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ABSTRACT 

It has been recently argued and experimentally shown that ion channel noise in neurons 

can have profound effects on the neuron's dynamical behavior. Most profoundly, ion 

channel noise was seen to be able to cause spontaneous firing and stochastic resonance. 

A physical approach for the description of neuronal dynamics under the influence of ion 

channel noise has been proposed through the use of dissipative stochastic mechanics by 

Güler in a series of papers (Güler, 2006, 2007, 2008). He consequently introduced a 

computational neuron model incorporating channel noise for a special membrane that 

gives the Rose-Hindmarsh model of the neuron in the deterministic limit. The most 

distinctive feature of the dissipative stochastic mechanics based model is the presence of 

so-called the renormalization terms therein. More recently, the model was generalized to 

the Hodgkin-Huxley type of membranes (Güler, 2011, 2013). 

In this thesis, the dissipative stochastic mechanics based neuron model was studied when 

the input current to the neuron is an input pulse. Statistics of firing efficiency, latency, 

and jitter were examined for various stimulus pulses. In particular, the role played by the 

presence of the renormalization terms was focused on in the examination. 

Keywords: Ion Channel Noise, Stochastic Ion Channels, Neuronal Dynamic, Rose-

Hindmarsh Model. 
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ÖZ 

Gerek deneysel, gerekse kuramsal ve benzeşim çalışmaları iyon kanal gürültüsünün 

nöron dinamiği üzerinde hayati etki yapabildiği kanıtlanmıştır. Bu kapsamda, kendi 

kendine ateşleme ve stokastik rezonans en önemli bulgulardır. 

İyon kanal gürültüsü altındaki nöron dinamiği, fiziksel bir yaklaşım olan disipatif 

stokastik mekanik kullanarak çalışılmış ve modellenmiştir (Güler, 2006, 2007, 2008). 

Sonsuz zar büyüklüğü limitinde Rose-Hindmarsh modeline dönüşen bu disipatif 

stokastik mekaniğe dayalı modelin en önemli özelliği renormalizasyon terimleri 

içermesidir. Model, daha sonra, Hodgkin-Huxley tipi zarlara uyarlanmıştır (Güler, 2011, 

2013). 

Bu tezde, Rose-Hindmarsh tipi zarlarda iyon kanal gürültüsü için geliştirilmiş olan 

yukarıdaki model, basamaklı girdi akımları kullanılarak çalışılmıştır. Ateşleme etkinliği, 

gecikme ve jitter istatistikleri elde edilmiş ve renormalizasyon terimlerinin rolü 

incelenmiştir. 

Anahtar Kelimeler: İyon kanal gürültüsü, Stokastik iyon kanalları, Nöronal Dinamik, 

Rose-Hindmarsh Modeli. 
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Chapter 1 

INTRODUCTION 

Electrical variability is a prominent feature of neurons behavior which is known to be 

stochastic in nature (Fasial 2008). The main source of stochasticity is the external noise 

from the synaptic. Nevertheless, led by the present of the probabilistic character of 

gating ,the ion channel causes the intrinsic noise to appear which can also have an 

important effect on the dynamic behavior of neurons; as viewed by empirical studies 

(Bezrukov and Vodyanoy 1995; Sakmann and Neher 1995; Diba et al. 2004; Kole et al. 

2006; Jacobson et al. 2005)and by numerical simulation or theoretical investigations 

(Chow and White 1996; Fox and Lu 1994; Schmid et al. 2001; Schneidman et al. 1998; 

Jung and Shuai 2001; Rubinstein 1995). 

The effect of channel variability on neuronal dynamic is normally modeled using 

stochastic various equations obtained by introducing some white noise of vanishing 

means into underling deterministic equations (Fox and Lu 1994). The so-called 

dissipative stochastic mechanics ("DSM") based neuron model which was raised by 

Güler (2006, 2007) is a special situation to this. The DSM neuron model rise some 

functional terms named the renormalization term. The renormalization of the membrane 

capacitance and the membrane voltage dependent potential function were  found to rise 

from the mutual interaction of the two noises in the neurons (Güler 2008). It was found 
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that the renormalization correction increases the behavioral transitions from quiet to 

spike and from tonic to bursting. The renormalization terms of neuronal dynamic can 

enhance temporal synchronization among synoptically coupled neurons which can lead 

to faster temporal synchronization (Jibril and Güler 2009) . In this thesis , we investigate 

the DSM model under input current pulses; especially, we concentrate on what role the 

renormalization terms can play in the statistics of efficiency, latency and jitter.    

