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Abstract We revisit the shapes of the throats of wormholes,
including thin-shell wormholes (TSWs) in 2+1 dimensions.
In particular, in the case of TSWs this is done in a flat 2 + 1-
dimensional bulk spacetime by using the standard method of
cut-and-paste. Upon departing from a pure time-dependent
circular shape i.e., r = a (t) for the throat, we employ a
θ -dependent closed loop of the form r = R (t, θ) , and in
terms of R (t, θ) we find the surface energy density σ on the
throat. For the specific convex shapes we find that the total
energy which supports the wormhole is positive and finite.
In addition, we analyze the general wormhole’s throat. By
considering the specific equation of r = R (θ) instead of
r = r0 = const., and upon certain choices of functions for
R (θ), we find the total energy of the wormhole to be positive.

1 Introduction

In the theory of wormholes the prime important issue con-
cerns the energy which turns out to be negative (i.e. exotic
matter) to resist against gravitational collapse. This and sta-
bility related matters informed by Morris and Thorne [1] were
restructured later on by Hochberg and Visser [2]. The 2 + 1-
dimensional version of the wormholes was considered first in
[3,4] and more recent work can be found in [5–7]. The nonex-
istence of negative energy in classical physics/Einstein’s gen-
eral relativity persisted as a serious handicap. Given this fact,
and without reference to quantum theory in which nega-
tive energy has room at the smallest scales to resolve the
problem of microscopic wormholes, how can one tackle
the large scale wormholes? In this study, first we restrict
ourselves to thin-shell wormholes (TSWs) which are tai-
lored by the cut-and-paste technique of spacetimes [8–12].
In our view the theorems proved in [2] for general worm-
holes should be taken cautiously and mostly relaxed when
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the subject matter is TSWs [13]. One important point that
we emphasize/exploit is that the throat need not have a cir-
cular topology. It may depend on the angular variable as
well, for example. This is the case that we naturally con-
front in static, non-spherical spacetimes. One such example
is the Zipoy–Voorhees (ZV)-geometry, which deviates from
spherical symmetry by a deformation/oblateness parameter
[14–16]. We employed this to show that the overall/total
energy can be made positive although locally, depending on
the angular location it may take negative values [17]. We con-
struct the simplest possible TSW in 2 + 1 dimensions whose
bulk is made of flat Minkowski spacetime. Such a wormhole
was constructed first by Visser [8], for the spherical throat
case in 3 + 1 dimensions. In our case of 2 + 1 dimensions
the only non-zero curvature is at the throat which consists of
a ring, apt for the proper junction conditions. For the shape
of the throat we assume an arbitrary angular dependence in
order to attain ultimately a positive total energy (i.e. nor-
mal matter). In other words, the throat surface is chosen as
F = r − R (t, θ) = 0, for an appropriate function R (t, θ) .

For R (t, θ) = a (t), we recover the circular topology con-
sidered to date. Note that t is the coordinate time measured
by an external observer. As a possible choice we employ
R (0, θ) = R0 (θ) = 1√∣∣∣cos 5

2 θ

∣∣∣+1
which represents a starfish

shape. The crucial point about the path of the throat is that
it must be convex rather than concave in order to attain any-
thing but exotic matter. A circle, which is concave yields the
undesired negative energy. We present various alternatives
for the starfish geometrical shapes to justify our argument.
The limiting case of almost zero periodic dependence on the
angle brings us to that of total energy zero (=a vacuum) on
the throat, which amounts to making a TSW from a vacuum.

With this much information as regards 2 + 1-dimensional
TSWs we extend our argument to the 2 + 1-dimensional
general traversable wormhole which is considered to be a
brane in 3+1-dimensional flat spacetime. We provide explicit
examples to show that 2 + 1-dimensional wormholes can be
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fueled by a total positive energy and the null energy condition
is satisfied.

The organization of the paper is as follows. In Sect. 2 we
study TSWs with general throat shapes. 2 + 1-dimensional
wormholes induced from 3+1-dimensional flat spacetime is
considered in Sect. 3. The paper ends with our conclusions
in Sect. 4.

