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ABSTRACT 

Friction Stir Processing (FSP) is a solid state and thermomechanical processing 

technique that modify and improve the microstructural and mechanical properties of 

the material to achieve better performance in less time, using a simple and 

inexpensive tool and low production cost. Processed zone contains modified 

mechanical properties, fine grained, equaled and homogeneous microstructures. 

Discussions about efficient use of energy and expense have become more frequent in 

many sectors of industry. During manufacturing processes, power consumption of 

components and potential for savings can be evaluated and measures can be defined 

for the efficient use of energy. In the present work, FSP was applied on the 

Aluminum 7075-T651 alloy sheet. Application of multi-objective multivariable 

genetic optimization in FSP was presented. A trade-off among various mechanical 

properties of an aerospace alloy and energy consumed during FSP was sought out. At 

first, the experimental data regarding the elongation, tensile strength, hardness and 

the consumed electrical energy with respect to various spindle rotational speed and 

feed rate of FSP were measured. Then an Artificial Neural Network-based 

approximation approach was used to approximate the value of measured data during 

the Genetic Optimization. The properties like elongation, tensile strength and 

hardness were maximized while the cost of consumed electrical energy was 

minimized. 

Keywords: Friction Stir Processing; Al7075; Multi-objective; Genetic Algorithm; 

Optimization; Artificial Neural Networks. 
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ÖZ 

Sürtünme karıştırma işlemi (FSP) basit ve masrafsız araçlar kullanarak, üretim 

maliyeti az olan ve kısa sürede daha iyi bir performans elde etmek için kullanılan, 

maddenin mikroyapısal ve mekanik özelliklerini geliştirmek ve modifiye etmeyi 

amaçlayan bir katı hal ve termomekanik işlem tekniğidir. İşlenmiş bölge modifiye 

edilmiş mekanik özellikler, ince taneli, eşitlenmiş ve homojen mikroyapılar 

içermektedir. Enerji kullanımı ve masraflarla ilgili tartışmalar, endüstrinin birçok 

sektöründe artmaktadır. Üretim işlemi süresince, elemanların güç tüketimi ve olası 

enerji tasarrufları değerlendirilebilir ve etkili enerji kullanımı için gerekli ölçüler 

tanımlanabilir. Bu çalışmada FSP, Al 7075-T651 alaşımlı saca uygulanmıştır. 

FSP’nin çok amaçlı, çok değişkenli, genel optimizasyonu bu çalışmada sunulmuştur. 

Hava uzay alaşımındaki çeşitli mekanik özellikler arasındaki dönüşüm ve FSP 

sırasındaki enerji tüketimi gözlemlenmiştir. Öncelikle, genişleme, çekme direnci, 

katılık, ilerleme hızı ve dönme hızı bağlamında tüketilen elektrik enerjisi ile ilgili 

deneysel veriler ölçülmüştür. Daha sonra, genetik optimizasyon sırasında ölçülen 

verileri uyumlaştırmak amacıyla, yapay sinir ağı temelli uyumlaştırma yaklaşımı 

kullanılmıştır. Genişleme, çekme dirence ve katılık gibi özellikler artırılırken, 

tüketilen elektrik enerjisinin maliyeti ise azalmaktadır. 

Anathar Kelimeler: Sürtünme Karıştırma İşlemi; Al7075; Çok amaçlı; Genetik 

Algoritma; Optimizasyon; Yapay Sinir Ağları. 
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Chapter 1 

INTRODUCTION 

1.1  Characteristics and Applications of Aluminum 7075-T651 Alloy 

Aluminum is a soft, low cost and very lightweight metal with a specific weight of 

2.70 g/cm
3
; about one third that of copper played an important role in modern 

industries. It presents well from very low temperatures to moderate temperatures and 

it has a high strength-to-weight ratio. Aluminum naturally makes a protective oxide 

coating and highly corrosion resistant. At subzero temperatures their strength 

increases besides their strength decreases if they are subjected to high temperatures, 

this property is particularly useful for applications where protection and conservation 

are required. In addition to the advantages cited above other properties of aluminum 

include: high electrical and thermal conductivity, ease of fabrication, high reflectivity 

and 100% recyclable with no downgrading of its previous qualities. These beneficial 

properties have made more industries to gradually change steel products to aluminum 

products. Figure 1.1 illustrates the importance of aluminum in our new era[1]. 

The wrought Aluminum alloys (AA) are heat treatable alloys; the strength of these 

alloys can be increased to very high levels by age (precipitation) hardening. In table 

1.1 designations for aluminum wrought alloys are mentioned. The 2XXX and 7XXX 

alloy series are the major groups of alloys in aircraft industries for airframe parts 

especially where the high strength is the primary design parameters such as fuselage 

skin and upper wing skins. The 7XXX alloys are very responsive to age hardening 
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and are artificially aged to the peak strength T6 (Solution Treated + Artificially 

Aged) or the overaged T7 conditions. 

 
Figure 1.1: Material Distribution for Boeing 777 Aircraft [1]. 

Welding 7XXX alloys with usual welding processes can be difficult; however some 

of them are weldable by conventional methods such as Gas Metal Arc Welding 

(GMAW), Gas Tungsten Arc Welding (GTAW), and resistance welding. A new 

welding process, Friction Stir Welding (FSW), offers the ability to weld the difficult 

7XXX alloys. The major traits of the 7XXX series are heat treatable, typical ultimate 

tensile strength range (220-600 MPa), very high strength, and mechanically joined. 

In this study AA7075-T651 is used. One of the highest strength aluminum alloys 

available; that the major impurity elements in this alloy are zinc with some copper, 

magnesium, and low quantities of chromium and manganese. Its strength-to-weight 

ratio is excellent, and used for highly stressed parts where strength is design driver. 

Due to their high corrosion resistance and high strength, these alloys are extensively 
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used in air craft fitting, missile parts, aerospace and defense equipment and 

components as a structural material. 

Table 1.1: Designations for aluminum wrought alloys [1]. 

 

1.2  History of Friction Stir Processing 

Finding fitted material based on the application is the primary and the most important 

parameter in industrial design. This parameter is more prominent in the automotive 

and aircraft industries. However, processing of such materials with desired properties 

has certain limitations in terms of cost and time of production, aside the reduction in 

ductility. Prerequisite of having material with properties like high ductility and high 

strength is to possess fine and homogenous grain structure in their alloys. In order to 

find a processing technique that satisfies these requirements as well as the cost and 

time of production, the new processing technique named Friction Stir Processing 

(FSP) has been developed. FSP is a new thermomechanical and solid state processing 

technique that a development based on FSW initially developed by The Welding 

Institute (TWI) in United Kingdom [2,3]. FSW is a development in metal joining and 

has been successfully used to produce joints in aluminum, titanium and other alloys. 
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It is evident that FSP and FSW share the same mechanism but their applications have 

different purposes. The aim of FSW is to join two plates together, whereas FSP aims 

at modifying the microstructure of a workpiece. 

Some of the advantages of FSW are mentioned in the following list [4]: 

 This process is energy efficient. 

 Comparing with other processes it requires minimal consumables. 

 Aside of welding and joining plates FSW produces desirable microstructures in 

processed zones. 

 During FSW no fumes, noise or sparks occur so it is totally the environmentally 

friendly welding process. 

 With the help of FSW, joining materials that are unweldable by conventional 

welding methods will be possible. 

1.3  Principle of FSP 

In the near past, a new property modification method called as FSP was invented. 

This employs a specially designed cylindrical rotating tool consisting of a pin and 

concentric larger diameter shoulder to process the material. The pin after plunging, 

stirs the material and the shoulder performs consolidation by applying pressure. 

Depth of penetration was controlled by the tool shoulder and length of the pin. The 

rotating pin contacts the workpiece surface and friction between the sheet surface 

and the tool shoulder rapidly generates frictional heat. This results in severe plastic 

deformation and recrystallization of the material which is forced to flow from the 

forward end to the trailing end as the tool advances. The recrystallization is restricted 

to the localized zone and is performed in a dynamic manner. Schematic drawing of 

friction stir processing is given in figure 2.1. 
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Figure 1.2: Schematic drawing of FSP.  

The temperature during FSP has been observed to be below the melting point of the 

material, thus the material during processing remains in solid state. Although FSP 

was advanced as a grain refinement technique, it has found several other applications 

including rectification of defects in castings, mechanical alloying and surface 

modification to improve wear and lubrication characteristics [5,6]. 

1.4  Artificial Neural Networks 

In this thesis, optimization of FS Processing of aluminum alloy by using genetically 

optimized neural network is presented. Artificial Neural Networks (ANN) algorithm 

is proposed to make an approximation from the real objective functions. 

ANN is an information processing model and a complicated system composed of 

numerous nerve cells, such as brain, that is inspired by biological nervous systems 

[7]. They have been developed to train virtual networks of computer system which is 
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based on the primary understanding of the organization, structure, function and 

mechanism of the human brain for the approximation of the computational expensive 

real world objective function based on some initial design data. So whenever it is 

necessary by using this trained network we can calculate the value of objective 

functions. Calculations by ANN are very cheap and so they can be considered as a 

suitable alternative for the replacement of function approximation. 

1.5  Definition of the Problem 

To obtain high efficiency of a material processing technique, there is a need to 

maximize the properties and minimize the cost. These objectives are often in mutual 

opposition. Analytical methods cannot solve such issues. This is the situation where 

experiments based methods such as empirical modelling and computational 

intelligence come into play. In the present study, the suitability of ANN and Genetic 

Algorithm (GA) to optimize FSP will be examined. 

1.6  Objective of this Study  

The aim of this work is to explore this open research area and relatively trade-off 

among mechanical properties and energy consumption in multi-pass FSP of 

AA7075-T651 aluminum employing hybrid approach of ANN and GA. At this 

regard, the global approximation scheme ANN is used in combination with the GA 

method to perform a multi-objective multivariable optimization process. The specific 

objectives of the study presented are: 

i. Quantify the effect of variation in FSP parameters on mechanical properties of 

AA7075-T651 alloy. 

ii. Study the role of FSP parameters on energy consumption during the process. 

iii. Develop an ANN based on our experimental data. 
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iv. Establish the global approximation scheme ANN in combination with the GA 

method to perform a multi-objective multivariable optimization process. 