1.1 Scope and Organization  

In this thesis, the DSM model, introduced by Güler (2007), will be examined, when the 

input current pulse varies. The organization of the thesis will be as follow, Chapter two 

handles neuron morphology and structure, chapter three focuses on the Hodgkin Huxley 

equation, Hind marsh and the DSM model. Chapter four is about the experiments and 

results of the study.   
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Chapter 2 

NEURONS 

2.1  Morphology  and Structure 

Neurons are a specialized type of cells found in the brain. They are unique in generating 

electrical signals in response to chemical and other inputs.  A typical neuron is divided 

into three parts: the soma or cell body, dendrites, and axon. Dendrites receive inputs 

from other neurons cell and propagate it to the soma. The axon transmits the neuronal 

output to other cells. The dendrites tree increases surface area of the cell through the 

branching structure which improves the ability of the neuron to receive input from many 

other cells through synapses connections.  Figure 1 depicts information and structure for 

the neuron. Axons from single neurons can traverse large fractions of the brain or, in 

some cases, of the entire body. It has been estimated that cortical neurons typically send 

about 40 mm of axon and have approximately 4 mm of total dendritic cable in their 

structural dendritic trees. The axon makes an average of 180 synaptic connections with 

other neurons per mm of length while the dendritic tree receives, on average, 2 synaptic 

inputs per μm. The cell body or soma of a typical cortical neurons ranges in diameter 

from about 10 to 50 μm (Abbot, 2002). 
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Figure 1: Two interconnected cortical pyramidal neurons (and in vitro recorded spike). 

(Izhikevich, 2007)  
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2.1.1 What is a Spike?   

The communication mean between the neurons in simply a current pulse is known as a 

Spike. Neurons normally receive 10,000 ---from another through the synapse. On the 

other neuron when the signal is received ,this signal causes changes in the current of the 

transmembrane. The current coming from the synapse is known as  the post synapse 

potentials (PSPs), little PSPs are generated from tiny current, large PSPs are generated 

when the current is considerably high. The voltage sensitive channel is embedded in a 

neuron, these channels are resulting to generation of action potential or spike 

(Izhikevich, 2007). 

2.1.2 Membrane Proteins 

Protein is an integral part of the cell membrane that transports molecules across it. These 

proteins play a significant part in determining the function of neurons. Knowing how 

membrane proteins work is useful for understanding many functions of neurons. We 

describe many categories of membrane proteins that assist in transporting substances 

across the membrane like channels, gates, and pumps. 

2.1.2.1 Channels 

Some membrane proteins are shaped in such a method that the create channels, or holes, 

across that substances can pass. Disparate proteins with different-sized holes permit 

disparate substances to go in or depart the cell. Protein molecules assist as channels for 

predominantly sodium (Na+), potassium (K+), calcium (Ca2+), and chloride (Cl−) ions. 

2.1.2.2 Gates 

A vital feature of a little protein molecules is their skill to change shape. some  gates 

work by changing form after one more chemical binds to them. In these cases, the 

embedded protein molecule deeds as a door lock. After a key of the appropriate size and 
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form is inserted into it and turned, the locking device adjusts the  form and becomes 

activated. Other gates change form when certain conditions in their environment, such as 

electrical or temperature, change. 

2.1.2.3 Pump 

In some cases, a membrane protein deeds as a pump, a transporter molecule that needs 

power to move substances across the membrane. For instance, there is a protein that 

adjusts its form to impel Na+ ions in one direction and K+ ions in the other direction. 

Countless substances are transported by protein pumps. Channels, gates, and pumps play 

an important role in a neuron's ability to convey information. 

2.1.3 Synapse 

Synapses are shaped in the form of a junction amid two consecutive neurons after the 

axon of afferent neuron is related to the efferent one and provides a method to 

communicate the data to other cell. Axons terminate at synapses whereas the voltage 

transient of the action potential opens ion channels producing an influx of Ca2+ that 

leads to the discharge of a neurotransmitter. The neurotransmitter binds to receptors at 

the gesture consenting or postsynaptic side of the synapse provoking ion-conducting 

channels to open. Reliant on the nature of the ion flow, the synapses can have an 

excitatory, depolarizing, or an inhibitory, normally hyperpolarizing, result on the 

postsynaptic neuron (Abbot 2002). 

