-time with 𝑢 < 0, 0 ≤ 𝑣 <
𝜋

2
. Finally, Region IV 

becomes our interaction region with 0 ≤ 𝑢, 0 ≤ 𝑣, 𝑢 + 𝑣 <
𝜋

2
 . 
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Figure 3.2: The Ferrari-Ibanez Degenerate Global Structure in the null (𝑢, 𝑣) 

coordinates for two impulsive waves. Region I is a flat space-time, Regions II 

and III are the single wave space-times, while Region IV is the interaction 

region. 
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Chapter 4 

4 TIME-LIKE GEODESICS 

Here, we spotlight and discuss the motion of a test particle defined by the line element 

𝑑𝑠2 = 2𝑒−𝑀𝑑𝑢𝑑𝑣 − 𝑒−𝑈+𝑉𝑑𝑥2 − 𝑒−𝑈−𝑉𝑑𝑦2.                    (4.1) 

We intend to spot-light the prototype space-time element and the particle’s motion 

from the stand points of the two Global structures of colliding gravitational plane 

waves discussed in sections (3.1) and (3.2); the Khan-Penrose and the Bell-Szekeres 

Cosmic Landscapes or space-time continua. Subsequently, we shall have a close look 

at the particle’s motion on a Ferrari-Ibanez degenerate Cosmic Landscape. 

4.1 Geodesics on the Khan-Penrose Cosmic Landscape 

In this section, we wish to spotlight our prototype line element (4.1) on the planform 

of the Khan-Penrose Cosmic Landscape by deriving suitable equations that will define 

and describe the motion of our test particle within the confines of the global structure. 

We shall consider and cross-examine the global structure using the lensing power of 

two sets of twin-coordinate systems; the null (𝒖, 𝒗) coordinates and the (𝒙, 𝒚) 

coordinates respectively. 

4.1.1 Khan-Penrose in (𝒖, 𝒗) null coordinates 

Here we aim at deriving the Equation of motion of the test particle in the null (𝒖, 𝒗) 

coordinates. Looking closely at our line element (4.1), it is clear that our Lagrangian 

can be defined in this context as 

ℒ = [2𝑒−𝑀𝑢̇𝑣̇ − 𝑒−𝑈(𝑒𝑉𝑥̇2 + 𝑒−𝑉𝑦̇2)]
1
2.                   (4.2) 
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Recall that in Eqs. (2.8) and (2.9), we showed the relationship between the line element 

and the Lagrangian of a mechanical system with respect to the variation principle, 

where 

∫ 𝑑𝑠 = ∫ ℒ𝑑𝜏  

and 

𝛿 ∫ 𝑑𝑠 = 𝛿 ∫ ℒ𝑑𝜏 = 0 .                                           (4.3) 

Now, putting Eqs. (4.2) into (4.3) we obtain 

𝛿 ∫[2𝑒−𝑀𝑢̇𝑣̇ − 𝑒−𝑈(𝑒𝑉𝑥̇2 + 𝑒−𝑉𝑦̇2)]
1
2𝑑𝜏 = 0                (4.4) 

where,  𝑣 is a function of 𝑢 ; 𝑣 = 𝑣(𝑢). We now express Eq. (4.4) in terms of 𝑢 as  

𝛿 ∫[2𝑒−𝑀𝑣′ − 𝑒−𝑈(𝑒𝑉𝑥′2 + 𝑒−𝑉𝑦′2)]
1
2𝑑𝑢 = 0.              (4.5) 

Herein,   ′ ≡
𝑑

𝑑𝑢
  and 𝑢 is not an affine parameter. From Eq. (4.5), it is clear that our 

Lagrangian now takes the form 

ℒ = [2𝑒−𝑀𝑣′ − 𝑒−𝑈(𝑒𝑉𝑥′2 + 𝑒−𝑉𝑦′2)]
1
2.                (4.6) 

By imposing Eqs. (2.17) and (2.18), on the Lagrangian (4.6), we obtain 

𝜕ℒ

𝜕𝑥′
= −

1

ℒ
𝑒−𝑈+𝑉𝑥′ = 𝐴 = constant                       (4.7) 

and 

𝜕ℒ

𝜕𝑦′
= −

1

ℒ
𝑒−𝑈−𝑉𝑦′ = 𝐵 = 𝑐onstant                     (4.8) 

where, A and B are constants. 

Now, looking at Eq. (4.7) closely, we see that 

−
1

ℒ
𝑒−𝑈+𝑉𝑥′ = 𝐴, 

−𝑒−𝑈+𝑉𝑥′ = 𝐴ℒ, 
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therefore 

(𝑒−𝑈+𝑉𝑥′)2 = 𝐴2ℒ 2.                                           (4.9) 

Putting our Lagrangian (4.6) into Eq. (4.9), we obtain 

(𝑒−𝑈+𝑉𝑥′)2 = 𝐴2[2𝑒−𝑀𝑣′ − 𝑒−𝑈+𝑉𝑥′2 − 𝑒−𝑈−𝑉𝑦′2] 

∴ 𝑒−2𝑈+2𝑉𝑥′2 = 𝐴2[2𝑒−𝑀𝑣′ − 𝑒−𝑈+𝑉𝑥′2 − 𝑒−𝑈−𝑉𝑦′2].                 (4.10) 

In the same vein, looking at Eq. (4.8), we see that 

−
1

ℒ
𝑒−𝑈−𝑉𝑦′ = 𝐵 

−𝑒−𝑈−𝑉𝑦′ = 𝐵ℒ 

∴ (𝑒−𝑈−𝑉𝑦′)2 = 𝐵2ℒ 2.                                          (4.11) 

Putting our Lagrangian (4.6) into Eq. (4.1) shows that 

(𝑒−𝑈−𝑉𝑦′)2 = 𝐵2[2𝑒−𝑀𝑣′ − 𝑒−𝑈+𝑉𝑥′2 − 𝑒−𝑈−𝑉𝑦′2] 

∴ 𝑒−2𝑈−2𝑉𝑦′2 = 𝐵2[2𝑒−𝑀𝑣′ − 𝑒−𝑈+𝑉𝑥′2 − 𝑒−𝑈−𝑉𝑦′2].               (4.12) 

At this juncture, we can solve for 𝑥′2 and 𝑦′2 from Eqs. (4.10) and (4.12), and by doing 

that we obtain 

𝑥′2 =
2𝐴2𝑒−𝑀+𝑈−2𝑉

𝑒−𝑈 + 𝐴2𝑒−𝑉 + 𝐵2𝑒𝑉
𝑣′                               (4.13) 

and 

𝑦′2 =
2𝐵2𝑒−𝑀+𝑈+2𝑉

𝑒−𝑈 + 𝐴2𝑒−𝑉 + 𝐵2𝑒𝑉
𝑣′.                              (4.14) 

Now, substituting for 𝑥′2and 𝑦′2 as expressed in Eqs. (4.13) and (4.14), our Lagrangian 

defined in (4.6) now takes the form 

ℒ = [2𝑒−𝑀𝑣′ − 𝑒−𝑈 (𝑒𝑉
2𝐴2𝑒−𝑀+𝑈−2𝑉

𝑒−𝑈 + 𝐴2𝑒−𝑉 + 𝐵2𝑒𝑉
𝑣′

+ 𝑒−𝑉
2𝐵2𝑒−𝑀+𝑈+2𝑉

𝑒−𝑈 + 𝐴2𝑒−𝑉 + 𝐵2𝑒𝑉
𝑣′)]

1
2

.                                                  (4.15) 

By expanding the Lagrangian (4.15), we obtain 
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ℒ = (2𝑒−𝑀𝑣′ −
2𝐴2𝑒−𝑀−𝑉

𝑒−𝑈 + 𝐴2𝑒−𝑉 + 𝐵2𝑒𝑉
𝑣′ −

2𝐵2𝑒−𝑀+𝑉

𝑒−𝑈 + 𝐴2𝑒−𝑉 + 𝐵2𝑒𝑉
𝑣′)

1
2

. (4.16) 

We now simplify the Lagrangian (4.16) to obtain 

ℒ = (
2𝑒−𝑀−𝑈𝑣′ + 2𝐴2𝑒−𝑀−𝑉𝑣′ + 2𝐵2𝑒−𝑀+𝑉𝑣′ − 2𝐴2𝑒−𝑀−𝑉𝑣′−2𝐵2𝑒−𝑀+𝑉𝑣′

𝑒−𝑈 + 𝐴2𝑒−𝑉 + 𝐵2𝑒𝑉
)

1
2

. 

