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Abstract Recently we have shown that for 2 + 1-dimen-
sional thin-shell wormholes a non-circular throat may lead
to a physical wormhole in the sense that the energy condi-
tions are satisfied. By the same token, herein we consider
an angular dependent throat geometry embedded in a 2 + 1-
dimensional flat spacetime in polar coordinates. It is shown
that, remarkably, a generic, natural example of the throat
geometry is provided by a hypocycloid. That is, two flat
2 + 1 dimensions are glued together along a hypocycloid.
The energy required in each hypocycloid increases with the
frequency of the roller circle inside the large one.

1 Introduction

Similar to black holes, wormholes in 2 + 1 dimensions [1–
11] also have a certain degree of simplicity compared to
their 3 + 1-dimensional counterparts [12]. The absence of
gravitational degrees in 2 + 1 dimensions enforces us to
introduce appropriate sources to keep the wormhole alive
against collapse. Instead of general wormholes, our concern
will be confined herein to the subject of thin-shell wormholes
(TSWs), whose throat is designed to host the entire source
[13–17]. From the outset our strategy will be to curve the
geometry of the throat and find the corresponding energy-
momentum through the Einstein equations on the thin shell
[18,19]. Clearly any distortion/warp at the throat gives rise
to certain source, but, as the subject is TSWs, the nature of
the energy density becomes of the utmost importance. Worm-
holes in general violate the null-energy condition (NEC) [20–
23], which implies also the violation of the remaining energy
conditions. The occurrence of negative pressure components
in 3+1 dimensions provides alternatives in the sense that vio-
lation of NEC can be accounted for by the pressure, leaving
the possibility of an overall positive energy density.

a e-mail: habib.mazhari@emu.edu.tr
b e-mail: mustafa.halilsoy@emu.edu.tr

In this paper we choose our throat geometry in the 2 + 1-
dimensional TSW such that the pressure vanishes, the energy
density becomes positive, and as a result all energy condi-
tions are satisfied [18]. This is an advantageous situation
in 2 + 1 dimensions not encountered in 3 + 1-dimensional
TSWs. Our method is to consider a hypersurface induced
in 2 + 1-dimensional flat polar coordinates. Upon determin-
ing the energy density it is observed that a natural solution
for the underlying geometry of the throat turns out to be a
hypocycloid. The standard cycloid is known to be the mini-
mum time curve of a falling particle in a uniform gravitational
field which is generated by a fixed point on a circle rolling
on a straight line. The hypocycloid on the other hand is gen-
erated by a fixed point on a small circle which rolls inside
the circumference of a larger circle. The warped geometry
of such a curve surprisingly generates an energy density that
turns out to be positive. This summarizes in brief, the main
contribution of this paper.

In [18] we have constructed a 2 + 1-dimensional TSW by
considering a flat bulk metric of the form

ds2 = −dt2 + dr2 + r2dθ2 (1)

with a throat located at the hypersurface,

F(r, θ) = r − a0(θ) = 0. (2)

Using the standard formalism of cut and paste technique (see
the Appendix) it was shown that the line element of the throat
is given by

ds2
� = −dt2 + (a2

0 + a′2
0 )dθ2 (3)

with the energy-momentum tensor on the shell

S j
i =

(−σ0 0
0 0

)
(4)
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in which

σ0 = 1

4π

(
a′′

0 − a0 − 2a′2
0

a0

)

(
a′2

0 + a2
0

)√
1 +

(
a′

0
a0

)2
. (5)

We note that a prime stands for the differentiation with
respect to θ. It was found that with σ0 ≥ 0 all energy condi-
tions are satisfied, including that the matter which supports
the wormhole was physical i.e. not exotic. Finally the total
matter contained in the throat can be calculated as

U =
∫ 2π

0
a0σ0 dθ. (6)

In the sequel we shall give explicit examples for this integral.