Synapses are not randomly distributed above the dendritic surface. In finish, inhibitory 

synapses are more proximal than excitatory synapses, even though they are additionally 

present at distal dendritic spans and, after being present, on some  spines in conjunction 
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alongside an excitatory input (Segev in Bower and Beeman 2003). In countless systems 

(e.g., pyramidal hippocampal cells and cerebellar Purkinje cells), a given input basis is 

preferentially mapped onto a given span of the dendritic tree, rather being randomly 

distributed above the dendritic surface. Electron micrographic pictures of synapses in 

real neurons are shown in figure 2. 

 

Figure 2: Two Electronic micrographic picture of synapse in real neurons  

    (a) Electron micrograph of recitative spiny synapses (s) designed on the dendrites of 

rodent hippocampal pyramidal cell 

(b) An electron micrograph picture catches the synapse design where the terminal 

button of one neuron connects with a dendritic spine on a dendrite of second neuron. 

(Whishaw, 2012) 

2.2 Membrane Potential and Neuron Electrical Activity 

Membrane potential is defined as difference in electrical potential between the inside of 

a neuron and the surrounding extracellular fluid. Under resting conditions, the potential 

inside the cell membrane of a neuron is about -70 mV relative to that of the surrounding 

bath. This voltage, however, is conventionally assumed to be 0 mV for convenience and 
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the cell is said to be polarized in this state. This potential is an equilibrium point at 

which the flow of ions into the cell matches that out of the cell. This membrane potential 

difference is sustained by ion pumps located in the cell membrane by maintaining 

concentration gradients. For example, Na+ is much more concentrated outside a neuron 

than inside it, and the concentration of K+ is significantly higher inside the neuron than 

in the extracellular fluid. Therefore, ions flow into and out of a cell due to both voltage 

and concentration gradients throughout the state transition of cell. Current, in the form of 

positively charged ions flowing out of the cell (or negatively charged ions flowing into 

the cell) through open channels makes the membrane potential more negative, a process 

called hyperpolarization. Current flowing into the cell changes the membrane potential 

to less negative or even positive values. This is called depolarization. When a neuron is 

depolarized sufficiently large to raise the membrane potential above a threshold level, a 

positive feedback process is started, and the neuron generates an action potential. An 

action potential is a roughly 100 mV fluctuation in the electrical potential across the cell 

membrane that lasts for about 1ms. Once an action potential takes place it may be 

impossible to initiate another spike right after the previous one and this is called the 

absolute refractory period. The importance of action potential is that unlike subthreshold 

fluctuations that attenuate over distance of at most 1 millimeter they can propagate over 

large distances without attenuation along axon processes (Dayan and Abbot 2002). 

Figure 3 depicts the voltage dynamic of a neuron during an action potential while it is 

synthesized by corresponding ion channel activities throughout an action potential. In 

this figure the resting potential is in its real value -70 mV. 
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1. Resting potential: all voltage-gated channels closed. 

2. At threshold, Na+ activation gate opens and      rises. 

3. Na+ enters cell, causing explosive depolarization to +30 mV, which generates rising 

phase of action potential. 

4. At peak of action potential, Na+ inactivation gate closes and      falls, ending net 

movement of Na+ into cell. At the same time, K+ activation gate opens and     rises. 

5. K+ leaves cell, causing its repolarization to resting potential, which generates falling 

phases of action potential. 

6. On return to resting potential, Na+ activation gate closes and inactivation gate opens, 

resting channel to respond to another depolarizing triggering event. 

7. Further outward movement of K+ through still-open K+ channel briefly 

hyperpolarizes 

membrane, which generates after hyperpolarization. 

8. K+ activation gate closes, and membrane returns to resting potential. 

Figure 3: Phases of action potential (Whishaw, 2012) 
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Chapter 3 

HODGKIN - HUXLEY EQUATIONS 

Many neurons model have been found and developed in the last 6 decades, according to 

the purpose they used for. Furthermore, the diversity of the models found depends on the 

actual biophysical model with respect to structure. For instant, Hodgkin – Huxley (HH) 

during 5 decades is the more applicable model until now, also one of them is the  

simplified model used in the experiments of this thesis: the Hindmarsh-Rose model 

(HR). However, modeling technic of neural excitability has been attached from the 

monument work of Hodgkin-Huxley (1952). In this part , Hodgkin – Huxley model and 

the Hind marsh-Rose model (HR) will be briefly explained. 

