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ABSTRACT 

The aim of this work is focused on designing a new generalized loading approach for 

Uniform Linear Array (ULA). This method achieves robust adaptive beamforming 

against direction-of-arrival (DOA) mismatches by shaping the directional response of 

the adaptive Uniform Linear Array.  

To achieve this purpose, we consider an ULA with N sensors, which are located at 

half wavelength spacing. The desired spatial signal impinges from a specific 

direction, such that the presumed direction has a mismatch with the true direction. 

Furthermore we assume that the desired signal components are present in the 

beamformer training data snapshots and that the data sample size is limited. 

Therefore, we desire to develop a robust adaptive beamformer to improve the 

performance against inaccuracies caused by limited sample size and the look 

direction mismatch by shaping the directional response of the array. 

The ability of the directional response shaping (DRS) will follow the modified 

conventional loading methods for an adaptive ULA. However, it stresses on the 

range of specified direction (cut off angle) in the presence of undesired interferences.  

In this technique, a general loading matrix is considered which is derived from a 

weight function. This matrix is added to the estimated correlation matrix, such that 

the directional response of the beamformer is shaped. Also, the loaded matrix 

minimizes the output power of the beamformer. By using the loaded matrix, 

beamformer weight vector will approach to an optimal value regarding the output 
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SINR. The weight function can be chosen to further suppress the interferences by 

making the weight large in the vicinity of DOA’s of interferences.  

To demonstrate the capability of the proposed method, it is compared with some of 

the well-known methods such as Sample Matric Inversion (SMI), Loaded Diagonally 

Sample Matrix Inversion (LSMI), Robust Capon Beamformer (RCB), Iterative 

Minimum Variance Beamformer (IRMVB (Li’s)) algorithms. The results clarify that, 

convergence of our method to optimal SINR in different conditions is superior. 

Keywords: Adaptive Beamformer, Uniform Linear Array (ULA), Mismatch, 

Interferences, Generalized Loading matrix, Correlation Matrix  
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ÖZ 

Bu çalışmanın amacı uyarlanır demet oluşturmada genel yükleme yaklaşımı 

geliştirmektir. Bu yaklaşım, uyarlanır doğrusal dizgenin yönsel tepkimesini 

şekillendirmek suretiyle, yönsel varma açısındaki uyumsuzluklara karşı dayanıklı 

hale gelir. 

Bu amaca ulaşmak için duyarga sayısı N ve duyargalar arası uzaklığın yarı 

dalgaboyu olan bir tekdüze doğrusal dizge ele aldık. İstenen işaretin, gerçek yaklaşım 

yönü ile varsayılan yaklaşım yönü arasında bir uyumsuzluk olacak şekilde dizgeye 

ulaşmaktadır. Ayrıca, istenen işaretin demet-oluşturucunun alıştırma veri dizilerinde 

mevcut olduğu, ve örnek veri büyüklüğünün sınırlı olduğu varsayılmıştır.  

Bu sorunlar karşısında uyarlanır demet-oluşturucunun başarımını artırmak için 

dizgenin yönsel tepkimesini şekillendirmeye çalıştık.    

Bu yöntemde, bir ağırlık işlevinden elde edilen genel bir yükleme matrisi üzerinde 

durduk. Bu matris kestirilen ilinti matrisi ile toplanır, ve sonuçta demet-

oluşturucunun yönsel tepkimesi şekillendirilmiş olur. Bu yolla demet-oluşturucunun 

ağırlık vektörü çıkış SINR’ı açısından en iyi durumu yaklaşır. Ağırlık işlevi, karışma 

işaretlerinin varış yön açılarının cıvarında büyük seçilerek bu işaretler daha etkili 

olarak bastırılır. 

Önerilen yöntemin  olumlu özelliklerini göstermek için, SMI, LSMI, RCB ve 

IRMVB gibi iyi bilinen diğer yöntemlerle karşılaştırıldı. Sonuçlar, önerilen yöntemin 
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farklı durumlar için en iyi SINR değerlerine yakınlığı açısından üstün olduğunu 

göstermiştir. 

Anahtar Kelimeler: Uyarlanır Demet Oluşturmada, , Tekdüze Doğrusal Dizge, 

Uyumsuzluk, Karışım, Ilinti Matrisi, Genelliştirilmiş Yükleme Matrisi 
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Chapter 1 

1. INTRODUCTION 

1.1  Introduction 

In many applications, the desired information which is extracted from an array of 

sensors is the content of a spatially propagating signal from a definite direction. The 

content may be a message contained in the signal, such as just the existence of the 

signal, as in radar and sonar, or in communications applications. Because of this, we 

want to linearly combine the signals from all the sensors in a way, that is, with a 

convenient weighting, so as to examine signals arriving from a particular angle. 

Adaptive beamforming has various applications in sonar, radar, seismology, 

microphone array speech processing [1]–[5], and even, in wireless communications 

[6], [7]. When the practical problem for adaptive arrays is considered, the 

performance of adaptive beamforming methods might be inferior to the model case.  

The performance of adaptive beamforming methods is known to reduce substantially 

if there are mismatches between the true and assumed array steering vector responses 

to the desired signal. Such mismatches may frequently occur in practical situations 

due to contravention of basic assumptions on the surroundings, look direction errors, 

sensor array or environment being non-stationary. This is particularly true when the 

desired signal components are present in the beamformer training data snapshots like 

passive locations, medical imaging, mobile communications and acoustics. In this 
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case the beamformers produce main beam in the assumed direction of the desired 

signal and true signal is considered as the interference so the algorithm tries to 

suppress the true signal.  For this occasion, the adaptive array performance is very 

sensitive to array and model imperfections [8], [9]. Similar performance degradation 

can be attributed to the inaccurate estimation of the covariance matrix even when the 

array steering vector to the desired signal is known, however the data samples size is 

limited.[9],[10], [11]. 

1.2 Background 

In the last three decades, plenty of algorithms have been suggested to design and 

improve robust adaptive beamforming against slight mismatches.When precise data 

of direction-of-arrival (DOA) for the desired signal and interferences are presented, 

the main beam and nulls can be generated by array signal processing through shifted 

phase along the desired signal direction and direction of interferences. Several 

methods have been established for the special case of look direction mismatch.  

The linearly constrained minimum variance (LCMV) beamformer [37], minimum 

variance distortionless response (MVDR) beamformer, signal blocking-based 

algorithms [12], sample matrix inversion (SMI) [11], Bayesian beamformer and 

generalized sidelobe canceller (GSC) are the widely held adaptive beamformers. 

Although these techniques are useful to reduce the signal look direction mismatch, 

they are not effective when the desired signal appears in the data snapshots and there 

is a mismatch between the assumed and true signal directions, in which case the 

beamformers encounter performance degradation problems. 
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 Efforts are in progress to develop robust algorithms against mismatches, signal 

wave-front distortions and coherent and incoherent local scattering [13]. 

Other approaches aim to obtain robustness against common kinds of mismatches, for 

instance, diagonal loading of the sample covariance matrix [11],[14] which  is a 

general technique that makes the beamformer robust against direction-of-arrival 

mismatch. Nevertheless, an important disadvantage of diagonal loading is that there 

is no trustworthy way to find the diagonal loading factor and if the chosen parameter 

is improper, the robustness of this technique will not be satisfactory. The method 

which has fast convergence is the sample matrix inversion (SMI) technique. 