Hence, 

ℒ = (
2𝑒−𝑀−𝑈𝑣′

𝑒−𝑈 + 𝐴2𝑒−𝑉 + 𝐵2𝑒𝑉
)

1
2

.                                 (4.17) 

This is our Lagrangian in the (𝑢, 𝑣) coordinates. We now wish to spotlight our 

Lagrangian (4.17) in terms of Eqs. (2.8) and (2.19), such that  

𝐼 = ∫ ℒ𝑑𝑢 = ∫ (
2𝑒−𝑀−𝑈𝑣′

𝑒−𝑈 + 𝐴2𝑒−𝑉 + 𝐵2𝑒𝑉
)

1
2

𝑑𝑢 .                 (4.18) 

We now define a function 𝑓(𝑢, 𝑣) such that 

𝑓 = (
2𝑒−𝑀−𝑈𝑣′

𝑒−𝑈 + 𝐴2𝑒−𝑉 + 𝐵2𝑒𝑉
)

1
2

,                              (4.19) 

where A and B are arbitrary constants. We can express Eq. (4.19) as 

𝑓 = (
2𝑒−𝑀−𝑈𝑣′

𝑒−𝑈 + 𝐴2𝑒−𝑉 + 𝐵2𝑒𝑉
)

1
2

.                             (4.20) 

We now define our action (4.18) in terms of this function as 

𝐼 = ∫ 𝑓(𝑢, 𝑣)√𝑣′𝑑𝑢.                                             (4.21) 

Here, 𝑣′ =
𝑑𝑣

𝑑𝑢
  , 𝑣 = 𝑣(𝑢) and our Lagrangian is given 

ℒ =  𝑓(𝑢, 𝑣)√𝑣′.                                              (4.22) 

We now impose Eq. (2.9) on the Lagrangian (4.22) to obtain 

𝑑

𝑑𝑢
(

𝜕ℒ

𝜕𝑣′
) =

𝜕ℒ

𝜕𝑣
,                                                (4.23) 
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where 

𝜕ℒ

𝜕𝑣
= 𝑓𝑣√𝑣′                                                   (4.24) 

and 

𝑑

𝑑𝑢
(

𝜕ℒ

𝜕𝑣′
) =

𝑑

𝑑𝑢
[

𝑓

2√𝑣′
] =

1

2√𝑣′
(𝑓𝑢 + 𝑣′𝑓𝑣) −

𝑓

4

𝑣′′

(𝑣′)
3
2

 .         (4.25) 

Eq. (4.23) now takes the form 

1

2√𝑣′
(𝑓𝑢 + 𝑣′𝑓𝑣) −

𝑓

4

𝑣′′

(𝑣′)
3
2

= 𝑓𝑣√𝑣′.                         (4.26) 

We now multiply Eq. (4.26) by 2√𝑣′ to obtain 

𝑓𝑢 + 𝑣′𝑓𝑣 −
𝑓

2

𝑣′′

𝑣′
= 2𝑣′𝑓𝑣 ,                         (4.27) 

such that 

𝑓𝑢 =
𝑓

2

𝑣′′

𝑣′
+ 𝑣′𝑓𝑣, ⇒  

𝑓𝑣′′

2𝑣′
= 𝑓𝑢 − 𝑣′𝑓𝑣                 (4.28) 

∴      𝑣′′ =
2𝑣′

𝑓
[𝑓𝑢 − 𝑣′𝑓𝑣]                                  (4.29) 

where 

𝑣 = 𝑣(𝑢) 

𝑣′ =
𝑑𝑣

𝑑𝑢
                                                          (4.30) 

𝑣′′ =
𝑑2𝑣

𝑑𝑢2
  

𝑓 = 𝑓(𝑢, 𝑣) 

At this point, it is clear that Eq. (4.29) is the equation that defines and describes the 

geodesic motion of the particle on the Khan-Penrose Cosmic Landscape or space-time 

continuum in the null (𝑢, 𝑣) coordinates. 



 

32 
 

4.1.2 Khan-Penrose in (𝒙, 𝒚)coordinates 

Here we intend to derive the equation of motion that defines and describes the 

geodesics of our test particle as it cruises on the Khan-Penrose Cosmic Landscape in 

the in (𝒙, 𝒚) coordinates. To achieve this task, we wish to carry out certain 

transformations that will guarantee our safe ride to the desired equation of motion in 

the require coordinates (𝒙, 𝒚). First of all, we let 

𝜏 = 𝑢√1 − 𝑣2 + 𝑣√1 − 𝑢2 , 

and  

𝜎 = 𝑢√1 − 𝑣2 − 𝑣√1 − 𝑢2                                    (4.31) 

Such that our line element (4.1) transforms into 

𝑑𝑠2 = (1 − 𝜏2)−
1
4(1 − 𝜎2)−

1
4 𝑑𝜏2 − (1 − 𝜏2)

3
4(1 − 𝜎2)−

5
4 𝑑𝜎2,   (4.32) 

and 

∫ 𝑑𝑠 = ∫ [(1 − 𝜏2)−
1
4(1 − 𝜎2)−

1
4  − (1 − 𝜏2)

3
4(1 − 𝜎2)−

5
4 𝜎′2]

1
2

𝑑𝜏   (4.33) 

where, 𝜎′ =
𝑑𝜎

𝑑𝜏
 . We shall now change our coordinates by carrying out the following 

transformations, let 

𝜏 = 𝑠𝑖𝑛𝑥, 

𝜎 = 𝑠𝑖𝑛𝑦, 

𝜎′ =
𝑐𝑜𝑠𝑦 

𝑐𝑜𝑥
𝑦,̇                                                     (4.34) 

and 

𝑐𝑜𝑠2𝑥 + 𝑠𝑖𝑛2𝑥 = 1. 

Following these transformations, the action in Eq. (4.33) now transforms into 

𝐼 = ∫ [(𝑐𝑜𝑠𝑥)−
1
2 (𝑐𝑜𝑠𝑦)−

1
2 − (𝑐𝑜𝑠𝑥)

3
2 (𝑐𝑜𝑠𝑦)−

5
2  

𝑐𝑜𝑠2𝑦

𝑐𝑜𝑠2𝑥
𝑦̇2]

1
2

𝑐𝑜𝑠𝑥𝑑𝑥.  (4.35) 
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But 

(𝑐𝑜𝑠𝑥)
3
2 (𝑐𝑜𝑠𝑦)−

5
2  

𝑐𝑜𝑠2𝑦

𝑐𝑜𝑠2𝑥
= (𝑐𝑜𝑠𝑥)−

1
2 (𝑐𝑜𝑠𝑦)−

1
2,                   (4.36) 

the action in (4.35) takes the form 

 𝐼 = ∫ {(𝑐𝑜𝑠𝑥)−
1
2 (𝑐𝑜𝑠𝑦)−

1
2 − (𝑐𝑜𝑠𝑥)−

1
2 (𝑐𝑜𝑠𝑦)−

1
2𝑦̇2}

1
2

𝑐𝑜𝑠𝑥𝑑𝑥     (4.37) 

Simplifying (4.37) we obtain 

𝐼 = ∫ {(1 − 𝑦̇2)(𝑐𝑜𝑠𝑥 𝑐𝑜𝑠𝑦)−
1
2 }

1
2

𝑐𝑜𝑠𝑥𝑑𝑥                                 

= ∫ {(1 − 𝑦̇2)
1
2(𝑐𝑜𝑠𝑥 𝑐𝑜𝑠𝑦)−

1
4} 𝑐𝑜𝑠𝑥𝑑𝑥 ,                                       (4.38) 

therefore 

𝐼 = ∫(𝑐𝑜𝑠𝑥)
3
4 (𝑐𝑜𝑠𝑦)−

1
4(1 − 𝑦̇2)

1
2 𝑑𝑥 .                                   (4.39) 

It is clear from the action in (4.39) that the Lagrangian is given by  

ℒ = (𝑐𝑜𝑠𝑥)
3
4(𝑐𝑜𝑠𝑦)−

1
4(1 − 𝑦̇2)

1
2                                     (4.40) 

where, in this case, the Lagrangian is a function of both 𝑥 and 𝑦 

 ℒ = ℒ(𝑥, 𝑦, 𝑦̇), 𝑦 = 𝑦(𝑥).                                 (4.41) 

The equation of motion 

In order to obtain our equation of motion using the Lagrangian (4.40), we impose Eqs. 

