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ABSTRACT 

NONBINARY CONVOLUTIONAL CODING FOR 

MULTIMEDIA DATA TRANSMISSION 

 

Keywords: Error Control coding, Convolutional codes, Source metric 

In this thesis, the performance of nonbinary convolutional coding technique is 

investigated and new nonbinary codes with better performance are proposed. 

Nonbinary convolutional coding technique is a coding technique which is similar to 

the binary convolutional codes with the same decoding strategy but they are designed 

for general nonbinary sources. The nonbinary convolutional coding technique is 

described and simulated under various channel conditions. Synthetic nonbinary 

source sequences are produced by using Markov processes. 

 The channels used in the experimental simulations include additive white 

Gaussian noise (AWGN) and flat fading channel models. Coded image and video 

sequences are transmitted over the channels by using binary phase shift keying 

(BPSK) modulation technique. The Viterbi decoding algorithm is used for decoding 

the encoded sequences. Viterbi decoding employs hard and soft decision metrics. 

The soft metric is updated to include the source statistics. This enables the decoder to 

use the source redundancy for improved decoding performance. Results show that 

nonbinary convolutional coding which uses the source statistic is effective in 

reducing bit error rate (BER).  New nonbinary convolutional coding is optimized to 
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increase the code distance ( freed ). The optimized codes are shown to perform better 

at low BER. 
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ÖZET 

 

Bu tezde, ikili olmayan evrişimsel kodlama tekniği incelenmiş ve daha 

yüksek başarımlı kodlar önerilmiştir. İkili olmayan evrişimsel kodlama tekniğinde, 

geleneksel evrişimsel kodlama tekniği ile aynı yöntem kullanılarak kod 

çözülmektedir. İkili olmayan kodlama, genel ikili olmayan veri kaynakları için 

tasarlanmakta ve bu tür kaynaklar için daha yüksek başarım sağlamaktadır. Bu tezde 

ikili olmayan evrişimsel kodlar incelenmiş ve farklı iletişim kanallarındaki çoklu-

ortam veri iletim başarımı benzetimlerle gösterilmiştir. Sentetik ikili olmayan veri 

kaynakları Markov süreçleri kullanılarak üretilmiş ve hata düzeltme başarımı 

geliştirilmiş kodlar benzetimlerle gösterilmiştir.  

Yapılan deneylerde, kanal modelleri olarak Toplanır Beyaz Gauss Gürültü 

(TBGG) ve düz sönümlemeli kanal modelleri kullanılmıştır. Kodlanan resim ve  

video verileri kanal üzerinden İkili Evre Kaydırmaları Anahtarlama (İEKA) 

modülasyon tekniği kullanılarak iletilmiştir. Kodlanan dizileri çözmek için Viterbi 

kod çözme algoritması kullanılmıştır. Viterbi algoritması kod çözme işleminde ikili 

veya yumuşak ölçüt kullanmaktadır. Önerilen kodlarda, yumuşak ölçüt, kaynak 

istatistiklerini de kullanarak güncellenmiştir. Bunun sonucu olarak kod çözücü 

kaynak artıklığını da kullanarak başarımını artırmıştır. Sonuçlar ikili olmayan 

evrimşimsel kodlamada kaynak istatistiğinin kullanımının bit hata oranını düşürmede 

etkili olduğunu göstermektedir.  
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CHAPTER 1 

INTRODUCTION 

 

 Even though data communication methodologies have been developing 

considerably, errors still occur during data transmission. Error detection/correction is 

a very important task in any transmission protocol. It provides the way to protect data 

from errors, and maintain data integrity. There are many types of error correcting 

codes such as: Linear Block Codes, Cyclic Codes, Convolutional Codes, as well as 

the retransmission strategies such as the Automatic Repeat Request (ARQ), etc.  

 Forward error correction (FEC) is an error correction technique that improves 

the capacity of a channel by adding some carefully designed redundant information 

to the data being transmitted through the channel. The process of adding this 

redundant information is known as channel coding. Convolutional coding and block 

coding are two major forms of channel coding. Convolutional codes operate on serial 

data, one or more bits at a time. Block codes operate on relatively large (typically, up 

to a couple of hundred bytes) message blocks. There are a variety of useful 

convolutional and block codes, and a variety of algorithms for decoding the received 

coded information sequences to recover the original data. Convolutional encoding 

with Viterbi decoding is a FEC technique that is particularly suited to a channel in 

which the transmitted signal is corrupted mainly by additive white Gaussian noise 

(AWGN). Viterbi decoding is one of two types of decoding algorithms used with 

convolutional encoding. The other main type is the sequential decoding. Sequential 
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decoding has the advantage that it can perform very well with long-constraint-length 

convolutional codes, but it has a variable decoding time. Viterbi decoding is optimal 

and has the advantage that it has a fixed decoding time. It is well suited to hardware 

decoder implementation. 

In the thesis, beyond binary convolutional coding, nonbinary convolutional 

coding is investigated. Besides hard and soft decision convolutional coding, soft 

decision convolutional coding with source metric is investigated. Rate of encoder is 

changed from 1/2 to 1/3 and change in performance is observed. On the other hand, 

minimum free distance is changed and its effect is observed. Behaviors of 

independent and dependent data sources are investigated in terms of entropy and 

relationship between entropy of the data source and performance of soft decision 

decoding with source metric is observed. In addition to synthetic data sources, 

images and video sequences are also applied to the simulations and performances are 

discussed. 