This chapter briefly handles both the Hodgkin-Huxley model and Hind marsh-Rose 

model (HR), followed by focusing on the latest physical inspiration of dissipative 

stochastic mechanics (DSM) established from the neuron model that achieves the 

deterministic condition of the dynamics of the HR model, and that will be focused and 

experimented in  this study. 

3.1 The Hodgkin-Huxley Model 

According to Alan Lloyd Hodgkin and Andrew Huxley investigations, on giant squid 

axon in 1952, they found according to their experiments a way to describe the ionic 

mechanisms, initiation and propagation of spike. In their model based on experiments on 



  

11 

the squid axon membrane they show the current propagate through made from two 

significant ionic parts the first one INa (sodium channel current) and the second IK 

(potassium current). Hodgkin and Huxley through their experiments found and 

developed a mathematical way leading to create the Hodgkin-Huxley model; the model 

found to be the mostly affective one based until our present time. 

According to the model of Hodgkin – Huxley, they describe the electrical characteristics 

of membrane nerve patch, as an equivalent circuit. In this patch all the current across is 

made from two basic sections: charging membrane capacitance is the first one and the 

second is attached to transport a specific kind of ions via the membrane. Furthermore the 

ionic currents is made from three distinct ingredient, the sodium, the potassium and the 

chloride, (sodium current INa, potassium current IK and leakage current IL which is 

related to chloride). 

 

According to Hodgkin-Huxley electrical circuit, the formula will be:  

 

                                                            
   

  
                                                     (1) 
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The ions currents across the membrane could be found from the below equation as 

follow 

                                                                                                                     (2) 

                                                                                                                     ) 

 

The currents in the equation (3) each one is related with a conductance    with reactive 

potential    

According to Hodgkin-Huxley the ionic currents that across the membrane in the Iion 

squid giant axon is actually three: INa (sodium current), IK (potassium current) and a 

small leakage current IL, as shown in the following equations. 

 

                                                                                                      (4) 

                                                                                                    (5)            

                                                                                                       (6) 

                                                                                                         (7) 

 

The conductance     (         ) are generated from the combined effect of a large 

amount of microscopic ion channels. The definition Iion is simply like the amount of 

open physical gates. These gates usually control the passage of ions through the channel. 

The ions can transport through the channel only when the channel is open, the channel is 

considered open only when the entire gates of that channel are in permissive state. 
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3.1.1 The Ionic Conductance 

As mentioned earlier, in order to count the channel open, all the gates that belong to that 

channel must be in the permissive condition, through these channels the ions has the 

ability to pass through the membrane. The nominal assumption purposed to illustrate the 

potassium and sodium conductance is experimentally accomplished through voltage 

clamp experiments. 

Where n, m and h are ion channel gate variables whose dynamics will be presented later 

on.    i is representing the conductance constant for bounded area per     (  for 

remained the value of n as mentioned before is usually from 0 to 1). The dynamic of n, 

m, and h are as follows:  

                                                
  

  
                                                       (8) 

 

                                         
  

  
                                                  (9) 

 

                                         
  

  
                                                       (10) 

 

All of the rate constant (   and   ) are voltage dependent which means that they are  

affected by the voltage changes, and they are independent with time, and n stands  for 

the probability of the single gate to be in permissive state and it is a dimensionless 

variable. Usually the value of n is between 0 and 1. 
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The potential of membrane Vm (in voltage clamp test) starts usually from the resting 

period (Vm = 0) and followed by immediate arise to reach VC. In order to find the 

solution to equation (9) above the following exponential can be used.  