1.7  Thesis Organization 

This study is presented into five chapters. First chapter includes an introduction of 

the workpiece material AA 7075-T651, FSP, ANN and their applications. Chapter 2 

has overview of earlier studies and works done related to our work. Experimental 

methodology used for obtaining the results mentioned in the third chapter. Fourth 

chapter includes the results that obtained during the experiment. Finally Chapter 5 

will give conclusion of our study and suggest some future works that can be done 

further in order to make this study complete. 
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Chapter 2 

LITERATURE REVIEW 

This chapter reviews the earlier works and researches that have been done related to 

our study. 

2.1  Friction Stir Processing Technology 

FSP is a modification of friction stir welding innovated by Mishra et al. [5,6]. This 

processing technique is used to modify microstructure of metals concerning change 

grain size, uniform structure of grain size, and increasing strength and surface 

composites. Mishra et al. [6,8] reported the optimum superplastic strain rate  to be 

10
-2

 s
-1 

at 490 °C  achieved in FS processed AA 7075 sheet. Besides, Mahoney et al. 

[9] presented friction stir processing as a thermo-mechanical process to create a fine 

grain microstructure in thick section (>5mm) of Al 7050-T651 which resulted in high 

strain rate super-plasticity. Mishra et al. [10,11] also in another study, by expanding 

this process, reported that other applications such as producing surface composites, 

modifying the microstructure of selective location produced by powder metallurgy, 

and refining microstructure in metal matrix composites, improve properties of 

casting alloys. Hsu et al. [12] indicated that production of Al/Al3Ti nanocomposite 

can increase the young’s modules and tensile strength of aluminum and also they 

found out that young’s modules will develop through increasing the percentage of 

Al3Ti. 
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FS processed zone can be divided into four distinct regions, defined and 

demonstrated (Figure 2.1) as follows [1]: 

Figure 2.1: Schematically drawing of FSP zones [1]. 

Where, (A) is Parent metal (Unaffected material), this part of material is located far 

away from process so that it has not been deformed during FSP and is not affected in 

terms of mechanical and microstructure properties, (B) is Heat-affected zone (HAZ), 

this part is closer to the center of the FSP and no plastic deformation occurs in this 

region although it has experienced a thermal cycle that has modified mechanical 

properties as well as the microstructure. 

Distinct (C) is Thermomechanically affected zone (TMAZ), this part is located under 

the FSP tool and has deformed the material plastically. Moreover, the frictional heat 

generated during the process has exerted some effect on the material structure and 

part (D) is Stir Zone (Recrystallized Nugget), this part is related to the trace of the 

tool pin that traverses through the material and is a fully recrystallized and 

homogenized area. 
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2.2  Process Parameters and Properties during FSP 

The major process parameters that affect the performance of FSP are: transverse (f) 

and rotational speed of spindle (N), pass quantity and tool geometry. This section 

gives an overview on how process parameters influence the properties of the 

processed material in the field of FSP to be considered for controlling the process. 

These parameters are process controllers which have a major effect on the 

microstructure of the processed zone [13]. 

2.2.1  Rotational Speed of Spindle and Feed  

Frictional heat and mixing (stirring) the material around the pin will be generated by 

the rotation of the tool on the surface of the material. Pin feed also transfers the 

material from the advance part of the pin to its back part. By increasing this factor 

(N), mixed material will increase while also heat is generated, however, there will be 

a change in the friction coefficient of the surface while factor (N) increases [14]. 

Through heat grain growth rise throughout recrystallization, grain size also grows. 

But there would be a reduction in the grain size as a result of feed rate growth. The 

reason is that when feed rate increases, material’s process period and its produced 

heat decreases which leads to grain growth decline while recrystallization as well as 

a decrease in the grain size [15]. 

For achieving a fine structure, there should be a reduction in the rotational speed 

while increasing the feed rate, however, when applying this parameters, it should be 

noted that heat is also generated less as a matter of which heating may be needed to 

soften the material, besides, plastic deformation also can be obtained in a smaller 

amount [14,15]. 
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Gharacheh et al. [16] also have reported that different traverse or rotational speed 

ratios can have different effects on mechanical properties in different zones. 

According to their study, increasing the ratio mentioned above causes a small decline 

in the stir and transitional zone’s yield and their ultimate strength. Moreover, they 

had detected that when traverse or rotational speed ratio increases, the size of weld 

nugget upsurges as well while the incomplete root penetration declines. The reason 

behind these issues is that in these regions, heat input rises and the material softens. 

Moreover, when there is a rise in heat input and when the material flow is easier, a 

larger weld nugget is shaped because of the increase in N/f ratio. As a result, when 

N/f ratio rises, there will be a reduction in the probability of shaping an “incomplete 

root penetration” defect. 

El-Rayes and El-Danaf [17] studied the influence of first three parameters on the 

properties of Al-6082T651. They found that there is an increase in the mean grain 

size when passes (with 100% overlap) from 1 to 3 and the feed from 90mm/min to 

240mm/min increase. However, the hardness and strength reduced as the passes 

increased while both of these quantities increased as the feed increased. 

Further, the effect of tool rotation (850rpm to 1350rpm) was observed to be 

insignificant on the mechanical properties but the mean grain size was noticed to 

increase. Karthikeyan et al. [18] investigated the impact of rotational speed (1400rpm 

to 1800rpm) and feed (10mm/min to 15mm/min) on the mechanical properties of 

casted Al2285 to show that the increase in the feed caused a gradual decrease in the 

strength and elongation and contrarily increase in the micro-hardness. An increase in 

the rotational speed, on the contrary, improved all of the properties.  Moreover, for 

any set of parameters, each of the tested property of FS Processed material was 
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perceived to be greater than the corresponding property of the base metal. For 

AA319 casted aluminum, Karthikeyan et al. in another study [19] found that there 

was certain combination of parameters (i.e. 40mm feed and 1200rpm speed) which 

yielded the best properties by de-voiding the casting. 

2.2.2  Overlapping 

Ma et al. [20] applied single pass FSP on the cast A356 alloy, figuring out that the 

FSP has caused significant break up of Si particles and dendrites. Further, variation 

in the considered FSP parameters (i.e., feed from 51mm/min to 203mm/min and 

rotational speed from 300rpm to 900 rpm) did not substantially affect the size of 

grains. They [21] further studied the effect of 5 passes (with 50% overlap) and 

observed that overlapping FSP did not have a significant impact on Si particle 

distribution. Further, the strength and ductility of single pass alloy was comparable to 

those of 5-passes alloy. Johannes and Mishra [22] with an aim to improve the 

superplastic behavior performed 4-pass FSP (with 42% overlap) on Al7075 alloy and 

found that the pass-grain size relation was non-linear. The finest grain size was 

obtained with 2-passes and the highest elongation was shown by 1-pass sample at 

743K temperature. 

Bauri et al. [23] applied single and double pass FSP for the fabrication of Al/TiC 

composite. In agreement with [24], it was found that the double pass FSP yielded 

composite with improved properties. Faraji and Asadi [25] reported that a large ratio 

of speed and feed along with higher passes reduced grain size and increased hardness 

and wear resistance of the AZ91/alumina composite. Zohoori et al. [26] for 

Al5083/Cu composite found that both the strength and hardness increased when there 

was a raise in rotational speed from 700 rpm to 1900 rpm. 
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2.2.3  Pin Geometry 

Of the elements which play a critical role in friction stir technology is tool design. As 

a result, to make the process more effective, this area of study should be emphasized 

more. Only a few contributions have been given in this study area, which are as 

follows. The key to applying the process effectively to a wider range of materials and 

also over a greater range of thickness is the tool design. Hence, there have been 

studies on some different enhanced tool designs. For example in a study conducted 

by Thomas et al. [27], recent developments were described which have used these 

high performance tools from the point of view of present and potential applications. 

Azizieh et al. [24] studied the effect of pin geometry, number of passes and rotational 

speed on the hardness and grain size of the AZ31/Al2O3 composite. Of three 

columnar pin geometries (i.e., without threads, with threads and with threads and 3 

flutes), it was found that only the composite fabricated with the threaded pin was free 

from defects because of better material flow. When the passes increases, grain size is 

reduced while the hardness increases. On the contrary, when the rotational speed 

increases, the hardness decreases despite the fact that there is an increase in the grain 

size. The highest hardness was achieved with 800 rpm and 4-passes with the 

threaded columnar pin. They reported that increasing the passes quantity enhanced 

the hardness by improving the distribution of Al2O3 particles in the AZ31 matrix.  A 

similar result was observed for the Al5052/Al2O3 composite [28]. The ductility 

however was found to decrease after the 3rd pass. The authors emphasized to employ 

large rotation to feed ratios to produce defect free composite. While comparing the 

performance of 5 different pin geometries including square, triangular, four-flute 

cylinder, four-flute square and threaded taper, Bahrami et al. [29], contrary to 

threaded pin in [22], found that the triangular pin showed the best performance in 
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terms of grain refinement, particle agglomeration (a defect) and properties during 

fabrication of SiC/Al7075 composite. 

Figure 2.2: Different types of pins [30]. 

2.3  Artificial Neural Network 

A computational model has been developed by McCulloch et al. [31] for the neural 

networks grounded on algorithms and mathematics. Thereafter, a learning model was 

created by Hebb [32], based on neural plasticity mechanism. 

Also an algorithm was created by Rosenblatt [33] on the grounds of a two-layer 

learning computer network for recognizing the patterns. However, until after Werbos 

[34] generated the back propagation algorithm, Rosenblatt’s algorithm could not be 

processed, using an easy addition and subtraction approach. As basic models of 

neural processing in the human brain, artificial neural networks can be taken into 

account. Nevertheless, there are discussions on the relationship between brain 

biological architecture and this model, for the degree to which these artificial neural 

networks can reflect brain function is not clear [35]. Thereafter, for biophysical 

simulation devices, computational platforms were produced [36, 37]. For design 
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problems, these platforms can make the neural network modelling procedure easier 

for problems in great scales. 

