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Abstract

In the present article, we study the Hawking radiation (HR) of spin−1 particles – so-called

vector particles – from a three dimensional (3D) rotating black hole with scalar hair (RBHWSH)

using Hamilton-Jacobi (HJ) ansatz. Putting the Proca equation amalgamated with the WKB

approximation in process, the tunneling spectrum of vector particles is obtained. We recover the

standard Hawking temperature corresponding to the emission of these particles from RBHWSH.
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I. INTRODUCTION

One of the most radical predictions of general relativity (GR) is the existence of black

holes (BHs). According to the seminal works of Hawking [1–3], BHs are not entirely black.

That was the surprising claim made by Hawking over forty years ago. Examining the behav-

ior of quantum fluctuations around the event horizon of a BH, Hawking substantiated the

theory that BHs radiate thermal radiation, with a constant temperature – so-called Hawk-

ing temperature – directly proportional to the surface gravity κ, which is the gravitational

acceleration experienced at the BH’s horizon:

TH =
ℏκ

2π
, (1)

with the system of units c = G = kB = 1. The works of Hawking and Bekenstein [4] – and

of others [5–15], rederiving TH in various ways – brings together the normally disparate areas

of GR, quantum mechanics (QM), and thermodynamics. Enthusiasm for understanding of

the underlying coordinations between these subjects of physics creates ample motivation for

the study of HR (see for instance [16–27] and references therein).

Quantum fluctuations create a virtual particle pair near the BH horizon . While the

particle with negative energy tunnels into the horizon (absorption), the other one having

positive energy flies off into spatial infinity (emission) and produces the HR. Applying the

WKB approximation, the emission and absorption probabilities of the tunneling particles

give the tunneling rate Γ as [12, 28, 29]

Γ =
Pemission

Pabsorption

= exp(−2ImS) = exp

(

−Enet

T

)

, (2)

where S is the action of the classically forbidden trajectory of the tunneling particle, which

has a net energy Enet and temperature T . One of the methods for finding S is to use the HJ

method. This method is generally performed by substituting a suitable ansatz, considering

the symmetries of the spacetime, into the relativistic HJ equation. The resulting radial

integral always possesses a pole located at the event horizon. However, using the residue

theory the associated pole can be analytically evaded [30].

Recently, within the framework of the HJ method, the HR of spin−1 particles described

by the Proca equation in 3D non-rotating static BHs has been studied by Kruglov [28].

These spin−1 particles are in fact the vector particles like Z and W± bosons, and they
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have significant role in the Standard Model [31]. Based on Kruglov’s study [28], Chen et al.

[32] have very recently investigated the HR of these bosons in the rotating BTZ geometry.

Similar to the works of [28, 32], here we aim to study the HR of the vector particles in the

3D RBHWSH [33–36]. These BHs are solutions to the action in 3D Einstein gravity that is

non-minimally coupled to scalar field φ. In the limit of φ = 0, RBHWSH is nothing but the

rotating BTZ BH [33, 37].

This paper is organized as follows. Sec. 2 introduces the geometrical and thermodynam-

ical features of the 3D RBHWSH spacetime. In Sec. 3, we study the Proca equation for

a massive boson in this geometry. Then, we employ the HJ method with the separation

of variables technique to obtain the HR of the RBHWSH. Finally, in Sec.4, we present our

remarks.

II. 3D RBHWSH SPACETIME

The action in a 3D Einstein gravity with a non-minimally coupled scalar field reads [33]

I =
1

2

∫

d3x
√
−g

[

R − gµν∇µφ∇νφ− ξRφ2 − 2V (φ)
]

, (3)

where the coupling strength ξ between gravity and the scalar field is 1/8. Furthermore,

the scalar potential V (φ) is given by

V (φ) = −Λ +
1

512

(

Λ +
β

B2

)

φ6 +
1

512
(
a2

B4
)
(φ6 − 40φ4 + 640φ2 − 4608)φ10

(φ2 − 8)5
, (4)

in which the parameters β, B, and a are integration constants, and Λ is the cosmological

constant. The line-element of RBHWSH is given by

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2 [dθ + ω(r)dt]2 , (5)

with the metric functions:

f(r) = −M

(

1 +
2B

3r

)

+ r2Λ +
(3r + 2B)2 J2

36r4
, (6)

ω(r) = −(3r + 2B)J

6r3
, (7)

where J is the angular momentum of the BH. The scalar field is represented by
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φ = ±
√

8B

r +B
. (8)

It is worth noting that RBHWSH can be reduced to the rotating BTZ BH solution when

B = 0 [33–36]. Following [35, 36], one can see that the mass, the Hawking temperature,

the Bekenstein-Hawking entropy, and the angular velocity of the particle at the horizon of

this BH are given by

M =
J2l2 (2B + 3r+)

2 + 36r6+
12l2r3+ (2B + 3r+)

, (9)

TH =
f ′(r+)

4π
=

(B + r+)
[

36r6+ − J2l2(2B + 3r+)
2
]

24πl2r5+ (2B + 3r+)
, (10)

SBH =
AH

4G
[1− ξφ2(r+)] =

4πr2+
B + r+

, (11)

ΩH = −ω(r+) =
(3r+ + 2B)J

6r3+
, (12)

where Λ = 1

l2
, and r+ is referred to as the event horizon of the BH. In order to carry

out analysis into finding r+ values, we impose the condition of f(r+) = 0, which yields a

particular cubic equation. The solutions of that cubic equation are also given in detail by

[35]. One can verify that the first law of thermodynamics:

dM = THdSBH + ΩHdJ. (13)

holds. On the other hand, calculation of the specific heat using CJ = TH

(

∂SBH

∂TH

)

J
proves

that RBHWSH is locally stable when r+ > rext. Here, rext represents the radius of an

extremal RBHWSH that yields TH = 0 [35].