                                                                                     (11) 

                                                            (0)                                    (12) 

                                                              (  )                                (13) 

                                                           
                                          (14)          

 

Here in these equations x stands for the time, which relies on all of the n, m and h (gate 

variable), as a consequence the formula becomes simpler, all of the values of the gate 

variable (        at the resting state and          ). While    here stands for the 

time needed to let    reach the steady state when the voltage of    reach     

 

The rate constant       measured in H-H as function with V as follows:  

                                                         
     

     
                                                (15) 

                                                          
       

     
                                            (16) 

 

As pointed before in the formulas, i is for n, m, and h. The below equations are for the 

rate constant       , and could be determined from the following: 
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3.2 The Hindmarsh Rose Model  

Though Hodgkin-Huxley (HH) model can depict the neural dynamics of spiking neuron 

to a significant range, in large models the Hodgkin-Huxley (HH) bursting model can be 

complex. The axon of squid neuron had been studied by Hodgkin-Huxley who find out 

that it contains both Na and K conductance, while, there are more conductance kinds 

contribute in the HH bursting model which will increase the complexity in the model. 

FitzHugh and Nagumo noticed separately in HH equations, that the developments in 

both membrane potential V(t) and sodium activation m(t) happened in similar time 

scales during an action potential, whereas the change in sodium inactivation h(t) as well 

as potassium activation n(t) are similar, although slower time scales. Consequently, the 

following equations can show the simulation of the model spiking behavior: 

 

Where x stands for membrane potential and y denotes recovery variable.   (x) is a cubic 

function,   (x) is a linear function, parameters a and b are time constants and      is the 

external applied or clamping current as function of time t. 

Hindmarsh and Rose evolve their model by taking advantage of the FitzHugh-Nagumo 

model, which was a simplified version of the Hodgkin-Huxley equations and changed 

the linear function g(x) with a quadratic function so the model will be capable of rapid 

firing with a long interspace interval. Figure 4 demonstrates the 1982 Hindmarsh-Rose 

model null cline diagram. 

(23) 
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Figure 4: Analysis of the 1982 HR model phase plane. Null clines x= 0, y= 0 (thin lines) 

and firing limit-cycle (thick line). The model has one equilibrium point (Steur 2006). 

In order to make the HR model exhibit burst firing behavior, more than one equilibrium 

point will be required; basically two points are required one for the sub-threshold stable 

resting state and one in the firing limit cycle. To make the null clines to intersect and 

bring about additive equilibrium points, a small deformation was required. The 

following forms were changes to meet the requirements of the governing equations: 

            ,                                                   (24)                                              

Where             in the simple form of      in HR model,           . The 

phase plane analysis of the given equations is shown in Figure 5. 
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Figure 5: The representation of Rose Hindmarsh Model phase plane. The equilibrium 

points A, B and C is a stable node, an unstable saddle, and an unstable spiral, 

respectively. A simple form of f(x) is used in this equation as shown      nullcline 

(Steur 2006). 

The corresponding point to the resting state of neuron is A in the diagram and it is a 

stable node. By using a large enough de-polarizing current pulse, the      nulcline will 

be minimized such that the saddle point B and point A meet and eventually vanish. From 

this point, the state will increase the narrow channel and enter a stable limit cycle. But, 

ending the firing is impossible by simply terminating the stimulus and the state will 

leave the limit cycle by using a suitable hyper-polarizing pulse. So, to end the model 

firing state the term z was added to the model. This additive variable is a slowly varying 

current, the effective input I - z replaces the applied current I. When the neuron is in 

firing state the value of z should be increased. The general set of equations for HR 

model’s after this improvement is as follows: 
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Notice that the equivalents of both f(x) and g(x) have been added instead of them. In 

these equations x stands for membrane potential, y denotes recovery variable, and z is 

the adaptation current with time constant r. Variable z rises up during the firing state and 

decreases during the non-firing state. Parameters h and r made the model capable of 

showing bursting, chaotic bursting and post-inhibitory rebound. (Rose and Hindmarsh 

1984; Steur 2006). Figure 6 shows the phase plane analysis of equation (25) using a 

complex form of f(x) as suggested in (Rose and Hindmarsh 1984). 
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Figure 6: Phase plane representation of Rose Hind marsh Model using a complex form 

of f(x). The equilibrium points A, B and C is a stable node, an unstable saddle, and an 

unstable spiral, respectively. Unstable limit cycle is specified here (Rose and Hindmarsh 

1984). 
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3.3 The DSM Neuron Model 

The distinctive formulation of the Dissipative Stochastic Mechanics based (DSM) 

neuron stems from a viewpoint that conformational changes in ion channels are exposed 

to two different kinds of noise. These two kinds of noise were coined as the intrinsic 

noise and topological noise. The intrinsic noise arises from voltage dependent movement 

of gating particles between the inner and the outer faces of the membrane which is 

stochastic; therefore, gates open and close in a probabilistic fashion, that is, it is the 

average number, not the exact number, of open gates over the membrane which is 

specified by the voltage. The topological noise, on the other hand, stems from the 

presence of a multiple number of gates in the channels and is attributed to the 

fluctuations in the topology of open gates, rather than the fluctuations in the number of 

open gates. 