  It uses the matrix inversion to have speedy convergence. Furthermore, in the SMI 

algorithm there is a block matrix which changes by different weight vectors. Another 

approach is covariance matrix taper (CMT) which is known to provide excellent 

robustness when the interference is non-stationary [15] Robustness against 

mismatches for the desired signal array response is acceptable. Another method is 

robust adaptive beamforming using worst case performance optimization [16]. The 

performance of this method is fairly close to the simple algorithm which is known as 

diagonal loading of the sample matrix inversion (LSMI) algorithm. Generalized 

sidelobe canceller (GSC) [20] is a technique that modifies its blocking matrix in 

order to extend the sharp nulls [21].  

1.3 Organization 

Chapter 2 provides details about beamforming in uniform linear array and explains 

how features are extracted in adaptive beamforming and used for MVDR and SMI. 

This is followed by an explanation for the methods of beamforming such as 
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diagonally loaded, robust capon, Eigen-based and general rank signal beamformers 

take into the part in Chapter 3. Next in Chapter 4, the proposed method which is 

directional response shaped beamformer and the results that obtained via Monte 

Carlo simulation are presented and then discussed in varied situation in chapter 5. 

Finally, Chapter 6 makes some conclusion and purveys directions for our future 

work.  
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Chapter 2 

2. BEAMFORMIN IN UNIFORM LINEAR ARRAYS  

2.1 Introduction 

Array signal processing is motivated with the retrieval of information from signals 

which are received using an array of sensors. These signals are broadcast spatially 

over a space, such as, air, and the samples are gathered from the wavefront by the 

sensor array. The desired information in the signal might be either the content of the 

signal which is considered in communications or the specific location of the source 

or reflection that produces the signal, like in radar and sonar applications. In every 

case, the sensor array data must be processed to draw out proper information. For 

linear arrays, the sensors are organized in patterns and located along a straight line. 

The most common applications of array signal processing, include radar, sonar, 

seismology, biomedicine, communications, astronomy, and imaging. 

2.2 Uniform Linear Array 

Uniform Linear array (ULA) is an antenna array configured of individual beam 

elements with equal spacing between the elements and can be employed to produce a 

directional radiation array. Every single element antenna has beam-patterns that are 

broad and they have low directivity that is not appropriate for long distance 

communications. A high directivity can still be achieved with single element 

antennas by increasing the electrical dimensions with respect to the wavelength and 

the physical size of the antenna. Antenna arrays come in different geometrical 

structures, the most common being linear arrays. Arrays commonly use identical 
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antenna elements. The beam pattern of the array depends on the configuration, the 

distance between the elements, the amplitude and phase excitation of the elements, 

and also the radiation pattern of every sensor. Figure 2.1 shows the ULA, where 

interelement space is defined by d and single propagation signal impinges on the 

ULA from angle φ . 

 
Figure  2.1: Impinging Signal on Uniform Linear Array [22] 

For raising a model for a single spatial signal in interference and noise received by 

ULA, we assume a signal with angle φ which is discrete signal and contain the 

individual sensor signals 

1 2x( ) [ (n) (n) ... (n)]T

Nn x x x  (2.1) 

where N is the total number of sensors. A signal measurement of this vector is 

defined as an array snapshot. With respect to the (2.1) full array discrete time signal 

is constructed for every signal of interest (SOI) which is absorbed by individual 

sensors 

x( ) ( ) ( ) ( )n v s n w n φ  (2.2) 
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where ( )v φ  is the array response vector and,
0( ) ( ) ( )cs n H F s n  is the impulse 

response of signal of interest (SOI) to thn  sensor, since c
cF 
λ

 . Often in spatial 

filtering is concerned to receive a signal arriving from a specified point φ , and 

assume the signal is narrowband, a usual selection for beamformer weight is the 

array response vector model as  

2 [( sin 2 [( sin )/ ]( 1)( ) [1 ... ]i d i d N Tv e e    φ)/λ] φ λφ  (2.3) 

The spatial signal has a different propagation between two sensors because the space 

of elements is equal so the result of time delay can be:  

sind

c

φ
τ(φ) =  

(2.4) 

where c is the speed of propagation for signal. To end up the delay to the thn  element 

(sensor) will be 

         
sin

1n

d

c

φ
τ (φ) = (n - )              , 2 n N   

(2.5) 

It should be mentioned that full possible range for angle φ  is 90 90o o  φ , and the 

space for sensor must be
2

d 
λ

 , this conditions prevent to aliasing the signals and 

the signals will not be ambiguity. 

2.3 Contractual Spatial Filtering (BEAMFORMING) 

To extract the desired information from an array of sensors which includes a spatially 

propagating signal from a specific direction, it is needed to process weighting that 

emphasizes signals from a certain angle, and attenuates other signals; this procedure 

can be considered as forming a beam. 

Beamforming is classified to be data-dependent or statistically optimum, depending 

on the approach to choose the weights. For data independent beamformer the weights 
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are selected to obtain a desired response. However, in statistically optimum 

beamformer to obtain the optimized array response, the weights are chosen with 

respect to the statistics of array data. Commonly, the statistically optimum 

beamformer puts nulls at the angles of interference and tries to maximize the signal-

to-noise ratio at beamformer output [19]. 

In general, a beamformer yields its output by developing a weighted combination of 

signals (Data vector) from the N elements of the sensor array 

 ( ) ( )Hy n w x n   (2.6) 

where                    
1 2[ ... ]T

Nw w w w   (2.7) 

is the weight vector of beamformer. A standard tool for analyzing the performance of 

a beamformer is the response for a given weight vector w  as a function of φ , which 

is known as the beam response. This direction of response is calculated as 

90 90H o o φ) = (φ)      -  φW( w v  (2.8) 

The weight vector can be found by maximize the Signal to Interference plus Noise 

Ratio (SINR) 

 
 

2 2 2

2

) ( )

x ( )

H H

s

HH
i ni n

E w n v w
SINR

w wE w n 

 
| s( φ | σ | (φ)|

R| |

v
 

(2.9) 

The optimal solution to (2.9) is founded by minimizing the cost function ( H

i nw wR ) 

while the beam response is going to have unity gain ( 1Hw (φ) =v ), so by using the 

Lagrange multiplier we can write  

( )H H

i nJ w w w v R φ   

11
2 ( ) 0 ( )

2
i n i n

J
R v w R v

w


 





      φ φ  
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( ) 1H Hw v v w (φ) = φ   

11
( ) ( ) ( ) 1

2

H H

i nv w v R v 

   φ φ φ  
 

1

1 1

2 ) )H

i nv v






 
(φ R (φ

 
 

1

1) )

i n
opt H

i n

v
w

v v









 
R (φ)

(φ R (φ
 

(2.10) 

where i nR  is Interference-plus Noise correlation matrix. 

2.4 Minimum Variance Distortionless Response Beamformer  

2.4.1 Overview on MVDR 

MVDR is a special item of Linearly Constrained Minimum Variance Beamforming 

(LCMV) in array processing that does not require having background information. In 

special cases, the only prior knowledge for MVDR is the desired signal of interest 

(SOI). MVDR rejects all other information. This is a major advantage in the case 

when a signal contains unknown and unidentified components such as noise and 

interferences. MVDR beamformer assumes that the direction of arrival (DOA) from 

the desired signal is identified in advance. Then, it operates as an adaptive filter to 

pass the desired signal with a particular gain, so that the output of the filter from 

unknown sources such as undesired signals (noise) and unwanted interferers can be 

minimized. It is noted that the specific gain to the SOI is taken to be unity [26]. 