III. HR OF SPIN-1 PARTICLES FROM RBHWSH

As described by Kruglov [28], the Proca equation for the massive vector particles having

the wave function Φ is given by

1√
−g

∂µ(
√
−gΦνµ) +

m2

~2
Φν = 0, (14)
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where

Φνµ = ∂νΦµ − ∂µΦν . (15)

Let us set the vector function as

Φν = (c0, c1, c2) exp

[

i

~
S(t, r, θ)

]

, (16)

and assume that the action is given by

S(t, r, θ) = S0(t, r, θ) + ~S1(t, r, θ) + ~
2S2(t, r, θ) + .... (17)

According to the WKB approximation, we can further set

S0(t, r, θ) = −Et + L(r) + jθ + k, (18)

where E and j are the energy and angular momentum of the spin-1 particles, respectively,

and k is a (complex) constant. Substituting Eqs. (15), (16), (17), and (18) into Eq. (14) and

considering the leading order in ~, we obtain a 3× 3 matrix (let us say Ξ matrix) equation:

Ξ (c1, c2, c3)
T = 0 (the superscript T means the transition to the transposed vector). Thus,

one can read the non-zero components of Ξ as follows

Ξ11 = A1 − j2,

Ξ12 = Ξ21 = −A2∂rL(r),

Ξ13 = Ξ31 = A1ω(r)− jE,

Ξ22 =
(

m2r2 + j2
)

f(r)−A2,

Ξ23 = Ξ32 = ∂rL(r)
[

A2ω(r)
2 − jf(r)2

]

,

Ξ33 =
A1

r2
[

f(r)− ω(r)2r2
]

−E2, (19)

where

A1 = r2
{

m2 + f(r) [∂rL(r)]
2
}

, (20)

A2 = r2f(r) [E + jω(r)] . (21)
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Upon the fact that any homogeneous system of linear equations (19) admits nontrivial

solution if and only if detΞ = 0, we obtain

detΞ =
m2

r6
[A1 + j2 − A2

2

r2f(r)3
]2 = 0. (22)

Solving for L(r) yields

L±(r) = ±
∫

√

[E + ω(r)j]2 − f(r)(m2 + j2

r2
)

f(r)2
dr. (23)

One can immediately observe from the above that when ω(r) = 0, it reduces to the Kruglov’s

solution [28]. The L+ corresponds to outgoing (moving away from the BH) spin-1 particles

and L− stands for the ingoing (moving towards the BH) spin-1 particles. The imaginary

part of L±(r) can be calculated by using the pole deployed at the horizon. According to the

complex path integration method via the Feynman’s prescription [30] ( see [12] for a similar

process), we have

ImL±(r) = ± π

f ′(r+)
Enet, (24)

where

Enet = E + E0 = E + ω(r+)j = E − jΩH . (25)

Therefore, the probabilities of the vector particles crossing the horizon out/in become

Pemission = exp

(

−2

~
ImS

)

= exp[−2

~
(ImL+ + Imk)], (26)

Pabsorption = exp

(

2

~
ImS

)

= exp[−2

~
(ImL− + Imk)]. (27)

According to the classical definition of the BH, any outside particle certainly falls into

the BH. So, we must have Pabsorption = 1, which results in Imk = −ImL−. On the other

hand, L+ = −L− so that the total probability of radiating particles (as a consequence of

QM) is

Γ = Pemission = exp

(

−4

~
ImL+

)

= exp

(

− 4π

f ′(r+)
Enet

)

. (28)
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Thus, comparing Eq. (28) with Eq. (2) we can recover the correct Hawking temperature

(10) of RBHWSH:

T ≡ TH =
f ′(r+)

4π
=

(B + r+)
[

36r6+ − J2l2(2B + 3r+)
2
]

24πl2r5+ (2B + 3r+)
. (29)

IV. CONCLUSION

In this paper, we have used the Proca equation to compute the tunneling rate of outgoing

vector particles across the event horizon of axially symmetric static rotating 3D RBHWSHs.

For this purpose, we have ignored the back-reaction effects and substituted the HJ ansatz

into the associated Proca equations. In the derivation of the tunneling rate within the

framework of the WKB approximation, the calculation of the imaginary part of the action

was the most important point. Using the complex path integration technique, we have

shown that the tunneling rate is given by Eq. (26). The latter result allowed us to recover

the standard Hawking temperature for RBHWSH.

Finally, a study about the vector particles in the higher dimensional BHs may reveal

more information compared to the present case. This is going to be our next problem in the

near future.
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