
Eur. Phys. J. C (2014) 74:3073
DOI 10.1140/epjc/s10052-014-3073-2

Regular Article - Theoretical Physics

Counter-rotational effects on stability of 2 + 1-dimensional
thin-shell wormholes

S. Habib Mazharimousavia, M. Halilsoyb

Department of Physics, Eastern Mediterranean University, Gazimagusa, Turkey

Received: 15 July 2014 / Accepted: 10 September 2014 / Published online: 23 September 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract The role of angular momentum in a 2 + 1-
dimensional rotating thin-shell wormhole (TSW) is consid-
ered. Particular emphasis is given to stability when the shells
(rings) are counter-rotating. We find that counter-rotating
halves make the TSW supported by the equation of state
of a linear gas more stable. Under a small velocity dependent
perturbation, however, it becomes unstable.

1 Introduction

Similar to black holes, wormholes in 2 + 1 dimensions also
constitute informative objects to help us learn more about
their higher-dimensional counterparts. The same is also true
for thin-shell wormholes (TSWs) [1] which are constructed
from an energy-momentum at the throat through a cut-and-
paste technique satisfying the proper junction conditions. We
recall that the history of TSWs started with Visser’s construc-
tion in a 3+1-dimensional flat Minkowski spacetime [1]. At
the same time he extended the idea to the Schwarzschild
spacetime [2]. In his book [3] and work with Poisson [4] he
introduced into physics the terminology of TSWs first. In the
latter work they considered also the stability of a TSW. Ever
since, there have been extensive attempts to understand the
various features of the new kind of wormholes. For a short list
of such attempts we refer the reader to [5–17] and references
cited therein. Among the works on TSWs we see general-
izations to higher [18–20] and lower [21–23] dimensions,
and extensions to Lovelock gravity [24–27]. The theory has
also been considered in cylindrical symmetry [28–34], dila-
ton theory [35], and so on. The common feature of all these
extensions is that the bulk spacetimes are all static. We are
well aware of the difficulties in rotating thin-shell worm-
holes (RTSWs). For this reason we restrict ourselves in this
study to the relatively simpler case of 2 + 1 dimensions. The
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absence of gravitational degrees of freedom, namely, Weyl
curvature in the lower dimension enforces us to add new
physical parameters such as cosmological constant, electric /
magnetic charge, scalar charge, and rotation. Our aim in this
study is to consider RTSWs in 2 + 1 dimensions. The met-
ric function contains the square of the angular momentum
J2, which does not distinguish the cases of ±J for angular
momentum. We recall that rotating TSWs constructed from
a Kerr black hole in 3 + 1 dimensions have been consid-
ered in [36] and their geodesics have been analyzed in [37].
Also rotational effects for collapsing thin shells in 2 + 1 and
4 + 1 dimensions have been considered in detail in [38,39],
respectively.

In our analysis of TSWs we observe that the off-diagonal
components of the extrinsic curvature tensor ki j and related
components of the surface energy-momentum at the throat
Si j vanish in the case that we assume counter-rotating com-
ponents of shells at the throat. The gas pressures from the
upper and lower shells cancel each other to modify the equa-
tion of state to the extent that it becomes equivalent to a
static case. We may draw a rough analogy with the rotat-
ing Earth. Due to the non-inertial effects curly geodesics of
winds, i.e. the Coriolis effect matching at the equator, are
counter-circular in different hemispheres. If the two hemi-
spheres of our Earth were counter-rotating instead of coro-
tating the curly motions should be identical. Counter-rotation
at the throat in the case of TSWs allows us to choose a simpler
surface energy-momentum tensor and study the stability con-
dition. We can choose, for instance, a linear gas (LG) equation
of state (EoS) at the junction in which the pressure is linearly
related to the mass density. For such a LG the counter-rotating
components make the TSW more stable. Increasing the angu-
lar momentum magnitude, i.e. the relative rotation, stabilizes
the TSW further. Our next attempt toward a stable TSW is
to assume a velocity dependent perturbation of the LG. It is
observed that our stability argument is restricted by the linear
perturbation alone in which at the equilibrium radius (R0) we
have the initial conditions Ṙ0 = R̈0 = 0. Once we assume
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that Ṙ0 �= 0, the perturbed throat grows exponentially to
make the TSW unstable. This behavior is proved explicitly.