Typically, MVDR use fairly Finite Impulse Response (FIR) method to design a filter 

that minimizes the output average power of linear filter to limit the desired response 

to the specific unit gain. Now, consider linear transversal filter for array processing 

with respect to the direction of arrival to desired signal by inputs

1 1( ), ( ),... ( )o Mx n x n x n  which gives the output  
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1
*

0

( ) ( )
M

k k

k

y n w x n




  
(2.10) 

For special case of a sinusoidal excitation, ( )x n might be  ie φk  where φ  the angle 

that define the direction of arrival, then 

1
*

0

( ) ( )
M

i k

o k

k

y n x n w e






  φ  
(2.11) 

The objective for constrained optimization problem is employing the approach to 

minimize the variance of the beamformer output subject to above constraint. The 

method of Lagrange multipliers can help us to solve the optimization problem. It 

compound two parts of optimization problem and gives 

1 1 1
* * *

0 0 0

( ) Re[ ( )]
M M M

k l k l

k l k

w w x n w d g
  

  

    J λ  

1
*

0

M
i k

k

k

g w e






 φ  

(2.12) 

The solution to (2.12) is to obtain optimality criteria by minimizing the variance of 

the output subject to have unit gain for beamresponse by Minimum Variance 

Distortionless Response (MVDR) Beamforming. So,the weight vector ow  is 

computed by : 

1

1

R ( )

( ) R ( )

o
o H

o o

v
w

v v






φ

φ φ
 

(2.13) 

where R is the kk correlation matrix, ow  is the k1 optimum weight vector and 

( )ov φ  is the steering vector defined in (2.3). 

2.4.2 Robust Adptive Beamformin by MVDR 

2.4.2.1 Modeling the Signal  

Assume a linear antenna array with N omni-directional antenna sensors where 

narrowband signal is received by the antenna array at the time n is represented as  
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x( ) ( ) ( ) ( )n n n n  s i w  (2.14) 

where s( )n , i( )n and w( )n  represent the desired signal vector, interference vector, 

and noise vector. We assume that the desired signal is uncorrelated with the 

interferers and noise, while the received signal is supposed to be zero-mean. With 

respect to mentioned point source assumption, the desired signal ( )s n  is modeled as 

( ) ( ) ( )sn n vs φs  where ( )ns   is the signal waveform and ( )sv φ  is the array steering 

vector accompanying the desired signal.  

2.4.2.2 Minimum Variance Distortionless Rresponse Beamformer    

The output for the beamformer at the time n is written as 

( ) ( )Hy n w x n  (2.15) 

where w  is the N by 1 weight beamforming vector of the array. If we assume that the 

direction-of-arrival (DOA) is known, then with the optimal weight vector w  of the 

beamformer output SINR is maximized [24] 

2 22

2

( )

(

HH

s s

H H

v
 

i+n

σ | w φ |E[| w s| ]
SINR

E[| w i +n)| ] w R w
 

(2.16) 

where 2

sσ is the  power for desired signal , i+nR  is the M by M interference plus-

noise covariance matrix, The MVDR beamformer is obtained by minimizing the 

variance (power) of interference and noise at the output of the adaptive beamformer.  

The optimization problem is:  

min ( ) 1H H

sv i+n
w

w R w     s.t.    w φ  (2.17) 

There is a solution to this optimization problem with respect to the MVDR 

beamformer by minimizing the cost function when the beam response is desired to 

unity gain and it gives result like this 

1 ( )MVDR i n sv 

w R φ  (2.18) 
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where  is defined by 
1

1
H

i n







w R w

 

2.5 Sample Matrix Inversion (SMI) Adaptive Beamforming  

Up to now, we have considered the optimum beamformer but have not discussed 

how the beamformer would be implemented practically. Optimality is accomplished 

by the assumption of having perfect knowledge of the interference-plus-noise 

correlation matrix ( i+nR ), where it is utilized in (2.18). There is an adaptive method 

which is based on collected information from estimated covariance matrix. In fact, 

Sample Matrix Inversion (SMI) is a block adaptive method of the optimum 

beamformer that utilizes block of information to estimate the weight vector for 

adaptive beamforming 

 
Figure  2.2: Sample Matrix Inversion Adaptive Beamformer [7] 

 

Practically, the precise interference-plus-noise covariance matrix i+nR  is not 

available; hence what we can obtain in applications is just the number of training 

snapshots which is described by (2.14). Data array actually contains desired signal, 
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interference and random noise. The sample estimated covariance matrix is utilized 

instead of interference-plus-noise covariance matrix in practice. The correlation is 

unknown and by using the maximum likelihood (ML) the algorithm estimates the 

correlation matrix from training snapshots. So the sample covariance matrix replaces 

the interference-plus-noise covariance matrix ( i+nR ) [22]. The sample covariance 

matrix is  

1

1ˆ
K

H

i n i n k i n k

kK
  



R = x ( x (n ) n )  
(2.20) 

where K is the number of training data samples which contain the desired signal. The 

maximum likelihood estimation for correlation matrix implies that if K  , then  

ˆ
i nR   i nR . The total number of training data samples K is referred to the sample 

correlation support and the greater the number of samples the better the estimate of 

ˆ
i nR  in the stationary model [22]. To compute the beamformer weight, ˆ

i nR is 

substituted into (2.13) 

1

1

ˆ ( )

ˆ( ) ( )

i n o
SMI H

o i n o

v
w

v v










R φ

φ R φ
 

(2.21) 

For implementing the SMI adaptive beamformer, we need the interference-plus-noise 

estimated correlation matrix, which does not include the desired signal s(n). But 

usually we do not have accurate knowledge of the locations and responses for array 

sensors. In addition, sometimes the angle-of-arrival of the desired signal is unknown 

exactly for the condition when we demand its true direction. The presence of the 

desired signal in the training data samples may result in the cancelation of the desired 

signal itself, and further loss in the performance of the adaptive beamformer. 
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 One drawback of SMI method is that it may not be stable in the inversion of a 

covariance matrix when the number of snapshots is increased. The numerical 

stability is dependent on the mathematical accuracy of an array processor. Moreover, 

the SMI algorithm is not the proper approach to be executed as parallel array 

processors. 

Another crucial deficiency of the SMI algorithm is that it does not provide 

appropriate robustness to mismatch between the assumed and true signal steering 

vectors. When the mismatch occurs, there is an unknown complex vector that defines 

the result of distortions for the steering vector. To sum up, the SMI beamformer 

tends to consider the signal components in array steering vector such as interference 

and attempts to suppress these signals by putting nulls instead of maintaining 

distortionless response for steering vector [23]. 
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Chapter 3 

3. ADAPTIVE BEAMFORMING METHODS 

3.1 Introduction 

An adaptive beamformer is a method in which adaptive spatial signal processing is 

performed with an array of sensors. The signals are collected in a way which 

increases the strength of a signal in specified direction. Moreover, the aim of this 

method (Beamforming) is to maximize the Signal Interference plus Noise Ratio 

(SINR) and attenuate the mismatches. Either there is desired signal in the 

beamforming training data or not. Hence we consider some methods such as 

diagonally Loaded Sample Matrix Inversion Beamformer (LSMI), Robust Capon 

Beamformer, Eigenspace–based beamformer and general rank signals, to emphasize 

the overview of some notable principles.  

3.2 Diagonally Loaded Sample Matrix Inversion Beamformer 

(LSMI) 

Clearly, by inadequate estimated sample size of covariance in the sample matrix 

inversion (SMI) algorithm, desired sidelobe level and distortionless mainlobe of 

adaptive arrays will not be achieved. Moreover, in most applications a limited 

number of training data samples are available, so to reach this goal, in numerous 

cases it can be advantageous to consider the optimum beamformer with respect to the 

eigenvalues ( mλ ) and eigenvectors ( mq ) for interference-plus-noise correlation 

matrix [22] 
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1

N
H

i n m m m

m





R = λ q q  
(3.1) 

where the eigenvalues are 1 2 ... N      and the rank of interference is P. we 

substitute (3.1) into the optimum beamformer weights  

 1

o i n s



w = αR (φ )v   

where              1

1

1N
H

i n m m

m m







R = q q
λ

 and  1[ (H

s i n sv v 

 (φ )R φ )]  

(3.2) 

Then we have 

2

2
1

( ) { [ ( )]Q ( )}
N

Hm w
o m s m

mw m

W W v
 

 


 qφ φ)- q φ φ(  

(3.3) 

where ( ) ( )H

sW v vq φ) = φ φ(  is the quiescent response of the optimum beamformer 

and Q ( ) ( )H

m m vφ q φ  is the beam response of the mth eigenvector (eigenbeam). 

