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The formation of naked singularities in 2 + 1-dimensional power-law spacetimes in linear Einstein-Maxwell and Einstein-scalar
theories sourced by azimuthally symmetric electric field and a self-interacting real scalar field, respectively, are considered in view
of quantummechanics. Quantum test fields obeying the Klein-Gordon and Dirac equations are used to probe the classical timelike
naked singularities developed at 𝑟 = 0. We show that when the classically singular spacetimes probed with scalar waves, the
considered spacetimes remain singular. However, the spinorial wave probe of the singularity in the metric of a self-interacting
real scalar field remains quantum regular. The notable outcome in this study is that the quantum regularity/singularity cannot be
associated with the energy conditions.

1. Introduction

In recent years, general relativity in 2+1-dimensions has been
one of the attractive arenas for understanding the general
aspects of black holes physics. The main motivation of this
attraction is the existing tractable mathematical structure
when compared with the higher dimensional counterparts.
The preliminary works in this field were popularized by the
black hole solution of Banados-Teitelboim-Zanelli (BTZ), a
spacetime sourced by a negative cosmological constant [1–3].
Extension of 2+1-dimensional solutions to Einstein-Maxwell
(EM) cases followed in [4] and its massive gravity version
is given in [5]. The static and rotating charged black hole
in 2 + 1-dimensional Brans-Dicke theory was studied in [6]
and rotating black holes with torsion were considered in [7].
The 2 + 1-dimensional charged black hole with nonlinear
electrodynamic coupled to gravity has been studied in [8] and
with a scalar hair has been given in [9]. The peculiar feature
in the aforementioned studies in the EM theory is that the
electric field is considered in the radial direction.

In recent decades, the physical properties of the solutions
presented in both linear and nonlinear electromagnetism
have been investigated by researchers. The solutions admit-
ting black holes are analyzed in terms of thermodynamical

aspects such as temperature and entropy [3, 10, 11]. Further-
more, the AdS/CFT correspondence which relates thermal
properties of black holes in the AdS space to a dual CFT is
another important achievement of 2 + 1-dimensional gravity
[12].

On the other hand, the solutions admitting naked sin-
gularities are not analyzed in detail and, hence, it requires
further care as far as the cosmic censorship hypothesis is
concerned.Therefore, the resolution of singularities becomes
important not in 3 + 1-dimensional gravity, but also in
both lower and higher dimensional gravity. Because of the
scales where these singularities are forming, their resolu-
tion requires a consistent theory at these small scales. The
theory of quantum gravity seems to be the most promising
theory; however, it is still “under construction.” An alterna-
tive method for resolving the singularities is proposed by
Horowitz and Marolf (HM) [13] by developing the work of
Wald [14]. According to this method, the classical notion of
a curvature singularity that is regarded as geodesics incom-
pleteness with respect to point particle probe is replaced by
quantum singularity with respect to wave probes.

In this paper, our focus will be on the 2 + 1-dimensional
power-law spacetimes. Spherically symmetric power-law
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metrics for dimensions 𝑛 ≥ 4 has been investigated in view of
quantummechanics by Blau, Frand, andWeiss (BFW) in [15],
by employing the method of HM. The formation of naked
singularities in 2-parameter family of
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Szekeres-Iyer [16–18], metrics is probed with scalar field. It
has been shown that the timelike naked singularity at 𝑥 = 0

for 𝜂 = −1 satisfying the dominant energy condition (DEC)
is quantum mechanically singular in the sense of the HM
criterion.

Another study in line with power-law spacetimes was
considered by Helliwell and Konkowski (HK) in [19]. HK
considered cylindrically symmetric four-parameter power-
law metrics in 3 + 1-dimension in the form of
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in the limit of small 𝑟, where 𝛼, 𝛽, 𝛾, 𝛿, and 𝐶 are constant
parameters. HK classified the metric (2) as Type I, if 𝛼 = 𝛽,
and given by
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According to the analysis of HK, a large set of classically
singular spacetimes emerges quantum mechanically non-
singular, if it is probed with scalar waves having nonzero
azimuthal quantum number 𝑚 and axial quantum number
𝑘 in the sense of HM criterion. HK have also argued the
possible relation with the energy conditions that can be used
to eliminate the quantum singular spacetimes.

In 2 + 1-dimensional gravity, the method of HM has
been used in the following works to probe the timelike naked
curvature singularities: the BTZ black hole is considered in
[20]. The EM extension of BTZ black hole both in linear and
nonlinear theory and in Einstein-Maxwell dilaton theory is
considered in [21]. The formation of naked singularities for
a magnetically charged solution in Einstein-Power-Maxwell
theory is considered in [22]. Occurrence of naked singular-
ities in Einstein-nonlinear electrodynamics with circularly
symmetric electric field is considered in [23]. In these studies,
the timelike naked singularity is probed with waves that dif-
fers in spin structure. Namely, the bosonic and the fermionic
waves are used that obey the Klein-Gordon and the Dirac
equation, respectively.The common outcome in these studies
is that the naked singularity remains quantum singular when
it is probed with bosonic waves. However, probing the
singularity with fermionic waves has revealed that only the
magnetically charged solution in Einstein-Power-Maxwell
theory is singular. The other spacetimes considered so far
behave as quantum regular against fermionic waves.