(2.9) and (2.19) such that 

𝑑

𝑑𝑥
(

𝜕ℒ

𝜕𝑦̇
) −

𝜕ℒ

𝜕𝑦
= 0.                                          (4.42) 

Here, 

𝜕ℒ

𝜕𝑦
= −

1

4
(𝑐𝑜𝑠𝑥)

3
4(𝑐𝑜𝑠𝑦)−

5
4(1 − 𝑦̇2)

1
2(−𝑠𝑖𝑛𝑦), 

∴
𝜕ℒ

𝜕𝑦
=

1

4
𝑠𝑖𝑛𝑦(𝑐𝑜𝑠𝑥)

3
4(𝑐𝑜𝑠𝑦)−

5
4(1 − 𝑦̇2)

1
2                         (4.43) 
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and 

𝜕ℒ

𝜕𝑦̇
=

1

2
(𝑐𝑜𝑠𝑥)

3
4(𝑐𝑜𝑠𝑦)−

1
4(1 − 𝑦̇2)−

1
2(−2𝑦̇) 

∴
𝜕ℒ

𝜕𝑦̇
= −𝑦̇ (1 − 𝑦̇2)−

1
2(𝑐𝑜𝑠𝑥)

3
4(𝑐𝑜𝑠𝑦)−

1
4 ,                          (4.44) 

Also, 

𝑑

𝑑𝑥
(

𝜕ℒ

𝜕𝑦̇
) = −𝑦̈ (1 − 𝑦̇2)−

1
2(𝑐𝑜𝑠𝑥)

3
4(𝑐𝑜𝑠𝑦)−

1
4 − 𝑦̇2𝑦̈(1 − 𝑦̇2)−

3
2(𝑐𝑜𝑠𝑥)

3
4(𝑐𝑜𝑠𝑦)−

1
4

− 𝑦̇(1 − 𝑦̇2)−
1
2 [−

3

4
𝑠𝑖𝑛𝑥. (𝑐𝑜𝑠𝑥)−

1
4(𝑐𝑜𝑠𝑦)−

1
4

+
1

4
𝑠𝑖𝑛𝑦. 𝑦̇(𝑐𝑜𝑠𝑦)−

5
4(𝑐𝑜𝑠𝑥)

3
4].                                                         (4.45) 

Now, putting Eqs. (4.43) and (4.45) into (4.42) gives 

𝑦̈ (1 − 𝑦̇2)−
1
2(𝑐𝑜𝑠𝑥)

3
4(𝑐𝑜𝑠𝑦)−

1
4 + 𝑦̇2𝑦̈(1 − 𝑦̇2)−

3
2(𝑐𝑜𝑠𝑥)

3
4(𝑐𝑜𝑠𝑦)−

1
4 

+
𝑦̇

4
(1 − 𝑦̇2)−

1
2 [−3𝑠𝑖𝑛𝑥(𝑐𝑜𝑠𝑥)−

1
4(𝑐𝑜𝑠𝑦)−

1
4 + 𝑠𝑖𝑛𝑦. 𝑦̇(𝑐𝑜𝑠𝑦)−

5
4(𝑐𝑜𝑠𝑥)

3
4]

+
1

4
𝑠𝑖𝑛𝑦(𝑐𝑜𝑠𝑦)−

5
4(𝑐𝑜𝑠𝑥)

3
4(1 − 𝑦̇2)

1
2 = 0.                                      (4.46) 

Multiplying Eq. (4.46) by 4(1 − 𝑦̇2)
1

2(𝑐𝑜𝑠𝑥)−
3

4(𝑐𝑜𝑠𝑦)
1

4 gives 

4𝑦̈ +
4𝑦̇2𝑦̈

1 − 𝑦̇2
+ 𝑦̇[−3𝑡𝑎𝑛𝑥 + 𝑦̇𝑡𝑎𝑛𝑦] + 𝑡𝑎𝑛𝑦(1 − 𝑦̇2) = 0,  

which implies that 

4𝑦̈ +
4𝑦̇2𝑦̈

1 − 𝑦̇2
− 3𝑦̇𝑡𝑎𝑛𝑥 + 𝑦̇2𝑡𝑎𝑛𝑦 + 𝑡𝑎𝑛𝑦 − 𝑦̇2𝑡𝑎𝑛𝑦 = 0.          (4.47) 

But, 

4𝑦̈ +
4𝑦̇2𝑦̈

1 − 𝑦̇2
=

4𝑦̈

1 − 𝑦̇2
(1 − 𝑦̇2 + 𝑦̇2) =

4𝑦̈

1 − 𝑦̇2
 .                 (4.48) 

Putting Eq. (4.48) into (4.47) gives 

4𝑦̈

1 − 𝑦̇2
− 3𝑦̇𝑡𝑎𝑛𝑥 + 𝑡𝑎𝑛𝑦 = 0                          (4.49) 
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Hence, 

4𝑦̈ = (1 − 𝑦̇2)(3𝑦̇𝑡𝑎𝑛𝑥 − 𝑡𝑎𝑛𝑦),                         (4.50) 

or 

𝑦̈ =
1

4
(1 − 𝑦̇2)(3𝑦̇𝑡𝑎𝑛𝑥 − 𝑡𝑎𝑛𝑦).                       (4.51) 

It is clear at this point that Eq. (4.51) is the equation that defines and describes the 

geodesic motion of the particle on the Khan-Penrose Cosmic Landscape or space-time 

continuum in (𝑥, 𝑦) coordinates. 

4.2 Geodesics on the Bell-Szekeres Cosmic Landscape 

Here, we intend to x-ray and to explore the unique properties of the Bell-Szekeres global 

structure as derive the equations of motion that define and describe the geodesics of our test 

particle as it cruises steadily on this Cosmic Landscape. Now, let us take a close look at the 

line element (4.1) that defines our test particle. In order to discuss the geodesics of the 

particle on the Bell-Szekeres Cosmic Landscape or space-time continuum, we need to 

metal-cast our line element (4.1) into the mould-like metric of the form in Eq. (3.31), 

which is the basic line element valid for defining and describing geodesics on this 

Cosmic Landscape. 

We begin by carrying out the following transformations. We let 

𝑒−𝑀 = 1, 

𝑒−𝑈+𝑉 = cos2(𝑎𝑢 − 𝑏𝑣),                                     (4.52)  

𝑒−𝑈−𝑉 = cos2(𝑎𝑢 + 𝑏𝑣) . 

In the light of these transformations in (4.52), the line element (4.1) now takes the form 

𝑑𝑠2 = 2𝑑𝑢𝑑𝑣 − cos2(𝑎𝑢 − 𝑏𝑣) 𝑑𝑥2 − cos2(𝑎𝑢 + 𝑏𝑣) 𝑑𝑦2,        (4.53) 

where, 𝑎 𝑎𝑛𝑑 𝑏, are constants. The line element (4.53) now conforms to the basic 

structure of the Bell-Szekeres Cosmic Landscape and valid for defining and describing 
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the geodesics of any test particle like ours. However, in order to spotlight the geodesics 

with high degree of clarity and precision, there need for diversified viewpoints. To 

achieve this, we shall derive the equations of motion fo the particle in different 

coordinates.  

We now carry out the following transformations by changing variables, let  

𝜓 = 𝑎𝑢 + 𝑏𝑣, 

𝜃 = 𝑎𝑢 − 𝑏𝑣, 

𝜓 + 𝜃 = 2𝑎𝑢, 

and 

𝑑𝜓 + 𝑑𝜃 = 2𝑎𝑑𝑢.                                                (4.54)  

Also, let 

𝜓 − 𝜃 = 2𝑏𝑣, 

𝑑𝜓 − 𝑑𝜃 = 2𝑏𝑑𝑣, 

and 

𝑑𝜓2 − 𝑑𝜃2 = 4𝑎𝑏𝑑𝑢𝑑𝑣, 

hence 

𝑑𝑢𝑑𝑣 =
1

4𝑎𝑏
(𝑑𝜓2 − 𝑑𝜃2).                                        (4.55) 

Following these transformations in Eqs. (4.54) and (4.55), the line element (4.53) now 

takes the form  

𝑑𝑠2 =
1

2𝑎𝑏
(𝑑𝜓2 − 𝑑𝜃2) − cos2 𝜃 𝑑𝑥2 − cos2 𝜓 𝑑𝑦2.          (4.56) 

The line element (4.56) now becomes our working line element that defines and 

describes the geodesics of our test particle in the four coordinates we intend to work 

on. We now define our new coordinates by 
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𝑋𝜇 = 𝑋𝜇(𝜓, 𝜃, 𝑥, 𝑦).                                          (4.57) 

By imposing section (2.4) on the line element (4.56), we now define the Lagrangian 

of the system by  

ℒ =
1

2
[

1

2𝑎𝑏
(𝑑𝜓2 − 𝑑𝜃2) − cos2 𝜃 𝑑𝑥2 − cos2 𝜓 𝑑𝑦2],         (4.58) 

or 

ℒ =
1

2
[

1

2𝑎𝑏
(𝜓̇2 − 𝜃̇2) − cos2 𝜃 𝑥̇2 − cos2 𝜓 𝑑𝑦̇2],          (4.59) 

where,  (∙ ≡
𝑑

𝑑𝑠
). 

The Equations of motion 

At this juncture, we shall fully utilize the Lagrangian formalism discussed in section 

(2.4) in order to obtain the equations of motion that define and describe the geodesics 

of our test particle on this Cosmic Landscape in terms of the four coordinates 

(𝜓, 𝜃, 𝑥, 𝑦). 

4.2.1 Motion along the 𝒙 − 𝒄𝐨𝐨𝐫𝐝𝐢𝐧𝐚𝐭𝐞 

We now impose section (2.4) on the Langrangian (4.59) by taking derivatives with 

respect to 𝑥 such that 

𝜕ℒ

𝜕𝑥
= 0,                                                                 (4.60) 

𝜕ℒ

𝜕𝑥̇
= −

1

2
(2𝑐𝑜𝑠2𝜃 𝑥̇) = − 𝑐𝑜𝑠2𝜃 𝑥̇.                          (4.61) 

and 

𝑑

𝑑𝑠
(

𝜕ℒ

𝜕𝑥̇
) = 0,                                                        (4.62) 

which implies that 

 
𝜕ℒ

𝜕𝑥̇
= 𝛼𝑜 , 𝛼𝑜 = constant                                       (4.63) 

Comparing Eqs. (4.61) and (4.63) shows that 
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𝑐𝑜𝑠2𝜃 𝑥̇ = 𝛼𝑜 .                                                    (4.64) 

Hence, 

𝑥̇ =
𝛼𝑜

𝑐𝑜𝑠2𝜃
 .                                                   (4.65) 

This is the equation of motion along the 𝑥-coordinate.  