This equation is existed when the optimum conditions are described and rank of 

interference is less than the number of sensors and the smallest eigenvalues for 
i nR  

are eigenvalues which equal to the thermal noise power 2

m w  . If we consider the 

(3.3) to the SMI adaptive beamormer, it will be 

min

1min

ˆ ˆ
ˆˆ( ) { [ ( )]Q ( )}

ˆ ˆ

N
Hm

smi m s m

m m

W W v
 

 


 qφ φ)- q φ φ(  

(3.4) 

where ˆ
m   is the eigenvalue and ˆ

mq  is the eigenvector of ˆ
i nR , and respectively, 

Wq φ)(  and Q̂ ( )m φ  are the beampatterns of the quiescent weight vector and the mth 

eigenvector eigenbeam for SMI beamformer. The summation part is weighted 

eigenbeams which place nulls at angles of interferers. The weights for eigenbeams 

are characterized by the  min
ˆ ˆ( )

ˆ
m

m

 




 and the noise eigenvectors are selected to fill 

the residue of the interference-plus-noise space that is not spanned by the 
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interference. In the ideal state, the noise eigenvectors should not affect the beam 

response since the eigenvalue for the true correlation matrix is 2

minm w     . 

Nevertheless, this relation does not hold for the SMI, because by increasing the 

number of samples the noise power eigenvalues change. So, the eigenbeams affect 

the response in a way by their deflection from the noise power. Therefore, as the 

eigenvalues are random variables that change according to the number of samples, 

response of beam suffers from the addition of casually weighted eigenbeams and 

consequently sidelobe level will be higher in the adaptive beampattern. So, to reduce 

the variation of the eigenvalues, a weighted identity matrix is added to the sample 

correlation matrix [27]. 

2ˆ ˆ
dl i n w   R R I     and    =  (3.5) 

This approach is known as Diagonal Loading. where the   is loading factor. This 

technique adds the loading level to all eigenvalues of correlation matrix which 

produce a bias in eigenvalues toward decrease their alteration. The diagonally loaded 

SMI adaptive beamformer is given by 

1

1

ˆ ( )

ˆ( ) ( )

dl s
LSMI H

s dl s

w





R v φ

v φ R v φ
 

(3.6) 

It is clear that the diagonal loading method increase variance of the white noise by 

parameter   and it can improve the performance of the SMI adaptive beamformer 

with random signal array response mismatch [13]. Convergence for LSMI 

beamformer will be faster even while the number of snapshots is 2 times more than 

the number of sensors (2N)[21].  However, a main shortcoming of this method is that 

there is no trustable way to select an appropriate value for the loading factor, because 

the optimal choice depends on the unknown signal and interference factors [28].  
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To overcome the main disadvantage of diagonal loading method in [26] an approach 

has been proposed which attempts to solve the problem by developing the General 

Linear Combination based (GLC) beamformer. 

Actually, when the number of sample size N is small, the sample covariance matrix 

R̂  is not a proper estimation of the true covariance matrix R. To attenuate this 

problem, in the GLC-based covariance matrix estimation, which is a shrinkage 

method [29], we consider a GLC of the sample covariance matrix R̂  and the identity 

matrix I to acquire a more precise estimate of R instead of R̂ : 

ˆ  R I R    which           R 0  (3.7) 

where R is the improved estimation of R,   and   are the shrinkage parameters. To 

find the parameters R is minimized, as proposed in [32], with respect to MSE (R ) =

2{ }E ||R R || . Note that 0   and 0  , because these guarantee that ˆ 0R  . By 

minimization of MSE for GLC the shrinkage parameters for M dimension (number 

of sensors) of array are calculated as: 

2 2 2 2 2ˆ( ) 2 (1 ) ( ) (1 ) { }MSE M tr E          R R R R R|| || || ||  (3.8) 

So, the optimal value for  and   can be found as 

o




 



         where  2I  R|| ||  

(3.9) 

(1 )o o


   

 
  


   where   

2ˆ{ }, ( )E tr M  R R R|| ||  
(3.10) 

 

It should be considered that [0,1]o   and 0o  . However o and o  are directly 

dependent on the indefinite covariance matrix R. Therefore these parameters should 

be estimated by estimating    
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4 2

2
1

1 1 ˆˆ ( )
N

n

n
N N




  x || ||R ||||  
(3.11) 

Consequently, the estimated of o  and o  are achieved to guarantee the estimate of

o is not negative [32]: 

2

ˆ
ˆ ˆ ˆmin[ , ]

ˆ ˆ
o

I


  




||R ||
  where   ˆˆ ( )tr M  R  

(3.12) 

ˆˆ 1 o
o





   

(3.13) 

Now, diagonally loaded estimate of covariance matrix can be written as  

ˆ ˆˆ
GLC o o  R I R  (3.14) 

Using the above relation instead of R  in the Standard Capon Beamformer will give 

the GLC based robust adaptive beamformer 

1

1

R v( )
w

v ( ) R v( )

GLC s
GLC H

s GLC s






φ

φ φ
 

(3.15) 

by rewriting the equation (3.15) for enhanced GLC based weight vector 

1

1

ˆ ˆ[ ] v( )
ˆ

ˆ ˆv ( )[ ] v( )
ˆ

o
s

o
GLC

H o
s s

o



















I R φ

w

φ I R φ

 

(3.16) 

It is clear that the GLC based robust adaptive beamformer is a kind of Diagonal 

Loading method with loading factor (
ˆ

ˆ
o

o




) which is automatically determined from 

the data samples 
1

)
N

n
n


x( .  
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3.3 Robust Capon Beamformer   

3.3.1 Introduction 

The standard Capon beamformer (SCB) [26] can be an optimal spatial filter if both 

the exact covariance matrix and the array steering vector are known. In this case, the 

array signal-to-interference-plus-noise ratio (SINR) output is maximized and 

interferences are rejected better. Nevertheless, usually the covariance matrix can be 

incorrectly estimated due to limited number of data samples, and the knowledge for 

array steering vector can be inaccurate because of look direction mismatch or 

differences between presumed signal arrival angle and the actual arrival angle [8]. 

Whenever these mismatches exist there is performance degradation of SCB. This 

degradation becomes more serious if the signal-of-interest (SOI) is present in the 

estimated covariance matrix. Therefore adaptive beamforming encounters small 

sample size complications and array steering vector errors. On the other hand, if the 

knowledge of signal-of-interest is imprecise, the performance for the Capon 

beamformer will be worse than the standard Capon beamformer. 

3.3.2 Extension of Capon Beamformer 

Now we survey extension of Capon Beamformer when the steering vectors are 

uncertain [29]. Assume an array including M sensors, and the covariance matrix of 

the array output vector is R. We consider R that has the following form: 

 
2 2

1

( ) ( ) ( ) ( )
P

H H

s s s p p p

p

v v v v Q     


 R =   
(3.17) 

where 2

s and 
2

p  are powers of signals impinging on the array; s  and p are the 

parameters for the positions of sources which emit the signals. (.)v  is the array 

steering vector and Q  is the noise covariance matrix  given by 2Q I (the 

covariance matrix has full rank despite of the rest of the terms each of which has 
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rank one). With respect to this explanation, the first term of R is related to the SOI 

and the remaining term corresponds to the P interferences. To simplify notation, let 

( )sv  = sv . 