To our knowledge, the analysis of power-law metrics in
2 + 1-dimension has not been considered so far.This fact will
be the main motivation for the present study. The solutions
admitting timelike naked singularities in the linear Einstein-
Maxwell (EM) [24] and Einstein-scalar (ES) [25] theories
sourced by azimuthally symmetric electric field and a self-
interacting real scalar field, respectively, will be investigated

within the framework of quantum mechanics. The peculiar
feature of both solutions is that they admit metrics in power-
law form in 2 + 1-dimensional gravity.

The solution in linear EM theory with azimuthally
symmetric electric field in 2 + 1-dimension was given in
[24]. To our knowledge, the singularity structure of the
solution presented in [24] has not been studied so far. We
are aiming in this study to investigate the solution admitting
naked singularity in [24]. In our analysis, the classical naked
singularity will be probed with quantum fields obeying the
massless Klein-Gordon and Dirac equations. We showed
that against both probes the spacetime remains quantum
mechanically singular. This happens in spite of the fact
that the weak, strong, and dominant energy conditions are
manifestly satisfied.

The electric field component in EM extensions was
considered to be radial so far while the possibility of a circular
electric field went unnoticed. Recall from the Maxwell equa-
tions, ∇ × E ∼ 𝜕B/𝜕𝑡 and ∇ × B ∼ 𝜕E/𝜕𝑡, that the possibility
of a constant E (= 𝐸

0
= 𝐹
𝑡𝜃
= constant) and gradient form of

B (i.e., B = ∇𝑏, for 𝑏 a scalar function, independent of time)
may occur. When confined to 2 + 1-dimension such E and B
satisfy Maxwell’s equations trivially with singularity due to a
physical source at 𝑟 = 0. It is this latter case that we wish to
point out and investigate in this paper.

The paper is organized as follows. In Section 2, the
solutions obtained in [24] and in [25] are reviewed and the
structure of the resulting spacetimes is briefly introduced. In
Section 3, the definition of quantum singularity is summa-
rized and the timelike naked singularity in the considered
spacetimes is analyzed with quantum fields obeying the
Klein-Gordon and Dirac equations. The paper is concluded
with a conclusion in Section 4.

2. Review of the Solutions Admitting Power-
Law Metrics in (2+1)-Dimension

2.1. Rederivation of the Linear Einstein-Maxwell Solution
with Azimuthally Symmetric Electric Field. We start with the
Einstein-Maxwell action given by
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in which 𝑅 is the Ricci scalar andF = 𝐹
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line element is given by
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where𝐴(𝑟) and 𝐵(𝑟) are unknown functions of 𝑟 and 0 ≤ 𝜃 ≤

2𝜋. The electric field ansatz is chosen to be normal to radial
direction and uniform; that is,

F = 𝐸
0
𝑑𝑡 ∧ 𝑑𝜃 (6)

in which 𝐸
0

= constant [23]. The dual field is found as
⋆F = (𝐸

0
/𝑟)√𝐵/𝐴𝑑𝑟. It is known that the integral of ⋆F gives

the total charge. Let us note that even in a flat space with
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𝐴 = 𝐵 = 1 we obtain a logarithmic expression for the charge;
that is, 𝑄(𝑟) ∼ ln 𝑟. This electric field is derived from an
electric potential one-form given by
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0
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0
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0
𝜃𝑑𝑡) , (7)
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0
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0
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0
+ 𝑏
0
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Maxwell’s equation,

𝑑 (
⋆F) = 0, (8)

is trivially satisfied. Note that the invariant of electromagnetic
field is given by
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Next, the Einstein-Maxwell equations are given by
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HavingF known one finds
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as the only nonvanishing energy-momentum components.
To proceed further, we must have the exact form of the
Einstein tensor components given by
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in which a “prime”means 𝑑/𝑑𝑟.The field equations then read
as follows:
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The above field equations admit the following solutions for𝐴
and 𝐵:
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in which 𝜒 > 0 is an integration constant and without loss of
generality we set it to 𝜒 = 1. Hence the line element becomes
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This is a black point solution with the horizon at the origin
which is the singular point of the spacetime with
Kretschmann scalar:
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The solution has a single parameter which is the electric field
𝐸
0
. Setting 𝐸

0
= 0makes the solution the (2+1)-dimensional

flat spacetime. Note also that for the choice 𝐸
0
= 1, from (16),

we obtain a conformally flat metric with conformal factor
𝑟
2. It is observed that the strength of 𝐸

0
serves to increase

the degree of divergence of the scalar curvature. Based on
our energy momentum tensor components one finds that the
energy density and the radial and tangential pressures are
given by
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Therefore the weak energy conditions (WEC), that is, (i) 𝜌 ≥
0, (ii) 𝜌 + 𝑝 ≥ 0, and (iii) 𝜌 + 𝑞 ≥ 0, all are satisfied. The
strong energy conditions are also satisfied, that is, the WECs
together with (iv) 𝜌 + 𝑝 + 𝑞 ≥ 0. Dominant energy condition
(DEC), that is, 𝑝eff ≥ 0, and causality condition (CC), that
is, 0 ≤ 𝑝eff ≤ 1, are also easily satisfied knowing that 𝑝eff =

(𝑝 + 𝑞)/2 = 0.