4.2.2 Motion along the 𝒚 − 𝐜𝐨𝐨𝐫𝐝𝐢𝐧𝐚𝐭𝐞 

Here, we take the derivative of the Lagrangian (4.59) with respect to 𝑦, such that 

 

𝜕ℒ

𝜕𝑦
= 0,                                                                  (4.66) 

𝜕ℒ

𝜕𝑦̇
=

1

2
(−2)𝑐𝑜𝑠2𝜓 𝑦̇ = − 𝑐𝑜𝑠2𝜓 𝑦̇,                        (4.67) 

and 

𝑑

𝑑𝑠
(

𝜕ℒ

𝜕𝑦̇
) = 0                                                        (4.68) 

which implies that 

 
𝜕ℒ

𝜕𝑦̇
= 𝛽𝑜 , 𝛽𝑜 = constant.                                    (4.69) 

Comparing Eqs. (4.67) with (4.69) shows that 

𝑐𝑜𝑠2𝜓 𝑦̇ = 𝛽𝑜 .                                                        (4.70) 

Hence, 

𝑦̇ =
𝛽𝑜

𝑐𝑜𝑠2𝜓
   .                                                         (4.71) 

This is the equation of motion that defines and describes the motion of our test particle 

on this Cosmic Landscape along the 𝑦–coordinate. 

4.2.3 Motion along the 𝝍 − 𝐜𝐨𝐨𝐫𝐝𝐢𝐧𝐚𝐭𝐞 

Here, we take the derivative of the Lagrangian (4.59) with respect to 𝜓, such that 



 

39 
 

𝜕ℒ

𝜕𝜓
=

1

2
 (2𝑐𝑜𝑠𝜓𝑠𝑖𝑛 𝜓𝑦̇2),                                         (4.72) 

which implies that 

𝜕ℒ

𝜕𝜓
=   𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜓𝑦̇2,                                                  (4.73) 

and 

𝜕ℒ

𝜕𝜓̇
=

1

2
(

1

2𝑎𝑏
. 2𝜓̇),                                                (4.74) 

which implies that 

𝜕ℒ

𝜕𝜓̇
=   

1

2𝑎𝑏
. 𝜓̇.                                                         (4.75) 

Also, 

𝑑

𝑑𝑠
(

𝜕ℒ

𝜕𝜓̇
) =   

1

2𝑎𝑏
𝜓.̈                                                    (4.76) 

By imposing Eq. (2.8), we obtain 

1

2𝑎𝑏
𝜓̈ − 𝑐𝑜𝑠 𝜓𝑠𝑖𝑛 𝜓𝑦̇2 = 0.                                         (4.77) 

But we know from Eq. (4.71) that 

𝑦̇ =
𝛽𝑜

𝑐𝑜𝑠2𝜓
 ,                                                                      

and 

𝑦̇2 =
𝛽𝑜

2

𝑐𝑜𝑠4𝜓
 .                                                          (4.78) 

Putting (4.78) into (4.77), gives 

1

2𝑎𝑏
𝜓̈ − 𝑐𝑜𝑠 𝜓𝑠𝑖𝑛 𝜓

𝛽𝑜
2

𝑐𝑜𝑠4𝜓
= 0,                           (4.79) 

and 

1

2𝑎𝑏
𝜓̈ − 𝛽𝑜

2 𝑠𝑖𝑛 𝜓

𝑐𝑜𝑠3𝜓
= 0 .                                      (4.80) 
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Hence, 

𝜓̈ = 2𝑎𝑏𝛽𝑜
2 𝑠𝑖𝑛 𝜓

𝑐𝑜𝑠3𝜓
 .                                         (4.81) 

This is the equation of motion that defines and describes the motion of our test particle 

along the 𝜓-coordinate as it cruises steadily on this Cosmic Landscape. 

4.2.4 Motion along the 𝜽 − 𝐜𝐨𝐨𝐫𝐝𝐢𝐧𝐚𝐭𝐞 

Here, we take the derivatives of Lagrangian (4.59) with respect to 𝜃, such that 

𝜕ℒ

𝜕𝜃
= −

1

2
 (2𝑐𝑜𝑠 𝜃)(−𝑠𝑖𝑛 𝜃)𝑥̇2, 

which implies that 

𝜕ℒ

𝜕𝜃
=   𝑐𝑜𝑠 𝜃𝑠𝑖𝑛 𝜃𝑥̇2,                                              (4.82) 

also 

𝜕ℒ

𝜕𝜃̇
= −

1

2
(

1

2𝑎𝑏
. 2𝜃̇), 

which implies that 

𝜕ℒ

𝜕𝜃̇
=  −

1

2𝑎𝑏
. 𝜃̇,                                                    (4.83) 

and 

𝑑

𝑑𝑠
(

𝜕ℒ

𝜕𝜃̇
) =  −

1

2𝑎𝑏
𝜃̈.                                              (4.84) 

Putting Eq. (4.82) and (4.84) into (2.8), we obtain 

−
1

2𝑎𝑏
𝜃̈ − 𝑐𝑜𝑠 𝜓𝑠𝑖𝑛 𝜃𝑥̇2 = 0.                                  (4.85) 

Recall from Eqn. (4.36) that 

𝑥̇ =
𝛼𝑜

𝑐𝑜𝑠2𝜃
 , 

and 

𝑥̇2 =
𝛼𝑜

2

𝑐𝑜𝑠4𝜃
 .                                                    (4.86) 
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Putting Eq. (4.86) into (4.85) yields 

1

2𝑎𝑏
𝜃̈ + 𝑐𝑜𝑠 𝜃𝑠𝑖𝑛 𝜃

𝛼𝑜
2

𝑐𝑜𝑠4𝜃
= 0,                           (4.87) 

and 

1

2𝑎𝑏
𝜃̈ + 𝛼𝑜

2
𝑠𝑖𝑛 𝜃

𝑐𝑜𝑠3𝜃
= 0.                                    (4.89) 

Hence, 

𝜃̈ = −2𝑎𝑏𝛼𝑜
2

𝑠𝑖𝑛 𝜃

𝑐𝑜𝑠3𝜃
 .                                  (4.90)  

This is the equation of motion that defines and describes the geodesics of our test 

particle along the 𝜃-coordinate. 

At this juncture, we have concluded the derivation of required equations of motion. 

On a general note, there seems to be four equations that define and describe the motion 

of our test particle here, as it moves steadily within the Bell-Szekeres Cosmic 

Landscape or space-time continuum. The four equations are Eqs. (4.65), (4.71),(4.81) 

and (4.90) 

𝑥̇ =
𝛼𝑜

𝑐𝑜𝑠2𝜃
 ,                                                      (4.65 

𝑦̇ =
𝛽𝑜

𝑐𝑜𝑠2𝜓
 ,                                                   (4.71) 

𝜓̈ = 2𝑎𝑏𝛽𝑜
2 𝑠𝑖𝑛 𝜓

𝑐𝑜𝑠3𝜓
 ,                                      (4.81) 

and 

𝜃̈ = −2𝑎𝑏𝛼𝑜
2

𝑠𝑖𝑛 𝜃

𝑐𝑜𝑠3𝜃
.                                      (4.90) 

4.3 Geodesics on a Degenerate Cosmic Landscape 

Here, we take a close look at the basic properties of this global structure and the roles 

that Killing vectors along with their associated constants play in the formation of 
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horizons and singularities as we spotlight the geodesics of our test particle on this 

Cosmic Landscape. 

In order to discuss the geodesics of our test particle within this framework, we need to 

transform the metric line element (4.1) into the form in Eq. (3.38), which is valid for 

defining and describing the geodesics of any test particle on the Degenerate Cosmic 

Landscape. We now begin with some suitable transformations as we let 

𝑒−𝑀 =
1

2
(1 + 𝜌𝑠𝑖𝑛𝑡)2, 

𝑒−𝑈+𝑉 = − (
1 − 𝜌𝑠𝑖𝑛𝑡

1 + 𝜌𝑠𝑖𝑛𝑡
), 

𝑒−𝑈−𝑉 = −𝑐𝑜𝑠2𝑧(1 + 𝜌𝑠𝑖𝑛𝑡)2,                                (4.91) 

and 

𝑑𝑢𝑑𝑣 = 𝑑𝑧2 − 𝑑𝑡2. 