2 The hypocycloid

A hypocycloid [24] is the curve generated by a rolling small
circle inside a larger circle. This is a different version of the
standard cycloid, which is generated by a circle rolling on
a straight line. The parametric equation of a hypocycloid is
given by

x (ζ ) = (B − b) cos ζ + b cos

(
B − b

b
ζ

)
,

y (ζ ) = (B − b) sin ζ − b sin

(
B − b

b
ζ

) (7)

in which x and y are the Cartesian coordinates on the hypocy-
cloid. B is the radius of the larger circle centered at the origin,
b (<B) is the radius of the smaller circle, and ζ ∈ [0, 2π ] is a
real parameter. Here if one considers B = mb, where m ≥ 3
is a natural number, then the curve is closed and it possesses
m singularities/spikes. In Fig. 1 we plot (7) for different val-
ues of m with B = 1. Let us add that for the particular choice
of B = 1 and b = 1

4 the hypocycloid takes the compact form
x = cos3 ζ and y = sin3 ζ with x2/3 + y2/3 = 1. In the
following we proceed to determine the form of the energy
density σ and the resulting total energy for the individual
cases plotted in Fig. 1.

To this end without loss of generality we set B = 1 and
b = 1

m and express σ as a function of ζ. To this aim we
parametrize the equation of the throat as

a = a (ζ ) =
√
x (ζ )2 + y (ζ )2

θ = θ (ζ ) = tan−1
(
y (ζ )

x (ζ )

)
.

(8)

Using the chain rule one finds

Fig. 1 Hypocycloid for different values of m = 3, 4, 5, 10, 20, 100

a′ = da

dθ
= ȧ

θ̇
(9)

and

a′′ = d2a

dθ2 = äθ̇ − ȧθ̈

θ̇3
, (10)

which implies

σ = 1

4π

aäθ̇ − aȧθ̈ − a2θ̇3 − 2θ̇ ȧ2

(
ȧ2 + a2θ̇2

) 3
2

(11)

where a dot stands for the derivative with respect to the
parameter ζ. Consequently the total matter is given by

U =
∫ 2π

0
u dζ (12)

where u = aσ θ̇ is the energy density per unit parameter
ζ. Note that for the sake of simplicity we dropped the sub-
index 0 from the quantities calculated at the throat. Partic-
ular examples of calculations for the energy U are given as
follows.
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Fig. 2 Plot of σ and u in terms of ζ for m = 3. The singularities/cusps
of σ are not physical. This can easily be seen when the total energy is
finite. This is in analogy with a conical conductor of finite total charge,
but the charge density at the vertex diverges

2.1 m = 3

The first case which we would like to study is the minimum
index for m, which is m = 3. We find that

σ = 3
√

2

32π
√

(1 + 2 cos ζ )2 (1 − cos ζ )
, (13)

which is clearly positive everywhere. Knowing that the
period of the curve (7) is 2π we find that σ is singular at the
possible roots of the denominator, i.e., ζ = 0, 2π

3 , 4π
3 , 2π .

We note that although σ diverges at these points the function
that must be finite everywhere is u, which is given by

u = 3
√

2
√

(1 + 2 cos ζ )2 (1 − cos ζ )

16π
√

5 − 12 cos ζ + 16 cos3 ζ
. (14)

The situation is in analogy with the charge density of a
charged conical conductor whose charge density at the ver-
tex of the cone diverges while the total charge remains finite.
In Fig. 2 we plot σ and u as a function of ζ , which clearly
implies that u is finite everywhere, leading to the total finite
energy U3 = 0.099189.

We would like to add that physically nothing extraordi-
nary happens at the cusp points. These points are the specific
points at which the manifold is neither differentiable with
respect to r nor with respect to the angular variable θ. The
original thin-shell wormhole has been constructed based on
discontinuity of the manifold with respect to r at the location
of the throat which implied the presence of the matter source

Fig. 3 Plot of σ and u in terms of ζ for m = 4. Similar to m = 3, the
singularities of σ are not physical

at the throat (we refer to Fig. 1 of Ref. [25] where clearly
such a cuspy point in the r direction is shown). Now, in the
case that we study we have one additional discontinuity of
the Riemann tensor in the θ direction which implies a more
complicated form of the matter distribution at the throat.