2.2. Exact Radial Solution to (2+1)-Dimensional Gravity Cou-
pled to a Self-Interacting Real Scalar Field. Exact radial solu-
tion with a self-interacting, real, scalar field coupled to the
(2+1)-dimensional gravity is given by Schmidt and Singleton
in [25]. The action representing (2 + 1)-dimensional gravity
with a self-interacting scalar field is given by
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2𝜅
∫𝑑
3
𝑥√−𝑔 (𝑅 +L

𝑆
) (19)

in which 𝜅 = 8𝜋𝐺 is the coupling constant, 𝐺 denotes the
Newton’s constant, 𝑅 Ricci scalar, and L

𝑆
represents the

Lagrangian of the self-interacting scalar field 𝜙 given by

L
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𝜇
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The potential 𝑉(𝜙) is a Liouville potential described by
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. (21)
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With reference to [25], the metric and the scalar field are
found as
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√𝜅
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where 𝐾 is a constant parameter. The only nonvanishing
energy-momentum tensor component is the radial pressure
component, 𝑇

𝑟𝑟
= 1/𝜅𝑟

2. The Kretschmann scalar is given by
K = 4/𝑟

4, which indicates a scalar curvature singularity at
𝑟 = 0.This solution has no horizon and, hence, the singularity
at 𝑟 = 0 is a timelike naked singularity.

According to the energy-momentum tensor components
one finds that the energy density and the radial and tangential
pressures are given by

𝜌 = 0,

𝑝 =
1

𝑟
2
,

𝑞 = 0.

(24)

As a consequence, the weak energy conditions (WEC), that
is, (i) 𝜌 ≥ 0, (ii) 𝜌 + 𝑝 ≥ 0, and (iii) 𝜌 + 𝑞 ≥ 0, the strong
energy conditions (SEC), that is, theWECs together with (iv)
𝜌 + 𝑝 + 𝑞 ≥ 0, are all satisfied. The DEC, 𝑝eff = (𝑝 + 𝑞)/2 ≥ 0

is also satisfied.

3. Singularity Analysis

It has been known that the spacetime singularities inevitably
arise in Einstein’s theory of relativity. It describes the “end
point” or incomplete geodesics for timelike or null trajecto-
ries followed by classical particles. Among the others, naked
singularities which is visible from outside needs further care
as far as the weak cosmic censorship hypothesis is concerned.
It is believed that naked singularity forms a threat to this
hypothesis. As a result of this, understanding and the resolu-
tion of naked singularities seems to be extremely important
for the deterministic nature of general relativity. The general
belief in the resolution of the singularities is to employ
the methods imposed by the quantum theory of gravity.
However, the lack of a consistent quantum gravity leads the
researchers to alternative theories in this regard. String theory
[26, 27] and loop quantum gravity [28] constitute two major
study fields in resolving singularities. Another alternative
method, following the work of Wald [14], was proposed by
Horowitz andMarolf (HM) [13], which incorporates the “self-
adjointness” of the spatial part of the wave operator. Hence,
the classical notion of geodesics incompleteness with respect
to point-particle probe will be replaced by the notion of
quantum singularity with respect to wave probes.

In this paper, the method proposed by HM will be used
in analyzing the naked singularity. This method in fact has
been used successfully in (3 + 1) and higher dimensional
spacetimes. Ishibashi and Hosoya [29] have studied sev-
eral spacetimes by employing Sobolev space instead of the

usual Hilbert space. HK have considered quasiregular [30],
Gal’tsov-Letelier-Tod spacetimes [31], Levi-Civita spacetimes
[32, 33], and conformally static spacetimes [34, 35]. Pitelli and
Letelier have considered spherical and cylindrical topological
defects [36], the global monopole spacetime [37], cosmo-
logical spacetime [38], and Horava-Lifshitz cosmology [39].
Mazharimousavi and his collaborators have considered Love-
lock theory [40], linear dilaton black hole spacetimes [41],
model of 𝑓(𝑅) gravity [42], and weak field regime of 𝑓(𝑅)
global monopole spacetimes [43]. The main purpose in these
studies is to understand whether these classically singular
spacetimes turn out to be quantum mechanically regular if
they are probed with quantum fields rather than classical
particles. The idea is in analogy with the fate of a classical
atom inwhich the electron should plunge into the nucleus but
rescued with quantum mechanics. The main concepts of this
methodwhich can be applied only to static spacetimes having
timelike singularities are summarized briefly as follows.

Let us consider the Klein-Gordon equation for a free
particle that satisfies 𝑖(𝑑𝜓/𝑑𝑡) = √A

𝐸
𝜓, whose solution is

𝜓(𝑡) = exp[−𝑖𝑡√A
𝐸
]𝜓(0) in whichA

𝐸
denotes the extension

of the spatial part of the wave operator. If the wave operator
A is not essentially self-adjoint, in other words if A has an
extension, the future time evolution of the wave function𝜓(𝑡)
is ambiguous. Then, the HM method defines the spacetime
as quantummechanically singular. However, if there is only a
single self-adjoint extension, thewave operatorA is said to be
essentially self-adjoint and the quantum evolution described
by 𝜓(𝑡) is uniquely determined by the initial conditions.
According to the HM method, this spacetime is said to
be quantum mechanically nonsingular. The essential self-
adjointness of the operator A can be verified by using the
deficiency indices and the Von Neumann’s theorem that
considers the solutions of the equation

A
∗
𝜓 ± 𝑖𝜓 = 0, (25)

and showing that the solutions of (25) does not belong
to Hilbert space H. (We refer to; [29, 44–46] for detailed
mathematical analysis.)