 

Curiously, since gating particles, throughout the dynamics, do not follow a prescribed 

order in occupying the available closed gates, and in vacating the open gates, the 

membrane at two different times may have the same number of open gates but two 

different conductance values. The topological noise is attributed to the uncertainty in the 

number of open channels that takes place even if the number of open gates is exactly 

known. Hence, in determining the voltage dynamics, all the permissible topologies of 

open gates should be respected. Formalism of the DSM neuron was developed using the 

Rose Hindmarsh model (Hindmarsh and Rose 1984) and makes use of the Nelson’s 

stochastic mechanics (Nelson 1966 and 1967), in the presence of dissipation, for 

modeling the effects of ion channel noise on voltage dynamics of the membrane. The 
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effect of the topological noise on the dynamics of the neuron becomes more significant 

in smaller membrane sizes. Therefore in too large neurons the DSM neuron behaves as 

the Hindmarsh-Rose model does. 

The DSM neuron formalism yields the equations of motion for both first and second 

cumulants of the variables. The second cumulants, which describe the neuron's diffusive 

behavior, do not concern us in the current thesis. First cumulants evolve in accordance 

with the following dynamics: 

                                                                                                                                          
 

  

       
  

 
   

  

 
                 

     
                   

             
  
 

 
           

  
 

 
  

       

 

  

                                                                                                                              
 

                                                                                                                          
 

  

                          
 
         

 
                                                

 

Where X denotes the expectation value of the membrane voltage, and   corresponds to 

the expectation value of a momentum-like operator. The auxiliary variables y and z 

represent the fast and the slower ion dynamics, respectively. I denotes the external 

current injected into the neuron, and m denotes the membrane capacitance. The 

parameters a, b, c, d, r, h, and xs are some constants parameters. k is a mixing coefficient 

given by k = 1/(1+r). S are some constants as follows: 
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Equation (29) specifies the value of   at the initial time    in terms of the initial values 

of the other dynamical variables X, y and z, and the current I. Xeq(I) obeys the equation 

      
          

                                                                  

Where xs is a constant.   and    in Equations. (27) and (28) are Gaussian white noises 

with zero means and mean squares are given by 

                                                                                        (40) 

 

And 

                                                                                        (41) 

 

Where obtained by means of the classical fluctuation-dissipation theorem.   here is a 

temperature-like parameter. The terms with the correction coefficients   
 
   

 
   

  and  

  
  that take place in the above equations are the renormalization terms. 



  

24 

When the noise terms (     ) are not included and all the correction coefficients are set 

to zero, the DSM dynamics becomes equivalent to the Rose-hindmarsh dynamics. All 

the parameters of the model, including time, are in dimensionless units. The original 

membrane voltage time series for Hindmarsh-Rose original model is for some various 

constant input currents are shown in the figure 7. Dynamical states of the Rose–

Hindmarsh model are quiescence, bursting (rhythmic with a high degree of periodicity, 

or chaotic), and tonic firing.   

Güler (2008) showed that the role played by the intrinsic noise, becomes more 

significant in smaller size of the membranes (or, equivalently, fewer channels) in DSM 

Neuron. The intrinsic noise can cause spiking activity in otherwise quiet deterministic 

model and results in bursting in larger input current values. The dynamics of DSM 

Neuron in a relatively smaller size of membrane is displayed in figure 8. Note that 

renormalization corrections have been set to zero so that the result is observed regardless 

of the topological noise effect. 
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Figure 7: Membrane voltage time series of the deterministic Rose–Hindmarsh model 

using the parameter values m = 1, a = 1, b = 3, c = 1, d = 5, h = 4, r = 0.004 and xs = 

−1.6; for various constant input current values I are indicated in parenthesis on the left of 

each plot (Güler 2008). 
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Figure 8: Time series of X when the DSM neuron is subjected to the intrinsic noise only 

using the Rose–Hindmarsh parameter values m = 0.25, a = 0.25, b = 0.75, c = 0.25, d = 

1.25, h = 1, r = 0.004 and xs = −1.6 with the temperature T = 2. Plots for various 

constant input current values 4I (scaled by the factor of four) (Güler 2008). 