In the light of these transformations (4.91), our line element (4.1) now takes the form 

𝑑𝑠2 = (1 + 𝜌𝑠𝑖𝑛𝑡)2(𝑑𝑧2 − 𝑑𝑡2) +  (
1 − 𝜌𝑠𝑖𝑛𝑡

1 + 𝜌𝑠𝑖𝑛𝑡
) 𝑑𝑥2

+ 𝑐𝑜𝑠2𝑧(1 + 𝜌𝑠𝑖𝑛𝑡)2𝑑𝑦2.                                                                  (4.92) 

This line element (4.92) becomes our working metric element for defining and 

describing the geodesics of our test particle as it moves steadily on this Cosmic 

Landscape. 

By imposing Eq. (2.7) n the line element (4.92), we obtain the translational Killing 

vectors for regions II anod III as 

𝜉(1) = 𝜕𝑥 ,                                                           (4.93) 

and  

𝜉(2) = 𝜕𝑦 .                                                          (4.94) 
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By imposing Eqs. (2.4) - (2.6) on the line element (4.92), we obtain the Killing vectors 

fully operational in region IV as 

𝜉(3)
𝐼 = 𝑐𝑜𝑠𝑦 𝜕𝑧 + 𝑠𝑖𝑛𝑦 𝑡𝑎𝑛𝑧 𝜕𝑦 ,                           (4.95) 

and 

𝜉(4)
𝐼 = −𝑠𝑖𝑛𝑦 𝜕𝑧 + 𝑐𝑜𝑠𝑦 𝑡𝑎𝑛𝑧 𝜕𝑦 .                       (4.96) 

It is clear from the line element (4.92) that the Lagrangian of this mechanic system is 

defined by 

ℒ =
1

2
𝓌1

2(𝑧̇2 − 𝑡̇2) +
𝓌2

2𝓌1
𝑥̇2 +

𝑐𝑜𝑠2𝑧

2
𝓌1

2𝑦̇2 = −
𝜀

2
 ,        (4.97) 

where, 

𝓌1 = 1 + 𝜌𝑠𝑖𝑛 𝑡, 

𝓌2 = 1 − 𝜌𝑠𝑖𝑛 𝑡,                                                 (4.98) 

and 

𝜖 = 1 for time − like geodesic, 

𝜖 = 0 for null  geodesic,                                         (4.99) 

𝜖 = −1 for space − like geodesic. 

Since we are considering a time-like geodesic of a test particle on a given space-time 

continuum, we shall take 𝜖 = 1. Based on this, the metric condition for the geodesic 

that defines and describes the trajectory of our test particle on the Degenerate Cosmic 

Landscape now takes the form 

𝓌1
2(𝑧̇2 − 𝑡̇2) +

𝓌2

𝓌1
𝑥̇2 + 𝑐𝑜𝑠2𝑧𝓌1

2𝑦̇2 = −1.               (4.100) 

We now impose the Lagrangian formalism of section (2.4) on our Lagrangian (4.97) 

in order to derive the equations of motion that define and describe the geodesics of our 

test particle. First, we consider motion along the 𝑥-coordinate.  Here, we obtain 
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𝑑ℒ

𝑑𝑥̇
= 𝐾𝑥 = constant,                                            (4.101) 

and 

𝓌2

𝓌1
𝑥̇2 = 𝐾𝑥 ,                                                    (4.102) 

therefore 

𝑥̇ =
𝓌1

𝓌2
𝐾𝑥.                                                   (4.103) 

This is equation of motion of our test particle along the 𝑥-coordinate. Also, by applying 

the same method for the motion along the 𝑦-coordinate we obtain 

𝑑ℒ

𝑑𝑦̇
= 𝐾𝑦 = constant,                                        (4.104) 

and 

𝑐𝑜𝑠2𝑧𝓌1
2𝑦̇2 = 𝐾𝑦,                                           (4.105) 

therefore 

𝑦̇ =
𝐾𝑦

𝑐𝑜𝑠2𝑧𝓌1
2  .                                            (4.106) 

This is the equation of motion that defines and describes the geodesics of our test 

particle along the 𝑦-coordinate. Also, by applying the same procedure, we obtain 

equation of motion along the 𝑧-coordinate as 

𝑑ℒ

𝑑𝑧̇
= 𝓌1

2𝑧̇,                                                       (4.107) 

and 

𝑑ℒ

𝑑𝑧
= −𝑐𝑜𝑠 𝑧 𝑠𝑖𝑛 𝑧 𝓌1

2𝑦̇2,                                  (4.108) 

which implies that 

𝑑ℒ

𝑑𝑧
= −𝑐𝑜𝑠 𝑧 𝑠𝑖𝑛 𝑧 𝓌1

2
𝐾𝑦

2

𝑐𝑜𝑠4𝑧𝓌1
4  ,                           (4.109) 

therefore 
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𝑑ℒ

𝑑𝑧
= −

𝑠𝑖𝑛𝑧

𝑐𝑜𝑠3𝑧

𝐾𝑦
2

 𝓌1
2  .                                            (4.110) 

By imposing Eq. (2.9), we obtain 

(
𝑑ℒ

𝑑𝑧̇
) −

𝑑ℒ

𝑑𝑧
= 0,                                          (4.111) 

which implies that
𝑑

𝑑𝜏
 

𝑑

𝑑𝜏
(𝓌1

2𝑧̇ ) = −
𝑠𝑖𝑛𝑧

𝑐𝑜𝑠3𝑧

𝐾𝑦
2

 𝓌1
2  .                              (4.112) 

We now define a function, ℑ, such that 

ℑ̇ = 𝓌1
2𝑧̇ ,                                                   (4.113) 

and 

𝑑

𝑑𝜏
(ℑ̇ ) = −

𝑠𝑖𝑛𝑧

𝑐𝑜𝑠3𝑧

𝐾𝑦
2

 𝓌1
2  .                                  (4.114) 

Now, we multiply (4.114) by 2ℑ̇𝑑𝜏 to obtain 

2ℑ̇𝑑ℑ̇ = −
𝑠𝑖𝑛𝑧

𝑐𝑜𝑠3𝑧

𝐾𝑦
2

 𝓌1
2 2ℑ̇𝑑𝜏,                             (4.115) 

and 

ℑ̇2 = −2
𝑠𝑖𝑛𝑧

𝑐𝑜𝑠3𝑧

𝐾𝑦
2

 𝓌1
2  𝓌1

2𝑑𝜏,                              (4.116) 

therefore 

ℑ̇2 = −2
𝑠𝑖𝑛𝑧

𝑐𝑜𝑠3𝑧
𝑑𝑧𝐾𝑦

2.                                      (4.117) 

Now, we let  

𝑢 = 𝑐𝑜𝑠𝑧, 

and 

𝑑𝑢 = −𝑠𝑖𝑛𝑧𝑑𝑧,                                               (4.118) 

this implies that 
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ℑ̇2 = +2 ∫
𝑑𝑢

𝑢3
𝐾𝑦

2 + 𝐾𝑧
2 ,                                     (4.119) 

ℑ̇2 =
2𝑈−2

−2
𝐾𝑦

2 + 𝐾𝑧
2,                                         (4.120) 

ℑ̇2 = 𝐾𝑧
2 −

𝐾𝑦
2

𝑐𝑜𝑠2𝑧
,                                           (4.121) 

and 

ℑ̇ = √𝐾𝑧
2 −

𝐾𝑦
2

𝑐𝑜𝑠2𝑧
 .                                       (4.122) 

Substituting for Eq. (4.113), we obtain 

𝓌1
2𝑧̇ = √𝐾𝑧

2 −
𝐾𝑦

2

𝑐𝑜𝑠2𝑧
 ,                                     (4.123) 

therefore 

𝑧̇ =
1

𝓌1
2

√𝐾𝑧
2 −

𝐾𝑦
2

𝑐𝑜𝑠2𝑧
 .                                 (4.124) 

This is the equation of motion that defines and describes the geodesics of our test 

particle along the 𝑧-coordinate on this Cosmic Landscape. However, since the 

associated constant for the Killing vector along the 𝑧-coordinate in this case could be 

a function of both y and z, we now let 

𝐾𝑧
2 = 𝐾𝑦

2+𝐾𝑧
2.                                               (4.125) 

In the light of this transformation, Eq. (4.124) now takes the form 

𝑧̇ =
1

𝓌1
2

√𝐾𝑦
2+𝐾𝑧

2 −
𝐾𝑦

2

𝑐𝑜𝑠2𝑧
,                          (4.126) 

or 

𝑧̇ =
1

𝓌1
2

√𝐾𝑦
2 (1 −

1

𝑐𝑜𝑠2𝑧
) + 𝐾𝑧

2,                (4.127) 
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where 

𝑐𝑜𝑠2𝑧 + 𝑠𝑖𝑛2𝑧 = 1 ⇒   𝑐𝑜𝑠2𝑧 − 1 =  −𝑠𝑖𝑛2𝑧,         (4.128) 

and 

𝑧̇ =
1

𝓌1
2

√𝐾𝑦
2 (

𝑐𝑜𝑠2𝑧 − 1

𝑐𝑜𝑠2𝑧
) + 𝐾𝑧

2 ,               (4.129) 

where 

   
𝑐𝑜𝑠2𝑧 − 1

𝑐𝑜𝑠2𝑧
=

−𝑠𝑖𝑛2𝑧

𝑐𝑜𝑠2𝑧
= −𝑡𝑎𝑛2𝑧,                 (4.130) 

therefore 

𝑧̇ =
1

𝓌1
2 √𝐾𝑧

2 − 𝐾𝑦
2𝑡𝑎𝑛2𝑧 .                           (4.131) 

This becomes equation of motion that defines and describes the geodesics of our tests 

particle along the 𝑧-coordinate in terms of Eq. (4.125). 