The aim of this method is to extend the Capon Beamformer to determine the power 

of signal-of-interest even when just vague knowledge of its steering vector sv is 

available. Specifically, consider that only knowledge about sv is available which 

belongs to the uncertainty ellipsoid: 

1[ ] [ ] 1H

s sv v C v v    (3.18) 

  where the v and C  are given. 

When the common formulation for beamforming is utilized to the SCB, it is going to 

determine the weight vector ow (M1) by linearly constrained quadratic problem: 

min H

w
w wR     subject to   1H

sw v   (3.19) 

It gives the solution like  

1

1

s
o H

s s

v
w

v v






R

R
 

(3.20) 

And to estimate of 2

s by H

o ow Rw  gives the 

2

1

1
s H

s sv v





R
 

(3.21) 

The latest RCB methods in [16] when there is uncertainty in sv , the constraint on 

H

sw v in (3.19) is replaced by any vector v  in the uncertainty set. Then the obtained 

w  is utilized in Hw Rw  to estimate the 2

s  of SCB. However, in the new approach, 

the Capon Beamformer problem in [29] is reformulated in a simple form when the 
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uncertainty set is included. By proceeding in this manner, a robust estimate of 2

s is 

obtained without any prior calculation for weight vector w [29]. 

In [29] is proved that 2 2ˆ
s s   with respect to the 

1ˆmin H

w
w wR         subject to       1[ ] [ ] 1Hv v C v v    (3.22) 

Now if the matrix C is decomposed ( 0C ) and put it in (3.22), it will change to 

quadratic problem with a quadratic equality constraint [27]: 

1ˆmin H

w
w wR       subject to                2v v  || ||  (3.23) 

 where   is defined as the uncertainty level. The solution to the RCB formulation in 

(3.23) can be obtained by the Lagrange multiplier method: 

1 2(Hf v v v v   R )|| ||  -  (3.24) 

By solving this optimization problem, ˆ
sv is obtained as   

1ˆ ( )sv v v   I R  (3.25) 

The Lagrange multiplier   is obtained by solving the equation 

1 2( ) ( )g I v    || R ||   and then lower and upper bounds of   are imposed. 

To end up, ˆ
sv  is specified by using (3.25), and 2ˆ

s  is computed by using (3.21) 

where sv  is replaced with ˆ
sv . Therefore, the main computational complexity of the 

RCB method arises from the eigendecomposition of the Hermitian matrix. So, the 

computational complexity of RCB is acceptable compared with the SCB [27]. Once 

there is estimation for signal-of-interest steering vector, the estimated weight vector 

can be obtained  
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1

1

ˆ ˆ
ˆ

ˆˆ ˆ

s
o H

s s

v
w

v v






R

R
 

1

1 1

1
( )

1 1
( ) ( )H

v

v v



 



 





 

R I

R I R R I

 

 

(3.26) 

Clearly, robust capon beamformer weight vector is in the form of diagonal loading. 

Robust Capon Beamformer will not support some problems where the uncertainty set 

of desired array steering vector utilized to achieve robustness against steering vector 

mismatches. Specifically, when large steering vector mismatches are present, the 

uncertainty set must expand to describe the increased error of the desired array 

steering vector. Hence, the output signal to interference-plus-noise ratio (SINR) for 

these beamformers is degraded due to their abilities to suppress the interference-plus-

noise being weakened. 

To overcome this problem, an approach has been proposed by [31] which utilize a 

small uncertainty sphere to search iteratively for the desired array steering vector. In 

this technique, the ability of interference-plus-noise suppression of the beamformer 

can be retained by maintaining its degrees of freedom (DOFs) also by using the 

modified desired array steering vector. The Iterative Robust Minimum Variance 

Beamformer (IRMVB) method yields greater output for SINR. By applying a 

stopping criterion the steering vector calculated by the IRMVB method is not 

permitted to converge to the steering vectors of the interferences [31]. 

The concept of the IRMVB (with spherical uncertainty set) is shown in Figure (3.1). 

When there is a mismatch in steering direction, the desired array steering vector os  

(corresponding to the desired signal direction o ) and the assumed array steering 

vector os  (corresponding to the assumed desired signal direction o  ) do not coincide.  
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If the errors are large then the size of the uncertainty sphere 1 , used in (3.23) has to 

be larger [27]. Hence, the ability of the beamformer to suppress the interference will 

be weakened due to the increasing of the DOFs. To solve this problem, the IRMVB 

uses a small uncertainty sphere which is smaller than 1 ( 2 1  ) to adjust the 

steering vector form 
os  to approach

os . 

 
Figure  3.1: Concept of IRMVB Method [31] 

 

This is done by using the constraint (3.23) (with 2  in place of 1 ) centered at the 

assumed desired array steering vector os . At the first iteration 2

2o os  ||s s ||  and the 

RCB is solved for the modified desired array steering vector. After every iteration, 

the calculated steering vector by IRMVB method is scaled. Again, the spherical 

constraint is imposed centered at the calculated steering vector of the prior iteration 

of IRMVB to solve for the following steering vector. This procedure is repeated until 

the desired array steering vector is reached. This can be achieved by using the 
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stopping criteria. Then, IRMVB weight vector can be calculated by using the 

converged steering vector by (3.20). 

Recently, in some reports [31] for the RCB, it has been mentioned that whenever 

large steering vector mismatch arises, degradation exists in signal-to-interference-

plus-noise ratio (SINR). This is because the ability to suppress the interference is 

sacrificed whenever radius for the uncertainty sphere is increased (for instance in 

IRMVB) to have adequate uncertainty level. So, the degradation of SINR becomes 

substantial when the interferences are dominant. Therefore, having a Robust adaptive 

beamformer method that is able to maintain its interference suppression capability in 

the large mismatch case without increasing the radius of the uncertainty sphere is 

desirable. 

The authors in [31] refer to the Iterative RCB with a small fixed uncertainty level as 

the Fixed Uncertainty Iterative Robust Capon Beamformer (FU-IRCB). Let 2  be the 

representative of the small fixed uncertainty. This technique calculates v̂  by solving 

the RCB optimization iteratively in (3.23) when   is replaced by 2  . The vector v̂  is 

a function of   with respect to the that 2  which is obtained by solving 2( )g    . 

At each iteration, v  is updated from v̂  of the pervious iteration. The iteration 

continues until    reaches a proper small value. The convergence rate of the FU-

IRCB depends on how fast   converges to a small value. Since   is dependent on 

the solution of 2( )g   , so it is directly related to the value of 2  . Therefore, a 

larger value of 2  will make its value to decrease at a faster rate. On the other hand, 

with large 2 , the interference suppression capability is sacrificed. The other 

shortcoming of the FU-IRCB is that it is needed a severe stopping criterion in order 



 

26 

 

to avoid the convergence of the iteration to one of the strong interference steering 

vectors. This can be illustrated by the objective function of the RCB optimization in 

(3.23). 

A method has been proposed by [31] which belong to the iterative RCB family with 

adaptive uncertainty. At every iteration, the uncertainty level is readjusted and then 

the estimated steering vector is updated for the new uncertainty level. When the 

uncertainty level approximately becomes zero the iteration converges. The new 

method is based on the geometric estimated vector for the mismatch. The estimation 

is according to the concept that the mismatch vector can be decomposed into two 

kinds of subspaces, which are the signal-plus-interference subspace and the subspace 

for noise. The signal component is calculated like a function of the projection of the 

assumed steering vector on signal subspace, while the noise component is calculated 

from its orthogonal projection. 