3.1. Quantum Probes of the Linear Einstein-Maxwell Solution
with Azimuthally Symmetric Electric Field

3.1.1. Klein-Gordon Fields. Themassless Klein-Gordon equa-
tion for a scalar wave can be written as
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This equation can also be written as
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whereA is the spatial operator given by
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And, according to the HM method, it is subjected to be
investigated whether its self-adjoint extensions exist or not.
This is achieved by assuming a separable solution to (25)
in the form of 𝜓(𝑟, 𝜃) = 𝑅(𝑟)𝑌(𝜃), which yields the radial
equation as
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with 𝑐 the separation constant. The essential self-adjointness
of the spatial operator A requires that neither of the two
solutions of the above equation is square integrable over all
space 𝐿2(0,∞). The square integrability of the solution of the
above equation for each sign ± is checked by calculating the
squared norm of the obtained solution in which the function
space on each 𝑡 = constant hypersurface Σ is defined asH =

{𝑅 | ‖𝑅‖ < ∞}. The squared norm for the metric (2) is given
by
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The squared norm is investigated for three different cases of
the value of electric field 𝐸
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√𝑐

𝐸
2

0

𝑟
𝐸
2

0) + 𝑎
6
𝑁
0
(
√𝑐

𝐸
2

0

𝑟
𝐸
2

0) . (36)

Note that 𝐽
0
(𝑥) and𝑁

0
(𝑥) in (33), (35), and (36) are the first

kind of Bessel and Neumann functions, respectively, with
integration constants 𝑎

𝑖
in which 𝑖 = 1 ⋅ ⋅ ⋅ 6.

Our calculations have revealed that, in general, in each
case for appropriate 𝑎

𝑖
, the squared norm ‖𝑅‖

2
< ∞, which

is always square integrable. Hence, the spatial part of the
operator is not essentially self-adjoint for all space 𝐿2(0,∞).
Therefore, the classical singularity at 𝑟 = 0 remains quantum
singular as well when probed with massless scalar, bosonic
waves.

It is remarkable to note that the considered spacetime in
this paper is in the form of a power-law metrics that can be
expressed as

𝑑𝑠
2
= 𝑟
2𝐸
2

0 (−𝑑𝑡
2
+ 𝑑𝑟
2
) + 𝑟
2
𝑑𝜃
2
, (37)

which satisfies all energy conditions.
Quantum singularity structure of the four-parameter,

power-law metrics in 3 + 1-dimensional cylindrically sym-
metric spacetime has already been considered by Helliwell
and Konkowski (HK) in [19]. According to the classification
presented in [19], the metric (28) is Type I with the only
parameters 𝛽 = 2𝐸

2

0
and 𝛾 = 2 such that 𝐶 = 1. In our metric

the parameter 𝛽 is related to the intensity of the constant
electric field 𝐸

0
so that 𝛽 = 2𝐸

2

0
> 0. Hence, 𝛽 < 0 is not

allowed in our study. Furthermore, the absence of an extra
dimension in our study does not provide a wave component
with a mode 𝑘 that has a crucial effect in the study performed
in [19]. HK have shown that a large set of classically singular
spacetimes emerges quantum mechanically nonsingular, if it
is probed with waves having non-zero azimuthal quantum
number 𝑚 and axial quantum number 𝑘. The presence of an
extra dimension in [19], with a parameter 𝛿, is closely related
to the geometry of the spacetime and, hence, the considered
spacetime in this paper is different. It is also important to note
that the presence of the electric field in our study increases
the rate of divergence in scalar curvature. This feature
amounts to increase the strength of the naked singularity.
As a result, unlike the case considered in [19], the classical
naked singularity remains quantum singular with respect to
bosonic wave (spin 0) probe.

3.1.2. Dirac Fields. In 2 + 1-dimensional curved spacetimes,
the formalism leading to a solution of the Dirac equation
was given in [47]. This formalism has been used in [20] and
in our earlier studies [21–23]. The Dirac equation in 2 + 1-
dimensional curved background for a free particle with mass
𝑚 is given by

𝑖𝜎
𝜇
(𝑥) [𝜕

𝜇
− Γ
𝜇
(𝑥)]Ψ (𝑥) = 𝑚Ψ (𝑥) , (38)

where Γ
𝜇
(𝑥) is the spinorial affine connection given by

Γ
𝜇
(𝑥) =

1

4
𝑔
𝜆𝛼
[𝑒
(𝑖)

],𝜇 (𝑥) 𝑒
𝛼

(𝑖)
(𝑥) − Γ

𝛼

]𝜇 (𝑥)] 𝑠
𝜆]
(𝑥) ,

𝑠
𝜆]
(𝑥) =

1

2
[𝜎
𝜆
(𝑥) , 𝜎

]
(𝑥)] .

(39)

Since the fermions have only one spin polarization in 2 + 1-
dimension, the Dirac matrices 𝛾(𝑗) can be given in terms of
Pauli spin matrices 𝜎(𝑖) so that

𝛾
(𝑗)
= (𝜎
(3)
, 𝑖𝜎
(1)
, 𝑖𝜎
(2)
) , (40)
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where the Latin indices represent internal (local) frame. In
this way,

{𝛾
(𝑖)
, 𝛾
(𝑗)
} = 2𝜂

(𝑖𝑗)
𝐼
2×2

, (41)

where 𝜂(𝑖𝑗) is the Minkowski metric in 2 + 1-dimension and
𝐼
2×2

is the identity matrix. The coordinate dependent metric
tensor 𝑔

𝜇](𝑥) and matrices 𝜎𝜇(𝑥) are related to the triads
𝑒
(𝑖)

𝜇
(𝑥) by

𝑔
𝜇] (𝑥) = 𝑒

(𝑖)

𝜇
(𝑥) 𝑒
(𝑗)

] (𝑥) 𝜂
(𝑖𝑗)
,

𝜎
𝜇
(𝑥) = 𝑒

𝜇

(𝑖)
𝛾
(𝑖)
,

(42)

where 𝜇 and ] stand for the external (global) indices. The
suitable triads for the metric (16) are given by