2.4  Multi Layers Neural Network Function Approximation 

A sort of Artificial Intelligence method, imitating human brain behavior is artificial 

neural network (ANN) [7]. This technique, unlike most traditional statistical 

methods, has the capability of modeling non-linear and linear systems deprived of 

the requirement for indirectly making assumptions. In the links between specific 

nodes of the network, weight factors are adapted in order to have complemented 

expected and generated output data. When training is completed, the network can 

substitute an original one, being used like an easy function. Arslan et al. [38] 

proposed a procedure for subsequent usage of artificial neural networks (ANN) in 

general. A neurobiological method is imitated by neural network, treating the input 

and producing the output. This technique can be accomplished by a couple of input 

and output figures. 

When there is no way for analytically explaining the problem, application of ANN 

method is more appropriate. The effectiveness of the redesign process can be 

enhanced by a trained network where quick plotting of the input given into the 

favorable output quantities is available. The following tasks are included in ANN 

training. Firstly, an appropriate training set should be selected, then proper network 

architecture should be established and afterwards, suitable values of characteristic 

constraints such as momentum term and learning rate should be determined [39]. 

Ranjbar and Marburg [40] showed the application of a hybrid method including of 

artificial neural network and simulated annealing methods. 
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2.5  Multiobjective Optimization by Genetic Algorithm 

Evolutionary algorithms encompass different approaches which are also named as 

evolutionary computation approaches, including: evolutionary programming, genetic 

programming, genetic algorithms, differential evolution, and evolution strategies. 

Genetic Algorithm or the GA is a model based on both the Darwinian “survival of 

the fittest” theory and gene recombination [41]. That means if the ability of a group 

of individuals to succeed in the environment (fitness) is high, they have a better 

chance for reproducing in that environment. Broods are created through a crossover 

process (combining genes) and transformation [42]. Also, Kalyanmoy published a 

book on Multi-Objective Optimization via Evolutionary Algorithms [43]. 

Principal operations in a GA are as follows [44]: 

i. Broods are created via the crossover process from two individuals selected from 

the population, through some bits being exchanged between the two. That is 

why some characteristics are inherited to the broods from each parent; 

ii. One or several bits in an individual are changed randomly in the transformation 

operation to create an infant. Hence, broods own diverse characteristics from 

their parents. For solving the premature convergence problem, the 

transformation machinist is considered an essential element, because this 

mechanist assists in making random diversity in the population; 

iii. According to predefined procedures, broods are chosen for survival by the 

selection process. In this way, population size is kept within a fixed constant and 

there is a higher probability that the next generation owns better broods. 
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The above short review reveals that the process parameters in FSP significantly 

affect the process performance in terms of properties and defects. Furthermore, the 

nature of influence of a particular parameter is substantially dependent on the type of 

material under investigation. Besides the properties and defects, another important 

performance measure which yet has not been addressed in FSP is energy 

consumption, minimization of which is important not only to control cost but also for 

the environmental protection. The effect of a parameter, as reported above, on 

performance measures could be in mutual opposition. Therefore, to maximize the 

FSP efficiency, the parameters must be opted judiciously, and such a task normally 

requires trade-off among various performance measures of the process. In literature, 

such works have been reported for other manufacturing processes like machining, 

friction stir welding and metal forming [45-50]. However, to the best knowledge of 

the authors, any similar study on FSP, especially related to Al7075, is not available. 

To achieve an improved product competency in terms of both cost and performance, 

the design requires the use of a material with high values of strength, hardness and 

ductility. Intrinsically, a material having high strength possesses low ductility. For 

reducing the product cost, the energy consumed in manufacturing a material is also a 

matter of concern.  This study, employing FSP as a material processing tool, attempts 

to explore the most suitable parameters satisfying these objectives for Al7075.  

Seemingly, the requirements of the stated goals, in terms of settings of the process 

parameters involved, are expected to be in mutual opposition. Moreover, almost all 

the manufacturing processes involve complex physical, chemical and metallurgical 

phenomena, which render them impossible to be modeled analytically within 

acceptable levels of accuracy. This is the situation where the experiments based 

methodologies, for example statistical empirical modeling and computational 
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intelligence, come into play. Empirical models have their own limitations because as 

the number of parameters increase and experimental database grows, the models 

become more complex, inaccurate, and inapplicable [51]. Therefore, the most 

feasible option available in such a situation is computational intelligence (e.g. 

artificial neural networks). 
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Chapter 3 

METHODOLOGY 

In this study we intend to experimentally investigate the effects of various process 

parameters on the Mechanical properties and energy consumed during FSP of 

aluminum 7075-T651 plate. 

In this chapter an overview of the material, experimental setup and procedure of our 

study would be given. 

3.1  Workpiece Properties 

A wrought AA 7075-T651 plate with 5mm thickness is used as the experimental 

material as designated in first chapter; properties of this material outlined in the 

following tables. Table 3.1 stands for the chemical structure and table 3.2 physical 

and mechanical characteristics of the AA 7075-T6 tabulated.  

Table 3.1: Chemical structure of the AA 7075-T6 [52]. 

Element Al Cu Mn Mg Cr Ni Zn Fe Si etc. 

Content (%) Base 1.55 0.15 1.4 0.2 0.01 4.9 0.18 0.06 0.26 

AA 7075-T651 sheet with dimensions of 1000*2000*5 mm was cut into 140*50*5 

mm sample size plate using guillotine showed in Figure 3.1 cutting process was done 

in the way in the rolling course of the first sheet is the length of sample sheets and in 

the course of sample length, FSP was done. 
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Table 3.2: Properties of AA 7075-T6 [52]. 

Property Value  

Thermal conductivity 

Electrical resistivity 

Density 

Melting point 

Crystal structure 

Machinability % 

Elongation at break % 

Modulus of Elasticity 

Shear modulus  

130 W/m-k 

5.15e-006 ohm-cm 

2.81 g/cc 

477-635 °C 

FCC 

70% 

11% 

71.7 Gpa 

29.6 Gpa 

Figure 3.1: Initial shape of workpiece. 

3.2  Experimental Setup 

The experimental setup required to FSP aluminum alloys is discussed in this section. 

The schematic of multi-pass FSP for the current investigations is shown in Figure 

3.2. 

140 mm 

50 mm 
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Figure 3.2: Schematic view of multi-pass FSP. 

3.2.1  Friction Stir Processing Tool 

A steel tool with 50HRC hardness and threaded taper pin with 1mm pitch size, 0.5 

mm thread depth, 15 mm shoulder diameter and 2.5 mm pin height was employed as 

the stirring tool, Figures 3.3(a) and (b), shows the FSP tool. 

3.2.2  Equipment of the FSP 

On a conventional vertical milling machine, the process was accomplished with 

counter clock wise rotating direction showed in Figure 3.3(c), which by clamping a 

vice on machines table that can fix work-piece and prevent sliding and movement of 

sheet under process force while backing plate made of steel is placed on the fixture to 

support the FS processed sheet during the process. 
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Figure 3.3: (a) Processing tool; (b) Threaded taper cylindrical pin; (c) Picture of 

milling machine used for friction stir processing. 

3.2.3  Machine Settings 

The angle between workpiece normal and spindle (tool spindle angle) of 2.5 degree 

was fixed and used for all samples that at the straggling edge of the shoulder, it 

assists in forging the action. 

The target depth (depth of penetration) has been clarified as being the amount of 

deepness the pin will go into the work-piece. Concerning the top surface of the work-

piece, target depth can be controlled by the shoulder. In this work 0.2 mm depth of 

a 

b 

c 
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penetration was held fixed. Figure 3.4 illustrates schematic view of these two fixed 

parameters. 

Figure 3.4: Figure of Tool penetration. 

3.3  Experimental Procedure 

According to the machine limit 8 samples were FS processed by various values of 

feed (f) and rotational speed (N) in a way that cover important points of our network. 

Demonstrated in Table 3.3, each parameter was varied over four levels.  The samples 

were produced employing three passes with 50% overlap, in the other word there is 

3mm spacing between pin centers of the tool for each pass. 

Table 3.3: Test data sets of Sample 

Samples 1 2 3 4 5 6 7 8 

N (Rpm) 

f (mm/min) 

500 

63 

500 

160 

500 

250 

710 

250 

1000 

63 

1000 

160 

1400 

63 

1400 

100 
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Table 3.4: Test plan and comparison of parameters range opted in the present and 

previous studies. 
Spindle 

speed 

(rpm) 

Feed 

(mm/min) 

Fixed parameters Range of parameters: comparison  

Parameter Current 

study 

Previous studies 

500 63 Pin diameter: 

5mm 

 

 

Feed 

(7075) 

63-250 [17] 90-240 

(6082-T651) 

500 160 Pin height: 

2.5mm 

   [18] 10-15  

(2285- casted) 

500 250 Shoulder 

diameter: 15mm 

 

 

  [21] 51-203 

(319- casted) 

710 250 Tilt angle: 2.5
o  

   

1000 63 Penetration: 

0.2mm 

 

 

Speed 

(7075) 

500-1400 [17] 850-1350 

(6082-T651) 

1000 160 Tool hardness: 

52-55HRC 

 

 

  [18] 1400-1800 

(2285- casted) 

1400 63 Tool material: 

H13 steel 

 

 

  [21] 300-900 

(319- casted) 

1400 100     [24] 800-1200 

(AZ31/Al2O3) 

3.4  Energy Consumption during FSP 

Among the key components of a FSP machine are feed-axis motors and spindle. 

Used up electrical energy transforms to supplied mechanical power by a machine’s 

network of drives. Drive network apparatuses are drive modules, a power supply 

module, mechanical components, and motors. 