2 Thin-shell wormholes with general throat shape

In this section we consider a model of TSW in 2 + 1-
dimensional flat spacetime. Hence, the bulk metric is given
by

ds2 = −dt2 + dr2 + r2dθ2. (1)

Following [9–12] we introduce M± = {r > R (t, θ)} as two
incomplete manifolds from the original bulk and then we
paste them on an identical hypersurface with equation

F (t, r, θ) = r − R (t, θ) = 0 (2)

to make upon them a complete manifold known as the TSW.
Let us note that in [9–12] and subsequent papers the proper
time τ is used instead of the coordinate time t , which we con-
sider here. As one can see, the results found in terms of t can
be easily transformed to terms of τ . For instance, in the case

we consider here by setting
(

∂ R
∂t

)2 = (
∂ R
∂τ

)2
/
(

1 + (
∂ R
∂τ

)2
)

the results will be expressed in terms of τ. This relation also
shows that in the static equilibrium case ∂ R

∂t = ∂ R
∂τ

= 0 and
therefore the physical properties such as the energy density
and pressures are the same.

The throat is located on the shell r = R (t, θ) and therefore
R (t, θ) is a general function of θ and t but not arbitrary. As,
r = R (t, θ) is going to be the throat which connects two
different spacetimes, in 2 + 1 dimensions it must be a closed
loop. We choose xα = (t, r, θ) for the bulk and ξ i = (t, θ)

for the hypersurface. Therefore while the bulk metric is given
by

gμν = diag
(
−1, 1, r2

)
, (3)

the induced metric on the shell hi j is obtained by using

hi j = ∂xα

∂ξ i

∂xβ

∂ξ j
gαβ. (4)

One finds

ds2

 = −

(
1 − Ṙ2

)
dt2 +

(
R2 + R′2) dθ2 + 2Ṙ R′dtdθ,

(5)

in which a prime and a dot stand for derivative with respect
to θ and t, respectively. Next, we find the extrinsic curvature

tensor defined as

K ±
i j = −n±

γ

(
∂2xγ

∂ξ i∂ξ j
+ �

γ
αβ

∂xα

∂ξ i

∂xβ

∂ξ j

)
, (6)

in which

n±
γ = ± 1√




∂ F (t, r, θ)

∂xγ
(7)

with


 = ∂ F (t, r, θ)

∂xα

∂ F (t, r, θ)

∂xβ
gαβ. (8)

Using (2), we find


 = 1 +
(

R′

R

)2

− Ṙ2. (9)

The exact form of the normal vector is found to be

n±
t = ± 1√




(−Ṙ
)
, (10)

n±
r = ± 1√



, (11)

and

n±
θ = ± 1√




(−R′) , (12)

such that |�n| = 1. The bulk’s line element (1) admits
�θ

rθ = �θ
θr = 1

r , �r
θθ = −r , while the remaining Christoffel

symbols are zero. Therefore, the extrinsic curvature tensor
elements become

K ±
tθ = −n±

r Ṙ′ − n±
θ

(
Ṙ

R

)
, (13)

K ±
t t = −n±

r R̈, (14)

K ±
θθ = −n±

r

(
R′′ − R

) − 2n±
θ

R′

R
. (15)

The Israel junction conditions [18–22] read

k j
i − kδ

j
i = −8π S j

i , (16)

in which

S j
i =

(−σ q1

q2 p

)
(17)

is the energy-momentum tensor on the thin shell, k j
i =

K j+
i − K j−

i and k = trace
(

k j
i

)
. Note that q1 and q2

are appropriate pressure terms. Combining the results found
above we get

ktt = − 2R̈√



, (18)

kθθ = −2√



(
R′′ − R − 2R′2

R

)
, (19)
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and

ktθ = −2√



(
Ṙ′ − R′ Ṙ

R

)
. (20)

Furthermore, one finds

kt
t = htt ktt + htθktθ , (21)

kθ
θ = hθθ kθθ + hθ t kθ t , (22)

kθ
t = hθ t ktt + hθθktθ , (23)

and

kt
θ = htt kθ t + htθkθθ . (24)

We recall that

hi j =
(−B H

H A

)
, (25)

which implies

hi j =
( −A

AB+H2
H

AB+H2
H

AB+H2
B

AB+H2

)
, (26)

in which A = (
R′2 + R2

)
, B = 1 − Ṙ2 and H = Ṙ R′.