𝑒
(𝑖)

𝜇
(𝑡, 𝑟, 𝜃) = diag (𝑟𝐸

2

0 , 𝑟
𝐸
2

0 , 𝑟) . (43)

With reference to our earlier studies in [21–23], the following
ansatz is used for the positive frequency solutions:

Ψ
𝑛,𝐸

(𝑡, 𝑥) = (

𝑅
1𝑛
(𝑟)

𝑅
2𝑛
(𝑟) 𝑒
𝑖𝜃
)𝑒
𝑖𝑛𝜃
𝑒
−𝑖𝐸𝑡

. (44)

The radial part of the Dirac equations governing the prop-
agation of the fermionic waves should be examined for a
unique self-adjoint extensions for all space 𝐿2(0,∞). In doing
this, the possible values of the electric field intensity 𝐸

0

should also be taken into consideration. To consider all these,
the behavior of the solution of the radial part of the Dirac
equation 𝑅

𝑖𝑛
(𝑟) (𝑖 = 1, 2) will be investigated near 𝑟 → 0,

and 𝑟 → ∞.

(a) The Case of 𝑟 → 0. The behavior of the radial part of the
Dirac equation for 𝐸2

0
> 1 is given by

𝑅
󸀠󸀠

𝑖𝑛
(𝑟) −

𝛼
1

𝑟
𝑅
󸀠

𝑖𝑛
(𝑟) +

𝛼
1
(𝛼
1
+ 2)

4𝑟
2

𝑅
𝑖𝑛
(𝑟) = 0,

𝑖 = 1, 2,

(45)

in which 𝛼
1
= 𝐸
2

0
− 1, and the solution is

𝑅
𝑖𝑛
(𝑟) = 𝑏

1
𝑟
𝛼
1
/2+1

+ 𝑏
2
𝑟
𝛼
1
/2
, 𝑖 = 1, 2. (46)

For 𝐸2
0
= 1 case, the Dirac equation simplifies to

𝑅
󸀠󸀠

𝑖𝑛
(𝑟) + 𝑅

󸀠

𝑖𝑛
(𝑟) − [𝐸

2
+ 𝑛 (𝑛 + 1)] 𝑅

𝑖𝑛
(𝑟) = 0,

𝑖 = 1, 2

(47)

and the solution is given by

𝑅
𝑖𝑛
(𝑟) = 𝑏

3
𝑒
𝑟(−1+√1+4𝜉)/2

+ 𝑏
4
𝑒
−𝑟(1+√1+4𝜉)/2

, 𝑖 = 1, 2 (48)

in which 𝜉 = 𝐸
2
+ 𝑛(𝑛 + 1) and 𝐸 is the energy of the Dirac

particle.

For 0 < 𝐸
2

0
< 1 case, the Dirac equation becomes

𝑅
󸀠󸀠

𝑖𝑛
(𝑟) +

𝛽
0

𝑟
𝑅
󸀠

𝑖𝑛
(𝑟) +

𝛽
0
(𝛽
0
+ 2)

4𝑟
2

𝑅
𝑖𝑛
(𝑟) = 0,

𝑖 = 1, 2

(49)

in which 𝛽
0
= 1 − 𝐸

2

0
, and the solution is

𝑅
𝑖𝑛
(𝑟) = 𝑏

5
𝑟
(𝐸
2

0
+√1−4𝛽

0
)/2

+ 𝑏
6
𝑟
(𝐸
2

0
−√1−4𝛽

0
)/2
, 𝑖 = 1, 2 (50)

such that for a real solution the electric field intensity is
bounded to 3/4 ≤ 𝐸

2

0
< 1. Note that a prime in (45), (47),

and (49) denotes a derivative with respect to 𝑟.
The square integrability of the above solutions corre-

sponding to different values of electric field intensity 𝐸
0
is

checked by calculating the squared norm given in (31). Cal-
culations have indicated that irrespective of the integration
constants 𝑏

𝑘
(𝑘 = 1 ⋅ ⋅ ⋅ 6) and the electric field intensity 𝐸

0
, all

the solutions obtained near 𝑟 → 0 are square integrable; that
is to say ‖𝑅

𝑖𝑛
‖
2
< ∞.

(b) The Case of 𝑟 → ∞. For the asymptotic case, the radial
part of the Dirac equation for the electric field intensity 𝐸2

0
>

1 is given by

𝑅
󸀠󸀠

𝑖𝑛
(𝑟) + 𝑟

𝛼
1
𝑅
󸀠

𝑖𝑛
(𝑟) − 𝑛 (𝑛 + 1) 𝑟

2𝛼
1
𝑅
𝑖𝑛
(𝑟) = 0,

𝑖 = 1, 2,

(51)

whose solution is given by

𝑅
𝑖𝑛
(𝑟) = 𝑏

7
𝑒
−𝑟
𝐸
2

0
(√1+4𝜂+1)

/2𝐸
2

0

× KM(
(𝛼
1
+ 2)√1 + 4𝜂 + 𝛼

1

2𝐸
2

0
√1 + 4𝜂

,
𝛼
1
+ 2

𝐸
2

0

,

√1 + 4𝜂𝑟
𝐸
2

0

𝐸
2

0

)𝑟 + 𝑏
8
𝑒
−𝑟
𝐸
2

0
(√1+4𝜂+1)

/2𝐸
2

0

× KU(
(𝛼
1
+ 2)√1 + 4𝜂 + 𝛼

1

2𝐸
2

0
√1 + 4𝜂

,
𝛼
1
+ 2

𝐸
2

0

,

√1 + 4𝜂𝑟
𝐸
2

0

𝐸
2

0

)𝑟

(52)

in which 𝜂 = 𝑛(𝑛 + 1), KM and KU stand for KummerM and
KummerU.

