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ABSTRACT

NONBINARY CONVOLUTIONAL CODING FOR

MULTIMEDIA DATA TRANSMISSION

Keywords: Error Control coding, Convolutional codes, Source metric

In this thesis, the performance of nonbinary convolutional coding technique is
investigated and new nonbinary codes with better performance are proposed.
Nonbinary convolutional coding technique is a coding technique which is similar to
the binary convolutional codes with the same decoding strategy but they are designed
for general nonbinary sources. The nonbinary convolutional coding technique is
described and simulated under various channel conditions. Synthetic nonbinary
source sequences are produced by using Markov processes.

The channels used in the experimental simulations include additive white
Gaussian noise (AWGN) and flat fading channel models. Coded image and video
sequences are transmitted over the channels by using binary phase shift keying
(BPSK) modulation technique. The Viterbi decoding algorithm is used for decoding
the encoded sequences. Viterbi decoding employs hard and soft decision metrics.
The soft metric is updated to include the source statistics. This enables the decoder to
use the source redundancy for improved decoding performance. Results show that
nonbinary convolutional coding which uses the source statistic is effective in

reducing bit error rate (BER). New nonbinary convolutional coding is optimized to



increase the code distance (d.., ). The optimized codes are shown to perform better

free

at low BER.



OZET

Bu tezde, ikili olmayan evrisimsel kodlama teknigi incelenmis ve daha
yiiksek basarimli kodlar onerilmistir. Ikili olmayan evrisimsel kodlama tekniginde,
geleneksel evrisimsel kodlama teknigi ile aymi yontem kullanilarak kod
¢oziilmektedir. ikili olmayan kodlama, genel ikili olmayan veri kaynaklar icin
tasarlanmakta ve bu tiir kaynaklar i¢in daha yiiksek basarim saglamaktadir. Bu tezde
ikili olmayan evrisimsel kodlar incelenmis ve farkli iletisim kanallarindaki ¢oklu-
ortam veri iletim basarimi benzetimlerle gosterilmistir. Sentetik ikili olmayan veri
kaynaklar1 Markov siirecleri kullanilarak {iiretilmis ve hata diizeltme basarimi
gelistirilmis kodlar benzetimlerle gosterilmistir.

Yapilan deneylerde, kanal modelleri olarak Toplanir Beyaz Gauss Gurultl
(TBGG) ve diuz sénumlemeli kanal modelleri kullanilmistir. Kodlanan resim ve
video verileri kanal {iizerinden Ikili Evre Kaydirmalari Anahtarlama (IEKA)
modulasyon teknigi kullanilarak iletilmistir. Kodlanan dizileri ¢ozmek icin Viterbi
kod ¢6zme algoritmasi kullanilmistir. Viterbi algoritmasi kod ¢6zme isleminde ikili
veya yumusak olciit kullanmaktadir. Onerilen kodlarda, yumusak olgiit, kaynak
istatistiklerini de kullanarak guncellenmistir. Bunun sonucu olarak kod ¢6zici
kaynak artitkligimi da kullanarak basarimini artirmustir. Sonuglar ikili olmayan
evrimgimsel kodlamada kaynak istatistiginin kullaniminin bit hata oranin1 diisiirmede

etkili oldugunu gostermektedir.
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CHAPTER 1

INTRODUCTION

Even though data communication methodologies have been developing
considerably, errors still occur during data transmission. Error detection/correction is
a very important task in any transmission protocol. It provides the way to protect data
from errors, and maintain data integrity. There are many types of error correcting
codes such as: Linear Block Codes, Cyclic Codes, Convolutional Codes, as well as
the retransmission strategies such as the Automatic Repeat Request (ARQ), etc.

Forward error correction (FEC) is an error correction technique that improves
the capacity of a channel by adding some carefully designed redundant information
to the data being transmitted through the channel. The process of adding this
redundant information is known as channel coding. Convolutional coding and block
coding are two major forms of channel coding. Convolutional codes operate on serial
data, one or more bits at a time. Block codes operate on relatively large (typically, up
to a couple of hundred bytes) message blocks. There are a variety of useful
convolutional and block codes, and a variety of algorithms for decoding the received
coded information sequences to recover the original data. Convolutional encoding
with Viterbi decoding is a FEC technique that is particularly suited to a channel in
which the transmitted signal is corrupted mainly by additive white Gaussian noise
(AWGN). Viterbi decoding is one of two types of decoding algorithms used with
convolutional encoding. The other main type is the sequential decoding. Sequential
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decoding has the advantage that it can perform very well with long-constraint-length
convolutional codes, but it has a variable decoding time. Viterbi decoding is optimal
and has the advantage that it has a fixed decoding time. It is well suited to hardware
decoder implementation.

In the thesis, beyond binary convolutional coding, nonbinary convolutional
coding is investigated. Besides hard and soft decision convolutional coding, soft
decision convolutional coding with source metric is investigated. Rate of encoder is
changed from 1/2 to 1/3 and change in performance is observed. On the other hand,
minimum free distance is changed and its effect is observed. Behaviors of
independent and dependent data sources are investigated in terms of entropy and
relationship between entropy of the data source and performance of soft decision
decoding with source metric is observed. In addition to synthetic data sources,
images and video sequences are also applied to the simulations and performances are
discussed.