2.2 m = 4

Next, we set m = 4 where one finds

σ = 1

6π
√

sin2 (2ζ )
(15)

and

u =
√

sin2 (2ζ )

8π
√

1 − 3 cos2 ζ + 3 cos4 ζ
. (16)

Figure 3 depicts σ and u in terms of ζ and, similar to m = 3,
we find σ > 0 and u finite with the total energy given by
U4 = 0.24203. As one observes, U4 > U3, which implies
that adding more cusps to the throat increases the energy
needed. This is partly due to the fact that the total length
of the hypocycloid is increasing as m increases such that
�m = 8(m−1)

m with B = 1. This pattern goes on with m
larger, and in general

u = (m − 2)2
√

(cos ζ − cos (m − 1) ζ )2

8π
√

2
√

�
(17)
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Table 1 Total energy Um in terms of m. We add that the total energy
for large m is approximately given by Um→large ≈ m

2π
. This shows that

increasing the number of cusps to infinity requires infinite energy

m 3 4 5 10 50 100

Um 0.099189 0.24203 0.39341 1.1767 7.5351 15.492

where

� = m2 − 2 (m − 1) cos2 (m − 1) ζ

− (m − 2)2 cos ζ cos (m − 1) ζ

−m2 sin (m − 1) ζ sin ζ − 2 (m − 1) cos2 ζ. (18)

Table 1 shows the total energy Um for various m. We
observe that Um is not bounded from above (with respect to
m), which means that for large m it diverges as Um ≈ m

2π
.

Therefore to stay in a classically finite energy region one
must consider m to be finite.

3 Conclusion

The possibility of a total positive energy has been scrutinized
and verified with explicit examples in the 2 + 1-dimensional
TSWs. Naturally the same subject arises with more strin-
gent conditions in the more realistic dimensions of 3+ 1. By
taking advantage of the technical simplicity we have shown
that, remarkably, the geometry of the throat can be that of
a hypocycloid. This is a rare curve compared with the more
familiar minimum time cycloid. In effect, a fixed point on the
circumference of a smaller circle rolling in a larger one makes
a hypocycloid. The important point is that in the rolling pro-
cess the concavity of the resulting curve makes the extrinsic
curvature negative, which in turn yields a positive energy
density σ. Note that with convex curves this is not possible.
The emerging cusps at the tips of the hypocycloid may yield
singular points; however, these can be overcome by inte-
grating around such cusps. The lightning rod analogy for a
diverging charge density in electromagnetism constitutes an
example to understand the situation. In the present case our
sharp points (edges) are reminiscent of cosmic strings and
naturally deserve a separate investigation. The result for the
total energy turns out to be perfectly positive, as our analytical
calculation and numerical plots reveal. Increasing frequency
of each roll by using smaller and smaller circles inside the
large one is shown to increase the regular energy in finite
amounts, which is necessary to give life to a TSW. The fact
that in a static frame the pressure vanishes simplifies our task.
Here once σ > 0 is chosen it implies automatically that the
energy conditions are also satisfied. Finally, gluing together
two curved spaces instead of flats will be our next project to
address along the same line of thought.
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Appendix: Extrinsic curvature tensor

The bulk metric is flat given by (1), therefore we cut out
r < a (θ) from the bulk and make two identical copies of the
rest manifold. We paste them at the timelike hypersurface
F (r, θ) = r − a (θ) = 0 to construct a complete manifold.
The induced metric on the hyperplane � is given by (3). The
extrinsic curvature tensor on the shell � is given by

K (±)
i j = −n(±)

γ

(
∂2xγ

∂yi∂y j
+ �

γ
αβ

∂xα

∂yi
∂xβ

∂y j

)
(A1)

in which xγ = (t, r, θ) is the coordinate of the bulk metric
and yi = (t, θ) is the coordinate of the shell. Also

n(±)
γ = ±1√

�

∂F

∂xγ
(A2)

where

� = gαβ ∂F

∂xα

∂F

∂xβ
(A3)

refers to the normal 3-vector to the shell and ± implies the
different sides of the shell.

The Israel junction [26–30] conditions read

− 8π S j
i = k j

i − δ
j
i k (A4)

in which S j
i = diag (−σ, p) is the energy-momentum tensor

on the shell (we note that the off-diagonal term is zero) and
k j
i = K j(+)

i − K j(−)
i with k = kii . The explicit calculation

reveals that

n(±)
γ = ± a√

a2 + a′2 (0, 1,−a′) (A5)

and

k j
i =

⎡
⎣ 0 0

0
2
(
a2+2a′2−aa′′)
(a2+a′2)3/2

⎤
⎦ . (A6)
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