For 𝐸2
0
= 1, the behavior of the Dirac equation is

𝑅
󸀠󸀠

𝑖𝑛
(𝑟) + 𝑅

󸀠

𝑖𝑛
(𝑟) − 𝑚𝑟

2
𝑅
𝑖𝑛
(𝑟) = 0, 𝑖 = 1, 2, (53)

in which 𝑚 is the mass of the Dirac particle which is taken
to be unity for practical reasons and the solution is given in
terms of Kummer function as

𝑅
𝑖𝑛
(𝑟) = 𝑏

9
KummerM(

13

16
,
3

2
, 𝑟
2
) 𝑟𝑒
−𝑟(1+𝑟)/2

+ 𝑏
10
KummerU(

13

16
,
3

2
, 𝑟
2
) 𝑟𝑒
−𝑟(1+𝑟)/2

.

(54)
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For 0 < 𝐸
2

0
< 1 case, the Dirac equation becomes

𝑅
󸀠󸀠

𝑖𝑛
(𝑟) − 𝑚𝑟

2(1−𝛽
0
)
𝑅
𝑖𝑛
(𝑟) = 0, 𝑖 = 1, 2, (55)

and the solution for𝑚 = 1 and 𝛽
0
= 1/2 is given by

𝑅
𝑖𝑛
(𝑟) = 𝑏

11
√𝑟𝐼
1/3

(𝑥) + 𝑏
12
√𝑟𝐾
1/3

(𝑥) (56)

in which 𝐼
1/3
(𝑥) and 𝐾

1/3
(𝑥) are the first and second kind

modified Bessel functions and 𝑥 = −2𝑟
3/2
/3.

The obtained solutions in asymptotic case 𝑟 → ∞, for
three different electric field intensities 𝐸

0
, are checked for a

square integrability. Our calculations have revealed that the
solutions for 𝑏

8
= 𝑏
10

= 0 and 𝑏
7

̸= 0, 𝑏
9

̸= 0 together
with 𝑏

11
̸= 0 and 𝑏

12
̸= 0, the squared norm ‖𝑅

𝑖𝑛
‖
2
→ ∞,

indicating that the solutions do not belong the Hilbert space.
From this analysis, we conclude that the radial part

of the Dirac operator is not essentially self-adjoint for all
space 𝐿2(0,∞), and, therefore, the formation of the classical
timelike naked singularity in the presence of the azimuthally
symmetric electric field in 2 + 1-dimensional geometry
remains quantum mechanically singular even if it is probed
with spinorial fields.

3.2. Quantum Probes of the Radial Solution to (2 + 1)-
Dimensional Gravity Coupled to a Self-Interacting Real
Scalar Field

3.2.1. Klein-Gordon Fields. Themassless Klein-Gordon equa-
tion for the metric (22) after separating the temporal and
spatial parts can be written as

𝜕
2
𝜓

𝜕𝑡
2
= −A𝜓, (57)

in which the spatial operatorA is given by

A = −𝐾(𝑟
2 𝜕
2

𝜕𝑟
2
+ 2𝑟

𝜕

𝜕𝑟
+

𝜕
2

𝜕𝜃
2
) . (58)

As a requirement of the HM criterion, the spatial operator
A should be investigated for unique self-adjoint extensions.
Hence, it is required to look for a separable solution to (57), in
the form of𝜓(𝑟, 𝜃) = 𝑅(𝑟)𝑌(𝜃)which gives the radial solution
as

𝜕
2
𝑅 (𝑟)

𝜕𝑟
2

+
2

𝑟

𝜕𝑅 (𝑟)

𝜕𝑟
+
1

𝑟
2
(𝑐 ±

𝑖

𝐾
)𝑅 (𝑟) = 0, (59)

in which 𝑐 stands for the separation constant. The essential
self-adjointness of the spatial operatorA requires that neither
of the two solutions of the above equation is square integrable
over all space 𝐿

2
(0,∞). The square integrability of the

solution of the above equation for each sign ± is checked
by calculating the squared norm of the obtained solution in
which the function space on each 𝑡 = constant hypersurface
Σ is defined as H = {𝑅 | ‖𝑅‖ < ∞}. The squared norm for
the metric (22) is given by

‖𝑅‖
2
= ∫

∞

0

√
𝑔
𝑟𝑟
𝑔
𝜃𝜃

𝑔
𝑡𝑡

󵄨󵄨󵄨󵄨
𝑅
±
(𝑟)
󵄨󵄨󵄨󵄨

2

𝑑𝑟 ≃ ∫

∞

0

󵄨󵄨󵄨󵄨
𝑅
±
(𝑟)
󵄨󵄨󵄨󵄨

2

𝑑𝑟. (60)

We first consider the case when 𝑟 → 0. In this limiting case
(59) simplifies to

𝜕
2
𝑅 (𝑟)

𝜕𝑟
2

+
1

𝑟
2
(𝑐 ±

𝑖

𝐾
)𝑅 (𝑟) = 0, (61)

whose solution is

𝑅 (𝑟) = 𝐶
1
𝑟
𝛿
1
+ 𝐶
2
𝑟
𝛿
2
, (62)

in which

𝛿
1
=
1

2
(1 + √1 − 4𝜐) ,

𝛿
1
=
1

2
(1 − √1 − 4𝜐) ,

𝜐 = 𝑐 ±
𝑖

𝐾
.