3.4 Eigenspace Based Beamformer (ESB) 

One of the methods of robust adaptive beamforming is the Eigenspace Based 

Beamformer. In this approach the weight vector is calculated by utilizing the 

subspace component for signal-plus-interference of the sample correlation matrix, 

which can degrade the disturbed noise subspace. One common property of this 

method (ESB) for adaptive beamforming usually is the eigen-decomposition of the 

steering vector space into subspaces associated with the signal and the noise 

components. In addition to the fast convergence advantage, the optimal weight vector 

with respect to the precise steering lies in the signal subspace. This beamformer 

needs to have prior information about signal subspace component and the number of 

sources [32] that can be estimated by the method proposed in [33]. 
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If N samples are available, the covariance is calculated by using  

1

1ˆ H

n


N

R = x( x (
N

n) n)  

The assumed desired signal steering vector is denoted as v  , v  is defined as the true 

steering vector of the desired signal and the estimated steering vector of the desired 

signal is denoted as v̂ . In the eigenspace projection based robust adaptive 

beamforming, By using the assumed steering vector of desired signal, this method 

computes the projection of v onto the signal-plus- interference subspace, giving a 

modified estimation of the true desired signal steering vector. So eigendecomposition 

will be defined by 

ˆ H H

s s s n n nE E E E   R  (3.27) 

where the ( 1)N P   matrix  sE   contain the signal-plus-interference subspace 

eigenvectors and  ( 1)N N P    matrix nE   comprises the noise subspace for R̂ . 

Also, the ( 1) ( 1)P P    matrix s  includes the eigenvalues corresponding to sE  

and n  contains the eigenvalues for nE respectively. P is the number of interfering 

signals. 

The estimated true desired signal steering vector is calculated by  

ˆ H

s sv E E v  (3.28) 

where H

s sE E  is the projection matrix to the subspace of desired signal-plus-

interference and the eigenspace based weight vector is given by  

1 1 1ˆ ˆˆ ( )H H

ESB s s s s sw v E E v E E v       R R  (3.29) 

 Recently, the application of eigen-subspace idea has been developed to deal with 

adaptive array beamforming where observation mismatch occurs [8], [35]. In the 
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case of improper observation, the optimal weight vector established by the 

eigensubspace method comprises an undesired component existing on the noise 

subspace. For instance, degradation in performance of array is mostly produced by 

this undesired component. To overcome this problem, a robust method is offered in 

[8] by taking the projection of the assumed steering vector onto the steering signal 

subspace to remove the undesired noise component. The technique is proposed in 

[36] which adopts a linear combination of the eigenvectors of the signal subspace to 

eliminate the undesired noise component. Similarly, in the robust method of [35], it 

is established to find the orthogonal of the correct steering vector to the noise 

subspace. Another robust technique for Eigenspace based adaptive beamforming 

presented in [36] wants to remove the undesired component by minimizing the 

power of array output in the signal subspace. 

Nevertheless, there are main disadvantages to utilize the ESB techniques for adaptive 

beamforming when steering errors are presented. It needs more complex 

computations to carry out the eigendecomposition for determining the signal 

subspace. The second one is that, this method is only applicable to the point signal 

source case, so, it is capable to eliminate the small pointing errors. The third one is 

that the performance of this approach is restricted when signal-to-noise ratio (SNR) 

is low. 

3.5 General – rank Signals Beamformer 

The output for narrowband beamformer is specified by ( ) ( )Hy w xk k  where 

1 2( ) [ ( ) ( ) ... ( )]Nx k x k x k x k  is the 1N   array steering vector and 

[ ... ]T

Nw w w w  is the 1N   weight vector of beamformer which has the N 

array sensors. Respectively the vector of training snapshot is defined by 
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x( ) ( ) ( ) ( )k k k k  s i n  where the ( )ks , ( )ki and ( )kn are the desired signal, 

interference and thermal noise. In the general rank signal case, the SINR is given by 

[37] 

)

) )

H

s

H

i n

w w
SINR

w w


(φ R (φ)

(φ R (φ
 

(3.30) 

where  

H

s ER {s( )s ( )}k k  (3.31) 

{( ))( }H

i n E R i( )+n( i( )+n( ))k k k k  (3.32) 

sR  is the covariance matrix for the general rank source, which is defined as a rank 

one matrix for a point signal source. However, in most practical conditions, the 

desired signal is modeled as an incoherently scattered (spatially distributed) source 

with randomly fluctuating wave-fronts such as in sonar and wireless 

communications, where rank {R }s  .For instance, in the case of an incoherently 

scattered source R s  (source covariance matrix) is giving by [38], [39]   

2
2

2
( ) ( ) ( )H

s s v v



     


 R d  

(3.33) 

where ( )   is the normalized angular power density (i.e.,
2

2
( ) 1




  


 d ) . In fact, 

the distributed source can be such that the desired signal covariance matrix can have 

any rank from 1 in to N. 

It is important to note that in practical (real) situations, ( )   may be unclear [3], and 

there may be significant mismatches linked with the source location parameters, 

because their accuracy of estimation depends on how the model is related to ( )  . 

Therefore, in the case of spread (incoherently scattered) sources, there might exist a 

significant mismatch between the assumed and real signal covariance matrices. 
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In this general case, the optimization problem takes the form 

min 1H H

s
w

w w w w i+nR      subject to    R  (3.34) 

Solution for (3.34) is found by minimization of the function 

( , ) (1 )H H

sF w w w w w  i+nR  + - R  (3.35) 

By solving the above equation by taking the gradient, where   is the Lagrange 

multiplier, the following generalized eigenvalue problem is attained [13]  

sw wi+nR  = R  (3.36) 

where the   can be considered as a generalized eigenvalue.The solution of 

optimization problem (3.34) can be considered in the case of generalized eigenvector 

corresponding to the smallest generalized eigenvalue of the matrix pencil ( i+nR , sR ). 

Multiplying (3.36) by 1

i n



R  , the equation is written as 

1 1
i n sw w





R R  =  
(3.37) 

which is determined as the characteristic equation to the matrix 1

i n s



R R . It is clear 

that the minimum generalized eigenvalue min  in (3.36) corresponds to the maximum 

value for eigenvalue min1   in equation (3.37). Utilizing this fact, it is concluded that 

the optimum weight vector for the beamformer is  

1

opt i n sw 

= {R R }P  (3.38) 

where {.}P  is the operator that calculates the principal eigenvector of a matrix. 

Although, in most practical applications the actual matrices si+nR  and  R  are not 

available but if the estimate of these matrices is available, equation (3.38) purveys a 

proper solution to the adaptive beamformer of the general rank source case. In this 
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case we will have a generalized version for the sample matrix inversion beamformer 

(SMI):   
1ˆ

smi i n sw 

= {R R }P . 

In practical cases, the signal covariance matrix is available with some errors. Hence, 

there is a definite mismatch between the actual signal covariance matrix and assumed 

signal covariance matrix ( s R ). Consequently, in the mismatched situation, we have 

an unknown Hermitian error matrix ( ), which describes the effect of the mentioned 

mismatches on the array response for the desired signal. We have  
s s s  R R R  . 

To overcome this kind of mismatches, some robust methods has been proposed in 

[40]  



 

32 

 

Chapter 4 

4. DIRECTIONAL-RESPONSE-SHAPED 

BEAMFORMER (DRS) 

4.1 Introduction  

The goal of this chapter is to introduce our proposed method toward a generalized 

loading algorithm for adaptive beamforming in uniform linear Array (ULA). In this 

technique, we have worked on the possibility of applying the principle established in 

[41] to the adaptive beamforming problems. 