2 Rotating thin-shell wormhole

The 2+1-dimensional rotating Bañados–Teitelboim–Zanelli
(RBTZ) black hole solution is [40,41]

ds2 = − f (r)dt2 + dr2

f (r)
+ r2(dϕ + Nϕ(r)dt)2, (1)

in which

f (r) = −M + r2

�2 + J 2

4r2 (2)

and

Nϕ(r) = − J

2r2 . (3)

Herein � = ±1/�2 and M and J are the mass and angular
momentum of the RBTZ black hole. We note that in order to
have two horizons 0 ≤ J

�
≤ M . To construct the thin-shell

wormhole we use the method of cut-and-paste introduced in
[1–5]. According to this method we take two copies of the
bulk, M± = {xμ|t ≥ T (τ ) and r ≥ R(τ )}, with the line
elements

ds2± = − f±(r)dt2 + dr2

f±(r)
+ r2(dϕ + Nϕ

±(r)dt)2, (4)

and we paste them at an identical hypersurface �± = � =
{xμ|t = T (τ ) and r = R (τ )} .For convenience we move to
a corotating frame by introducing dϕ + Nϕ

± (R) dt = dψ on
each side separately. The line elements in both sides become

ds2± = − f±(r)dt2

+ dr2

f± (r)
+ r2 [

dψ + (
Nϕ

± (r)− Nϕ
± (R)

)
dt

]2
. (5)

The product manifold is complete with one boundary at the
hypersurface � which we shall call the throat. On the throat
the line element is given by

ds2
� = −dτ 2 + R2dψ2. (6)

To satisfy the Israel junction conditions [42–46], first of all
we have f+(R) = f−(R) = f (R) followed by

− f (R)Ṫ 2 + Ṙ2

f (R)
= −1, (7)

in which a dot stands for the derivative with respect to the
proper time τ. Next, the Einstein equations (Israel junction
conditions) on the hypersurface become

k j
i − kδ j

i = −8πGS j
i , (8)

in which k j
i = K j(+)

i − K j(−)
i , k = tr

(
k j

i

)
, and

K (±)
i j = −n(±)γ

(
∂2xγ

∂Xi∂X j
+ �

γ
αβ

∂xα

∂Xi

∂xβ

∂X j

)

�

(9)

is the extrinsic curvature with embedding coordinate Xi . Also
the normal unit vector is defined as

n(±)γ = ± (−Ṙ, Ṫ , 0
)
. (10)

The surface energy-momentum tensor of the throat is chosen
to be a perfect fluid type gas with

Si j = (σ + P) ui u j + Pgi j .

Here σ is the energy density of the shell, P is the tangential
pressure at the throat and ui is the shell’s velocity. We note
that in a rotating system in both sides of the throat uψ = 0 and

therefore Sτψ = 0, which means that S j
i = diag (−σ, P).

The extrinsic curvature components are then found to be

K τ(±)
τ = ± 2R̈ + f ′

2
√

Ṙ2 + f
, (11)

Kψ(±)
τ = ∓ Nϕ

± (R)
R

, (12)

and

Kψ(±)
ψ = ±

√
Ṙ2 + f

R
. (13)

As a result

k j
i =

⎛

⎝
2R̈+ f ′√

Ṙ2+ f
−

[
Nϕ

+(R)+Nϕ
−(R)

]

R

−
[
Nϕ

+(R)+Nϕ
−(R)

]

R
2
√

Ṙ2+ f
R

⎞

⎠ . (14)

Having diagonal S j
i implies that Nϕ

+ (R) + Nϕ
− (R) = 0,

which consequently admits J++J− = 0.This in turn implies
that the upper shell and the lower shell are counter-rotating,
i.e. they spin in opposite directions. This configuration is
depicted in Fig. 1. (We should add that thin shells in 3 +
1 dimensions with counter-rotating Kerr black holes have
been constructed before in [47].) On the other hand, since J 2

appears in f , it does not create any problem in having the
other conditions satisfied. Therefore

− 2
√

Ṙ2 + f

R
= 8πGσ (15)

and

2R̈ + f ′
√

Ṙ2 + f
= 8πG P (16)

are the only Israel equations left to be satisfied. With the
assumption J+ + J− = 0, therefore the problem becomes
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Fig. 1 Rotating thin-shell wormhole made by counter-rotating perfect
fluids

equivalent to the static (i.e. non-rotating) case. At the equi-
librium state where R = R0 with Ṙ0 = R̈0 = 0 one gets

σ0 = − 2
√

f0

8πG R0
(17)

and

P0 = f ′
0

8πG
√

f0
. (18)

One observes easily that the energy conditions are not satis-
fied since σ0 < 0. The rest of the paper investigates the role
of the angular momentum on the stability of the TSW.