Considering (26) in (21–25) we find

kt
t =

−2
[(

1 − Ṙ2
) (

Ṙ′ − R′ Ṙ
R

)
− (

R′2 + R2
)

R̈
]

[(
R′2 + R2

) (
1 − Ṙ2

) + Ṙ2 R′2]
√

1 +
(

R′
R

)2 − Ṙ2

,

(27)

kθ
θ =

−2
[(

1 − Ṙ2
) (

R′′ − R − 2R′2
R

)
+ Ṙ R′

(
Ṙ′ − R′ Ṙ

R

)]
[(

R′2 + R2
) (

1 − Ṙ2
) + Ṙ2 R′2]

√
1 +

(
R′
R

)2 − Ṙ2

,

(28)

kθ
t =

−2
[

Ṙ R′ R̈ + (
1 − Ṙ2

) (
Ṙ′ − R′ Ṙ

R

)]
[(

R′2 + R2
) (

1 − Ṙ2
) + Ṙ2 R′2]

√
1 +

(
R′
R

)2 − Ṙ2

,

(29)

and

kt
θ =

−2
[

Ṙ R′
(

R′′ − R − 2R′2
R

)
− (

R′2 + R2
) (

Ṙ′ − R′ Ṙ
R

)]
[(

R′2 + R2
) (

1 − Ṙ2
) + Ṙ2 R′2]

√
1 +

(
R′
R

)2 − Ṙ2

.

(30)

Therefore the Israel junction conditions imply

σ = − 1

8π
kθ
θ (31)

and

p = 1

8π
kt

t . (32)

In static equilibrium, one may set R = R0 (θ) and Ṙ0 =
R̈0 = 0, which consequently yield

σ0 = 1

4π

(
R′′

0 − R0 − 2R′2
0

R0

)

(
R′2

0 + R2
0

) √
1 +

(
R′

0
R0

)2
, (33)

and

p0 = q10 = q20 = 0. (34)

This is not surprising since the bulk spacetime is flat. There-
fore in the static equilibrium, the only non-zero component of
the energy-momentum tensor on the throat is the energy den-
sity σ0. We note that the total matter supporting the wormhole
is given by

� =
∫ 2π

0

∫ ∞

0

√−gσδ (r − R) drdθ. (35)

Let us add that a physically acceptable energy-momentum
tensor must at least satisfy the weak energy conditions, which
implies (i) σ0 ≥ 0 and (ii) σ0 + p0 ≥ 0 and the total energy to
be positive and finite. Therefore for the energy-momentum
tensor which we have found on the surface with only energy
density non-zero, our task reduces naturally to finding the
specific case with σ0 ≥ 0 and 0 ≤ � < ∞.

In the sequel we consider the various possibilities of the
shape of the throat including the circular one. The first case
to be checked is the circular throat i.e., R0 = constant. This
leads to σ0 = −1

4π
1

R0
and clearly violates the null energy

condition which states that σ0 + p0 ≥ 0.

For a specific function of R0 (θ) , there are four different
possibilities: (i) σ0 < 0 on entire domain of θ ∈ [0, 2π ] , (ii)
σ0 ≤ 0 or σ0 ≥ 0 but the total energy � < 0, (iii) σ0 ≤ 0 or
σ0 ≥ 0 with the total energy � > 0 and (iv) σ ≥ 0. Here

� =
∫ 2π

0
R0σ0dθ (36)

is the total energy on the throat. In what follows we present
illustrative examples for all cases. We note that the specific
cases given below can easily be replaced by other functions
but we must keep in mind that although R0 (θ) is a general
function, r = R0 must present a closed path in 2 + 1 dimen-
sions.

2.1 σ0 < 0,� < 0

In the first example, the throat is deformed from a perfect
circle to an oval shape given by

R0 (θ) = 1

0.5 cos2 θ + 1
. (37)

The shape of the throat and σ0 are shown in Fig. 1a, b, respec-
tively. As we observe in Fig. 1b, the energy density is negative
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Fig. 1 The geometry of the throat for R0 (θ) = 1
0.5 cos2 θ+1

with its
energy density distribution σ0. We see that the signature of the curvature
is positive everywhere and as a result the matter is exotic everywhere

Fig. 2 The geometry of the throat when R0 (θ) = 1
0.5 cos2(3θ)+1

and
its energy density distribution σ0. This figure shows that σ0 is positive
when the curvature is negative and vice versa. The total energy which
supports the wormhole, however, is negative

everywhere for θ ∈ [0, 2π ]. This is also seen from the shape
of the throat whose curvature is positive on θ ∈ [0, 2π ] .