 The main obstacle to kinds of these filters is inaccuracies caused by limited sample 

size used in estimating the covariance matrix as well as look direction mismatch. The 

ability of the directional response shaping (DRS) will follow the modified 

conventional loading methods for an adaptive ULA. However, it describes the range 

of specified direction (cut off angle) in the presence of undesired interferences. 

4.2 Derivation of the DRS Beamformer Algorithm 

Consider the output of an adaptive beamformer, given by 

( ) ( )Hy n w n x  (4.1) 

where 
Hw  is the adaptive weight vector (bemaformers gain) 

0 1 1[ ... ]
T

Nw w w w   (4.2) 

N is the number of elements (sensors), and ( )kx  is the input data vector, as 
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1 1( ) [ ( ) ( ) ... ( )]
T

o Nn x n x n x nx  (4.3) 

The beamformer output power is 

2{ y( ) } H

y xP E n w w  R| |  (4.4) 

where                        {x( ) x ( )}H

x E n nR  (4.5) 

is the correlation matrix of the input data vector ( )kx . 

As aforementioned in the last chapters the MVDR is obtained by minimizing the 

output power of the beamformer (cost function) 
H

x xJ w w R  subject to 0( ) 1Hw a   . 

However, in the practical case the precise correlation matrix of the input data vector 

is not available or in most applications a limited number of training data samples are 

available. Hence, in this technique the hermitian matrix is loaded to the estimated 

sample correlation matrix, and as a result to all eigenvalues of the correlation matrix, 

which produce a bias in eigenvalues toward decreasing their alteration to achieve the 

maximum SINR.So, our cost function will change to the  

( )H

x a x aJ w w J J  R +R  (4.6) 

Now, the choice of aR will be based on weighted noise gain of the array which can 

be expressed as 

2
2

2
( )a d d d dJ d




   


  |H ( )|  

(4.7) 

where                     
1

*

0

) ( )d

N
jk H

d d k d

k

w e w a
 






 H (  
(4.8) 

is the directional response of the filter at the time k  and ( )d   is a weight function 

that is used to shape the directional response. 

2 ( 1)
( ) [1 ... ]d d dj j j N

da e e e
      

  (4.9) 
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is the array response vector where 
2 sin

d

d 



   ,

2
d


   so d  is defined by

sind   , where   is the incidence angle of a plane wave.  

Now (4.8) can be written as  

2

2
( ) ( ) ( )H

a d d d da a d C



    


 R  

(4.10) 

after substituting (4.11) in (4.7), aJ  also can be written as  

H

aJ w Cw  (4.11) 

where  C  is a matrix with elements given by 

2
( )

2
( , ) ( ) dj m n

d dC n m e d





  


   

(4.12) 

Now, if the direction range of the interferences is unknown or if it overlaps with the 

direction of the signal-of-interest, then in order to avoid suppression of the signal, it 

might be more plausible to utilize a weight function ( )d   as shown in Fig.4.1.   

cc



2

1


2


2



 
Figure  4.1: Weight Function Versus the θ [41] 

 

The elements of matrix C for the weight function in Fig4.1 are given by 
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1 2 2

2 1

2( ) 2
sin(( ) ) sin(( ) )

( ) 2
( , )

2 ( ) 2
2

c

c c

m n m n m n
m n m n

C n m

m n

   



   


     

 
   


 

 

(4.13) 

Hence the beamformer weight vector will be computed by 

1

1

ˆ(R C) ( )

ˆ( )(R C) ( )

x d
DRS H

d x d

a
w

a a



 









 

(4.14) 

where  
1

1ˆ ( ) ( )
M

H

x

k

x k x k
M 

 R   and  ( )da   is the presumed steering vector. Where

(.)a  indicates presumed. The SINR of Directional-Response-Shaped will be given 

by 

2 2( )

R

H

s DRS d
DRS H

DRS i n DRS

w a

w w

 




| |

SINR  
(4.15) 

where R i n  is the interference-plus-noise correlation matrix and given by 

i n i n  R R R , 
2

n nR I , ( ) ( )H

i i d da a  R  and ( )da  is the array response 

vector for interferences defined by 

2 ( 1)
( ) [1 ... ]d d dj j j N

da e e e
      

  (4.16) 

4.3 Implementation Issues   

In fact, for every method which is proposed, the computational complexity is one of 

the most important issues to consider. It becomes more crucial as the number of 

sensor is large and/or a large number of snapshots must be used. 

The proposed method for beamformers has a computational complexity comparable 

with the traditional adaptive beamforming algorithms. The computational complexity 

of our techniques has been shown to be similar to the sample matrix inversion (SMI) 
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with just N  additions more. Also, it has a much lower complexity than the robust 

capon beamformer (RCB) and its iterative versions (IRMVB), since it does not 

require eigenvalue decomposition (EVD). Our beamformer’s complexity is less than 

those of the Eigen-space based and general rank beamformers, because these 

techniques also involve the Eigen-decomposition of the correlation matrix.   
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Chapter 5 

5. SIMULATIONS AND DISCUSSIONS  

5.1 Introduction 

In this chapter according to experimental methodology we assume four methods 

(SMI, LSMI, RCB, and IRMVB) for calculating output SINR versus the number of 

snapshots, output SINR versus the varied SNR, and normalized Beampattern versus 

the directional arrival. Then we compare our method with these approaches and 

results by using Tables and Figures. 

5.2 Simulation Approach   

In the simulation, we evaluate our approach by using Monte Carlo simulations. In all 

examples, we assume a uniform linear array (ULA) with 10N   Omni-directional 

sensors spaced by half-wavelength. For each result, to obtain each simulated point, 

the average of 100 simulation runs is used. Through all scenarios, we assume that 

there is one desired and two interfering sources. The desired signal is always present 

in the training data samples, and the interference-to-noise ratio (INR) is considered to 

be 30 dB for all cases. The presumed steering vector is disturbed by white complex 

Gaussian noise which has zero mean and variance is supposed to be one in each 

sensor. The diagonal loading parameter is chosen to be 80    for the LSMI 

algorithm in all examples, except the IRMVB (Li’s method) which is selected to be

0  . Furthermore, in each example, we select the value of 2  that almost provides 

the optimal performance for our beamformer. The performance of the all techniques 

is compared with respect to the output SINR. Note that all of simulations have been 
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done under the same conditions. The desired signal and interferers are plane waves 

which impinge on the array from 4o , 20o and30o , whereas the direction of assumed 

signal is 0o . There is a  4o  look direction mismatch. 

5.3 Simulations 

The methods that have been evaluated in all simulations are 1) LSMI algorithm 2) 

benchmark SMI algorithm 3) RCB algorithm 4) IRMVB (Li’s) method 5) proposed 

method, DRS algorithm. 

First the performance of the methods is measured versus training data samples 

(snapshots) 20:500M   for the fixed 0(dB)SNR  .  