(63)

The above solution is checked for square integrability with
the norm given in (60). Our analysis have shown that for
specific mode of solution (depending on the value of 𝜐) the
squared norm diverges; that is, ‖𝑅‖2 → ∞, indicating that
the solution does not belong to Hilbert space.

We consider also the case when 𝑟 → ∞, so that (59)
approximates to

𝜕
2
𝑅 (𝑟)

𝜕𝑟
2

+
2

𝑟

𝜕𝑅 (𝑟)

𝜕𝑟
= 0, (64)

and its solution is given by

𝑅 (𝑟) = 𝐶
3
+
𝐶
4

𝑟
, (65)

in which 𝐶
𝑘
(𝑘 = 1 ⋅ ⋅ ⋅ 4) are the integration constants.

The above solution is square integrable if and only if the
integration constant 𝐶

4
= 0. As a consequence, although

there exist some modes of solution that do not belong to the
Hilbert space near 𝑟 → 0 and 𝑟 → ∞, the generic result
is that the considered spacetime remains quantum singular
against bosonic wave probe in view of quantum mechanics.

3.2.2. Dirac Fields. The steps demonstrated previously for the
solution of Dirac equation are applied for the metric given in
(37). The exact radial part of the Dirac equation is given by

𝑅
󸀠󸀠

1𝑛
(𝑟) +

1

𝑟
(1 +

𝐸

𝑀√𝐾𝑟 + 𝐸

)𝑅
󸀠

1𝑛
(𝑟)

+ [
1

𝑟
2
(
𝐸
2

𝐾
− 𝑛
2
) −

𝐸𝑛

𝑟
2
(𝑀√𝐾𝑟 + 𝐸)

−𝑀
2
]

⋅ 𝑅
1𝑛
(𝑟) = 0,

𝑅
󸀠󸀠

2𝑛
(𝑟) +

1

𝑟
(1 −

𝐸

𝑀√𝐾𝑟 − 𝐸

)𝑅
󸀠

2𝑛
(𝑟)

+ [
1

𝑟
2
(
𝐸
2

𝐾
− (𝑛 + 1)

2
) −

𝐸 (𝑛 + 1)

𝑟
2
(𝑀√𝐾𝑟 + 𝐸)

−𝑀
2
]𝑅
2𝑛
(𝑟) = 0.

(66)
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The solution to these equations should be investigated for a
unique self-adjoint extensions for all space 𝐿2(0,∞).This will
be done by considering the behavior of the solution near 𝑟 →

0 and 𝑟 → ∞.

(a) The Case When 𝑟 → 0. The behavior of the radial part of
the Dirac equation given in (66) when 𝑟 → 0 is

𝑅
󸀠󸀠

1𝑛
(𝑟) +

2

𝑟
𝑅
󸀠

1𝑛
(𝑟) −

𝐸𝑛

𝑀√𝐾𝑟
3
𝑅
1𝑛
(𝑟) = 0,

𝑅
󸀠󸀠

2𝑛
(𝑟) +

2

𝑟
𝑅
󸀠

2𝑛
(𝑟) −

𝐸 (𝑛 + 1)

𝑀√𝐾𝑟
3
𝑅
2𝑛
(𝑟) = 0,

(67)

whose solutions are given, respectively, by

𝑅
1𝑛
(𝑟) =

𝑑
1

√𝑟
𝐽
1
(𝑥
1
) +

𝑑
2

√𝑟
𝑁
1
(𝑥
1
) ,

𝑅
2𝑛
(𝑟) =

𝑑
3

√𝑟
𝐽
1
(𝑥
2
) +

𝑑
4

√𝑟
𝑁
1
(𝑥
2
) ,

(68)

where 𝑑
𝑘
(𝑘 = 1 ⋅ ⋅ ⋅ 4) are the integration constants, 𝐽

1
(𝑥
𝑖
)

and𝑁
1
(𝑥
𝑖
) are the Bessel and Neumann functions with order

the 1 such that 𝑥
1
= 2√−𝜆

1
/𝑟 and 𝑥

2
= 2√−𝜆

2
/𝑟, 𝜆
1
=

𝐸𝑛/𝑀√𝐾, 𝜆
2
= 𝐸(𝑛 + 1)/𝑀√𝐾. The square integrability of

these solutions is checked with the norm given in (60). The
outcome of our analysis is that none of the obtained solutions
belong to the Hilbert space. In other words the squared norm
‖𝑅‖
2
→ ∞.

(b) The Case When 𝑟 → ∞. The behavior of the radial part
of the Dirac equation given in (66) when 𝑟 → ∞ is

𝑅
󸀠󸀠

1𝑛
(𝑟) +

1

𝑟
𝑅
󸀠

1𝑛
(𝑟) −

𝐸𝑛

𝑀√𝐾𝑟
3
𝑅
1𝑛
(𝑟) = 0,

𝑅
󸀠󸀠

2𝑛
(𝑟) +

2

𝑟
𝑅
󸀠

2𝑛
(𝑟) −

𝐸 (𝑛 + 1)

𝑀√𝐾𝑟
3
𝑅
2𝑛
(𝑟) = 0,

(69)

whose solutions are given, respectively, by

𝑅
𝑖𝑛
(𝑟) = 𝑙

𝑖
𝐽
0
(𝑥
3
) + 𝑙
𝑖
𝑁
0
(𝑥
3
) , 𝑖 = 1, 2 (70)

in which 𝑙
𝑖
(𝑖 = 1, 2) are the integration constants and

𝐽
0
(𝑥
3
) and 𝑁

0
(𝑥
3
) are the Bessel and Neumann functions

with order 0 such that 𝑥
3

= √−𝑀𝑟. The analysis for
square integrability has shown that this solution is not square
integrable. Alternatively, ‖𝑅‖2 → ∞.