Although the total exotic matter for the throat of the form of
a circle of radius one is −0.5, in the case of (37) the total
exotic matter is −0.48111 in geometrical units. This shows
that a small deformation causes the total exotic matter to be
less.

2.2 σ0 ≶ 0,� < 0

As our second case we consider

R0 (θ) = 1

0.5 cos2 (3θ) + 1
, (38)

which admits a throat of the shape shown in Fig. 2a. The
corresponding energy density σ0 is shown in Fig. 2b. As one
can see the energy density is positive wherever the curvature
of the throat is negative and vise versa. The overall energy is
negative: � = −0.39339 unit.

Fig. 3 The geometry of the throat when R0 (θ) = 1∣∣∣cos
(

5
2 θ

)∣∣∣+1
and σ0

in terms of θ. Note that σ0 is overwhelmingly positive and so is the total
energy

2.3 σ0 ≶ 0,� > 0

For

R0 (θ) = 1∣∣∣cos
(

5
2θ

)∣∣∣ + 1
(39)

the shape of the throat looks like a starfish as is displayed in
Fig. 3a. The behavior of the energy density σ0 is depicted in
Fig. 3b. As is clear σ0 is positive everywhere except at the
neighborhood of the corners of the throat where the curvature
is positive. The total energy, however, is positive i.e., � =
0.38888 unit.

2.4 σ0 > 0,� > 0

For this case let us consider

R0 (θ) = 1√∣∣∣cos
(

5
2θ

)∣∣∣ + 1

, (40)

which is shown in Fig. 4a. In this case σ0 is positive every-
where as is shown in Fig. 4b and the total energy is posi-
tive i.e. � = 0.40561 unit. We should admit, however, that
although R0 (θ) is well defined everywhere in the range of θ

i.e., θ ∈ [0, 2π ] at five spike points in Fig. 4a its derivative
does not exist. This feature of R0 (θ) causes the energy den-
sity to be discontinuous at the same values of θ. This means
that σ0 is not defined at those points although its limit exists
and is positive and finite. Figure 4c shows that σ0 is positive
around those critical points.

2.5 Parametric ansatz for R0 (θ)

To complete our analysis we look at the case given in Sect. 2.2
and generalize the form of R0 (θ) as given by

R0 (θ) = 1

ε cos2 (nθ) + 1
, (41)
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Fig. 4 The geometry of the throat when R0 (θ) = 1√∣∣∣cos
(

5
2 θ

)∣∣∣+1
and

σ0 in terms of θ. In this figure σ0 is positive everywhere as the curvature
is negative, and the total energy is positive

Fig. 5 The geometry of the throat when R0 (θ) = 1
ε cos2(nθ)+1

in terms
of θ for ε = 0.1 and n = 5, 50, 100, and 200. The total exotic matter
� for each case is also given. We observe that larger n yields smaller
amount of exotic matter such that limn→∞ � = 0

in which ε ∈ R
+ and n = 2, 3, 4, . . .. In Fig. 5 we plot R0 (θ)

in terms of different n and ε = 0.1. The total exotic matter
for each case is also calculated. We observe that increas-
ing n decreases the magnitude of the exotic matter. When n

goes to infinity (i.e. an infinite oscillation) the total energy
goes to zero, while at each point the energy density shows
a positive or negative fluctuation. Of course the assumption
of infinite frequency takes us away from the domain of clas-
sical physics, probably to the quantum domain. In the latter,
particle creation from a vacuum is well known. Here, instead
of particles we have the formation of wormholes. The ansatz
(41) shows how one can go to the vacuum case � → 0 with
n → ∞. Yet we wish to abide by the classical domain with
n 
 ∞.