The thesis is organized as follows; In Chapter 2, an overview of
convolutional coding is given. General information about nonbinary convolutional
codes is introduced in Chapter 3. Moreover, Markov Chain, which is used to model
the source, and the wireless channels such as AWGN and flat fading channels are
described. Simulation results are presented in Chapter 4. Finally, Chapter 5
summarizes the thesis and identifies areas for future research.

In this thesis as novelty; source metric is integrated into soft decision
convolutional coding to improve performance. A new coding scheme is proposed to
maintain increased code distance. A new 1/3 rate code is proposed and the

performance is observed over fading channel.



CHAPTER 2

ERROR CONTROL CODING TECHNIQUES

A digital communication system is a means of transporting information from
transmitter to receiver while channel imposes errors on the transmitted data. Error
control codes are used for preventing errors in these transmissions. Different codes
are selected to perform in various applications with different requirements. Some

typical coding strategies are given below:

2.1 Automatic Repeat Request

ARQ is a simple and commonly used method in error correction. In ARQ
systems, firstly errors are detected at the receiver part. Then, errors are discarded and
retransmitted if any packet is detected in error. There are three types of ARQ); Stop
and Wait, Go-Back-N and Selective Repeat Request ARQ. Stop and Wait ARQ is the
simplest ARQ procedure. The principle of this type of ARQ system is to complete
the transmission of each packet correctly before moving to the transmission of next
one. So, it spends time for acknowledgement. It is inherently inefficient and requires
new strategy which is Go-Back-N. Here, several successive packets can be sent
without waiting for the next packet to be requested. After that, Go-Back-N becomes
quite ineffective for communication systems with high data rates. Selective Repeat
Request is used which is similar to Go-Back-N except that in Selective Repeat

Request only the error frame is retransmitted. [24]



The ARQ method needs duplex arrangement as part from the conventional
transmitter to receiver signal, the request signal is to travel from receiver to
transmitter. To request and transmit the corrupted data upon the requirement from the
receiver has been used very successfully for non-real-time data transmission. For
solving this problem Forward Error Correction (FEC) method is introduced. This
method needs simplex arrangement as the signal has to travel only from the
transmitter to the receiver. Retransmission of data is not necessary in this method. In
this method, the channel encoder systematically adds digits to the transmitted
message digits which is known as redundancy bits. Although these additional digits
convey no new information, they make it possible for the channel decoder to detect,
and correct errors in the information bearing digits. The overall probability of error is
reduced due to error detection and/or correction. Forward error correction can also be
used together with ARQ to improve the performance of ARQ system. With this
hybrid system, since the received error containing messages are corrected, the
number of re-requests will be reduced decreasing time delay of ARQ system.

Forward error correction method will be explained below.

2.2 Forward Error Correction

There are three types of forward error correcting codes. They are linear block

codes, turbo codes and convolutional codes.

2.2.1 Linear Block Codes:
Binary information sequence is divided into a fixed length message blocks.

These message blocks consist of k information bits and there are total 2* distinct

messages. The encoder, according to certain rules, transforms each input message to

the codeword and there are 2 code words. This set of 2*code words is called a
4



block code. Code word consists of message part and the redundant checking part.
Redundant checking part consists of n-k parity check digits, which are linear, and
some of the information digits and the message part is formed by k information bits.
The encoded message is;
v=u-G (2.1)
where G is the generator matrix and u is the message.
Minimum distance determines random error detection and random error
correcting capabilities of the code. Minimum distance of a block code is minimum

Hamming distance between all distinct pairs of code words.

2.2.2 Turbo Codes

Turbo codes are a combination of two or more error control codes in serial or
parallel. The information bits are interleaved between the two encoders. These are
then multiplexed with the uncoded information bits. A priori information is used in

decoding stage.

2.2.3 Convolutional Codes

A convolutional code is a type of error-correcting code in which each m-bit
information symbol to be encoded is transformed into an n-bit symbol, where m/n is
the code rate (n > m) and the transformation is a function of the last k information

symbols, where k is the constraint length of the code. [2]



2.2.3.1 Encoding for Convolutional Codes

Convolutional Codes are widely used to encode digital data before
transmission through noisy channels. The encoder has memory and the encoder
outputs at any given time unit depend not only on the inputs at that time unit but also
on some number of previous inputs. An encoder with k input bits and n output bits
have a rate k/n. Information bits are divided into blocks with length k and these
blocks are then mapped into the code words with length n. This operation is done
independent of the length k.

Generator sequences are one way to characterize the encoder structure of
convolutional codes. Generator sequences are obtained by applying impulses into the
system. After obtaining the generator sequences, these sequences and input
sequences are convolved to produce the encoded sequences. All operations are

modulo-2. Generator equation is:

Vl(j) :zul—igij =U g9 +Up 4G o +U_ O ] =01,... (2.2)

i=0
In this way, input sequences are encoded. Encoded information sequences
are then multiplexed into a single sequence called a codeword for transmission over

the channel. The codeword is given by:
V= (vgo)vél) VOV VOV ) (2.3)

Also, encoding can be written in a matrix form. Matrix form for encoding is:
v=uG (2.4)
Another encoding system of convolutional coding is by using the state
diagram. It contains memory elements and these contents determine a mapping

between the next set of input bits and output bits. Also, this state diagram is time-

invariant. There are 2 branches leaving each state in the state diagram and the states

6



are shown as S;,S,,....., S, . State branches are shown as X/YY, where X is the input

bit and YY is the output bits. Note that, the memory contents are the reverse of the

binary representation of the state number. Example of state diagram is in figure 2.2.