To obtain the equation of motion along the t-coordinate, we wish to substitute for the 

other parameters into the metric condition (4.100). Now, let 

𝓌1
2𝑧̇2 − 𝓌1

2𝑡̇2 +
𝓌2

𝓌1
𝑥̇2 + 𝑐𝑜𝑠2𝑧𝓌1

2𝑦̇2 = −1,                 (4.132) 

and 

𝓌1
2𝑡̇2 = 1 + 𝓌1

2𝑧̇2 +
𝓌2

𝓌1
𝑥̇2 + 𝑐𝑜𝑠2𝑧𝓌1

2𝑦̇2,  

𝓌1
2𝑡̇2 = 1 + 𝓌1

2 (
𝐾𝑧

2 −
𝐾𝑦

2

𝑐𝑜𝑠2𝑧
𝓌1

4 ) +
𝓌2

𝓌1

𝓌1
2

𝓌2
2 𝐾𝑥

2 + 𝑐𝑜𝑠2𝑧𝓌1
2

𝐾𝑦
2

𝑐𝑜𝑠4𝑧𝓌1
4, 

𝓌1
2𝑡̇2 = 1 +

𝐾𝑧
2 −

𝐾𝑦
2

𝑐𝑜𝑠2𝑧
𝓌1

2 +
𝓌1

𝓌2
𝐾𝑥

2 +
𝐾𝑦

2

𝑐𝑜𝑠2𝑧𝓌1
2 , 

𝓌1
2𝑡̇2 = 1 +

𝐾𝑧
2

𝓌1
2 +

𝓌1

𝓌2
𝐾𝑥

2 −
𝐾𝑦

2

𝓌1
2𝑐𝑜𝑠2𝑧

+
𝐾𝑦

2

𝑐𝑜𝑠2𝑧𝓌1
2 , 
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hence 

𝓌1
2𝑡̇2 = 1 +

𝐾𝑧
2

𝓌1
2 +

𝓌1

𝓌2
𝐾𝑥

2.                                 (4.133) 

Solving for  𝑡̇ from Eq. (4.133), we obtain 

𝑡̇2 =
1

𝓌1
2 (1 +

𝐾𝑧
2

𝓌1
2 +

𝓌1

𝓌2
𝐾𝑥

2),                          (4.134) 

and 

 𝑡̇ =
1

𝓌1

√1 +
𝓌1

𝓌2
𝐾𝑥

2 +
𝐾𝑧

2

𝓌1
2  .                              (4.135) 

This is the equation of motion that defines and describes the geodesics of our test 

particle on this Cosmic Landscape along the t-coordinate. However, in terms of Eq. 

(4.125) we obtain 

𝑡̇ =
1

𝓌1

√1 +
𝓌1

𝓌2
𝐾𝑥

2 +
𝐾𝑦

2+𝐾𝑧
2

𝓌1
2  .                  (4.136) 

To conclude this section, we need to note that there are four equations that define and 

describe the motion of the particle here, as it moves steadily on a Degenerate Cosmic 

Landscape or space-time continuum. The four equations are 

               1. 𝑥̇ =
𝓌1

𝓌2
𝐾𝑥 ,                                                      (4.103) 

2. 𝑦̇ =
𝐾𝑦

𝑐𝑜𝑠2𝑧𝓌1
2  ,                                                   (4.106) 

3a. 𝑧̇ =
1

𝓌1
2

√𝐾𝑧
2 −

𝐾𝑦
2

𝑐𝑜𝑠2𝑧
  ,                                    (4.124) 

3b. 𝑧̇ =
1

𝓌1
2 √𝐾𝑧

2 − 𝐾𝑦
2𝑡𝑎𝑛2𝑧  ,                                (4.131) 

4a. 𝑡̇ =
1

𝓌1
√1 +

𝓌1

𝓌2
𝐾𝑥

2 +
𝐾𝑧

2

𝓌1
2  ,                               (4.135) 

and 
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4b. 𝑡̇ =
1

𝓌1
√1 +

𝓌1

𝓌2
𝐾𝑥

2 +
𝐾𝑦

2+𝐾𝑧
2

𝓌1
2 .                            (4.136) 

4.4 Discussion 

Here, we seek to find solutions to the equations of motion that we obtained in sections 

(4.1) – ((4.3) as we discuss how they define and describe the geodesics of our test 

particle on the various Cosmic Landscapes. We shall begin by solving the equations 

of motion on the Bell-Szekeres Cosmic Landscape, since it appears to be the simplest. 

We shall proceed to solve and discuss the highly non-linear equation of the particle’s 

motion on the Khan-Penrose Comic Landscape. We shall proceed to spot-light the the 

geodesics of the particle on the Degenerate Cosmic Landscape; the Ferrari-Ibanez 

space-time continuum. 

4.4.1 The Bell-Szekeres Cosmic Landscape solutions 

Here, we intend to reduce the four equations of motion for our test particle obtained in 

section (4.2) to a simple and manageable two-dimensional equation along the 𝜓 and 𝜃 

coordinates. Recall that our working line element (4.55) valid for the geodesics of our 

test particle on the Bell-Szekeres Cosmic Landscape is given by  

𝑑𝑠2 =
1

2𝑎𝑏
(𝑑𝜓2 − 𝑑𝜃2) − cos2 𝜃 𝑑𝑥2 − cos2 𝜓 𝑑𝑦2.     (4.137) 

We now divide the line element (4.137) by 𝑑𝑠2 to obtain 

1 =
1

2𝑎𝑏
(𝜓̇2 − 𝜃̇2) − cos2 𝜃 𝑥̇2 − cos2 𝜓 𝑦̇2,             (4.138) 

where, (∙ ≡
𝑑

𝑑𝑠
). To collapse this line element into an equation of motion along the 𝜓 

and 𝜃 coordinates only, we fix both 𝑥 and 𝑦  as constants. Recall also, that Eq. (4.65) 

defines and describes the geodesics of our test particle on this Cosmic Landscape along 

the 𝑥-coordinate, such that 

cos2 𝜃 𝑥̇2 = 𝛼𝑜 = constant.                             (4.139) 
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In the same vein, Eq. (4.71) provides the geodesic equation for our test particle along 

the 𝑦-coordinate, such that 

cos2 𝜓 𝑦̇2 = 𝛽𝑜 = constant.                            (4.140) 

Substituting for Eqs. (4.139) and (4.140) into the line element (4.138), makes it 

collapse drastically into 

1 =
1

2𝑎𝑏
(𝜓̇2 − 𝜃̇2).                                       (4.141) 

The Lagrangian valid for this transformed system is now defined by 

ℒ =
1

2𝑎𝑏
(𝜓̇2 − 𝜃̇2).                                   (4.142) 

We now impose the properties of section (2.4) on Lagrangian (4.142) to obtain  

𝜓̇ = constant,                                        (4.143) 

and 

𝜃̇ = 𝑐onstant.                                      (4.144) 

Dividing (4.143) by (4.144), we obtain 

𝜓̇

𝜃̇
= constant,                                         (4.155) 

this implies that 

𝑑𝜓

𝑑𝜃
= constant.                                       (4.156) 

Hence, 

𝜓 = 𝜅𝜃 + ℓ,                                           (4.157) 

where, 𝜅 𝑎𝑛𝑑 ℓ, are constants, 𝜓 is a function of 𝜃. Eq. (4.157) is now our simplified 

equation of motion that defines and describes the geodesic of our test particle as it 

moves steadily along the 𝜓 and 𝜃 coordinates on this Cosmic Landscape. A numerical 

solution to Eq. (4.157) is obtained for 0 ≤ 𝜓 ≤ 1 and 0 ≤ 𝜃 ≤ 1, which gives a 
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straight line graph (see Figure 4.1). The line defines and describes the path or geodesic 

of our test particle as it moves straight into the horizon on this Cosmic Landscape. 

Figure 4.1: Geodesic of a test particle on Bell-Szekeres Cosmic Landscape along the 

θ and ψ coordinates for 0 ≤ 𝜓 ≤ 1 and 0 ≤ 𝜃 ≤ 1. 

4.4.2 The Khan-Penrose Cosmic Landscape Solutions 

Here, we seek to solve the equations of motion for our test particle obtained in section 

(4.1). However, since the equations are highly non-linear, we intend to evaluate the 

equations numerically as we discuss the geodesics of our test particle cruising steadily 

on the Khan-Penrose Cosmic Landscape. 