With the help of Digital Volt-Ohm meter (DVOM) devices, current (I) and voltage 

(V) was measured during the process.  Time consumed (sec) in completing a sample 

is dependent on sample set traverse speed and measured by a stopwatch, after 

collecting data for each set energy consumption was computed using the following 

relation: 
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     √              
 

    
                       [57] Equation (3.1) 

Where kWh is energy measured in kilo watt hour, V is voltage [V], I is current 

[Ampere], t is time consumed [s] and Φ is power factor which was 0.7 for the 

machine tool employed in this work. The cost of one kWh electrical energy 

consumed is assumed to be 0.50 Turkish Lira (0.25 $) as the reference. 

3.5  Hardness 

The most common testing technique for evaluating localized mechanical 

characteristics is hardness testing. Hardness test specimens were cut in direction that 

is perpendicular to the traverse process direction, then specimen’s surface clearly 

sanding to remove the swarfs and obtaining smooth surface. The micro-hardness of 

each sample in the nugget zone was determined using the Vicker hardness tester by 

WOLPERT WILSON INSTRUMENTS machine (Fig. 3.6 (a)). In this test, the 

practical load was 98.1 N (HV10), with 10 seconds dwell time and 15 seconds test 

time. The diameter of automatically results and the effected point measured, using 

the measuring and optical equipment on the machine, were demonstrated on the 

device monitor. Figure 3.5 shows the picture of hardness test specimen and Figure 

3.6 shows the micro-hardness tester. 

Figure 3.5: Hardness test specimen. 
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Figure 3.6: (a) Micro-hardness tester. (b) Optical and the measuring equipment. 

3.6  Tensile Test 

The mechanical properties of the processed material were determined through a 

tension test, evidence regarding the elongation and ultimate tensile strength (UTS) of 

the processed samples. The sub-size tensile specimens according to the ASTME8 

standard [53] (Fig.3.7) were cut along the processing direction by a DUGARD 

EAGLE 760 CNC machine as shown in Fig. 3.8 (b) and stretched to fracture using 

INSTRON tension machine (Fig. 3.8 (a)). For the tensile tests, the nominal strain rate 

was 1×10
-3 

s
-1

. 

Figure 3.7: Sub-size ASTM E8 standard tensile specimens. 

a b 
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Figure 3.8: (a) The tensile test machine (b) CNC cutting machine. 

 
Figure 3.9: Cutting plan for tensile and. micro hardness test’s specimens. 

3.7  Optimization procedure 

In this section, the approximation of function by ANN and the procedure for multi-

objective optimization of FSP will be presented. 

3.7.1  Multi layers NN function approximation 

In the links between specific nodes of the network, weight factors are adapted during 

this training time so that the expected and generated output data match. The network, 

a b 
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after being trained, can substitute the original one, being used as a simple function 

that s. There is actually no analytical relationship between the inputs and outputs of 

FSP. Therefore, only a numerical solution is possible. To compute a numerical model 

from the objective tasks, ANN is used. ANN trains couple of neurons to substitute 

the chief objective functions. Hence, some training affiliates such as the chief 

objective function’s values in quite a few distinct design points are experimentally 

measured. Thereafter, to simulate the chief objective function practically, neural 

network gets trained. As a result, in a shorter period, trained objective function can 

be premeditated compared to the other methods, plus limited elements analysis. 

Fig.3.10 depicts the general structure of ANN with several inputs, hidden layers and 

neurons. The trained multi-layered perception network will approximate the value of 

outputs with respect to given inputs.  

Four ANN are considered for the representation of friction stir processing. Feed 

forward scheme is used for ANN modelling. The value of elongation, tensile 

strength, hardness and cost of consumed energy are approximated by ANNs. The 

inputs of ANNs are the rotational speed of spindle and feed rate of tool, see Fig. 

3.11. Four neural networks are used to approximate the values of elongation, ultimate 

strength, hardness and cost of energy consumption. These neural networks are 

trained based on the experimental data. 
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Figure 3.10: A multi-layered perception network 

Figure 3.11: Four Artificial Neural Networks for representation of the FSP. 

3.7.2  Neural Network-Based Multi-Objective Genetic Optimization of FSP 

When an ideal solution is gained, a single objective optimization algorithm will 

typically be ended. Yet, there can be numerous ideal solutions for supreme realistic 

multi-objective problems. Depending on some factors such as problem environment 

and user’s choice, suitability of one solution can change, which is why it is preferred 

to find the whole set of ideal solutions.  



`  

30 

A common multi-objective optimization problem mathematically includes 

underrating several objectives as well as satisfying (optional) constraints. 

Respectively, a multi-objective optimization problem involves the following criteria: 

Maximize: Hardness, Elongation, and Ultimate Tensile Strength. 

Minimize: Cost of consumed electrical energy for FSP, with respect to the rotational 

speed of spindle and feed rate of process. 

Having a vector of decision variables which can optimize all the objectives at once is 

challenging for what is meant by optimum is not clear in this context. Hence, Pareto 

optimality concept is used. However, this concept cannot be directly pertinent from 

single objective to multi-objective optimization problems. As a result, based on the 

following definitions, solutions are classified regarding Pareto optimality [54].  

In fact, a family of similar solutions is available which are greater than the other 

solutions in a common multi-objective optimization problem, that from the 

simultaneous optimization viewpoint of multiple and probably opposing objective 

functions, they are considered identical. These kinds of solutions are named Pareto-

optimal solutions. It should be noted that without corrupting at least one of the other 

Pareto-optimal solutions, no objective can be developed, and also there is no solution 

available elsewhere than the true Pareto front, considering the model constraints. 

Locating the entire Pareto front is the goal of multi-objective algorithms. Concerning 

a bi-objective space, in Figure 3.12, a representation of the Pareto front is shown. 
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Figure 3.12: The Pareto front of a set of solutions in a bi-objective space [55]. 

In this study, the number of genetic population is considered to be 50. Also, the 

values of 0.8 and 0.35 are considered for the cross over fraction and Pareto fraction. 

The maximum number of generations in genetic optimization is set to be 400.  

The schematic flow chart of multi-objective neural network-based optimization 

process is shown in the Figure 3.13. In each generation of genetic optimization, the 

approximated values of elongation, tensile strength, hardness and cost of energy 

consumption by ANN are using to form the population. The multi-objective genetic 

optimization continues until when there is no distinct change in the Pareto front of 

set of solutions. Then, the optimum value of spindle rotational speed and feed rate 

will be reported.  
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Figure 3.13: General flow chart of artificial neural network-based multiobjective 

multivariable optimization of FSP. 

The internal controling parameter values for neural networks approximation method 

and genetic algorithm have been selected from Ranjbar et al. [35] and Ranjbar [56]. 

In next chapter, the results of multiobjective multivariale neural network-based 

genetic ootimization of FSP will be presented. 
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Chapter 4 

RESULT AND DISCUSSION 

In the present study, the effect of two major process parameters (namely rotational 

speed and feed) on three mechanical properties and energy cost employing Al7075-

T651 has been studied. The ANN as a virtual function approximation tool and GA 

method as an optimization tool to simultaneously achieve the objectives of 

improving mechanical properties and lowering the energy cost will be employed.  

4.1  Producing Samples 

The figure 4.1 shows one of the processed samples while the spindle is located at the 

end of the first pass and figure 4.2 (a) and (b) shows the number 2 and 5 set samples 

processed surface respectively. 

 
Figure 4.1: FS Processed sample 
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Figure 4.2: Surface of Samples after FSP. Sample (a) number 2 (b) number 5. 

4.2  Experiment Results 

4.2.1  Energy measurements 

Results of energy consumed during process and cost of it are reported in table 4.1. 

Table 4.1: Energy measurement results 

Sets N(Rpm) f (mm/min) watt W(Kwh) Cost(TL) 

1 500 63 23812.14 0.338006 0.155483 

2 500 160 24782.07 0.164229 0.075546 

3 500 250 24132.11 0.115392 0.05308 

0.056221 4 710 250 24580.65 0.122219 

5 1000 63 24287.28 0.348224 0.160183 

6 1000 160 24558.25 0.161735 0.074398 

7 1400 63 25593.53 0.359843 0.165528 

8 1400 100 25721.39 0.247245 0.113733 

Maximum value for energy consumed belongs to set number 7 and minimum value 

belongs to the set number 3. 

4.2.2  Micro-hardness results 

Figure 4.3 Shows the results of micro-hardness versus distance from center of the 

workpiece diagrams of FSP samples which have been produced by variuos values of 

N and f as mentioned before in table 3.3 . 

b a 
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Figure 4.3: Diagrams of micro-hardness Hv10 (Y-axis) versus distance in mm from 

center of the samples (X-axis). 
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Hardness values of the FSP samples were measured from the TMAZ and HAZ areas. 

Figure 4.4 shows the Mean Hardness of sample, the best value belongs to the set 

number 3 (N: 500, f: 250), and the lowest value belongs to the number 5 (N: 1000, f: 

63). 

Figure 4.4: Mean Hardness of Samples 

4.2.3  Tensile Test Results  

By running tensile test, each specimen fractures at specific value of time, force and 

displacement. Figure 4.5 shows the Stress-Strain curves(x-Strain, y-Stress) of 

samples, obtained from tensile test; these data’s are used to calculate the amount of 

elongation (mm) and Ultimate Tensile Strength (UTS). Figure 4.6 shows the tensile 

test samples after fracture. 
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Figure 4.5: Stress (Y-axis) Strain (X-axis) curves obtained from tensile tests. 
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Figure 4.6: Tensile test samples after fracture. 

4.3  Discussion 

In Table 4.2, the experimental results for elongation, ultimate strength, hardness and 

cost of consumed electrical energy with respect to various spindle rotational speeds 

and feed rates are shown. 