 The thesis is organized as follows; In Chapter 2, an overview of 

convolutional coding is given. General information about nonbinary convolutional 

codes is introduced in Chapter 3. Moreover, Markov Chain, which is used to model 

the source, and the wireless channels such as AWGN and flat fading channels are 

described. Simulation results are presented in Chapter 4. Finally, Chapter 5 

summarizes the thesis and identifies areas for future research.  

 In this thesis as novelty; source metric is integrated into soft decision 

convolutional coding to improve performance. A new coding scheme is proposed to 

maintain increased code distance. A new 1/3 rate code is proposed and the 

performance is observed over fading channel. 
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CHAPTER 2 

 ERROR CONTROL CODING TECHNIQUES 

 

A digital communication system is a means of transporting information from 

transmitter to receiver while channel imposes errors on the transmitted data. Error 

control codes are used for preventing errors in these transmissions. Different codes 

are selected to perform in various applications with different requirements. Some 

typical coding strategies are given below:  

2.1 Automatic Repeat Request 

ARQ is a simple and commonly used method in error correction. In ARQ 

systems, firstly errors are detected at the receiver part. Then, errors are discarded and 

retransmitted if any packet is detected in error. There are three types of ARQ; Stop 

and Wait, Go-Back-N and Selective Repeat Request ARQ. Stop and Wait ARQ is the 

simplest ARQ procedure. The principle of this type of ARQ system is to complete 

the transmission of each packet correctly before moving to the transmission of next 

one. So, it spends time for acknowledgement. It is inherently inefficient and requires 

new strategy which is Go-Back-N. Here, several successive packets can be sent 

without waiting for the next packet to be requested. After that, Go-Back-N becomes 

quite ineffective for communication systems with high data rates. Selective Repeat 

Request is used which is similar to Go-Back-N except that in Selective Repeat 

Request only the error frame is retransmitted. [24] 
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The ARQ method needs duplex arrangement as part from the conventional 

transmitter to receiver signal, the request signal is to travel from receiver to 

transmitter. To request and transmit the corrupted data upon the requirement from the 

receiver has been used very successfully for non-real-time data transmission. For 

solving this problem Forward Error Correction (FEC) method is introduced. This 

method needs simplex arrangement as the signal has to travel only from the 

transmitter to the receiver. Retransmission of data is not necessary in this method.  In 

this method, the channel encoder systematically adds digits to the transmitted 

message digits which is known as redundancy bits. Although these additional digits 

convey no new information, they make it possible for the channel decoder to detect, 

and correct errors in the information bearing digits. The overall probability of error is 

reduced due to error detection and/or correction. Forward error correction can also be 

used together with ARQ to improve the performance of ARQ system. With this 

hybrid system, since the received error containing messages are corrected, the 

number of re-requests will be reduced decreasing time delay of ARQ system. 

Forward error correction method will be explained below. 

2.2 Forward Error Correction 

 There are three types of forward error correcting codes. They are linear block 

codes, turbo codes and convolutional codes. 

2.2.1 Linear Block Codes: 

Binary information sequence is divided into a fixed length message blocks. 

These message blocks consist of k information bits and there are total 2k  distinct 

messages.  The encoder, according to certain rules, transforms each input message to 

the codeword and there are 2k  code words. This set of 2k code words is called a 
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block code. Code word consists of message part and the redundant checking part. 

Redundant checking part consists of n-k parity check digits, which are linear, and 

some of the information digits and the message part is formed by k information bits. 

The encoded message is; 

 v u G= ⋅   (2.1) 

where G is the generator matrix and u is the message. 

Minimum distance determines random error detection and random error 

correcting capabilities of the code. Minimum distance of a block code is minimum 

Hamming distance between all distinct pairs of code words.   

2.2.2 Turbo Codes 

Turbo codes are a combination of two or more error control codes in serial or 

parallel. The information bits are interleaved between the two encoders. These are 

then multiplexed with the uncoded information bits. A priori information is used in 

decoding stage. 

2.2.3 Convolutional Codes 

A convolutional code is a type of error-correcting code in which each m-bit 

information symbol to be encoded is transformed into an n-bit symbol, where m/n is 

the code rate (n ≥ m) and the transformation is a function of the last k information 

symbols, where k is the constraint length of the code. [2] 
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2.2.3.1 Encoding for Convolutional Codes  

Convolutional Codes are widely used to encode digital data before 

transmission through noisy channels. The encoder has memory and the encoder 

outputs at any given time unit depend not only on the inputs at that time unit but also 

on some number of previous inputs. An encoder with k input bits and n output bits 

have a rate k/n.  Information bits are divided into blocks with length k and these 

blocks are then mapped into the code words with length n. This operation is done 

independent of the length k.  

  Generator sequences are one way to characterize the encoder structure of 

convolutional codes. Generator sequences are obtained by applying impulses into the 

system. After obtaining the generator sequences, these sequences and input 

sequences are convolved to produce the encoded sequences. All operations are 

modulo-2. Generator equation is:  

 ( )
0 1 1

0
........ , 0,1,...

m
j j j j j

l l i i l l l m m
i

v u g u g u g u g j− − −
=

= = + + + =∑  (2.2) 

 In this way, input sequences are encoded. Encoded information sequences 

are then multiplexed into a single sequence called a codeword for transmission over 

the channel. The codeword is given by: 

 ( ) ( ) ( ) ( ) ( ) ( )( )0 1 0 1 0 1
0 0 1 1 2 2, , ,...v v v v v v v=  (2.3) 

Also, encoding can be written in a matrix form. Matrix form for encoding is:  

v uG=  (2.4) 

Another encoding system of convolutional coding is by using the state 

diagram. It contains memory elements and these contents determine a mapping 

between the next set of input bits and output bits. Also, this state diagram is time-

invariant. There are 2k  branches leaving each state in the state diagram and the states 
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are shown as 10 1 2
, ,....., vS S S − . State branches are shown as X/YY, where X is the input 

bit and YY is the output bits. Note that, the memory contents are the reverse of the 

binary representation of the state number. Example of state diagram is in figure 2.2. 