The renormalization corrections are induced by the mutual interaction between the 

topological noise and the intrinsic noise. Presence of the correction terms also increases 

further the behavioral transitions from quiescence to spiking and from tonic firing to 

bursting to a considerable extent and, consequently, leads to the bursting activity to take 

place in a wider range of input currents. i.e., with the presence of the correction terms, 

the spiking activity starts to take place at smaller input current values, and the bursting 

activity is prolonged for higher input current values. The behavior of DSM neuron under 

the influence of corrections is demonstrated in figure 9. 
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Figure 9: Time series of X using the correction coefficients    
 
       

 
       

  
      and   

        with the temperature T = 2. The Rose–Hindmarsh parameter 

values are m = 1, a = 1, b = 3, c = 1, d = 5, h = 4, r = 0.004 and xs = −1.6 (Güler 2008). 
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Chapter 4 

NUMERICAL EXPERIMENTS 

4.1 The Role Played by the Renormalization Terms: Computing 

Efficiency, Jitter and Latency  

We study the DSM model response to transient change in the stimulus. For this, we use 

a stimulus pulse as shown in figure 10. 

 

Figure 10: Wave form of the stimulus pulse used in this thesis. Various values of the 

pulse intensity were used in the experiments. The base current was set to two values 1in 

the first set  and the other is 2 and the pulse duration to 100 ms.  

Rather than investigating the role of the correction coefficients separately, we take the 

standard values of epsilons (renormalization terms) as follows (  
 
       

 
 

      
       , and   

       ) and scale them to zero to have a benchmark of 

various sets of correction coefficients, various values of the pulse intensity were used in 

the experiments. We use the following inputs for the neuron: 
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                                                                                                              (42) 

Where       indicates the base current and           current pulse intensity. 

The model’s behavior is studied in the context of efficiency, jitter and latency, here 

efficiency represented the fraction of trials which excite a spike; latency is the mean 

value of spike episode time with respect to the stimulation time; jitter is the standard 

deviation of the firing latency, within the following ranges of the parameters: I used 

intensity values between 0.5 and 4,       values is fixed to 1in the first set and 2 in the 

second set and the pulse duration is also fixed to 100 ms. Only the optimum result was 

taken in case of the lowest and highest spiking rate. 

In the result of the experiments, the two curves representing the comparison between the 

renormalization terms when firstly the value of epsilon in set as the values (  
 
 

      
 
       

       , and   
       ) and secondly sets all the epsilons to zero. 

The experiments were done by changing the current pulse intensity and these methods 

(efficiency, latency, and jitter) are used to assess the effect of the renormalization terms 

as shown in the figures (11, 12, 13, 14, 15 and 16).  

The effect of the renormalization terms appear in a significant manner when the value of 

the intensity is small but when the value of the intensity pass the value of (2) the impact 

of the renormalization terms almost vanish and the neuron reacts in the same way 

whatever the renormalization terms are exist or not as shown in figures (11, 12, and 13). 
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4.2 Technologies Used 

The DSM neuron model has been developed by Prof. Marifi Güler and some parts have 

been changed in order to make it possible to do the experiments of this thesis. The model 

has been improved by the C++ language. The GnuPlot was used to plot the results and 

voltage time series. 
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Figure 11: The difference in efficiency between the two experiments. In the first 

experiment epsilons value is set to   
 
       

 
       

       , and   
        and 

the second experiment is set all the epsilons to 0. The intensity is shown in the figure 

and the        is set to 1. 

In this figure, we got the result as shown above while using the renormalization terms 

(with eps terms) in the first experiments and second experiments the renormalization 

terms are set all to zero. We can see the effect of the renormalization in the beginning of 

the experiments. 
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Figure 12: The difference in latency between the two experiments. In the first 

experiment epsilons value is set to    
 
    ,    

 
    ,    

       , and    
        

and the second experiment is set all the epsilons to 0. The intensity is shown in the 

figure and the        is set to 1. 