Recall that, Eqns. (4.29) and (4.51) are the geodesic equations that define and describe 

the paths or the particle’s motion on this Cosmic Landscape in terms of the null 

coordinates (𝑢, 𝑣) and the Cartesian coordinates (𝑥, 𝑦) respectively. However, since 

the impulsive waves in this structure are best described in the null coordinates(𝑢, 𝑣), 

we shall discuss the geodesic of our test particle using Eqn. (4.29). 
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Now, recall that Eq. (4.29), is given as 

     𝑣′′ =
2𝑣′

𝑓
[𝑓𝑢 − 𝑣′𝑓𝑣],                                    (4.158) 

where, is a 𝑓 is a function defined by 

𝑓 = [
2𝑒−𝑀−𝑈

𝑒−𝑈 + 𝐴2𝑒−𝑉 + 𝐵2𝑒𝑉
]

1
2

,                       (4.159) 

𝐴 and 𝐵 are both canstants. To simplify further, we let 𝐴 = 𝐵 = 0. The function 

(4.159) reduces into 

𝑓 = √2 (𝑒−𝑀)
1
2.                                       (4.160) 

Now, comparing the line element (4.1) that defines our test particle with the line 

element (3.14) shows that 

𝑒−𝑀 =
(1 − 𝑢2 − 𝑣2)

3
2

√1 − 𝑢2√1 − 𝑣2(𝑢𝑣 + √1 − 𝑢2√1 − 𝑣2)
2  ,        (4.161) 

where, 

𝑓 = 𝑓(𝑢, 𝑣), and 𝑣 = 𝑣(𝑢)                                     (4.162) 

Now, setting 0 ≤ 𝑢 < 1, 0 ≤ 𝑣 < 1, and initial conditions 𝑢 = 0, 𝑣 = 0 𝑎𝑛𝑑 𝑣′ =

0.1. Our equation of motion (4.158) is solved numerically using Maple (see Figure 4.2 

and figure 4.3 respectively). In our plots, we used 𝑣0 for the initial speed of our test 

particle and we considered initial speed range of  𝑣0 = 0.1𝑛, 𝑛 = 0 … 𝑁. 
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Figure 4.1 the geodesics of a test particle on the Khan-Penrose Cosmic Landscape for 

initial speeds 𝑣0 = 0.1𝑛, 𝑛 = 0 … 10. The geodesics curved towards right of the path 

with 𝑣0 = 1, as they hit the curved singularity. 

Figure (4.2) shows geodesics of our test particles with initial speed ranging from 𝑣0 =

0.1 to 1.0. It is clear that the trajectories tend to curve at the tail end of their journey 

as they approach their touch line; the curvature singularity. However, the geodesic for 

which 𝑣0 = 1.0, appears to straighten up given rise to a straight line trajectory into the 

curvature singularity. 
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Figure 4.3: the geodesics of a test particle on the Khan-Penrose Cosmic Landscape for 

initial speeds 𝑣0 = 0.1𝑛, 𝑛 = 0 … 25. The geodesics curved towards right or left of a 

path along which 𝑣0 = 1, as they hit the curved singularity. 

Figure (4.3) shows a wider spectrum of geodesics of our test particles with initial speed 

range from 𝑣0 = 0.1 to 2.5. It is clear that the trajectories tend to curve at the tail end 

of their journey towards the right side as they approach their touch line; the curvature 

singularity, while at 𝑣0 = 1.0 gave rise to a straight line trajectory into the singularity 

just as it is reflected in Figure (4.2). However, as we increase the initial speed above 

1.0, the trajectories begin to curve again, but this time, towards the left side. As the 

initial speed increases, the geodesics seems to vanish before reaching the singularity.  

4.4.3 The Degenerate Cosmic Landscape solutions 

Here, we consider the solutions to the equations of motion developed in section (4.3) for our 

test particle on a Degenerate Cosmic Landscape. We intend to have a close look at how 

horizons and singularities are formed on this Cosmic Landscape. 
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4.4.3.1 The Horizons 

Following the condition for the formation of horizons stated in section (3.3), we know 

that as our test particle approaches   𝑡 =
𝜋

2
 𝑜𝑟 𝑢 + 𝑣 =

𝜋

2
 ; horizons are formed along 

the geodesic when 𝜌 = +1 as a basic condition imposed on our working line element 

(4.92). 

Now, we carry out some transformations on geodesic equations developed in section 

(4.3) as we let  

𝓌1 = 2 and 𝓌2 = 0 .                                      (4.163) 

We define a function ℥ such that 

℥ =
1

𝓌1

√1 +
𝓌1

𝓌2
𝐾𝑥

2 +
𝐾𝑧

2

𝓌1
2  ,                            (4.164) 

𝑡̇ =
𝑑𝑡

𝑑𝜏
= ℥ ,                                               (4.165) 

𝑑𝑡 = ℥𝑑𝜏 ⇒
𝜕

𝜕𝜏
= ℥

𝜕

𝜕𝑡
 ,                               (4.166) 

and 

𝑑𝑡

𝑑𝜏
= ℥

𝑑𝑧

𝑑𝑡
                                                (4.167) 

this implies that 

𝑑𝑧

𝑑𝑡
=

1

℥

𝑑𝑧

𝑑𝜏
=

1

℥
𝔛                                      (4.168) 

where, 

𝔛 =
1

𝓌1
2

√𝐾𝑧
2 −

𝐾𝑦
2

𝑐𝑜𝑠2𝑧
 .                                 (4.169) 

By Eq. (4.163) it is clear that (4.169) takes the form 
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𝔛 =
1

4
√𝐾𝑧

2 −
𝐾𝑦

2

𝑐𝑜𝑠2𝑧
 .                                    (4.170) 

Now, we consider a situation where 𝓌2 = 0. 

Case I: 𝐾𝑥 ≠ 0 ⇒ ℥ → ∞                                                                                   (4.171) 

and  

𝑑𝑧

𝑑𝑡
⃒

𝑡→
𝜋
2

,𝓌1=2,𝓌2=0
=

𝔛

℥
⃒℥→∞ = 0                              (4.172) 

Case II: 𝐾𝑥 = 0 ⇒ ℥ =
1

2
√1 +

𝐾𝑧
2

4
=

1

4
√4 + 𝐾𝑧

2                                             (4.173) 

and 

𝑑𝑧

𝑑𝑡
=

𝔛

℥
=

√𝐾𝑧
2 −

𝐾𝑦
2

𝑐𝑜𝑠2𝑧

√4 + 𝐾𝑧
2

=
1

𝑐𝑜𝑠𝑧
√

𝐾𝑧
2𝑐𝑜𝑠2𝑧 − 𝐾𝑦

2

4 + 𝐾𝑧
2 + 𝐾𝑦

2
.            (4.174) 

In terms of  𝐾𝑧
2 = 𝐾𝑧

2 + 𝐾𝑦
2 , we obtain 

𝑑𝑧

𝑑𝑡
=

𝔛

℥
=

√𝐾𝑧
2 + 𝐾𝑦

2 −
𝐾𝑦

2

𝑐𝑜𝑠2𝑧

√4 + 𝐾𝑧
2 + 𝐾𝑦

2
=  

√𝐾𝑧
2 + (1 −

1
𝑐𝑜𝑠2𝑧

) 𝐾𝑦
2

√4 + 𝐾𝑧
2 + 𝐾𝑦

2
 .    (4.175) 

But  

1 −
1

𝑐𝑜𝑠2𝑧
=

𝑐𝑜𝑠2𝑧 − 1

𝑐𝑜𝑠2𝑧
=

−𝑠𝑖𝑛2𝑧

𝑐𝑜𝑠2𝑧
= −𝑡𝑎𝑛2𝑧,                  (4.176) 

this implies that 

𝑑𝑧

𝑑𝑡
⃒

𝑡→
𝜋
2

= √
𝐾𝑧

2 − 𝐾𝑦
2𝑡𝑎𝑛2𝑧

4 + 𝐾𝑧
2 + 𝐾𝑦

2
.                                   (4.177) 

4.4.3.2 The Singularities 

In the same way, following the basic conditions for the formation of singularities 

discussed in section (3.3), we know that as our test particle approaches    𝑡 =
𝜋

2
 𝑜𝑟 𝑢 +
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𝑣 =
𝜋

2
 , singularities are formed along the geodesic when    𝜌 = −1 as a condition we 

imposed on our working line element (4.92). 