1/10

Si

111 0/01 1/01 1/00
— \ /o1 \
0/00 / \1/11
/ 0/1 |
\ 1/00
0/10
0/10
011 1/10 0/00

0/01

Figure 2.2: An example state diagram

Assume that information sequence u =(1011000) will be encoded with rate

R=1/2. Loop starts from Sy and finishes So. Input bits will be checked looking at the

state diagram. First bit of information sequence is 1. Looking at the state diagram
with starting from So, output bits will be 11 and state will be S,. Next input bit is 0O,
so S, will be next state and the output bits will be 01. These operations continue

until the end of information sequence. Results will be encoded of the sequence.

2.2.3.2 Convolutional Codes for Decoding
Viterbi algorithm is quick operation for decoding convolutional codes. It
shows state diagram of the encoder in time and each time unit is represented with

separate state diagram. The resulting structure of Viterbi is a trellis diagram.



2.2.3.3 Trellis Diagram

The trellis diagram is an extension of a convolutional code’s state diagram
that explicitly shows the passage of time. Example of trellis diagram will be shown
in figure 2.5 for figure 2.3. Two adjacent states are connected by branches and trellis

diagram branches are labeled with the output bits. These output bits are associated to
the state transitions. Consider a general (n,k) binary convolutional encoder with
total memory M and maximal memory order m. The associated trellis diagram has

2™ nodes at each stage or time increment t. There are 2% branches leaving each

node and one branch for each possible combination of input values. Also, there are

2% branches entering to each node. Given an input sequence of kL (k is number of

input and L is length of each input), the trellis diagram must have L+ m stages. The

first stage is starting and last stage is stopping. In addition to this, there are 2*-

distinct paths through the general trellis. Each one of these paths corresponds to a

convolutional code word of length n(L+m).

RS -P@— > l‘.’yQIZUJ‘y1(G]‘y0(31

o e
X2, X1, X0 . | Z z 1

B -.___h
— . 1), (1, 0
- e ’ . oyt Dy
T > 2) ., (@), (2
@ “_.yzf ]‘y1l ]‘yol )

Figure 2.3: Encoder for a rate R=1/3 convolutional code.




01000
0/110 / 1/111

0/001

1/110

Figure 2.4: State diagram for encoder in figure 2.3

Ss3

Sz

S1

So

t=0 t=1 t=2 t=3 t=4 t=5

Figure 2.5: Trellis diagram for the encoder in figure 2.3

2.2.3.4 Viterbi Algorithm

Information sequence is encoded and then transmitted and it is corrupted by
noise. Received sequence is decoded with Viterbi in convolutional codes. The

maximum likelihood decoder selects for estimate the transmitted sequence. This type

of decoder maximizes the probability of p(r/y') which are, r is received and y’ is

the estimated sequence.



Assume that, this information sequence x is composed of L k-bit blocks and
this encoded code is labeled as y. At the end of encoding the output sequence
consists of L n-bit blocks. The number of blocks is enlarged by m (long shift register)
blocks. This sequence is transmitted and corrupted by noise. The received sequence
is named as r. This sequence estimated y’ by decoder and the decoder generates a
maximum likelihood.

Formulas of x, y, r, y’ are:

X = (67 X Y ) (2.5)
Y=y Y6 e ¥ Y v l) (26)
r=(r% 0" ) 2.7)
y =y Sy Ty y ey Yy ) (2.8)

path metric equation is:

n-1

M (r/y’) Lil(ZM( ) [y )j (2.9)

i=0

K" branch metric: The k™ branch metric is the sum of the bit metrics for the k™ block

of rgiven y’.

M(r/y’)

I
<
—_
xq,.\

=
~—
<
~3
=
~—

(2.10)

k™ partial branch metric: The k™ partial branch metric is sum of the branch metrics

for the first k branches.

M (r/y')zf[niwl (rﬁ”/y'&”)} (2.12)

Trellis diagram is used for computation of path metrics in Viterbi. Each node

in the trellis is assigned a number and these numbers are the partial path metric of the

10



path. This path starts from state S, at time t =0 and finishes at that node and best

partial path metric is selected between all entering paths.

2.2.3.5 Convolutional Code Performance Measures

Performance of convolutional code depends on which decoding algorithm
was used and the distance properties of the code itself. There are several techniques
for performance measure of convolutional codes. These techniques for performance
measures are: column distance function, minimum distance and minimum free

distance. But the most important distance measure for a convolutional code is

minimum free distance d Minimum free distance d is the minimum distance

free * free !

between any two length codeword in the code. Mathematical definition of minimum

free distanced. . is:

free

O =min{d (v',v"):u'=u"} (2.12)

free
Where v' and v" are the codeword corresponding to the information
sequences u' andu", respectively. The performances of coding methods are

investigated using different code distance values. As described above, distance

between any two codeword in the code is d Increasing d. . increases distance

free * free
between labels enabling decoder to make better decisions while decoding. In the

simulations, d.__ is increased from 1 to 2 and performances are compared with each

free

other. Figure below shows transition between labels while d ., =2.