Table 4.2: Experimental data measured after FSP of test samples 

N (rpm) f (mm/min) Elongation 

(mm) 

UTS (MPa) Hardness(HV) Cost 

(TL) 

500 

500 

500 

710 

1000 

1000 

1400 

1400 

63 

160 

250 

250 

63 

160 

63 

100 

9.86 

12.58 

9.22 

10.17 

11.15 

7.21 

6.83 

5.95 

408.52589 

501.41520 

483.36098 

498.58703 

405.22375 

408.09557 

375.14824 

350.99817 

118.92 

136.32 

154.775 

153.8556 

117.0111 

141.2286 

132.5875 

128.8143 

0.15210 

0.07390 

0.05192 

0.05499 

0.15670 

0.07278 

0.16192 

0.11126 

The experimental results for elongation (mm), ultimate strength, hardness and cost of 

consumed electrical energy with respect to various spindle rotational speeds and feed 

rates are shown in Fig. 3 and Fig. 4. The cost of one kwh consumed electrical energy 

is considered to be 0.5 Turkish Lira (0.25 $) as the reference. 
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Figure 4.7: Effect of variation in feed on FSP performance measures: (a) Elongation, 

(b) Strength, (c) Hardness, and (d) Energy cost. 

For the fixed rotational speed of 500rpm, the elongation increases (from 9.86 mm to 

12.58 mm) as the feed increases from 63mm/min to 160mm/min and decreases 

afterwards from 160mm/min to 250mm/min (Fig. 4.7(a)).  The same is true for 

ultimate strength (Fig. 4.7(b)). However, the hardness gradually increases while the 

energy consumption contrarily decreases over the entire range of feed (Figs. 4.7(c) 

and 4.7(d)).  For the fixed speed of 1000rpm and 1400rpm, the trends for elongation 

are entirely opposite in the invetsigated range of feed. At a fixed speed  of 1000rpm, 
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both the strength and hardness are increased but will be reduced when the speed is 

increased to 1400rpm.  This is to be noticed that the cost, regardless of rotational 

speed, is decreased as the feed is increased. 

  

  

Figure 4.8: Effect of variation in speed on FSP performance measures. 

At a constant feed of 63mm/min, the elongation is increased to a certain value (from 

9.86 mm to 11.15 mm) as speed is increased from 500rpm to 1000rpm and 

afterwards (i.e., from 1000rpm to 1400rpm) begins to decrease (Fig. 4.8(a)) . On the 

other hand, ultimate strength gradually is decreased with the increasing of spindle 

speed over entire range (Fig. 4.8(b)). However, an increase in the speed causes 

positive effect on hardness after 1000rpm (Fig. 4.8(c)). The energy consumption also 
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is decerased because the deformation force is decerased at increased speed (Fig. 

4.8(d)). This is to be noticed that with 160mm/min feed, the elongation contrary to 

63mm/min feed is decreased with the increasing of roational speed from 500rpm to 

1000rpm. But, again in agreement with 63mm/min, the elongation is increased with 

increasing the speed at 250mm/min feed. The same is applicable to strength but not 

to hardness. On high feeds (160mm/min and 250mm/min), the effect of increasing 

speed on energy consumption is not so significant. 

El-Rayes and El-Danaf [17] for Al6082-T651 found that increasing the feed from 

90mm/min to 240mm/min increase strength and hardness, which from strength 

perspective is in partial agreement with the current study. The effect of rotational 

speed, in complete contradiction to present study, was found to be insignificant in the 

range of 850rpm to 1350rpm. For casted Al2285, Karthikeyan et al. [18] observed 

the elongation and strength to be decreasing and hardness increasing as the feed was 

increased from 10mm/min to 15mm/min; these trends are in partial agreement with 

the current work. All of the three quantities, partially contradictory to the current 

findings, were found to increase with increasing speed from 1400rpm to 1800rpm. 

Azizieh et al. [24] found that the hardness of AZ31/Al2O3 decreased with increasing 

the speed from 800rpm to 1200rpm, while Zohoori et al. [26] reported that both the 

hardness and strength are increased as the rotational speed is increased from 700rpm 

to 1900rpm. From the above results, it follows that the effects of variation in 

parameters on various mechanical properties is extremely interactive and non-linear. 

In other words, the effects are coupled with the settings of the parameters. These 

parameter-coupled variations in the properties of Al7075 can be attributed to the 

phase/microstructure changes caused by the FSP thermal cycles. Further, the 

comparison between the current and previous studies reveals that the effects of FSP 
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parameters are not unique rather their nature depends on the type of material 

employed. 

Figure 4.9 presents the measured experimental data in three dimensional views. 

 

 

 

(b) 

(a) 

(c) 
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Figure 4.9: Presentation of measured experimental data in three dimensional view: 

(a) Elongation, (b) Ultimate tensile strength, (c) Hardness, and (d) Energy cost. 

Figure 4.10 depicts the optimum results of ANN modeling of FSP when cases “a-d” 

are with 3 layers, each layer contains 50 Neurons, and with 5 Epochs. Also, in Fig. 

10, cases “e-h” show the optimum simulation results with ANN configuration of 2 

layers, each layer contains 35 Neurons, with 5 Epochs. Also, it indicates that with 

increment of number of layers and number of neurons, the approximated values of all 

objective functions except elongation, is increased. Moreover, the general trend of 

approximated results by various ANNs configuration with respect to speed feed and 

spindle speed is very similar with each other.  

However, the maximum and minimum of approximated values for ultimate strength 

and hardness by various ANN configurations are located on various locations of 

design space. The approximation results from various ANN configurations show the 

nonlinear behavior of objective functions, Figure 4.10. 

(d) 
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(a) ANN results for Elongations (mm) with 3 layers, each layer contains 50 Neurons, 

with 5 Epochs 

(b) ANN results for Ultimate Strength (MPa) with 3 layers, each layer contains 50 

Neurons, with 5 Epochs 

(c) ANN results for Hardness (HV) with 3 layers, each layer contains 50 Neurons, 

with 5 Epochs 

(d) ANN results for Energy consumption cost (in Turkish Lira) with 3 layers, each 

layer contains 50 Neurons, with 5 Epochs 
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(e) ANN results for Elongations (mm) with 2 layers, each layer contains 35 Neurons, 

with 5 Epochs 

(f) ANN results for Ultimate strength (MPa) with 2 layers, each layer contains 35 

Neurons, with 5 Epochs 

(g) ANN results for hardness (HV) with 2 layers, each layer contains 35 Neurons, 

with 5 Epochs 

(h) ANN results for Energy consumption cost (in Turkish Lira) with 2 layers, each 

layer contains 35 Neurons, with 5 Epochs 

Figure 4.10: Results of ANN modeling of FSP. 
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Tables 4.3 and 4.4 show the optimization resluts and their experimental verification 

when various ANN structures are used. In Table 4.3, the optimum simulation results 

from an ANN with 3 layers, 50 neurons in each layer and maximum 5 epochs are 

compared with the experimental results. Also, in Table 4.4, the same procedure is 

repeated with ANN which has 2 layers, 35 neurons in each layer and maximum 

epochs of 5. 

Table 4.3: Optimum results of ANN-based multiobjective genetic optimization with 

3 layers, 50 neurons in each layer, maximum number of epochs of 5 and their 

experimental verifications. 

Type of 

measurement 

N 

(rpm) 

f 

(mm/min) 

Elongation 

(mm) 

UTS 

(MPa) 

Hardness 

(HV) 

Cost 

(TL) 

Simulation 

700 160 

19.35 537.38 131.64 0.14 

Experimental 21.37 526.49 127.31 0.17 

Table 4.4: Optimum results of ANN-based multiobjective genetic optimization with 

2 layers, 35 neurons in each layer, maximum number of epochs of 5 and their 

experimental verifications. 

Type of 

measurement 

N 

(rpm) 

f 

(mm/min) 

Elongation 

(mm) 

UTS 

(MPa) 

Hardness 

(HV) 

Cost 

(TL) 

Simulation 

500 160 

12.36 180.47 84.51 0.17 

Experimental 11.68 175.38 87.32 0.21 

In order to verify the optimization results, tests were conducted both for 3 layers and 

2 layers. As can be seen from Tables 2 and 3, the empirical results are in good 

compromise with the predicted ones. Therefore,  it can be said that ANN can be 

successfully employed to predict and optimize FSP. From the tables, it is to be 

observed that the best results are offered when FSP is performed with rotational 

speed of 160mm/min and 700rpm. 
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Chapter 5 

CONCLUSION 

The effects of spindle speed and feed of FSP on various mechanical properties of 

Al7075 and energy consumption were examined in this study. It was found that the 

effects were quite interactive and closely linked with the opted magnitude of the 

parameters. As instance, with the fixed rotational speed of 500rpm, the elongation 

was increased (from 9.86 mm to 12.58 mm) to a certain range of feed (i.e., from 

63mm/min to 160mm/min) and was decreased afterwards (i.e., from 160mm/min to 

250mm/min). The same was found to be true for ultimate strength. The hardness, on 

the contrary, gradually was increased and the energy consumption contrarily was 

decreasesd over the entire range of feed. In summary, the effects of FSP parameters 

were found to be highly intercative, non-linear  as well opposing in nature on various 

performance measures of FSP.  

To find a trade-off among various mechanical properties of Al7075 and energy 

consumed while processing, ANN with GA was employed.  The best parameters that 

offered high mechanical properties of Al7075 and low energy cost/consumption were 

found to be as follows: feed speed=700 (mm/min) and rotational speed=160 (rpm).  