 

S0

S3

S2 S7S5

S6S4

S1

0/00

1/11

1/00

0/11

0/01

0/10
0/10

1/01

1/10

1/01

1/10

0/11

1/00

1/11

0/00

0/01

 

Figure 2.2: An example state diagram 

 

Assume that information sequence ( )1011000u =  will be encoded with rate 

R=1/2. Loop starts from S0 and finishes S0. Input bits will be checked looking at the 

state diagram. First bit of information sequence is 1. Looking at the state diagram 

with starting from S0, output bits will be 11 and state will be 1S . Next input bit is 0, 

so 2S  will be next state and the output bits will be 01. These operations continue 

until the end of information sequence. Results will be encoded of the sequence. 

2.2.3.2 Convolutional Codes for Decoding 

Viterbi algorithm is quick operation for decoding convolutional codes. It 

shows state diagram of the encoder in time and each time unit is represented with 

separate state diagram. The resulting structure of Viterbi is a trellis diagram. 
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2.2.3.3 Trellis Diagram 

 The trellis diagram is an extension of a convolutional code’s state diagram 

that explicitly shows the passage of time. Example of trellis diagram will be shown 

in figure 2.5 for figure 2.3. Two adjacent states are connected by branches and trellis 

diagram branches are labeled with the output bits. These output bits are associated to 

the state transitions. Consider a general ( ),n k  binary convolutional encoder with 

total memory M and maximal memory order m. The associated trellis diagram has 

M2  nodes at each stage or time increment t. There are k2  branches leaving each 

node and one branch for each possible combination of input values. Also, there are 

k2  branches entering to each node. Given an input sequence of kL (k is number of 

input and L is length of each input), the trellis diagram must have L m+  stages. The 

first stage is starting and last stage is stopping. In addition to this, there are kL2  

distinct paths through the general trellis. Each one of these paths corresponds to a 

convolutional code word of length ( )n L m+ . 

 

Figure 2.3: Encoder for a rate R=1/3 convolutional code. 
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S2 S1

S3

S0

0/110

0/001
1/000

1/111

0/000

1/110  

Figure 2.4: State diagram for encoder in figure 2.3  

 

111

000

000 000

111 111
111

111
001 001 001

110110

000000000000

110

111111111111

000 000

110110

001001 001

110

t=0 t=5t=4t=3t=2t=1

S0

S3

S2

S1

 

Figure 2.5: Trellis diagram for the encoder in figure 2.3  

2.2.3.4 Viterbi Algorithm 

 Information sequence is encoded and then transmitted and it is corrupted by 

noise. Received sequence is decoded with Viterbi in convolutional codes. The 

maximum likelihood decoder selects for estimate the transmitted sequence. This type 

of decoder maximizes the probability of ( )'p r y  which are, r is received and y’ is 

the estimated sequence.  
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Assume that, this information sequence x is composed of L k-bit blocks and 

this encoded code is labeled as y. At the end of encoding the output sequence 

consists of L n-bit blocks. The number of blocks is enlarged by m (long shift register) 

blocks. This sequence is transmitted and corrupted by noise. The received sequence 

is named as r. This sequence estimated y’ by decoder and the decoder generates a 

maximum likelihood.  

Formulas of x, y, r, y’ are: 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )0 1 1 0 1 1 1
0 0 0 1 1 1 1, ,...., , , ,...., ,....,k k k

Lx x x x x x x x− − −
−=  (2.5) 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )0 1 1 0 1 1 1
0 0 0 1 1 1 1, ,...., , , ,...., ,....,n n n

L my y y y y y y y− − −
+ −=  (2.6) 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )0 1 1 0 1 1 1
0 0 0 1 1 1 1, ,...., , , ,...., ,....,n n n

L mr r r r r r r r− − −
+ −=  (2.7) 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )0 1 1 0 1 1 1
0 0 0 1 1 1 1' ' , ' ,...., ' , ' , ' ,...., ' ,...., 'n n n

L my y y y y y y y− − −
+ −=  (2.8) 

path metric equation is: 

( ) ( ) ( )( )
1 1

0 0
' '

L m n
j j

i i
i j

M r y M r y
+ − −

= =

 
=  

 
∑ ∑  (2.9) 

kth branch metric: The kth branch metric is the sum of the bit metrics for the kth block 

of  r given  y’. 

( ) ( ) ( )( )
1

0
' '

n
j j

k k
j

M r y M r y
−

=

=∑  (2.10) 

kth partial branch metric: The kth partial branch metric is sum of the branch metrics 

for the first k branches.  

( ) ( ) ( )( )
1 1

0 0
' '

k n
j jk

i i
i j

M r y M r y
− −

= =

 
=  

 
∑ ∑  (2.11) 

Trellis diagram is used for computation of path metrics in Viterbi. Each node 

in the trellis is assigned a number and these numbers are the partial path metric of the 
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path. This path starts from state 0S  at time 0t =  and finishes at that node and best 

partial path metric is selected between all entering paths.  