11



Figure 2.6: State diagram for d, =2

Decoding algorithm also affect the performance of the convolutional codes.
Viterbi and Behl, Cocke, Jelmek and Raviv algorithms are used as decoding
algorithms. Viterbi algorithm is the most optimal and is simpler to implement

amongst the decoding algorithm techniques.

12



CHAPTER 3

NONBINARY CONVOLUTIONAL CODES

3.1 Nonbinary Convolutional Coding

Nonbinary convolutional codes (NCC) are similar to convolutional codes
except that they can be designed for general nonbinary sources. The residual
redundancy in the source code output must be preserved for forward error correction.
This requires that channel coder input alphabet must have a one-to-one match with
the source output.

Let xn, which is chosen from the alphabet A={0, 1, 2, 3, .... , G-1} be the
input, and y,, chosen from B={0, 1, 2, 3, ...., H-1}, be the output of NCC.

H=G?, output is:

Yn= GXp-1+Xn (3.1)
for rate R=1/2 . This can be shown by the following argument:

For the output alphabet log,H and for the input alphabet log,G bits are required.

log,H =log,G* =2log,G (3.2)
and the rate,
R=108,6 _1 (3.3)
log,H 2

In figure 3.1, a block diagram of a NCC with rate R=1/3 is shown.

13



X X1

Figure 3.1: Rate R=1/3 NCC encoder structure. [6]

The NCC decoder uses the Viterbi algorithm. [6]

3.1.1 The Design Criterion

For a discrete memoryless channel (DMC), let y = (y1,Y2,...,yn) and r =
(r,r2,...,rn) denote the transmitted and the received sequences, respectively, where

symbols y and r are from the same alphabet. The probability of error is given by

P(E) =) P(E/r)P(r) (3.4)

where P(r) is independent of the decoding rule. To minimize the error, the optimum

receiver maximizes

P(y/r) :w (3.5)

For fixed length codes, P(r) is irrelevant to receiver’s operation and
log P(y,/y,,) P(r/y)P(y) must be maximized. Since the channel is without

memory, each received symbol depends only on the corresponding transmitted

symbol.

14



P(r/y)=TTP(i/y) (36)

When the information source is assumed to be an M"-order Markov

sequence, one can write

PO =] TP/ Yiss Yz Yiw) (3.7)

P(I’/ y) = H P(ri / yi)P(yi / Yicar Yico oo 1 yi—M) (3-8)

Taking the algorithm of both sides gives
log P(r/y) =2 109 P( / Y)P(Y; / Yty Yigreen Yiom) (39)

The sum is similar to the path metric used in the decoding of convolutional codes.
Error correction using convolutional codes is made possible by restricting the
possible codeword to code work transition based on the coder structure. The receiver
compares the received data stream to the a priori information about the code
structure. In the case where there is residual structure in the source coder output, the
redundancy can be used for error correction. This residual structure is reflected in the
form of conditional properties and can be used in the metric of a convolutional

decoder. If we assume a first- order Markov model, the metric becomes

lo B(r. / yi) = ZP(". / yi)P(yi / yi—l) (3-10)

Examining the path metric, we see that it contains log P(r;/y;) which depends
strictly on the channel and log P(r;/y, ;) which depends on the source statistics.

This metric is called the maximum a posteriori (MAP) metric. It is necessary to know
the channel and source statistics to be able to implement the path metric. As noted
previously, the source is a first-order Markov chain. The source symbols are

produced by the state-to-state transitions with given conditional probabilities.
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Convolution coding, that took advantage of the residual redundancy was used. In
evaluating the branch metric

L=1logP(r./y,)+log P(y, /vy, ,) (3.11)
It is assumed that the channel statistics are known. It is shown in the simulation
results that the system is quite robust to mismatch between the assumed and the
actual statistics. In the simulations, the effect of mismatch was investigated by

varying P(r./y,) in the computation of the MAP metric for a given channel error
rate. For the matched case, it is assumed that P(r,/y;) is exactly known and this

information is used in evaluating the MAP metric. The performance of the system is
not affected adversely by the mismatch for a range of channel error rates but it is
highly dependent on the amount of residual redundancy at the source. The simulation
results indeed show that the performance increases for decreasing source entropy. In
order to compute the entropy, the probability of source symbols is estimated. The

conditional entropy H(y, /vy, ,) is calculated using the conditional probabilities

which is estimated by using the source symbols. [6]

3.2 Markov Chain

Having the Markov property means that future states depend only on the
present states, and are independent of past states. At each step the system may
change its state from the current state to another state (or remain in the same state)
according to a probability distribution. The changes of state are called transitions,
and the probabilities associated with various state-changes are called transition

probabilities. [12]
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A Markov chain is a sequence of random variables X, Xz ,Xs,.... with the
Markov property, namely that, given the present state, the future and the past states is
independent. Formally,

Pr (Xn+1 =X| X1=X1, Xo=X2. ..., Xn=Xn)=Pr(Xn+1 =X| Xn=Xn) (3.12)
Decoding process in Viterbi algorithm depends on channel metric
calculation. Here, source information is used to increase the performance of decoder
by combining source information with channel metric;
L=1logP(r,/y,)+logP(y./y,,) (3.13)
where log P(r, /y;) is channel and log P(y, /Y, ,) is source metric.