This study has demonstrated that ANN coupled with GA can be used as a powerful 

tool for multi-objective decision modeling and optimization in FSP.   
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The findings reported herein work will act as a guideline for the users of FSP, 

following which one can easily find the optimal parameters for the other materials of 

interest as well. 
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Appendix A: Artificial Neural Network Modelling 

%Artificial Neural Network Modelling 

clc 

clear all 

%Spindle Speeds 

input(1,1)= 500; 

input(1,2)= 710; 

input(1,3)= 1000; 

input(1,4)= 1400; 

 

%Feed Rates 

input(2,1)= 63; 

input(2,2)= 100; 

input(2,3)= 160; 

input(2,4)= 250; 

 

%Elongation 

S(1,1)= 9.86; 

S(1,3)= 12.58; 

S(1,4)= 9.22; 

S(2,4)= 10.17; 

S(3,1)= 11.15; 

S(3,3)= 7.21; 

S(4,1)= 6.83; 

S(4,2)= 5.95; 

 

%Ultimate Strength 

S1(1,1)= 408.52589; 

S1(1,3)= 501.4152072; 

S1(1,4)= 483.3609847; 

S1(2,4)= 498.5870329; 

S1(3,1)= 405.223754; 

S1(3,3)= 408.0955743; 

S1(4,1)= 375.1482436; 

S1(4,2)= 350.9981734; 

 

%Hardness 

S2(1,1)= 118.92; 

S2(1,3)= 136.32; 

S2(1,4)= 154.775; 

S2(2,4)= 153.8556; 

S2(3,1)= 117.0111; 

S2(3,3)= 141.2286; 

S2(4,1)= 132.5875; 

S2(4,2)= 128.8143; 

 

%Power Consumptio 

S3(1,1)= 0.338005656; 

S3(1,3)= 0.164229395; 



`  

59 

S3(1,4)= 0.115391948; 

S3(2,4)= 0.122219246; 

S3(3,1)= 0.34822381; 

S3(3,3)= 0.161734978; 

S3(4,1)= 0.359842893; 
S3(4,2)= 0.247245174; 
 

input1=input(1,1:end); 

input2=input(2,1:end); 

 

%Draw the initial data from Experiments 

subplot(4,2,1); 

surf(input1,input2,S,'FaceColor','interp','EdgeColor','none','FaceLighting','phong'); 

title('Elongation-original'); 

axis tight 

view(-50,30) 

camlight right 

 

subplot(4,2,3); 

surf(input1,input2,S1,'FaceColor','interp','EdgeColor','none','FaceLighting','phong'); 

title('Ultimate Strength-original'); 

axis tight 

view(-50,30) 

camlight right 

 

subplot(4,2,5); 

surf(input1,input2,S2,'FaceColor','interp','EdgeColor','none','FaceLighting','phong'); 

title('Hardness-original'); 

axis tight 

view(-50,30) 

camlight right 

 

subplot(4,2,7); 

surf(input1,input2,S3,'FaceColor','interp','EdgeColor','none','FaceLighting','phong'); 

title('Powr Consumption-original'); 

axis tight 

view(-50,30) 

camlight right 

 

%-----Feedforward Backpropogation Neural Networks Algorithm------ 

%-----creating a neural network and training it------------------ 

 

I=[input1;input2]; 

net = feedforwardnet; 

net.trainParam.epochs =10; 

net.trainParam.lr= 0.01; 

net.numLayers = 3; 

net.layers{1}.size = 2; 

net.layers{2}.size = 2; 

net.layers{3}.size = 2; 
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net.biases{1}.learnFcn = 'learnp'; 

net.divideFcn='divideint'; 

net.divideParam.trainRatio = 70/100; 

net.divideParam.valRatio = 15/100; 

net.divideParam.testRatio = 15/100; 

 

net = configure(net,I,S); 

 

net=train(net,I,S); 

%view(net); 

z=net(I); 

perf=perform(net,z,S); 

 

dx1=1; 

dy1=1; 

 

x1_edge=[floor(min(input1)):dx1:ceil(max(input1))]; 

y1_edge=[floor(min(input2)):dy1:ceil(max(input2))]; 

[X1,Y1]=meshgrid(x1_edge,y1_edge); 

Z=griddata(input1,input2,z,X1,Y1); 

%F1 = TriScatteredInterp(input1,input2,z); 

%Z= F1(X1,Y1); 

subplot(4,2,2); 

 

surf(X1,Y1,Z,'FaceColor','interp','EdgeColor','none','FaceLighting','phong'); 

%surf(input1,input2,z,'FaceColor','interp','EdgeColor','none','FaceLighting','phong'); 

title('Elongation-NN');    

%daspect([5 5 1]) 

axis tight 

view(-50,30) 

camlight left 

 

%camlight left; lighting phong; 

A=max(max(S));%minimum value of the shubert function 

%A=min(min(Z));%minimum value of the approximated initial function 

B=max(max(Z));%maximum value of the created network 

errors = gsubtract(A,B); 

 

%Train the Ultimate Stength 

net1 = configure(net,I,S1); 

 

net1=train(net1,I,S1); 

%view(net); 

z1=net1(I); 

perf1=perform(net1,z1,S1); 

 

subplot(4,2,4); 

 

%surf(X1,Y1,Z1,'FaceColor','interp','EdgeColor','none','FaceLighting','phong'); 

surf(input1,input2,z1,'FaceColor','interp','EdgeColor','none','FaceLighting','phong'); 
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title('Ultimate Stregth-NN'); 

%daspect([5 5 1]) 

axis tight 

view(-50,30) 

camlight left 

 

%camlight left; lighting phong; 

A1=max(max(S1));%minimum value of the shubert function 

%A=min(min(Z));%minimum value of the approximated initial function 

B1=max(max(z1));%maximum value of the created network 

errors1 = gsubtract(A1,B1); 

 

%Train the Hardness 

net2 = configure(net,I,S2); 

 

net2=train(net2,I,S2); 

%view(net); 

z2=net2(I); 

perf2=perform(net2,z2,S2); 

 

subplot(4,2,6); 

 

%surf(X1,Y1,Z1,'FaceColor','interp','EdgeColor','none','FaceLighting','phong'); 

surf(input1,input2,z2,'FaceColor','interp','EdgeColor','none','FaceLighting','phong'); 

title('Hardness-NN'); 

%daspect([5 5 1]) 

axis tight 

view(-50,30) 

camlight leftz1 

 

); %camlight left; lighting phong; 

A2=max(max(S2));%minimum value of the shubert function 

%A=min(min(Z));%minimum value of the approximated initial function 

B2=max(max(z2));%minimum value of the created network 

errors2 = gsubtract(A2,B2); 

 

%Train the Cost of Energy 

net3 = configure(net,I,S3); 

 

net3=train(net3,I,S3); 

%view(net); 

z3=net3(I); 

perf3=perform(net3,z3,S3 

 

subplot(4,2,8); 

 

%surf(X1,Y1,Z1,'FaceColor','interp','EdgeColor','none','FaceLighting','phong'); 

surf(input1,input2,z3,'FaceColor','interp','EdgeColor','none','FaceLighting','phong'); 

title('Power Consumption-NN');    

%daspect([5 5 1]) 
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axis tight 

view(-50,30) 

camlight left 

 

%camlight left; lighting phong; 

A3=min(min(S3));%minimum value of the shubert function 

%A=min(min(Z));%minimum value of the approximated initial function 

B3=min(min(z3));%minimum value of the created network 

errors3 = gsubtract(A3,B3); 
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Appendix B: Multiobjective Genetic Algorithm (gamultiobj) 

% Performing a Multiobjective Optimization Using the Genetic Algorithm 

% This example shows how to perform a multiobjective optimization  

% using multiobjective genetic algorithm function |gamultiobj| in  

% Global Optimization Toolbox. 

 

%   Copyright 2007-2012 The MathWorks, Inc. 

 

%% Simple Multiobjective Optimization Problem 

% |gamultiobj| can be used to solve multiobjective optimization problem in 

% several variables. Here we want to minimize two objectives, each having 

% one decision variable.  

 

%     min F(x) = [objective1(x); objective2(x)]  

%      x 

%     where, objective1(x) = (x+2)^2 - 10, and 

%            objective2(x) = (x-2)^2 + 20 

% Plot two objective functions on the same axis 

x = -10:0.5:10; 

f1 = (x+2).^2 - 10; 

f2 = (x-2).^2 + 20; 

plot(x,f1); 

hold on; 

plot(x,f2,'r'); 

grid on; 

title('Plot of objectives ''(x+2)^2 - 10'' and ''(x-2)^2 + 20'''); 

% The two objectives have their minima at x = -2 and x = +2 respectively. 

% However, in a multiobjective problem, x = -2, x = 2, and any solution in 

% the range -2 <= x <= 2 is equally optimal. There is no single solution to 

% this multiobjective problem. The goal of the multiobjective genetic 

% algorithm is to find a set of solutions in that range (ideally with a 

% good spread). The set of solutions is also known as a Pareto front. All 

% solutions on the Pareto front are optimal. 

 

%%  Coding the Fitness Function 

% We create a MATLAB-file named simple_multiobjective.m: 

%     function y = simple_multiobjective(x) 

%     y(1) = (x+2)^2 - 10; 

%     y(2) = (x-2)^2 + 20; 

% The Genetic Algorithm solver assumes the fitness function will take one 

% input x, where x is a row vector with as many elements as the number of 

% variables in the problem. The fitness function computes the value of 

% each objective function and returns these values in a single vector 

% output y. 

%% Minimizing Using |gamultiobj| 

% To use the |gamultiobj| function, we need to provide at least two input 

% arguments, a fitness function, and the number of variables in the problem. 

% The first two output arguments returned by |gamultiobj| are X, the points 

% on Pareto front, and FVAL, the objective function values at the values X. 
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% A third output argument, exitFlag, tells you the reason why |gamultiobj| 

% stopped. A fourth argument, OUTPUT, contains information about the 

% performance of the solver. |gamultiobj| can also return a fifth argument, 

% POPULATION, that contains the population when |gamultiobj| terminated and a 

% sixth argument, SCORE, that contains the function values of all 

% objectives for POPULATION when |gamultiobj| terminated.  

FitnessFunction = @simple_multiobjective; 

numberOfVariables = 1; 

[x,fval] = gamultiobj(FitnessFunction,numberOfVariables); 

 

% The X returned by the solver is a matrix in which each row is the 

% point on the Pareto front for the objective functions. The FVAL is a 

% matrix in which each row contains the value of the objective functions 

% evaluated at the corresponding point in X. 

size(x) 

size(fval) 

  

% Constrained Multiobjective Optimization Problem 

% |gamultiobj| can handle optimization problems with linear inequality, 

% equality, and simple bound constraints. Here we want to add bound 

% constraints on simple multiobjective problem solved previously.  