2.2.3.5 Convolutional Code Performance Measures 

Performance of convolutional code depends on which decoding algorithm 

was used and the distance properties of the code itself. There are several techniques 

for performance measure of convolutional codes. These techniques for performance 

measures are: column distance function, minimum distance and minimum free 

distance. But the most important distance measure for a convolutional code is 

minimum free distance freed . Minimum free distance freed , is the minimum distance 

between any two length codeword in the code. Mathematical definition of minimum 

free distance freed  is: 

( ){ }min ', '' : ' ''freed d v v u u= ≠  (2.12) 

Where 'v  and ''v  are the codeword corresponding to the information 

sequences 'u  and ''u , respectively. The performances of coding methods are 

investigated using different code distance values. As described above, distance 

between any two codeword in the code is freed . Increasing freed  increases distance 

between labels enabling decoder to make better decisions while decoding. In the 

simulations, freed  is increased from 1 to 2 and performances are compared with each 

other. Figure below shows transition between labels while freed =2. 
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Figure 2.6: State diagram for freed =2 

Decoding algorithm also affect the performance of the convolutional codes. 

Viterbi and Behl, Cocke, Jelmek and Raviv algorithms are used as decoding 

algorithms. Viterbi algorithm is the most optimal and is simpler to implement 

amongst the decoding algorithm techniques. 
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CHAPTER 3 

NONBINARY CONVOLUTIONAL CODES 

 

3.1 Nonbinary Convolutional Coding  

Nonbinary convolutional codes (NCC) are similar to convolutional codes 

except that they can be designed for general nonbinary sources. The residual 

redundancy in the source code output must be preserved for forward error correction. 

This requires that channel coder input alphabet must have a one-to-one match with 

the source output. 

Let xn, which is chosen from the alphabet A={0, 1, 2, 3, …. , G-1} be the 

input, and yn, chosen from B={0, 1, 2, 3, …., H-1}, be the output of NCC.  

H=G2, output is: 

yn= Gxn-1+xn  (3.1) 

for rate  R=1/2 . This can be shown by the following argument: 

For the output alphabet log2H and for the input alphabet log2G bits are required. 

2
2 2 2log log 2logH G G= =  (3.2) 

and the rate, 

 2

2

log 1R=
log 2

G
H

=  (3.3) 

In figure 3.1, a block diagram of a NCC with rate R=1/3 is shown. 
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Z-1 Z-1

X

X +

G2

Xn-2
Xn-1 yn

G

Xn

 

Figure 3.1: Rate R=1/3 NCC encoder structure. [6] 

 

The NCC decoder uses the Viterbi algorithm. [6] 

3.1.1 The Design Criterion 

For a discrete memoryless channel (DMC), let y = (y1,y2,...,yN) and r = 

(r1,r2,...,rN) denote the transmitted and the received sequences, respectively, where 

symbols y and r are from the same alphabet. The probability of error is given by 

 ( ) ( / ) ( )
r

P E P E r P r=∑                                                  (3.4) 

where P(r) is independent of the decoding rule. To minimize the error, the optimum 

receiver maximizes  

 ( / ) ( )( / )
( )

P r y P yP y r
P r

=  (3.5) 

For fixed length codes, P(r) is irrelevant to receiver’s operation and 

1log ( / )i iP y y − ( / ) ( )P r y P y  must be maximized. Since the channel is without 

memory, each received symbol depends only on the corresponding transmitted 

symbol. 
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 ( / ) ( / )i i
i

P r y P r y=∏  (3.6) 

When the information source is assumed to be an Mth-order Markov 

sequence, one can write 

 1 2( ) ( / , ,....., )i i i i M
i

P y P y y y y− − −=∏  (3.7) 

Combining Equation (3.6) and (3.7) we get 

 1 2( / ) ( / ) ( / , ,....., )i i i i i i M
i

P r y P r y P y y y y− − −=∏  (3.8) 

Taking the algorithm of both sides gives 

 1 2log ( / ) log ( / ) ( / , ,..., )i i i i i i MP r y P r y P y y y y− − −=∑  (3.9) 

The sum is similar to the path metric used in the decoding of convolutional codes. 

Error correction using convolutional codes is made possible by restricting the 

possible codeword to code work transition based on the coder structure. The receiver 

compares the received data stream to the a priori information about the code 

structure. In the case where there is residual structure in the source coder output, the 

redundancy can be used for error correction. This residual structure is reflected in the 

form of conditional properties and can be used in the metric of a convolutional 

decoder. If we assume a first- order Markov model, the metric becomes  

 1lo g( / ) ( / ) ( / )i i i i i i
i

P r y P r y P y y −=∑  (3.10) 

Examining the path metric, we see that it contains log ( / )i iP r y  which depends 

strictly on the channel and 1log ( / )i iP r y −  which depends on the source statistics. 

This metric is called the maximum a posteriori (MAP) metric. It is necessary to know 

the channel and source statistics to be able to implement the path metric. As noted 

previously, the source is a first-order Markov chain. The source symbols are 

produced by the state-to-state transitions with given conditional probabilities. 
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Convolution coding, that took advantage of the residual redundancy was used. In 

evaluating the branch metric 

 1log ( / ) log ( / )i i i iL P r y P y y −= +  (3.11) 

It is assumed that the channel statistics are known. It is shown in the simulation 

results that the system is quite robust to mismatch between the assumed and the 

actual statistics. In the simulations, the effect of mismatch was investigated by 

varying ( / )i iP r y  in the computation of the MAP metric for a given channel error 

rate. For the matched case, it is assumed that ( / )i iP r y  is exactly known and this 

information is used in evaluating the MAP metric. The performance of the system is 

not affected adversely by the mismatch for a range of channel error rates but it is 

highly dependent on the amount of residual redundancy at the source. The simulation 

results indeed show that the performance increases for decreasing source entropy. In 

order to compute the entropy, the probability of source symbols is estimated. The 

conditional entropy 1( / )i iH y y −  is calculated using the conditional probabilities 

which is estimated by using the source symbols. [6] 