Source information is in fact metrics that depend on the transition
probabilities of the source data, and if transition probabilities between certain
symbols are reasonably high, the Viterbi decoder with source metric performs even
better. So, Markov chain is used to produce data with manually set transition
probabilities and these transition probabilities are then used in decoder for
calculation of branch metrics. The data produced with equal transition probabilities
will leave no advantage for decoder with source metric because equal transition
probabilities mean uniformly distributed data so there is no useful information about
source data for the decoder. But if the transition probabilities between certain
symbols are considerably high, decoder with source metric will make good use of
this information and will show considerably better performance than the other
methods. Images are like Markov data because generally in an image, transition
probabilities between a symbol and itself are higher than the other transition

probabilities.
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3.3 Entropy

The information in an image can be modeled as a probabilistic process, where
first, a statistical model of the image is generated. The information content (entropy)
can be estimated based on this model.

This information per source (pixels or symbol), which is also referred as
entropy is calculated by:

S=->PInP (3.14)

where S is the entropy, P; refers to the source symbol/pixel probabilities.

If data, generated by using Markov process, has high transition probabilities
between specific symbols, the similarity between the source symbols becomes high.
As the similarity between symbols of a source increases, entropy decreases. For a
source which has low entropy, the effect of soft decision nonbinary convolutional
coding with source metric will be better since entropy is completely related to data
statistics. Suppose the transition probabilities between each symbol are equal. This
means that the symbols are uniformly distributed and there is no similarity between
them. In this case entropy will be high and source statistics will have no effect during

decoding process. This can be observed from simulation results as well.

3.4 Wireless Communication Channel

Mobile communication has become such an important part of our lives that
we cannot imagine a life without it. In view of today’s trend in the field of
communication, digital communication techniques dominate analogue methods. As
shown in figure 3.2, mobile communication systems consist of three main elements
which are the transmitter, communication channel, and the receiver. [25]
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Figure 3.2: Block Diagram of a General Communication System

Communication signals are transmitted through very different kinds of
channels. For the purpose of designing and optimizing receiver structures for digital
communication systems it is mandatory to construct mathematical models that
represent the typical characteristics of these channels. [3] In this thesis, AWGN

channel and fading channel models will be used.

3.4.1 Additive White Gaussian Noise Channel

One of the simplest channel models for a communication system is the
Additive White Gaussian Noise (AWGN) model. The basic model of AWGN is used

to in digital communications as shown below:

Noise

n(t)

. . s(t) r(t) . .
Transmitted Signal P Received Signal
</

Figure 3.3: AWGN Channel

r(t) = As(t) + n(t) (3.15)
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As it seen from the figure, received signal r(t) is the sum of the transmitted
signal s(t) and white Gaussian Noise n(t), whose frequency spectrum is continuous
and uniform over a specified frequency band. A is the overall path loss, assumed to
be time invariant.

In AWGN system, there is no fading, frequency selective, interface,
nonlinearity or dispersion; hence, this model is overly simplistic for wireless
communications systems.

An important parameter of measuring the performance of digital modulation
systems is the signal-to-noise ratio (SNR). This parameter determines the probability
of information error, or bit error rate (BER). The input SNR into the demodulator of
AWGN channel is defined as inverse proportion of noise PSD Ny and bandwidth B,

defined below.

A% S%(t 2
SNR:< 2( )>= A (3.16)
20 2N,B

n

3.4.2 The Flat Fading Channel

This simplest fading channel model assumes that the duration of a signal is
much greater than the delay spread caused by multipath propagation. If this is true,
then all frequency components in the transmitted signal are affected by the same
random attenuation and phase shift, and the channel is frequency-flat. If in addition
the channel varies very slowly with respect to the elementary-signal duration, then
the fading level remains approximately constant during the transmission of one
signal (if this does not occur, the fading process is called fast). The additional
assumption of slow fading reduces this process to a sequence of random variables,
each modeling an attenuation that remains constant during each elementary-signal

interval. In conclusion, if x denotes the transmitted elementary signal, then the signal
20



received at the output of a channel affected by slow, flat fading, and additive white
Gaussian noise, and demodulated coherently, can be expressed in the form

Y=Rx+z (3.17)
where z is a complex Gaussian noise and R is a Gaussian random variable, having a
Rayleigh PDF. It should be immediately apparent that, with this simple model of
fading channel, the only difference with respect to an AWGN channel, described by
the input/output relationship

y=x+z (3.18)
Resides in the fact that R, instead of being a constant attenuation, is now a random
variable whose value affects the amplitude, and hence the power, of the received

signal. [4]
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CHAPTER 4

SIMULATION RESULTS

4.1 Simulation Setup

In this thesis, Monte Carlo Simulation is used in the experiments and is
applied on synthetic data, images and video sequences. Markov Chain model is used
to generate synthetic data to enable manually adjustable transition probabilities
between each data. 10000 binary and nonbinary (4 levels) data are generated using
Markov Chain model and used as sources for Convolutional Coding.