3 2 + 1-dimensional wormhole induced by
3 + 1-dimensional flat spacetime

We consider the 3 + 1-dimensional Minkowski spacetime in
the cylindrical coordinates

ds2 = −dt2 + dr2 + dz2 + r2dθ2 (42)

with the substitution z = ξ (r, θ) . This gives the line element

ds2 = −dt2 +
(

1 + ξr (r, θ)2
)

dr2

+
(

r2 + ξθ (r, θ)2
)

dθ2 + 2ξr (r, θ) ξθ (r, θ) drdθ, (43)

in which ξr (r, θ) = ∂ξ(r,θ)
∂r and ξθ (r, θ) = ∂ξ(r,θ)

∂θ
where

ξ (r, θ) is a function of r and θ . Using this line element, the
Einstein tensor is obtained with only one non-zero compo-
nent, i.e.,

Gt
t = −r3ξrξrr + ξrrξθθr2 − ξ2

θ + 2ξrθ ξθr − ξ2
rθr(

r2 + ξ2
θ + ξ2

r r2
)2 . (44)

Einstein’s equation (8πG = 1 = c) reads

Gν
μ = T ν

μ , (45)

in which T ν
μ is the energy-momentum tensor. The latter

implies that the only non-zero component of the energy-
momentum tensor is the T t

t = −ρ component and therefore

ρ = r3ξrξrr + ξrrξθθr2 − ξ2
θ + 2ξrθ ξθr − ξ2

rθr(
r2 + ξ2

θ + ξ2
r r2

)2 . (46)

The total energy which supports the wormhole is obtained
by

� =
∫ 2π

0

∫ ∞

0
ρ
√−gdrdθ. (47)

To complete this section we recall the case of a physical
energy-momentum tensor and the weak energy condition
which we have discussed before. Here, the situation is almost
the same i.e., the only non-zero component of the energy-
momentum tensor is the energy density ρ. Therefore in order
to say that our wormhole is physical, which means it is

123



81 Page 6 of 8 Eur. Phys. J. C (2015) 75 :81

supported by normal (non-exotic) matter, the conditions are
ρ ≥ 0 and 0 ≤ � < ∞.

3.1 Flare-out conditions

To have a wormhole we observe that z = ξ (r, θ) must be
chosen aptly for a general wormhole structure. For instance,
one may consider in the first attempt ξ (r, θ) = ξ (r) and thus
we find

ds2 = −dt2 +
(

1 + ξ ′ (r)2
)

dr2 + r2dθ2, (48)

so that the form of the energy density becomes

ρ = ξ ′ξ ′′

r
(
1 + ξ ′2)2 . (49)

The expression (48) is comparable with Morris–Thorne’s
static wormhole,

ds2 = −e2�(r)dt2 + 1

1 − b(r)
r

dr2 + r2dθ2, (50)

in which �(r) and b (r) are the red-shift and shape functions,
respectively. In the specific case (48), one finds �(r) = 0 and

b (r) = r
(

ξ ′(r)2

1+ξ ′(r)2

)
. The well-known flare-out condition

introduced by Morris and Thorne implies that if r = r0 is
the location of the throat, (i) b (r0) = r0 and (ii) for r > r0,

b′ (r) <
b(r)

r . In terms of the new setting, (i) implies that
at the throat ξ ′ = ±∞ and (ii) states that ξ ′ξ ′′ < 0 for
r > r0. In addition to these conditions at the throat we have
z = ξ (r0) = 0.

Next, we introduce the location of the throat at z = 0
and r = R0 (θ) in which R0 (θ) is a periodic function of
θ. These mean that z = ξ (R0, θ) = 0. Now, for a general
function for z = ξ (r, θ) we impose the same conditions as
the Morris–Thorne wormholes i.e., ξrξrr < 0 for r > R0 (θ)

and at the location of the throat (where z = 0 and r = R0 (θ))
ξr (R0, θ) = ±∞.

3.2 An illustrative example

Here we present an explicit example. Let us consider

ξ = ±2r0

√(
r

R0 (θ)
− 1

)
(51)

in which the first condition i.e., ξ = 0 at the location of the
throat r = R0 (θ) is fulfilled. Next, the expression

ξrξrr = −1

2

r2
0(

r
R0

− 1
)2

R3
0

< 0 (52)

imposes R0 (θ) > 0 on the entire domain of θ i.e. θ ∈
[0, 2π ] . We note also that R0 (θ) must be a periodic function

of θ to make r = r0 R0 (θ) a closed loop, which is going to
be our throat. The forms of

ξr = ±r0

R0

√
r
R0

− 1
(53)

and

ξrr = − ±r0

2R2
(

r
R0

− 1
)3/2 (54)

suggest that at the throat ξr → ±∞ and also ξrr → ∓∞
as expected. The form of the energy density in terms of R,
however, becomes