3.2 Markov Chain 

Having the Markov property means that future states depend only on the 

present states, and are independent of past states. At each step the system may 

change its state from the current state to another state (or remain in the same state) 

according to a probability distribution. The changes of state are called transitions, 

and the probabilities associated with various state-changes are called transition 

probabilities. [12] 
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A Markov chain is a sequence of random variables X1, X2 ,X3,…. with the 

Markov property, namely that, given the present state, the future and the past states is 

independent. Formally, 

 Pr (Xn+1 =x| X1=x1, X2=x2…., Xn=xn)=Pr(Xn+1 =x| Xn=xn) (3.12) 

 Decoding process in Viterbi algorithm depends on channel metric 

calculation. Here, source information is used to increase the performance of decoder 

by combining source information with channel metric; 

  1log ( / ) log ( / )i i i iL P r y P y y −= +  (3.13) 

where  log ( / )i iP r y  is channel and 1log ( / )i iP y y −  is source metric. 

 Source information is in fact metrics that depend on the transition 

probabilities of the source data, and if transition probabilities between certain 

symbols are reasonably high, the Viterbi decoder with source metric performs even 

better. So, Markov chain is used to produce data with manually set transition 

probabilities and these transition probabilities are then used in decoder for 

calculation of branch metrics. The data produced with equal transition probabilities 

will leave no advantage for decoder with source metric because equal transition 

probabilities mean uniformly distributed data so there is no useful information about 

source data for the decoder. But if the transition probabilities between certain 

symbols are considerably high, decoder with source metric will make good use of 

this information and will show considerably better performance than the other 

methods. Images are like Markov data because generally in an image, transition 

probabilities between a symbol and itself are higher than the other transition 

probabilities. 
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3.3 Entropy 

The information in an image can be modeled as a probabilistic process, where 

first, a statistical model of the image is generated. The information content (entropy) 

can be estimated based on this model. 

This information per source (pixels or symbol), which is also referred as 

entropy is calculated by: 

lni iS P P= −∑  (3.14) 

where S is the entropy, Pi refers to the source symbol/pixel probabilities. 

If data, generated by using Markov process, has high transition probabilities 

between specific symbols, the similarity between the source symbols becomes high. 

As the similarity between symbols of a source increases, entropy decreases. For a 

source which has low entropy, the effect of soft decision nonbinary convolutional 

coding with source metric will be better since entropy is completely related to data 

statistics. Suppose the transition probabilities between each symbol are equal. This 

means that the symbols are uniformly distributed and there is no similarity between 

them. In this case entropy will be high and source statistics will have no effect during 

decoding process. This can be observed from simulation results as well. 

 

3.4 Wireless Communication Channel 

Mobile communication has become such an important part of our lives that 

we cannot imagine a life without it. In view of today’s trend in the field of 

communication, digital communication techniques dominate analogue methods. As 

shown in figure 3.2, mobile communication systems consist of three main elements 

which are the transmitter, communication channel, and the receiver. [25]  
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Figure 3.2: Block Diagram of a General Communication System 

 

Communication signals are transmitted through very different kinds of 

channels. For the purpose of designing and optimizing receiver structures for digital 

communication systems it is mandatory to construct mathematical models that 

represent the typical characteristics of these channels. [3] In this thesis, AWGN 

channel and fading channel models will be used. 

3.4.1 Additive White Gaussian Noise Channel 

 One of the simplest channel models for a communication system is the 

Additive White Gaussian Noise (AWGN) model. The basic model of AWGN is used 

to in digital communications as shown below: 

 

Noise

n(t)

Transmitted Signal
s(t) r(t)

Received Signal
 

Figure 3.3: AWGN Channel 

 

r(t) = As(t) + n(t)  (3.15)
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As it seen from the figure, received signal r(t) is the sum of the transmitted 

signal s(t) and white Gaussian Noise n(t), whose frequency spectrum is continuous 

and uniform over a specified frequency band. A is the overall path loss, assumed to 

be time invariant. 

 In AWGN system, there is no fading, frequency selective, interface, 

nonlinearity or dispersion; hence, this model is overly simplistic for wireless 

communications systems. 

 An important parameter of measuring the performance of digital modulation 

systems is the signal-to-noise ratio (SNR). This parameter determines the probability 

of information error, or bit error rate (BER). The input SNR into the demodulator of 

AWGN channel is defined as inverse proportion of noise PSD N0 and bandwidth B, 

defined below. 

( )2 2 2

2
0

A ,
SNR=

2 2n

S t A
N Bσ

=  (3.16) 

3.4.2 The Flat Fading Channel 

This simplest fading channel model assumes that the duration of a signal is 

much greater than the delay spread caused by multipath propagation. If this is true, 

then all frequency components in the transmitted signal are affected by the same 

random attenuation and phase shift, and the channel is frequency-flat. If in addition 

the channel varies very slowly with respect to the elementary-signal duration, then 

the fading level remains approximately constant during the transmission of one 

signal (if this does not occur, the fading process is called fast). The additional 

assumption of slow fading reduces this process to a sequence of random variables, 

each modeling an attenuation that remains constant during each elementary-signal 

interval. In conclusion, if x denotes the transmitted elementary signal, then the signal 
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received at the output of a channel affected by slow, flat fading, and additive white 

Gaussian noise, and demodulated coherently, can be expressed in the form 

Y=Rx+z  (3.17) 

where z is a complex Gaussian noise and R is a Gaussian random variable, having a 

Rayleigh PDF. It should be immediately apparent that, with this simple model of 

fading channel, the only difference with respect to an AWGN channel, described by 

the input/output relationship 

y=x+z  (3.18) 

Resides in the fact that R, instead of being a constant attenuation, is now a random 

variable whose value affects the amplitude, and hence the power, of the received 

signal. [4] 
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CHAPTER 4 

SIMULATION RESULTS 

4.1 Simulation Setup 

In this thesis, Monte Carlo Simulation is used in the experiments and is 

applied on synthetic data, images and video sequences. Markov Chain model is used 

to generate synthetic data to enable manually adjustable transition probabilities 

between each data. 10000 binary and nonbinary (4 levels) data are generated using 

Markov Chain model and used as sources for Convolutional Coding.  