As a result of this analysis, the radial part of the Dirac
operator on this spacetime is essentially self-adjoint and,
therefore, the timelike naked singularity in the (2 + 1)-
dimensional gravity sourced by a real scalar field is quantum
mechanically wave regular. This result indicates that the spin
of the wave is effective in healing the singularity.

4. Conclusion

In this paper, the formation of timelike naked singularities in
2 + 1-dimensional power-law spacetimes in linear Einstein-
Maxwell andEinstein-scalar theories powered by azimuthally

symmetric electric field and a self-interacting real scalar field,
respectively, are investigated fromquantummechanical point
of view. Two types of waves with different spin structures are
used to probe the timelike naked singularities that develops
at 𝑟 = 0.

We showed that the scalar (bosonic, spin 0) wave probe
is not effective in healing the classical timelike naked singu-
larities formed both in 2 + 1-dimensional power-law metrics
sourced by azimuthally symmetric electric field and a real
scalar field. From the Kretschmann scalar given in (17), it is
easy to observe that the azimuthally symmetric electric field
𝐸
0
serves to increase the rate of divergence and, hence, in

some sense yields a stronger naked singularity at 𝑟 = 0.
It is important to compare our study with that of HK in

[19] and of BFW in [15], where the occurrence of timelike
naked singularities is analyzed in quantummechanical point
of view. First, we compare with the work of HK. The metric
considered by HK is a four-parameter power-law metrics in
3 + 1-dimension, whose metric coefficients behave as power
laws in the radial coordinate 𝑟, in the small 𝑟 approximation.
The common point of our study with that of HK is that
both metrics are in the power-law form. However, there is
a significant difference between our metrics and that of HK.
Although, the duality of the Maxwell field 2-form in 3 + 1-
dimension is still a 2-form, but in 2 + 1-dimension, duality
of the Maxwell field maps a 2-form into 1-form or vice
versa. Another distinction is that the presence of an extra
dimension in 3 + 1-dimension, allows the mode solution in
the wave equation to depend on the axial quantum number
𝑘, which has a crucial effect on healing the singularity. We
may add also that 2 + 1-dimensional spacetime is a brane in
3 + 1-dimension and therefore dilution of the gravitational
singularity in higher dimensions is not unexpected. In view
of all these, the spacetimes considered in this paper and that
of HK is topologically different. Another interesting result
of this study is that all the energy conditions WEC, DEC,
and SEC and the causality conditions are satisfied, but the
spacetime is quantum singular.There was an attempt to relate
the quantum regular/singular spacetimes with the energy
conditions in [19]. The result obtained in our case indicates
that eliminating the quantum singular spacetimes by just
invoking the energy conditions is not a reliable method.
This result confirms the comment made by HK in [19] that
invoking energy conditions is not guaranteed physically.

On the other hand, the metric considered by BFW in [15]
is a spherically symmetric power-law metrics with dimen-
sions 𝑛 ≥ 4. Here, the timelike naked singularity is probed
with scalar field and shows that the resulting spacetime is
quantum singular. The possible connection with the energy
conditions on the quantum resolution of the timelike naked
singularity is also addressed in [15]. The general conclusion
drawn for 𝑛 ≥ 4-dimensional spherically symmetric power-
law metrics is that “metrics with timelike singularities of
power-law type satisfying the strict dominant energy condi-
tion remain singular when probed with scalar waves.” This
statement is in conformity with our results obtained in
this study. As it was shown, the considered spacetimes
in (2 + 1)-dimensional gravity (Einstein-Maxwell solution
with azimuthally symmetric electric field and Einstein-scalar
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solution with a self-interacting real scalar field) satisfies the
DEC, and the classical timelike naked singularities in both
metrics remain quantum singular when probed with scalar
wave obeying the Klein-Gordon equation.What we believe is
that the statement of BFWcannot be generalized for anywave
probe.

A contradicting result to above statement is obtained
for the exact radial solution with a self-interacting, real,
scalar field coupled to the (2 + 1)-dimensional gravity.
The timelike naked singularity is probed with Dirac field
(fermionic, spin 1/2) that obeys the Dirac equation. We
showed that the spatial radial part of the Dirac operator has
a unique extension so that it is essentially self-adjoint. And
as a result, the classical timelike naked singularity in the
considered spacetime remains quantum regular when probed
with fermions.

The notable result obtained in this paper and also in
earlier studies along this direction has indicated that the
quantum healing of the classically singular spacetime cru-
cially depends on the wave that we probe the singularity.
In order to understand the generic behavior of the 2 + 1-
dimensional spacetimes, more spacetimes should be investi-
gated. So far, vacuumEinstein, Einstein-Maxwell (both linear
and nonlinear), and Einstein-Maxwell-dilaton solutions are
investigated. As a future research, timelike naked singularities
in 2+1-dimensional Einstein-scalar (minimally coupled) and
Einstein-Maxwell-scalar solutions should also be investigated
from quantummechanical point of view. It will be interesting
also to consider the spinorial wave generalization of the
power-law metrics considered in [15, 19].
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