Now, recall that 

𝑑𝑧

𝑑𝑡
=

𝔛

℥
=

1
𝓌1

2
√𝐾𝑧

2 −
𝐾𝑦

2

𝑐𝑜𝑠2𝑧

1
𝓌1

2
√𝓌1

2 +
𝓌1

2

𝓌2
𝐾𝑥

2 + 𝐾𝑧
2

=
√𝐾𝑧

2 −
𝐾𝑦

2

𝑐𝑜𝑠2𝑧

√𝓌1
2 +

𝓌1
2

𝓌2
𝐾𝑥

2 + 𝐾𝑧
2

  (4.178) 

Following the imposed conditions where 

 𝜌 = −1 , 𝑡 =
𝜋

2
, 𝓌1 = 0, 𝑎𝑛𝑑 𝓌2 = 2,                     (4.179) 

we obtain 

 
𝑑𝑧

𝑑𝑡
=

√𝐾𝑧
2 −

𝐾𝑦
2

𝑐𝑜𝑠2𝑧

√𝐾𝑧
2

 ,                                         (4.180) 

and in terms of 𝐾𝑧
2 = 𝐾𝑧

2 + 𝐾𝑦
2, Eq. (4.180) takes the form 

𝑑𝑧

𝑑𝑡
=

√𝐾𝑧
2 + 𝐾𝑦

2 −
𝐾𝑦

2

𝑐𝑜𝑠2𝑧

√𝐾𝑧
2 + 𝐾𝑦

2
=   

√𝐾𝑧
2 + (1 −

1
𝑐𝑜𝑠2𝑧

) 𝐾𝑦
2

√𝐾𝑧
2 + 𝐾𝑦

2
   (4.181) 

where 

1 −
1

𝑐𝑜𝑠2𝑧
=

𝑐𝑜𝑠2𝑧 − 1

𝑐𝑜𝑠2𝑧
=

−𝑠𝑖𝑛2𝑧

𝑐𝑜𝑠2𝑧
= −𝑡𝑎𝑛2𝑧         (4.182) 

therefore 

𝑑𝑧

𝑑𝑡
= √

𝐾𝑧
2 − 𝐾𝑦

2𝑡𝑎𝑛2𝑧

𝐾𝑧
2 + 𝐾𝑦

2
.                               (4.183)) 

It is clear from Eq. (4.183) that for both cases I and II where 𝐾𝑥 = 0 𝑎𝑛𝑑 𝐾𝑥 ≠

0 , 𝑓𝑜𝑟 𝑡 =
𝜋

2
, 𝑎𝑛𝑑 𝜌 = −1 , the slope of the trajectory that leads to the formation of 

singularities remains the same; it does not depend on  𝐾𝑥, hence 
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𝑑𝑧

𝑑𝑡
⃒

𝑡→
𝜋
2

,𝓌1=0,𝓌2=2
= √

𝐾𝑧
2 − 𝐾𝑦

2𝑡𝑎𝑛2𝑧

𝐾𝑧
2 + 𝐾𝑦

2
.             (4.184) 
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Chapter 5 

5 SUMMARY AND CONCLUSION 

5 Summary and conclusion 

We have gradually come to our proposed destination, of which, I can confidently and 

affirmatively say with the wise men of great renown; “a thousand miles’ journey 

begins with a step.” To wrap it up, it is expedient for us to recount some of the mile-

stones that ear-marked our trajectory. 

We began by looking at the BICEP2 Report on the newly detected B-Mode 

Polarization of the gravitational waves formed in the Baby Universe, which prompted 

this research, after which, we looked at the background and the basic concept of 

Gravitational wave. We proceeded by hand-picking some vital tools and equations to 

build-up a mathematical structure, with which we constructed some theoretical Global 

Structures: the Khan-Penrose, Bell-Szekeres and the Ferrari-Ibanez global structures 

that served as the Cosmic Landscapes or space-time continua, upon which a test 

particle is considered as an inertial observer. We analyzed and discussed the time-like 

geodesic of the particle on the various Cosmic Landscapes or space-time continua. 

When electromagnetic plane waves collide, gravitational waves are always generated. 

These impulsive waves occur along the boundaries of region IV only or may appear 

throughout the interaction region. When a particle is placed along the path of two 

colliding plane waves, it will be forced to follow a geodesic, defined by the properties 
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of the Global structure, leading to either curvature singularities or horizons pending on 

the initial conditions. In the null coordinates,(𝑢, 𝑣), the interaction region is bounded; 

so given the initial conditions the later developments are plotted numerically.  

The time-like geodesic of the particles on a Bell-Szekeres Cosmic Landscape appears 

to be steady, defined by a straight line trajectory that leads into the horizon. The 

gradient of the path is constant. On the other hand, the geodesics on the Khan-Penrose 

Cosmic Landscape appear to curve towards either sides away from the trajectory on 

which the initial speed of the test particle is given as 𝑣0 = 1.0. It is clearly and 

evidently seen that all the geodesics vanish or appear to vanish at the end of their 

journey as they approach the touch-line; the curvature singularity within the 

interaction region. Finally, the Degenerate Cosmic Landscape gave rise to the 

formation of both Horizons and singularities. Horizons are formed when 𝜌 = +1, 

while Singularities are formed when 𝜌 = −1. 

 

 

 

 

 

 



 

61 
 

REFERENCES 

[1] BICEP2 Collaborations (2014). Detection of B-Mode Polarization at Degree 

Angular Scales.PRL 112, 241101. 

[2] Greene, B. (2011). The Hidden Reality: Parallel Universes and the Deep Laws of 

the   Cosmos. Alfred A. Kropf, New York, USA. 

[3] Green, B. (2003). The Elegant Universe: Superstrings, hidden dimensions, and the 

quest for the Ultimate theory. W.W. Norton and company, New York, USA. 

[4] Hawking, S. (1996). The Illustrated: A Brief History of time: Updated and 

Expanded Edition. Bantam Books, New York, USA. 

[5] Gleiser, M. (1997). The Dancing Universe: From Creation Myths to the Big Bang. 

Dutton- Penguin Group, New York, USA. 

[6] Tipler, F. J. (1994). The Physics of immortality: Modern Cosmology, God and the 

Resurrection of the Dead. Doubleday, New York, USA. 

[7] Hawking, S. and Mlodinow, L. (2010). The Grand Design. Bantam Books, New 

York, USA. 

[8] Kaku, M. (2008). Physics of the impossible: a Scientific Exploration into the World 

of Phasers, Force Fields, Teleportation, and time travel. Doubleday, New York, USA. 



 

62 
 

[9] Hawking, S. (2002). On the Shoulders of Giants: The Great Works of Physics and 

Astronomy. Running Press, Philadelphia, USA. 

[10] Hawking, S. (2002). The Theory of Everything: The Origin and Fate of the 

Universe. New Millennium Press, CA, USA. 

[11] Maldacena, J. (2005). The Illusion of Gravity. Scientific America, Nov. 2005, 57-

63. www.sciam.com. 

[12]: Kaku, M. (1994). Hyperspace: A Scientific Odyssey through Parallel Universes, 

Time Warps, and the 10th Dimension. Oxford University Press, New York, USA. 

[13] Greene, B. (2012). Eleventh Ed. The Fabric of the Cosmos: Space, Time, and the 

Texture of Reality. Alfred A. Kropf, New York, USA. 

[14] Khan, K. A. and Penrose, R. (1971). Scattering of two impulsive Gravitational 

Plane Waves. Nature, 229, 185-6. 

[15] Bell, P. and Szekeres, P. (1974). Interacting electromagnetic shock waves in 

General Relativity. Gen. Rel. Grav., 5,275-86. 

[16] Nelson, S. J. and Armstrong, J.W. (1988). “Gravitational wave Searches Using 

the DSN.” TDA Progress Report PR 42-94, April-June 1988, 15 August 1988, pp 75-

85. 

http://www.sciam.com/


 

63 
 

[17] Ajith, P. and Arun, K.G. (2011). Gravitational-Wave Astronomy: A New window 

to the Universe. Resonance 16, 922-932 (October 2011). 

[18] Ferrari, V., Ibanez, J. and Bruni, M. (1987b). Colliding Plane .Gravitational 

waves: A class of Non-diagonal soliton solutions. Phys. Rev. D, 36, 1053-64. 

[19] Baker, R. M. L, Jr (2003). What Poincare and Einstein have wrought: a Modern, 

practical application of the General Theory of Relativity. Paper HFGW-03-101m 

Gravitational wave conference, The MITRE Corporation, McLean, Virginia, USA, 

May 6-9, 2003. 

[20] Thorne, K. S. (1987). Gravitational Radiation, in S. W. Hawking and W. Israel 

(eds.), three Hundred years of Gravitation, Cambridge, England: Cambridge 

University Press. 

[21] Thorne, K. S. (1997). Gravitational Radiation: A New window onto the Universe.  

http://arXiv:gr-qc/9704042v1. 

[22] Griffiths, J. B. (1991). Colliding plane waves in General Relativity. Oxford 

University Press, Oxford, UK. 

[23] Newman, E. and Penrose, R. (1962). An approach to gravitational radiation by a 

method of spin Coefficients. J. Math. Phys., 3, 566; (1963). 4, 998. 

[24] Halilsoy, M. (1988). Colliding electromagnetic shock waves in General 

Relativity. Phys. Rev. D, 37, 2121-6. 

http://arXiv:gr-qc/9704042v1


 

64 
 

[25] Halilsoy, M. and Sakali, I. (2003). Scalar Field solutions in Colliding Einstein-

Maxwell waves. http://arXiv:gr-qc/0302011v1. 

[26] Ferrari, V. and Ibanez, J. (1987). A New exact solution for Colliding Gravitational 

Plane waves. Gen. Rel. Grav., 19, 383-404. 

[27] Bini, D., Cruciani, G. and Lunari,A. (2001). http://arXiv:gr-qc/0212008v3. 

 

 

 

 

 

 

 

 

http://arXiv:gr-qc/0302011v1
http://arXiv:gr-qc/0212008v3