For the synthetic data experiments, the data sets are coded, sent through the 

channel, and decoded 100 times to perform Monte Carlo Simulation. Transition 

probabilities between data are calculated to be used for source metric in decoding 

algorithm. The effect of soft metric in the algorithm is observed comparing with the 

conventional decoding algorithms (hard decision and soft decision viterbi decoding). 

Different transition probability configurations are used in the simulations to observe 

the effect of the source itself on Viterbi decoding algorithm. BPSK modulation is 

used to send data through AWGN and flat fading channels, and then received data is 

decoded using modified Viterbi decoding algorithm with source metric to observe 

the performance of the proposed method. The proposed method adds source metric to 

channel metric while decoding received data to improve performance of Viterbi 

decoding algorithm. 
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In the experiments in which images are used, RGB image is first converted to 

grayscale image and then quantized to obtain a 4 level gray scale image. Then, the 

intensity values are mapped to values 0, 1, 2, and 3 in the ascending order forming 

nonbinary data for an image. The source statistics are calculated for the nonbinary 

data in the same manner used for synthetic data. The nonbinary data is then 

modulated using BPSK and transmitted through AWGN and flat fading channel. The 

received data is decoded using Viterbi decoding algorithm. This process is carried 

out only once for an image. Three types of experiments are set up for image 

transmission. First, transmitted image is decoded using its own source statistics. For 

the second type of experiment, the transmitted image is decoded using a different 

image’s source metric which is similar to the transmitted image in terms of source 

statistics. And for the third experiment, the transmitted image is decoded using a 

completely different image’s in terms of source statistics. 

Video sequence transmission is also set up as one of experiments. 10 

consecutive frames of a video sequence are converted into 4 level nonbinary sources 

and then transmitted through AWGN and flat fading channel. The received video 

sequence is then decoded using Viterbi decoding algorithm with source metric. The 

video sequence experiment is performed to observe the performance of soft decision 

nonbinary convolutional coding with source metric on correlated data sources. 

Another experiment performed in this thesis is using an increased minimum 

code distance. Minimum code distance is the minimum hamming distance between 

the labels of state transition probabilities of the decoder. The effect of increased 

minimum code distance is observed. 
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4.2 Performance study for simulated data 

The figures 4.1, 4.2, and 4.3 describe the performance of convolutional 

coding. Data, from synthetic sources, transmitted through the AWGN channel.  

 

Figure 4.1: Binary data performance of convolutional coding (K=3, AWGN, m=2, 

g=[7,5]) transition probabilities:[0.3 0.7;0.7 0.3]) 

BER performance of convolutional coding of binary random data is shown in the 

above figure. At a BER=10-3, the convolutional coding with soft decision requires 

Eb/N0 of 0.9dB whereas convolutional coding with soft decision with source metric 

requires about 0dB and the convolutional coding with hard decision requires 2.7dB 

respectively. Here, we see the advantage of using the source statistics in decoding the 

transmitted bits. The next figure show the performance of nonbinary convolutional 

coding. 
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Figure 4.2: Nonbinary convolutional coding performance for data ( freed =1, AWGN, 

R=2/4, K=5, m=4) 

The source produces nonbinary random data. The soft decision with source metric 

performance is higher than that of the other convolutional coding since it depends on 

source statistics. At a BER=10-2, the convolutional coding with soft decision requires 

Eb/N0 of -0.4dB whereas convolutional coding with soft decision with source metric 

requires -2dB. Finally, the convolutional coding with hard decision requires 1.8dB. It 

is observed that nonbinary convolutional coding is superior to binary convolutional 

coding for a nonbinary source with residual redundancy. Next figure show 

performance comparison of convolutional coding with different code distance and 

rate. 
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 Figure 4.3: Nonbinary convolutional coding performance for data ( freed =2, AWGN, 

R=2/6, K=5, m=4) 

In the figure above, rate 2/6 is used for encoding the nonbinary message. The 

previous figures show the results for code with rate 2/4 which adds 2 controlled 

redundancy bits to each message bit. In the current experiment, 4 controlled 

redundancy bits are added to for every 2 of the message bits and effect is observed 

on the figure above. It can be seen that increasing the coding rate greatly increased 

the performance of all the coding methods with different metrics. In figure 4.4, when 

Eb/N0=0, BER is 7x10-4 for soft decision with source metric for freed =2. However in 

figure 4.3, when Eb/N0=0, BER is 2x10-4 for freed =2 which shows the increase in 

performance. 
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4.3 Simulation Results for Different Code Distances 

The second set of figures 4.4 to 4.6 describe the performance of soft decision 

convolutional coding with source metric using different code distances ( freed ) in 

AWGN and fading channels. These figures describe the performance of the proposed 

code with higher freed  which are designed by using the procedure described in 

section 2.2.3.5. 

 

 Figure 4.4: Performance of nonbinary convolutional coding with different code 

distances.  