ρ = R3
0r2

0

(
R′′

0 R0 − R2
0 − 2R′2

0

)
2r

(
r2

0 R′2
0 + R2

0

(
r2

0 + r R0 − r0 R2
0

))2 . (55)

The latter implies that any periodic function of R0 (θ) which
satisfies R′′

0 R0 − R2
0 − 2R′2

0 > 0 can represent a traversable
wormhole with positive energy. In the case of R0 = r0 or

ξ = ±2r0

√
r
r0

− 1, the wormhole is shown in Fig. 6 whose

energy density is given by

ρ = − r0

2r3 . (56)

In Figs. 6, 7, and 8 we plot the wormholes with R0 (θ)

given in (37), (38), (39), (40), and (41), respectively. Also
in Fig. 9, the energy density ρ corresponds to the individual
cases of (a), (b), (c), and (d) for (37), (38), (39), and (40),
respectively, which are given in terms of r and θ with r0 = 1.

Fig. 6 The geometry of the throat when R0 (θ) = 1 for (a) and
R0 (θ) = 1

0.5 cos2 θ+1
for (b) with r0 = 1
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Fig. 7 The geometry of the throat when R0 (θ) = 1
0.5 cos2(3θ)+1

for (a)

and R0 (θ) = 1∣∣∣cos
(

5
2 θ

)∣∣∣+1
for (b) with r0 = 1

Fig. 8 The geometry of the throat when R0 (θ) = 1√∣∣∣cos
(

5
2 θ

)∣∣∣+1
for (a)

and R0 (θ) = 1
ε cos2(nθ)+1

for (b) with r0 = 1, ε = 0.1, and n = 30

We see, for instance, that in Fig. 9d the energy is positive
everywhere.

Regarding Fig. 9d we must admit again that for the same
reason as in the TSW, R0 (θ) does not admit derivative at the
spike points, therefore the energy density ρ is not defined at
the same points. On the other hand its limits exist at these
critical points and are both finite and positive. This can be
seen from (55) whose numerator and denominator become

Fig. 9 The energy densities of the wormholes given in (37) for (a),
(38) for (b), (39) for (c) and (40) for (d). As we observe, in the cases
(b) and (c) the energy density gets a positive value for some interval
while for (d) ρ > 0 everywhere. In (a) the energy density is negative
everywhere

infinity near the critical points, while the ratio, which is the
limit of ρ, remains finite. This is similar to the behavior of a
function like sin(x)

x in the neighborhood of x = 0.

4 Conclusion

First of all let us admit that traversable wormholes in 2 + 1
dimensions were considered much earlier, namely in the
1990s [3,4], and became fashionable recently [5–7]. Our
principal aim in this study is to establish a traversable worm-
hole with normal (i.e. non-exotic) matter in 2+1 dimensions.
For the TSWs the strategy is to assume a closed angular path
of the form r = R (t, θ), where for R (t, θ) = a (t), we
recover the circular throat topology. Since this leads to exotic
matter it is not attractive by our assessment. Let us note that
throughout our study we use the coordinate time instead of
the proper time. Our analysis shows that any concave-shaped
R0 (θ) = R (0, θ) around the origin undergoes the same fate
of exotic matter. However, a convex-shaped R0 (θ) seems
promising in obtaining a normal matter. This is shown by
explicit ansatzes whose plots suggest starfish-shaped closed
curves for the throat of a 2 + 1-dimensional wormhole.
Locally, for specific angular range it may yield negative
energy, but in total the energy accumulates on the positive
side. This result supports our previous finding that for the
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non-spherical spacetimes, i.e. the ZV-metrics, the throats
can be non-spherical and in turn one may obtain a TSW
in Einstein’s theory with a positive total energy [17]. The
conclusion drawn herein for 2 + 1 dimensions therefore can
be generalized to higher dimensions. A similar construction
method has been employed for the general wormholes. We
have treated the 2 + 1-dimensional wormhole as a brane in
3+1-dimensional Minkowski space and show the possibility
of physical traversable wormholes. It turns out, however, that
the rabbit emerges from only very special hats, not from all
hats. Extension of our work to 3+1-dimensional wormholes
is under construction.
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