For the synthetic data experiments, the data sets are coded, sent through the
channel, and decoded 100 times to perform Monte Carlo Simulation. Transition
probabilities between data are calculated to be used for source metric in decoding
algorithm. The effect of soft metric in the algorithm is observed comparing with the
conventional decoding algorithms (hard decision and soft decision viterbi decoding).
Different transition probability configurations are used in the simulations to observe
the effect of the source itself on Viterbi decoding algorithm. BPSK modulation is
used to send data through AWGN and flat fading channels, and then received data is
decoded using modified Viterbi decoding algorithm with source metric to observe
the performance of the proposed method. The proposed method adds source metric to
channel metric while decoding received data to improve performance of Viterbi

decoding algorithm.
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In the experiments in which images are used, RGB image is first converted to
grayscale image and then quantized to obtain a 4 level gray scale image. Then, the
intensity values are mapped to values 0, 1, 2, and 3 in the ascending order forming
nonbinary data for an image. The source statistics are calculated for the nonbinary
data in the same manner used for synthetic data. The nonbinary data is then
modulated using BPSK and transmitted through AWGN and flat fading channel. The
received data is decoded using Viterbi decoding algorithm. This process is carried
out only once for an image. Three types of experiments are set up for image
transmission. First, transmitted image is decoded using its own source statistics. For
the second type of experiment, the transmitted image is decoded using a different
image’s source metric which is similar to the transmitted image in terms of source
statistics. And for the third experiment, the transmitted image is decoded using a
completely different image’s in terms of source statistics.

Video sequence transmission is also set up as one of experiments. 10
consecutive frames of a video sequence are converted into 4 level nonbinary sources
and then transmitted through AWGN and flat fading channel. The received video
sequence is then decoded using Viterbi decoding algorithm with source metric. The
video sequence experiment is performed to observe the performance of soft decision
nonbinary convolutional coding with source metric on correlated data sources.

Another experiment performed in this thesis is using an increased minimum
code distance. Minimum code distance is the minimum hamming distance between
the labels of state transition probabilities of the decoder. The effect of increased

minimum code distance is observed.
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4.2 Performance study for simulated data

The figures 4.1, 4.2, and 4.3 describe the performance of convolutional

coding. Data, from synthetic sources, transmitted through the AWGN channel.

0 Performance of Conwolutional Coding
10

10"

10°

—¥— Unencoded
—%— Hard Decision
—¥— Soft Decision

Soft Decision with Source metric

0.5 1 15 2 25 3
Eg/N, (dB)

o

Figure 4.1: Binary data performance of convolutional coding (K=3, AWGN, m=2,
0=[7,5]) transition probabilities:[0.3 0.7;0.7 0.3])
BER performance of convolutional coding of binary random data is shown in the
above figure. At a BER=10%, the convolutional coding with soft decision requires
Ew/No of 0.9dB whereas convolutional coding with soft decision with source metric
requires about 0dB and the convolutional coding with hard decision requires 2.7dB
respectively. Here, we see the advantage of using the source statistics in decoding the
transmitted bits. The next figure show the performance of nonbinary convolutional

coding.
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Figure 4.2: Nonbinary convolutional coding performance for data (d. ., =1, AWGN,

free
R=2/4, K=5, m=4)
The source produces nonbinary random data. The soft decision with source metric
performance is higher than that of the other convolutional coding since it depends on
source statistics. At a BER=102, the convolutional coding with soft decision requires
En/No of -0.4dB whereas convolutional coding with soft decision with source metric
requires -2dB. Finally, the convolutional coding with hard decision requires 1.8dB. It
is observed that nonbinary convolutional coding is superior to binary convolutional
coding for a nonbinary source with residual redundancy. Next figure show
performance comparison of convolutional coding with different code distance and

rate.
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Figure 4.3: Nonbinary convolutional coding performance for data (d ., =2, AWGN,

R=2/6, K=5, m=4)
In the figure above, rate 2/6 is used for encoding the nonbinary message. The
previous figures show the results for code with rate 2/4 which adds 2 controlled
redundancy bits to each message bit. In the current experiment, 4 controlled
redundancy bits are added to for every 2 of the message bits and effect is observed
on the figure above. It can be seen that increasing the coding rate greatly increased

the performance of all the coding methods with different metrics. In figure 4.4, when

Ex/No=0, BER is 7x10™ for soft decision with source metric for d, . =2. However in

figure 4.3, when Ep/No=0, BER is 2x10 for d._ =2 which shows the increase in

free

performance.
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4.3 Simulation Results for Different Code Distances

The second set of figures 4.4 to 4.6 describe the performance of soft decision

convolutional coding with source metric using different code distances (d.,) in

AWGN and fading channels. These figures describe the performance of the proposed

code with higher d,. which are designed by using the procedure described in

section 2.2.3.5.

Comparison of performance of conwolutional coding with different code distances

d=21]
— ——d=1]]

10°

BER

10"

EB/Ng(dB)
Figure 4.4: Performance of nonbinary convolutional coding with different code

distances.