( freed =1 and freed =2, AWGN, R=2/4, K=5, m=4) 

Figure 4.4 shows soft decision NCC with source metric performances having 

different code distances. The messages consist of 10000 bits and the experiment is 

repeated 100 times for each Eb/N0 value. The minimum free distance ( freed ) is 

increased from 1 to 2 and it can be seen from figure 4.4, increasing freed  to 2 slightly 

increased the performance of the coding method. 
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 Figure 4.5: Performance of nonbinary convolutional coding with different code 

distances.  

( freed =1 and freed =2, flat fading, R=2/4, K=5, m=4) 

Above figure illustrates NCC with soft decision with source metric performances 

with different code distances in fading channel. freed  is again increased from 1 to 2 

and results are compared. Comparing figure 4.4 and 4.5, fading channel greatly 

decreased performances of both methods but still increasing freed  to 2 results slightly 

better performance in flat fading channel compared to when freed  is 1.  
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 Figure 4.6: Performance of nonbinary convolutional coding with different code 

distances. 

 ( freed =1 and freed =2, AWGN, 392 x 294 pixels image, R=2/4, K=5, m=4) 

In Figure 4.6, the effect of the code distance to NCC is demonstrated for an image. 

When code distance ( freed ) value is increased, the method again shows better 

performance. 

4.4 Performance study using images 

The third set of figures 4.8-4.13 describes the performance of image transmission. 

The performances of coding methods are observed on image transmission rather than 

using random data sets to emphasize power of the proposed methods in multimedia 

transmission. The following images are converted to 4 level grayscale images and 

used in the simulations: 
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(a) (b) (c) 

Figure 4.7: (a) Transmitted Image, (b) Reference image with source statistics similar 

to transmitted image, and (c) Reference image with source statistics different from 

transmitted image 

  

Depending on the application area, calculation and transmission of source metric 

would be redundant. To avoid redundant calculations and transmissions, pre-

calculated source statistics can be used to decode transmitted images. Three types of 

scenarios are set up and performances are compared to show instead of using 

message source metrics, pre-calculated image sources can also be used to improve 

the performance of convolutional coding. 
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Figure 4.8: Nonbinary convolutional coding performance for image (K=5, AWGN, 

freed =1, gray scale 392 x 294 pixels, m=4, K=5)  

The figure illustrates BER performance of NCC for image which has 392 x 294 

pixels. At a BER=4x10-3, the NCC with soft decision requires Eb/N0 of -0.1dB 

whereas convolutional coding with soft decision with source metric requires -1.8dB. 

The convolutional coding with hard decision requires 1.6dB. In the previous 

experiments, data is generated with first order Markov process to have transition 

probabilities similar to an image’s transition probabilities. In this experiment, image 

is transmitted to see the performance while transmitting a visual data set. 
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Figure 4.9: Nonbinary convolutional coding performance for image with using 

different  image probabilities ( freed =1, AWGN, gray scale 392 x 294 pixels and gray 

scale 392 x 294 pixels, R=2/4, K=5, m=4)  

In this figure, BER performance of NCC for a 392 x 294 image is illustrated. 

The source decision with source metric performance is over performing the other 

techniques, whereas the soft decision based convolutional coding is comparable with 

source metric technique in low SNR value. At BER=5x10-2 soft decision 

convolutional coding with source metric needs -1.8dB, soft decision convolutional 

coding needs -0.4dB and hard decision convolutional coding requires 1.5dB of Eb/N0. 

This figure proves that if source statistics of reference image are close to source 

statistics of original image, soft decision convolutional coding with source metric 

performs better results. 
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Figure 4.10: Nonbinary convolutional coding performance for image with using 

different image probabilities ( freed =1, AWGN, gray scale 372 x 270 pixels and gray 

scale 392 x 294 pixels, R=2/4, K=5, m=4) 

In the figure above, instead of using original image source statistics for the 

soft decision with source metric, different image source statistics are used which are 

generated from a completely different image. Because the reference image is very 

different from original image, the statistics fail to help decoder decreasing the 

performance of soft decision convolutional coding with source metric. For a good 

performance, source statistics of reference image should be close to the original 

image’s source statistics. Next figure illustrates performance comparison between 

nonbinary and binary convolutional coding methods. 
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Figure 4.11: Binary image performance of convolutional coding (K=3, AWGN, m=2, 

g=[7,5]) 

 

 Figure 4.11 illustrates performances of binary convolutional coding methods. 

For a performance of BER=10-4, soft decision convolutional coding with source 

requires Eb/N0 of 1.2dB, soft decision convolutional coding requires 1.8dB, and hard 

decision convolutional coding requires 3.7dB. Binary convolutional coding performs 

good performance, but to use binary convolutional coding data should be binarized 

first. Some data sets may not be binary depending of the application area, so, if a 

nonbinary data set is to be transmitted, nonbinary convolutional coding can be used 

to directly encode nonbinary data sets without converting them into binary. As can 

be seen from the results, nonbinary convolutional coding has performance as good as 

binary convolutional coding. 
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Figure 4.12: Nonbinary convolutional coding performance for image (flat fading, 

freed =2, gray scale 372 x 270 pixels, R=2/4, K=5, m=4) 

 In this figure, NCC performance for image is observed in fading channel. At 

BER of 10-3, soft decision convolutional coding with source metric has 2.7dB greater 

performance than soft decision convolutional coding. While soft decision 

convolutional coding with source metric requires 0.3dB at BER=10-3, soft decision 

convolutional coding requires 3.1dB and hard decision convolutional coding requires 

6.6dB. 
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Figure 4.13: Nonbinary convolutional coding performance for image (AWGN,    

freed =2, gray scale 816 x 612 pixels, R=2/6, K=5, m=4) 