% 

%     min F(x) = [objective1(x); objective2(x)]  

%     x 

%     subject to  -1.5 <= x <= 0 (bound constraints) 

% 

%     where, objective1(x) = (x+2)^2 - 10, and 

%            objective2(x) = (x-2)^2 + 20 

% 

% |gamultiobj| accepts linear inequality constraints in the form A*x <= b and 

% linear equality constraints in the form Aeq*x = beq and bound constraints 

% in the form lb < x < ub. We pass A and Aeq as matrices and b, beq, lb, 

% and ub as vectors. Since we have no linear constraints in this example, we 

% pass [] for those inputs.  

A = []; b = []; 

Aeq = []; beq = []; 

lb = -1.5; 

ub = 0; 

x = gamultiobj(FitnessFunction,numberOfVariables,A,b,Aeq,beq,lb,ub); 

% All solutions in X (each row) will satisfy all linear and bound 

% constraints within the tolerance specified in options.TolCon. However, if 

% you use your own crossover or mutation function, ensure that the new 

% individuals are feasible with respect to linear and simple bound 

% constraints. 

%% Adding Visualization 

% |gamultiobj| can accept one or more plot functions through the options 

% argument. This feature is useful for visualizing the performance of the 

% solver at run time. Plot functions can be selected using |gaoptimset|. The 

% help for |gaoptimset| contains a list of plot functions to choose from.  

% Here we use |gaoptimset| to create an options structure to select two plot 
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% functions. The first plot function is GAPLOTPARETO, which plots the 

% Pareto front (limited to any three objectives) at every generation. The 

% second plot function is GAPLOTSCOREDIVERSITY, which plots the score 

% diversity for each objective. The options structure is passed as the last 

% argument to the solver. 

options = gaoptimset('PlotFcns',{@gaplotpareto,@gaplotscorediversity}); 

gamultiobj(FitnessFunction,numberOfVariables,[],[],[],[],lb,ub,options); 

%% Vectorizing Your Fitness Function 

% Consider the previous fitness functions again: 

% 

%     objective1(x) = (x+2)^2 - 10, and 

%     objective2(x) = (x-2)^2 + 20 

% 

% By default, the |gamultiobj| solver only passes in one point at a time to the 

% fitness function. However, if the fitness function is vectorized to 

% accept a set of points and returns a set of function values you can speed 

% up your solution. 

% 

% For example, if the solver needs to evaluate five points in one call to 

% this fitness function, then it will call the function with a matrix of 

% size 5-by-1, i.e., 5 rows and 1 column (recall that 1 is the number of 

% variables). 

% 

% Create a MATLAB-file called vectorized_multiobjective.m: 

% 

%     function scores = vectorized_multiobjective(pop) 

%       popSize = size(pop,1); % Population size  

%       numObj = 2;  % Number of objectives 

%       % initialize scores 

%       scores = zeros(popSize, numObj); 

%       % Compute first objective 

%       scores(:,1) = (pop + 2).^2 - 10; 

%       % Compute second obective 

%       scores(:,2) = (pop - 2).^2 + 20; 

% 

% This vectorized version of the fitness function takes a matrix 'pop' with 

% an arbitrary number of points, the rows of 'pop', and returns a matrix of 

% size populationSize-by-numberOfObjectives. 

% 

% We need to specify that the fitness function is vectorized using the 

% options structure created using |gaoptimset|. The options structure is 

% passed in as the ninth argument. 

  

FitnessFunction = @(x) vectorized_multiobjective(x); 

options = gaoptimset('Vectorized','on'); 

gamultiobj(FitnessFunction,numberOfVariables,[],[],[],[],lb,ub,options); 

  

displayEndOfDemoMessage(mfilename) 
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Appendix C: Simple Multiobjective Function 

function y = Network_multiobjective(x) 

%SIMPLE_MULTIOBJECTIVE is a simple multi-objective fitness function. 

% 

% The multi-objective genetic algorithm solver assumes the fitness function 

% will take one input x where x is a row vector with as many elements as 

% number of variables in the problem. The fitness function computes the 

% value of each objective function and returns the vector value in its one 

% return argument y. 

  

%   Copyright 2007 The MathWorks, Inc.  

  

% Spindle Speeds 

input(1,1)= 500; 

input(1,2)= 710; 

input(1,3)= 1000; 

input(1,4)= 1400; 

  

%Feed Rates 

input(2,1)= 63; 

input(2,2)= 100; 

input(2,3)= 160; 

input(2,4)= 250; 

  

% Elongation 

S(1,1)= 9.86; 

S(1,3)= 12.58; 

S(1,4)= 9.22; 

S(2,4)= 10.17; 

S(3,1)= 11.15; 

S(3,3)= 7.21; 

S(4,1)= 6.83; 

S(4,2)= 5.95; 

  

%Ultimate Strength 

S1(1,1)= 408.52589; 

S1(1,3)= 501.4152072; 

S1(1,4)= 483.3609847; 

S1(2,4)= 498.5870329; 

S1(3,1)= 405.223754; 

S1(3,3)= 408.0955743; 

S1(4,1)= 375.1482436; 

S1(4,2)= 350.9981734; 

  

%Hardness 

S2(1,1)= 118.92; 

S2(1,3)= 136.32; 

S2(1,4)= 154.775; 

S2(2,4)= 153.8556; 
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S2(3,1)= 117.0111; 

S2(3,3)= 141.2286; 

S2(4,1)= 132.5875; 

S2(4,2)= 128.8143; 

  

%Power Consumption 

  

S3(1,1)= 0.338005656; 

S3(1,3)= 0.164229395; 

S3(1,4)= 0.115391948; 

S3(2,4)= 0.122219246; 

S3(3,1)= 0.34822381; 

S3(3,3)= 0.161734978; 

S3(4,1)= 0.359842893; 

S3(4,2)= 0.247245174; 

  

input1=input(1,1:end); 

input2=input(2,1:end); 

  

% Draw the initial data from Experiments 

subplot(4,2,1); 

surf(input1,input2,S,'FaceColor','interp','EdgeColor','none','FaceLighting','phong'); 

title('Elongation-original');    

axis tight 

view(-50,30) 

camlight right 

  

subplot(4,2,3); 

surf(input1,input2,S1,'FaceColor','interp','EdgeColor','none','FaceLighting','phong'); 

title('Ultimate Stregth-original');    

axis tight 

view(-50,30) 

camlight right 

  

subplot(4,2,5); 

surf(input1,input2,S2,'FaceColor','interp','EdgeColor','none','FaceLighting','phong'); 

title('Hardness-original');    

axis tight 

view(-50,30) 

camlight right 

  

subplot(4,2,7); 

surf(input1,input2,S3,'FaceColor','interp','EdgeColor','none','FaceLighting','phong'); 

title('Powr Consumption-original');    

axis tight 

view(-50,30) 

camlight right 

  

%-----Feedforward Backpropogation Neural Networks Algorithm------ 

%-----creating a neural network and training it------------------ 
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I=[input1;input2]; 

net = feedforwardnet; 

net.trainParam.epochs =5; 

net.trainParam.lr= 0.01; 

net.numLayers = 3; 

net.layers{1}.size = 50; 

net.layers{2}.size = 50; 

net.layers{3}.size = 50; 

%net.layers{4}.size = 35; 

  

net.biases{1}.learnFcn = 'learnp'; 

net = configure(net,I,S); 

  

net=train(net,I,S); 

%view(net); 

z=net(I); 

perf=perform(net,z,S); 

  

dx1=1; 

dy1=1; 

  

x1_edge=[floor(min(input1)):dx1:ceil(max(input1))]; 

y1_edge=[floor(min(input2)):dy1:ceil(max(input2))]; 

[X1,Y1]=meshgrid(x1_edge,y1_edge); 

Z=griddata(input1,input2,z,X1,Y1); 

  

subplot(4,2,2); 

  

surf(X1,Y1,Z,'FaceColor','interp','EdgeColor','none','FaceLighting','phong'); 

%surf(input1,input2,z,'FaceColor','interp','EdgeColor','none','FaceLighting','phong'); 

title('Elongation-NN');    

%daspect([5 5 1]) 

axis tight 

view(-50,30) 

camlight left 

  

%camlight left; lighting phong; 

A=max(max(S));%minimum value of the shubert function 

%A=min(min(Z));%minimum value of the approximated initial function 

B=max(max(Z));%minimum value of the created network 

errors = gsubtract(A,B); 

  

%Train the Ultimate Stength 

net1 = configure(net,I,S1); 

  

net1=train(net1,I,S1); 

%view(net); 

z1=net1(I); 

perf1=perform(net1,z1,S1); 
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dx1=1; 

dy1=1; 

  

x1_edge=[floor(min(input1)):dx1:ceil(max(input1))]; 

y1_edge=[floor(min(input2)):dy1:ceil(max(input2))]; 

[X1,Y1]=meshgrid(x1_edge,y1_edge); 

Z1=griddata(input1,input2,z1,X1,Y1); 

  

subplot(4,2,4); 

  

surf(X1,Y1,Z1,'FaceColor','interp','EdgeColor','none','FaceLighting','phong'); 

%surf(input1,input2,z1,'FaceColor','interp','EdgeColor','none','FaceLighting','phong'); 

title('Ultimate Stregth-NN');    

%daspect([5 5 1]) 

axis tight 

view(-50,30) 

camlight left 

  

%camlight left; lighting phong; 

A1=min(min(S1));%minimum value of the shubert function 

%A=min(min(Z));%minimum value of the approximated initial function 

B1=min(min(Z1));%minimum value of the created network 

errors1 = gsubtract(A1,B1); 

  

%Train the Hardness 

net2 = configure(net,I,S2); 

  

net2=train(net2,I,S2); 

%view(net); 

z2=net2(I); 

perf2=perform(net2,z2,S2); 