(d,.=land d, =2, AWGN, R=2/4, K=5, m=4)

free free

Figure 4.4 shows soft decision NCC with source metric performances having

different code distances. The messages consist of 10000 bits and the experiment is

repeated 100 times for each Ep/No value. The minimum free distance (d... ) is

free

increased from 1 to 2 and it can be seen from figure 4.4, increasing d. . to 2 slightly

free

increased the performance of the coding method.
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Comparison of performances of conwlutional coding with different code distances for image

—%—d=1]]
d=2H

10°

EB/N:(dB)
Figure 4.5: Performance of nonbinary convolutional coding with different code
distances.
(d;e=1and d., =2, flat fading, R=2/4, K=5, m=4)

Above figure illustrates NCC with soft decision with source metric performances

with different code distances in fading channel. d . is again increased from 1 to 2
and results are compared. Comparing figure 4.4 and 4.5, fading channel greatly

decreased performances of both methods but still increasing d,., to 2 results slightly

better performance in flat fading channel compared to when d. . is 1.

free
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Comparison of performance of conwolutional coding with different code distances for image
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Figure 4.6: Performance of nonbinary convolutional coding with different code
distances.
=land d

(d =2, AWGN, 392 x 294 pixels image, R=2/4, K=5, m=4)

free free

In Figure 4.6, the effect of the code distance to NCC is demonstrated for an image.

When code distance (d..) value is increased, the method again shows better

free

performance.

4.4 Performance study using images

The third set of figures 4.8-4.13 describes the performance of image transmission.
The performances of coding methods are observed on image transmission rather than
using random data sets to emphasize power of the proposed methods in multimedia
transmission. The following images are converted to 4 level grayscale images and

used in the simulations:
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(@) (b) (©)

Figure 4.7: (a) Transmitted Image, (b) Reference image with source statistics similar
to transmitted image, and (c) Reference image with source statistics different from

transmitted image

Depending on the application area, calculation and transmission of source metric
would be redundant. To avoid redundant calculations and transmissions, pre-
calculated source statistics can be used to decode transmitted images. Three types of
scenarios are set up and performances are compared to show instead of using
message source metrics, pre-calculated image sources can also be used to improve

the performance of convolutional coding.
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Figure 4.8: Nonbinary convolutional coding performance for image (K=5, AWGN,

d. .. =1, gray scale 392 x 294 pixels, m=4, K=5)

free
The figure illustrates BER performance of NCC for image which has 392 x 294
pixels. At a BER=4x103, the NCC with soft decision requires E,/Ng of -0.1dB
whereas convolutional coding with soft decision with source metric requires -1.8dB.
The convolutional coding with hard decision requires 1.6dB. In the previous
experiments, data is generated with first order Markov process to have transition
probabilities similar to an image’s transition probabilities. In this experiment, image

is transmitted to see the performance while transmitting a visual data set.
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Figure 4.9: Nonbinary convolutional coding performance for image with using
different image probabilities (d .. =1, AWGN, gray scale 392 x 294 pixels and gray

scale 392 x 294 pixels, R=2/4, K=5, m=4)

In this figure, BER performance of NCC for a 392 x 294 image is illustrated.
The source decision with source metric performance is over performing the other
techniques, whereas the soft decision based convolutional coding is comparable with
source metric technique in low SNR value. At BER=5x107 soft decision
convolutional coding with source metric needs -1.8dB, soft decision convolutional
coding needs -0.4dB and hard decision convolutional coding requires 1.5dB of E,/No.
This figure proves that if source statistics of reference image are close to source
statistics of original image, soft decision convolutional coding with source metric

performs better results.
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Figure 4.10: Nonbinary convolutional coding performance for image with using

different image probabilities (d . . =1, AWGN, gray scale 372 x 270 pixels and gray

free
scale 392 x 294 pixels, R=2/4, K=5, m=4)

In the figure above, instead of using original image source statistics for the
soft decision with source metric, different image source statistics are used which are
generated from a completely different image. Because the reference image is very
different from original image, the statistics fail to help decoder decreasing the
performance of soft decision convolutional coding with source metric. For a good
performance, source statistics of reference image should be close to the original
image’s source statistics. Next figure illustrates performance comparison between

nonbinary and binary convolutional coding methods.
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Figure 4.11: Binary image performance of convolutional coding (K=3, AWGN, m=2,

g=[7.5])

Figure 4.11 illustrates performances of binary convolutional coding methods.
For a performance of BER=10", soft decision convolutional coding with source
requires E,/No of 1.2dB, soft decision convolutional coding requires 1.8dB, and hard
decision convolutional coding requires 3.7dB. Binary convolutional coding performs
good performance, but to use binary convolutional coding data should be binarized
first. Some data sets may not be binary depending of the application area, so, if a
nonbinary data set is to be transmitted, nonbinary convolutional coding can be used
to directly encode nonbinary data sets without converting them into binary. As can
be seen from the results, nonbinary convolutional coding has performance as good as

binary convolutional coding.
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Figure 4.12: Nonbinary convolutional coding performance for image (flat fading,

d... =2, gray scale 372 x 270 pixels, R=2/4, K=5, m=4)

free

In this figure, NCC performance for image is observed in fading channel. At
BER of 10°®, soft decision convolutional coding with source metric has 2.7dB greater
performance than soft decision convolutional coding. While soft decision
convolutional coding with source metric requires 0.3dB at BER=10", soft decision
convolutional coding requires 3.1dB and hard decision convolutional coding requires

6.6dB.
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Figure 4.13: Nonbinary convolutional coding performance for image (AWGN,

d.. =2, gray scale 816 x 612 pixels, R=2/6, K=5, m=4)

free

Figure 4.13 illustrates performance of convolutional coding methods with rate
R=2/6 for an image. Comparing performance of methods used, at BER=10", soft
decision nonbinary convolutional coding with source metric requires Ep/Ng of -
2.3dB, soft decision nonbinary convolutional code requires En/No of -1.25dB and

hard decision nonbinary convolutional coding requires E,/Ny of 0.85dB.
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4.5 Simulation results for video sequence