In this figure, we got the result as shown above while using the renormalization terms 

(with eps terms) in the first experiments and second experiments the renormalization 

terms are set all to zero. We can see the effect of the renormalization in the beginning of 

the experiments. 
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Figure 13: The difference in jitter between the two experiments. In the first experiment 

epsilons value is set to   
 
       

 
       

       , and   
        and the second 

experiment is set all the epsilons to 0. The intensity is shown in the figure and the       

is set to 1. 

In this figure, we got the result as shown above while using the renormalization terms 

(with eps terms) in the first experiments and second experiments the renormalization 

terms are set all to zero. We can see the effect of the renormalization in the beginning of 

the experiments. 
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Figure 14: The difference in efficiency between the two experiments. In the first 

experiment epsilons value is set to   
 
       

 
       

       , and   
        and 

the second experiment is set all the epsilons to 0. The intensity is shown in the figure 

and the        is set to 2. 

In this figure, we got the result as shown above while using the renormalization terms 

(with eps terms) in the first experiments and second experiments the renormalization 

terms are set all to zero. We can see the effect of the renormalization in the beginning of 

the experiments become smaller than the effect in the figure (11,12,13). 
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Figure 15: The difference in latency between the two experiments. In the first 

experiment epsilons value is set to    
 
    ,    

 
    ,    

       , and    
        

and the second experiment is set all the epsilons to 0. The intensity is shown in the 

figure and the       is set to 2. 

In this figure, we got the result as shown above while using the renormalization terms 

(with eps terms) in the first experiments and second experiments the renormalization 

terms are set all to zero. We can see the effect of the renormalization in the beginning of 

the experiments become smaller than the effect in the figure (11, 12, and 13). 
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Figure 16: The difference in jitter between the two experiments. In the first experiment 

epsilons value is set to   
 
       

 
       

       , and   
        and the second 

experiment is set all the epsilons to 0. The intensity is shown in the figure and the        

is set to 2. 

In this figure, we got the result as shown above while using the renormalization terms 

(with eps terms) in the first experiments and second experiments the renormalization 

terms are set all to zero. We can see the effect of the renormalization in the beginning of 

the experiments become smaller than the effect in the figure (11, 12, and 13). 
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Chapter 5 

CONCLUSIONS 

In this study, the DSM neuron model was investigated from a numerical point of view 

when exposed to frequent current pulses intensity. The impacts of both the epsilon 

values and intensity variances on the efficiency, jitter and latency were computed. 

Correction coefficients were used as an effective measure of renormalization corrections 

to the model. It should be considered that these renormalization corrections appear from 

the dilemma of being in doubt of how many open ion-channel numbers there are, even if 

we know the exact number of open gates. 

DSM model neurons appear to be more complex than other models. It shows quicker 

synchronizing between two DSM neurons (Jibril and Güler 2009), dynamics of the 

models under constant input currents (Güler 2008) and in addition, its ability in 

detecting signals under current pulses intensity, that have been inspected during this 

study, are all the model benefits that deserve tolerating its complexity. Furthermore, it 

should be taken into consideration that this model is extremely capable of handling the 

small membrane sizes of the neurons. 

It turns out from the numerical experiments that the efficiency ,latency and jitter 

becomes higher in DSM neuron in which the interaction of current pulse intensity is 

taken into account .The experiments show also that the epsilon values play an important 
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role. The absence of the epsilon values makes the neuron in the beginning of the 

experiment generate spikes in slow manner and after a while the spikes generation will 

rise in a rapid way as shown in figures (11, 12, 13, 14, 15,and 16), which makes the 

efficiency ,latency and jitter start to rise until it reaches the steady state when the value 

of the current pulse intensity equal 2 in the figures(11, 12, 13)and equal 1 in figures(14, 

15,16) . The existence of the epsilon values makes the neuron spiking stable, predictable 

and also makes the neuron more reliable and that will make the efficiency, latency and 

jitter to reach the steady state from the beginning of the experiments which will enhance 

the reaction of the neuron and makes it more reliable. 

The results reveal that the neurons are extremely able to make a complicated and 

advantageous use of the channel noise in handling signals. From a technological point of 

view, the study shows that the DSM model has promising potentialities for signal 

detection. 
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