  

dx1=1; 

dy1=1; 

  

x1_edge=[floor(min(input1)):dx1:ceil(max(input1))]; 

y1_edge=[floor(min(input2)):dy1:ceil(max(input2))]; 

[X1,Y1]=meshgrid(x1_edge,y1_edge); 

Z2=griddata(input1,input2,z2,X1,Y1); 

  

subplot(4,2,6); 

  

surf(X1,Y1,Z2,'FaceColor','interp','EdgeColor','none','FaceLighting','phong'); 

%surf(input1,input2,z2,'FaceColor','interp','EdgeColor','none','FaceLighting','phong'); 

title('Hardness-NN');    

%daspect([5 5 1]) 

axis tight 

view(-50,30) 

camlight left 
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%camlight left; lighting phong; 

A2=min(min(S2));%minimum value of the shubert function 

%A=min(min(Z));%minimum value of the approximated initial function 

B2=min(min(Z2));%minimum value of the created network 

errors2 = gsubtract(A2,B2); 

  

%Train the Cost of Energy 

net3 = configure(net,I,S3); 

  

net3=train(net3,I,S3); 

%view(net); 

z3=net3(I); 

perf3=perform(net3,z3,S3); 

  

dx1=1; 

dy1=1; 

  

x1_edge=[floor(min(input1)):dx1:ceil(max(input1))]; 

y1_edge=[floor(min(input2)):dy1:ceil(max(input2))]; 

[X1,Y1]=meshgrid(x1_edge,y1_edge); 

Z3=griddata(input1,input2,z3,X1,Y1); 

  

subplot(4,2,8); 

  

surf(X1,Y1,Z3,'FaceColor','interp','EdgeColor','none','FaceLighting','phong'); 

%surf(input1,input2,z3,'FaceColor','interp','EdgeColor','none','FaceLighting','phong'); 

title('Power Consumption-NN');    

%daspect([5 5 1]) 

axis tight 

view(-50,30) 

camlight left 

  

%camlight left; lighting phong; 

A3=min(min(S3));%minimum value of the shubert function 

%A=min(min(Z));%minimum value of the approximated initial function 

B3=min(min(Z3));%minimum value of the created network 

errors3 = gsubtract(A3,B3); 

  

XX = round(x(1)); 

YY = round(x(2)); 

  

if XX >= 63  

    II=XX-63; 

else 

    II=1; 

end 

  

if XX >= 250  

    II=188; 

end 
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if YY >= 500  

   JJ=YY-500; 

else 

    JJ=1; 

end 

  

if YY > 1400  

    JJ=901; 

end 

  

y(1)=Z(II,JJ); 

  

y(2)=Z1(II,JJ); 

  

y(3)=Z2(II,JJ); 

  

y(4)=Z3(II,JJ); 
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Appendix D: Shubert Function 

%shubert function 

clc 

clear all 

  

% Performing a Multiobjective Optimization Using the Genetic Algorithm 

% This example shows how to perform a multiobjective optimization  

% using multiobjective genetic algorithm function |gamultiobj| in  

% Global Optimization Toolbox. 

  

%   Copyright 2007-2012 The MathWorks, Inc. 

  

% Simple Multiobjective Optimization Problem 

% |gamultiobj| can be used to solve multiobjective optimization problem in 

% several variables. Here we want to minimize two objectives, each having 

% one decision variable.  

% 

%     min F(x) = [objective1(x); objective2(x)]  

%      x 

% 

%     where, objective1(x) = (x+2)^2 - 10, and 

%            objective2(x) = (x-2)^2 + 20 

  

% Plot two objective functions on the same axis 

% 

% The two objectives have their minima at x = -2 and x = +2 respectively. 

% However, in a multiobjective problem, x = -2, x = 2, and any solution in 

% the range -2 <= x <= 2 is equally optimal. There is no single solution to 

% this multiobjective problem. The goal of the multiobjective genetic 

% algorithm is to find a set of solutions in that range (ideally with a 

% good spread). The set of solutions is also known as a Pareto front. All 

% solutions on the Pareto front are optimal. 

  

%%  Coding the Fitness Function 

% We create a MATLAB-file named simple_multiobjective.m: 

% 

%     function y = simple_multiobjective(x) 

%     y(1) = (x+2)^2 - 10; 

%     y(2) = (x-2)^2 + 20; 

% 

% The Genetic Algorithm solver assumes the fitness function will take one 

% input x, where x is a row vector with as many elements as the number of 

% variables in the problem. The fitness function computes the value of 

% each objective function and returns these values in a single vector 

% output y. 

  

%% Minimizing Using |gamultiobj| 

% To use the |gamultiobj| function, we need to provide at least two input 

% arguments, a fitness function, and the number of variables in the problem. 
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% The first two output arguments returned by |gamultiobj| are X, the points 

% on Pareto front, and FVAL, the objective function values at the values X. 

% A third output argument, exitFlag, tells you the reason why |gamultiobj| 

% stopped. A fourth argument, OUTPUT, contains information about the 

% performance of the solver. |gamultiobj| can also return a fifth argument, 

% POPULATION, that contains the population when |gamultiobj| terminated and a 

% sixth argument, SCORE, that contains the function values of all 

% objectives for POPULATION when |gamultiobj| terminated.  

FitnessFunction = @mostafa_multiobjective; 

numberOfVariables = 2; 

%[x,fval] = gamultiobj(FitnessFunction,numberOfVariables); 

  

% The X returned by the solver is a matrix in which each row is the 

% point on the Pareto front for the objective functions. The FVAL is a 

% matrix in which each row contains the value of the objective functions 

% evaluated at the corresponding point in X. 

%size(x) 

%size(fval) 

  

%% Constrained Multiobjective Optimization Problem 

% |gamultiobj| can handle optimization problems with linear inequality, 

% equality, and simple bound constraints. Here we want to add bound 

% constraints on simple multiobjective problem solved previously.  

% 

%     min F(x) = [objective1(x); objective2(x)]  

%      x 

%     subject to  -1.5 <= x <= 0 (bound constraints) 

% 

%     where, objective1(x) = (x+2)^2 - 10, and 

%            objective2(x) = (x-2)^2 + 20 

  

% |gamultiobj| accepts linear inequality constraints in the form A*x <= b and 

% linear equality constraints in the form Aeq*x = beq and bound constraints 

% in the form lb < x < ub. We pass A and Aeq as matrices and b, beq, lb, 

% and ub as vectors. Since we have no linear constraints in this example, we 

% pass [] for those inputs.  

A = []; b = []; 

Aeq = []; beq = []; 

lb = [500 63]; % Lower bound 

ub = [1400 250]; % Upper bound 

%options = gaoptimset('PlotFcns',@gaplotpareto); 

x = gamultiobj(FitnessFunction,numberOfVariables,A,b,Aeq,beq,lb,ub); 

  

% All solutions in X (each row) will satisfy all linear and bound 

% constraints within the tolerance specified in options.TolCon. However, if 

% you use your own crossover or mutation function, ensure that the new 

% individuals are feasible with respect to linear and simple bound 

% constraints. 

  

%% Adding Visualization 
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% |gamultiobj| can accept one or more plot functions through the options 

% argument. This feature is useful for visualizing the performance of the 

% solver at run time. Plot functions can be selected using |gaoptimset|. The 

% help for |gaoptimset| contains a list of plot functions to choose from.  

% 

% Here we use |gaoptimset| to create an options structure to select two plot 

% functions. The first plot function is GAPLOTPARETO, which plots the 

% Pareto front (limited to any three objectives) at every generation. The 

% second plot function is GAPLOTSCOREDIVERSITY, which plots the score 

% diversity for each objective. The options structure is passed as the last 

% argument to the solver. 

options = gaoptimset('PlotFcns',{@gaplotpareto,@gaplotscorediversity}); 

gamultiobj(FitnessFunction,numberOfVariables,[],[],[],[],lb,ub,options); 

  

%% Vectorizing Your Fitness Function 

% Consider the previous fitness functions again: 

% 

%     objective1(x) = (x+2)^2 - 10, and 

%     objective2(x) = (x-2)^2 + 20 

% 

% By default, the |gamultiobj| solver only passes in one point at a time to the 

% fitness function. However, if the fitness function is vectorized to 

% accept a set of points and returns a set of function values you can speed 

% up your solution. 

% 

% For example, if the solver needs to evaluate five points in one call to 

% this fitness function, then it will call the function with a matrix of 

% size 5-by-1, i.e., 5 rows and 1 column (recall that 1 is the number of 

% variables). 

% 

% Create a MATLAB-file called vectorized_multiobjective.m: 

% 

%     function scores = vectorized_multiobjective(pop) 

%       popSize = size(pop,1); % Population size  

%       numObj = 2;  % Number of objectives 

%       % initialize scores 

%       scores = zeros(popSize, numObj); 

%       % Compute first objective 

%       scores(:,1) = (pop + 2).^2 - 10; 

%       % Compute second obective 

%       scores(:,2) = (pop - 2).^2 + 20; 

% 

% This vectorized version of the fitness function takes a matrix 'pop' with 

% an arbitrary number of points, the rows of 'pop', and returns a matrix of 

% size populationSize-by-numberOfObjectives. 

% 

% We need to specify that the fitness function is vectorized using the 

% options structure created using |gaoptimset|. The options structure is 

% passed in as the ninth argument. 

%displayEndOfDemoMessage(mfilename) 
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Appendix E : Multiobjective Fitness Function 

function y = simple_multiobjective(x) 

%SIMPLE_MULTIOBJECTIVE is a simple multi-objective fitness function. 

% 

% The multi-objective genetic algorithm solver assumes the fitness function 

% will take one input x where x is a row vector with as many elements as 

% number of variables in the problem. The fitness function computes the 

% value of each objective function and returns the vector value in its one 

% return argument y. 

  

%   Copyright 2007 The MathWorks, Inc.  

  

y(1) = (x+2)^2 - 10; 

y(2) = (x-2)^2 + 20; 