Table  5.1: Performance of beamformers by various training data samples 

SNR 0 (dB) 

Number of Snapshots 20 60 100 140 180 220 260 300 340 380 420 460 500 

SMI 0.91 5.31 6.81 7.48 7.94 8.23 8.37 8.54 8.64 8.75 8.83 8.9 8.92 

LSMI 5.21 6.44 6.78 6.87 6.97 7.03 7.07 7.08 7.09 7.12 7.16 7.15 7.16 

RCB 5.29 6.43 6.7 6.82 6.87 6.97 7.02 7.04 7.03 7.05 7.07 7.08 7.09 

IRMVB(Li's) 6.83 8.41 8.80 8.97 9.12 9.19 9.28 9.32 9.33 9.37 9.4 9.41 9.42 

Proposed Method 6.90 8.46 8.87 9.08 9.19 9.28 9.34 9.37 9.39 9.42 9.46 9.48 9.49 

Optimal 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 
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Figure  5.1: Output SINR Versus the Training Data Sample 

 

The performance of the techniques versus the SNR for training data samples taking 

the values 100,200,300,400,500 are presented in Figure 5.2 up to 5.6. 
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Figure  5.2: Output SINR Versus SNR with Training Data Sample=100 

 

 
Figure  5.3: Output SINR Versus SNR with Training Data Sample=200 
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Figure  5.4: Output SINR Versus SNR with Training Data Sample=300 

 

 
Figure  5.5: Output SINR Versus SNR with Training Data Sample=400 
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Figure  5.6: Output SINR Versus SNR with Training Data Sample=500 

 

In order to show the ability of proposed method in handling the look direction 

mismatch, all methods are simulated for the same mismatch ranging from 1o  to 8o  as 

shown in Figure 5.7.  
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Figure  5.7: Outputs SINR Versus the Look-Direction Mismatch 

 

If the direction range of the interferences is not known, then to avoid suppressing the 

desired signal, it may be more appropriate to utilize the weight function given in Fig. 

4.1 by introducing the cut of angle ( c ).  

Figure 5.8 illustrates the ranges considered for cutoff angles from 7o  to 15o in which 

the proposed DRS beamformer is simulated and compared with LSMI and SMI 

beamformers. 
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Figure  5.8: Outputs SINR Versus the Cut off Angle 

 

To demonstrate capability of the interference suppression for our algorithm, we have 

plotted the normalized beampattern in comparison with the SMI benchmark, LSMI, 

RCB as well as IRMVB (Li’s) methods. 

We perform the simulation to show the effectiveness of the proposed technique in the 

presence of steering angle mismatch. A desired signal with SNR=0 dB is impinging 

on the array with direction angle = 4o  (except Figure 5.14 which is in no mismatch) 

under the 100 data snapshots. 

The results for array output beam-patterns by using the DRS beamformer are 

compared with aforementioned methods in Figure 5.10 to Figure  5.16 
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Figure  5.9: Output Beampatterns of Proposed (DRS) and SMI Beamformer 

 

 
Figure  5.10: Output Beampatterns of Proposed (DRS) and LSMI Beamformer 



 

46 

 

 
Figure  5.11: Output Beampatterns of Proposed (DRS) and RCB Beamformer 

 

 

 
Figure  5.12: Output Beampatterns of proposed (DRS) and IRMVB Beamformer 
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Figure  5.13: Comparing Existing Output Beampatterns with DRS Beamformer 

 

 
Figure  5.14: Beampatterns with Proposed (DRS) Beamformer without Mismatch  
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5.4 Discussion 

Figures  5.1 to  5.15 clearly illustrate that in all simulations, the proposed beamformer 

by equation (4.15) gives better performance among the tested methods. The SINR 

values for the proposed beamformer are close to the optimal values in a wide range 

of N, SNR and mismatches for direction of arrival (DOA).   

To evaluate the convergence of the proposed DRS method, power of SOI is fixed at 

1 dB and simulation is iterated up to 500. The rate of convergence of DRS technique 

is demonstrated by computing the average output SINR at every iteration, Fig. 5.1 

shows the output SINR versus the number of snapshots (data training samples) =500. 

Explicitly it is seen that the output SINR of the DRS method is significantly better 

than the diagonal loading methods whereas the SMI keeps its level to be improved. 

However, the IRMVB [31] (Li’s) method approaches to the proposed method 

slightly for all N snapshots. 

The aim of the simulations in (Fig 5.2 up to 5.6) is to compare the performance of 

output SINR against the input SNR varied from −10dB to 20dB. The resulting 

output SINR for each input SNR is averaged over 100 realizations. It can be 

considered that the DRS beamformer outperforms than the other tested beamformers 

at all SNRs. It can be seen that, although, by increasing the SNR, all existing 

algorithms approach to optimal value of SINR but, the proposed method‘s result is 

better than the others, whereas, the IRMVB method is acceptable only for SNR>0. 

The performance of all algorithms is assessed in terms of output SINR (when SNR is 

fixed at 0 dB and number of snapshots is kept at 100) as shown in Fig 5.7, where the 

look direction mismatch is increased. The DRS method maintains its performance for 
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all mismatch values. However, the IRMVB (Li’s) algorithm drifts apart from the 

optimal SINR when the look direction mismatch is bigger than 5o , whereas the rest 

of the methods yield slightly lower output SINR. 

The interference suppression is considered by plotting the normalized beam-pattern 

with two interferences at 20o and 30o , 0SNR   and 4o mismatch under the 100 data 

training samples as given on Fig 5.10 − 5.14 to demonstrate the capability of DRS 

beamformer in comparison with the SMI, LSMI, RCB and IRMVB (Li’s) 

beamformers. In all simulations there is superior interference rejection as a result of 

shaping the directional response to reach the desired steering vector. The beam-

patterns of the proposed DRS method have deeper nulls formed at the interferences’ 

directions of arrival (DOAs). Also, sidelobe levels are higher for all methods than 

those of the proposed (DRS) method. 

One of the advantages of our method is noise suppression even in lower noise levels 

(SNRs). As a point of view, if Fig 5.10 up to Fig 5.15 are examined carefully, the 

robustness of the proposed beamformer versus the existing methods is clearly seen. 

Fig 5.7 demonstrates that, by increasing the mismatch greater than  5o , the output 

SINR for existing methods decrease, however, proposed method keeps it at the same 

level. This case is also shown by the normalized beampattern at mismatch= 7o   in 

Figure 5.15 
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Figure  5.15: Output Beampatterns for all Methods with Mismatch= 7o  

 

By increasing the mismatch, proposed method follows the true steering vector. 

However, for IRMVB the main-lobe is disturbed and the side-lobe level gets higher, 

whereas the other methods can not follow the true steering vector. 
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Chapter 6 

6. CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

In this work, we proposed a new approach to robust adaptive beamforming based on 

the generalized loading of the covariance matrix. This method shows the capability 

of our algorithm in the presence of direction-of-arrival (DOA) mismatches of the 

desired signal by shaping the directional response of the adaptive ULA. 

The performance of the proposed method is shown to reduce errors (look direction 

mismatch) between the true and assumed array steering vectors of the desired signal. 

To reach this aim, a general loading matrix is added to the estimated correlation 

matrix. This matrix is derived from a weight function which used to shape the 

directional response of the beamformer. 

The computational cost of the proposed algorithm has been shown that is similar to 

the traditional adaptive beamforming methods. Furthermore, efficient 

implementations of our method for the processing state have been developed. In 

addition, numerical examples in terms of SINR and data training show that the 

proposed technique is robust to sample covariance matrix errors. Also, to evaluate 

the beamformers the computer simulations are considered in terms of SINR and 

normalized beam-pattern. It shows that by shaping the directional response, our 

approach can modify the mismatches in array steering vector for the desired signal. 
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The efficiency of this method is clarified while the desired signals are accompanied 

by noise and interferences. The algorithm suppresses the inferences with deeper nulls 

in the directional of interferences by shaping the directional response of the desired 

signal. Moreover, the simulation SINR versus the SNR indicates that the proposed 

method keeps its convergence with respect to the number of snapshots to optimality 

and is capable to suppress the noises with lower noise level (low SNR). 

To end up, in situations with different types of desired signal errors, our beamformer 

is shown to consistently enjoy a significantly improved performance and faster 

convergence rate when compared with the existing adaptive beamforming methods. 

6.2 Future Work 

Extensive simulation studies have indicated that the proposed beamforming method 

performs better or as good as the existing methods in various scenarios. Theoretical 

analysis of the proposed method should be performed to verify the results obtained 

from simulation. Such an analysis will enable the optimal choice of the parameters 

used in the algorithm. 
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