 Figure 4.13 illustrates performance of convolutional coding methods with rate 

R=2/6 for an image. Comparing performance of methods used, at BER=10-3, soft 

decision nonbinary convolutional coding with source metric requires Eb/N0 of -

2.3dB, soft decision nonbinary convolutional code requires Eb/N0 of -1.25dB and 

hard decision nonbinary convolutional coding requires Eb/N0 of 0.85dB. 
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4.5 Simulation results for video sequence 

 
Figure 4.14: Nonbinary convolutional coding performance for video sequence 

(AWGN, freed =2, 10 consecutive frames, gray scale 120 x 177 pixels/frame, R=2/4, 

K=5, m=4) 

 

In this figure, 10 consecutive frames of a video sequence are encoded and 

transmitted over AWGN channel. There is more redundancy in video sequences than 

a single static image. When the redundancy is increased the NCC method performs 

better. Comparing the results, at BER=4x10-3, soft decision nonbinary convolutional 

coding with source metric requires Eb/N0 of -2dB, soft decision nonbinary 

convolutional code requires Eb/N0 of 0dB and hard decision nonbinary convolutional 

coding requires Eb/N0 of 1.6dB. 

The benefit of coding for a video sequence can be explained due to the fact 

that there is not much difference between two consecutive frames. And hence the 

correlation between the consecutive frames can be explained by the NCC algorithm 
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in its updated source metric. The residual redundancy enables the decoder to make 

better decision in state transition. 

4.6 Entropy Calculation Results 

The entropy values show that the soft decision with source metric of a given 

SNR value is higher than the other techniques which represents that the randomness 

of this technique is higher. As, entropy of the source increases the performance 

decreases. When entropy increases, the structure in the source which can be utilized 

by NCC decreases and the decoder makes more errors. When the entropy is low, 

there is a lot of structure in the source and the decoder makes efficient use of this in 

making correct decisions.  

Markov 
Random 

Data 

SNR 
TP Entropy 

0 1 2 3 

BER 

0 0 0 0 1 0 
0.0045 0.0008 0 0 2 1.9998 
0.0036 0.0006 0 0 3 1.9706 

0.00076 0.00014 0 0 4 1.9616 
 

Transition Probability (TP1)  0 1 2 3 
 0 0 1 0 0 
 1 0 1 0 0 
 2 0 1 0 0 
 3 0 1 0 0 
      
Transition Probability (TP2)  0 1 2 3 
 0 0.25 0.25 0.25 0.25 
 1 0.25 0.25 0.25 0.25 
 2 0.25 0.25 0.25 0.25 
 3 0.25 0.25 0.25 0.25 

 
Transition Probability (TP3)  0 1 2 3 
 0 0.4 0.3 0.2 0.1 
 1 0.3 0.5 0.2 0.1 
 2 0.1 0.2 0.6 0.1 
 3 0.05 0.05 0.2 0.7 
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Transition Probability (TP4)  0 1 2 3 
 0 0.8666 0.1253 0.0071 0.0015 
 1 0.1608 0.7263 0.0961 0.0121 
 2 0.003 0.665 0.8636 0.0691 
 3 0.0051 0.0043 0.1277 0.8678 

 

Table 4.1: Entropy and BER performances of soft decision with source metric 

(R=2/4, m=2, K=3, TP 1-4) 

Table above shows various symbol transition probability tables for synthetic data and 

BER results for the soft decision nonbinary convolutional coding with source metric 

method for these synthetic data at SNR values 0, 1, 2, 3, and 4. Entropy of each data 

source is calculated to show the relationship between BER performance and data 

source. Each data source is generated with different transition probability tables to 

obtain different entropy values. Looking at table above, for data source with 

transition probabilities TP1, the data is highly correlated resulting a very small 

entropy value with a very high decoding performance. Data source with transition 

probabilities TP2 is a uniformly distributed random data source resulting a very low 

correlation between data resulting a high entropy value. Decoding performance for 

this data source is low.  
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CONCLUSIONS AND FUTURE WORK  

 

In this thesis, the binary and nonbinary convolutional coding techniques are 

examined in communication channels such as AWGN and the flat fading channel. 

Convolutional decoding with hard, soft and soft with source metric decisions are 

implemented and the simulation results are discussed. The results show that both 

binary and nonbinary convolutional codes with soft decisions with source metric 

perform is better than the other technique. Soft decision with source metric uses 

source transition probabilities for metric calculation. Binary and nonbinary 

convolutional coding techniques are applied to images and video sequence 

transmission and the performances are evaluated. Image transmission is tested after 

the image source statistics are obtained. When the decoder utilizes these statistics, 

better decisions lend to lower BER. It is interesting to note that even the source 

statistics of different images can increase the efficiency of the decoder. 

There are several different performance measures that can be used to compare 

convolutional codes. In this thesis, the commonly used measure, the minimum free 

distance is used. The effect of increasing the code distance is examined. When the 

code distance is increased, Hamming distance among the branch labels are increased, 

and hence the convolutional coding performance is also increased. 

Use of residual redundancy with NCC improved the bit error performance. 

Use of nonbinary convolutional coding on a video sequence yielded good results 

because of high residual redundancy of video sequences. 
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A new nonbinary convolutional code, with rate 2/6 (1/3 for binary), is 

proposed and compared to nonbinary convolutional codes with rate 2/4 (1/2 for 

binary). The results show that the proposed code is superior to the ones with rate 2/4. 

In future work, different trellis depths, quantizers and more precise channel 

models such as the multipath fading channel can be used. 

Field Programmable Gate Array (FPGA) boards and Direct Sequence Spread 

Spectrum (DSSS) systems are examples of areas that nonbinary convolutional coding 

technique can be used.  
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