Performance of Conwolutional Coding
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Figure 4.14: Nonbinary convolutional coding performance for video sequence

(AWGN, d. . =2, 10 consecutive frames, gray scale 120 x 177 pixels/frame, R=2/4,

free

K=5, m=4)

In this figure, 10 consecutive frames of a video sequence are encoded and
transmitted over AWGN channel. There is more redundancy in video sequences than
a single static image. When the redundancy is increased the NCC method performs
better. Comparing the results, at BER=4x107, soft decision nonbinary convolutional
coding with source metric requires Eu/No of -2dB, soft decision nonbinary
convolutional code requires E,/No of 0dB and hard decision nonbinary convolutional
coding requires Ep/No of 1.6dB.

The benefit of coding for a video sequence can be explained due to the fact
that there is not much difference between two consecutive frames. And hence the

correlation between the consecutive frames can be explained by the NCC algorithm
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in its updated source metric. The residual redundancy enables the decoder to make

better decision in state transition.

4.6 Entropy Calculation Results

The entropy values show that the soft decision with source metric of a given

SNR value is higher than the other techniques which represents that the randomness

of this technique is higher. As, entropy of the source increases the performance

decreases. When entropy increases, the structure in the source which can be utilized

by NCC decreases and the decoder makes more errors. When the entropy is low,

there is a lot of structure in the source and the decoder makes efficient use of this in

making correct decisions.

Markov SNR
Rg}i(;m 0 1 5 3 TP Entropy
0 0 0 0 1 0
BER 0.0045 0.0008 0 0 2 1.9998
0.0036 0.0006 0 0 3 1.9706
0.00076 0.00014 0 0 4 1.9616
Transition Probability (TP1) 0 1 2 3
0 0 1 0 0
1 0 1 0 0
2 0 1 0 0
3 0 1 0 0
Transition Probability (TP2) 0 1 2 3
0 0.25 0.25 0.25 0.25
1 0.25 0.25 0.25 0.25
2 0.25 0.25 0.25 0.25
3 0.25 0.25 0.25 0.25
Transition Probability (TP3) 0 1 2 3
0 0.4 0.3 0.2 0.1
1 0.3 0.5 0.2 0.1
2 0.1 0.2 0.6 0.1
3 0.05 0.05 0.2 0.7




Transition Probability (TP4) 0 1 2 3
0 0.8666| 0.1253| 0.0071| 0.0015
1 0.1608| 0.7263| 0.0961| 0.0121
2 0.003 0.665| 0.8636| 0.0691
3 0.0051| 0.0043| 0.1277| 0.8678

Table 4.1: Entropy and BER performances of soft decision with source metric

(R=2/4, m=2, K=3, TP 1-4)

Table above shows various symbol transition probability tables for synthetic data and

BER results for the soft decision nonbinary convolutional coding with source metric

method for these synthetic data at SNR values 0, 1, 2, 3, and 4. Entropy of each data

source is calculated to show the relationship between BER performance and data

source. Each data source is generated with different transition probability tables to

obtain different entropy values. Looking at table above, for data source with

transition probabilities TP1, the data is highly correlated resulting a very small

entropy value with a very high decoding performance. Data source with transition

probabilities TP2 is a uniformly distributed random data source resulting a very low

correlation between data resulting a high entropy value. Decoding performance for

this data source is low.
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CONCLUSIONS AND FUTURE WORK

In this thesis, the binary and nonbinary convolutional coding techniques are
examined in communication channels such as AWGN and the flat fading channel.
Convolutional decoding with hard, soft and soft with source metric decisions are
implemented and the simulation results are discussed. The results show that both
binary and nonbinary convolutional codes with soft decisions with source metric
perform is better than the other technique. Soft decision with source metric uses
source transition probabilities for metric calculation. Binary and nonbinary
convolutional coding techniques are applied to images and video sequence
transmission and the performances are evaluated. Image transmission is tested after
the image source statistics are obtained. When the decoder utilizes these statistics,
better decisions lend to lower BER. It is interesting to note that even the source
statistics of different images can increase the efficiency of the decoder.

There are several different performance measures that can be used to compare
convolutional codes. In this thesis, the commonly used measure, the minimum free
distance is used. The effect of increasing the code distance is examined. When the
code distance is increased, Hamming distance among the branch labels are increased,
and hence the convolutional coding performance is also increased.

Use of residual redundancy with NCC improved the bit error performance.
Use of nonbinary convolutional coding on a video sequence yielded good results

because of high residual redundancy of video sequences.
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A new nonbinary convolutional code, with rate 2/6 (1/3 for binary), is
proposed and compared to nonbinary convolutional codes with rate 2/4 (1/2 for
binary). The results show that the proposed code is superior to the ones with rate 2/4.

In future work, different trellis depths, quantizers and more precise channel
models such as the multipath fading channel can be used.

Field Programmable Gate Array (FPGA) boards and Direct Sequence Spread
Spectrum (DSSS) systems are examples of areas that nonbinary convolutional coding

technique can be used.
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