3 Angular momentum and stability

From (15) one finds

Ṙ2 + f − (8πGσ)2 R2

4
= 0, (19)

which can be written as

Ṙ2 + Veff (R) = 0 (20)

with Veff = f − (8πGσ)2 R2

4 . Also, from (15) and (16), it is a
simple task to show that

σ + P = −Rσ ′. (21)

If we try to perturb the TSW from its equilibrium point, this
relation must be satisfied. To keep our analysis as general as
possible, we consider P = ξ (σ ) in which ξ is a well-defined
function of σ . One can show that Veff (R0) = V ′

eff (R0) =
0 and therefore the first nonzero term of the expansion of

Veff (R) about R0 is V ′′
eff (R0) given by

V ′′
eff (R0) = f ′′

0 − f ′2
0 R2

0 + 2ξ ′
0 f0

(
2 f0 − f ′

0 R0
)

2 f0 R2
0

, (22)

in which ξ ′
0 = dξ

dσ

∣∣∣
σ0

and where using quantities with a

subindex 0 implies they are calculated at the throat R = R0.

The equation of motion of the throat, for a small perturbation,
becomes

Ṙ2 + V ′′
eff (R0)

2
(R − R0)

2 =̃ 0 (23)

or, equivalently,

ẍ + V ′′
eff (R0)

2
x =̃ 0 (24)

in which x = R − R0. Therefore for V ′′
eff (R0) > 0 the

motion of the throat is oscillatory with angular frequency

ω =
√

V ′′
eff (R0)

2 , which implies that the TSW is stable. On
the other hand if V ′′

eff (R0) < 0 the motion is of exponential
type and hence the throat upon effecting the perturbation
is unstable. In the following sections we shall consider a
specific EoS i.e. ξ (σ ), and for fixed values of mass and �2 we
study the effect of the angular momentum J on the stability
of the wormhole.

3.1 Linear gas

The EoS of a LG is given by dξ
dσ = β in which β is a constant

parameter. One observes that for the cases
(
2 f0 f ′′

0 − f ′2
0

)
R2

0

2 f0
(
2 f0 − f ′

0 R0
) < β for

2 f0

f ′
0
> R0 (25)

and

2 f0 R2
0 f ′′

0 − f ′2
0 R2

0

2 f0
(
2 f0 − f ′

0 R0
) > β for

2 f0

f ′
0
< R0 (26)

V ′′
eff (R0) > 0 and the equilibrium is stable. In Fig. 2 we

plot the stability region with respect to β and R0. In the
same figure the result for different J are compared. As one
can see, increasing the value of J increases the region of
stability. Therefore the RTSW supported by a perfect fluid
with an EoS of the form of LG becomes more stable. Let
us comment that different EoS may also be investigated but
in this work LG is enough to show the contribution of the
angular momentum.

3.2 Small velocity dependent perturbation

In this section we apply the small velocity perturbation
method which is based on the assumption that the EoS of
the fluid supporting the wormhole after the perturbation is
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Fig. 2 A plot of the regions of stability with respect to R0 and
β for � = 1.0, M = 1.0, and various values for the angular
momentum J. The value of J is given from top to bottom by J =
0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, and 1.4. We note that for J = 1.0 the
bulk possesses a degenerate horizon (extremal black hole) and for J > 1
the bulk solution is not a black hole. The stability region for each case
is shown with an arrow. According to this figure, one concludes that
the bigger the angular momentum, the more stable the RTSW is

the same as when the wormhole is at its equilibrium. From
this assumption one finds from (15) and (16)

P

σ
= − R f ′

2 f
, (27)

which yields the equation of motion for the throat after the
small speed perturbation as

2R̈ + f ′

Ṙ2 + f
= f ′

f
. (28)

Equivalently this amounts to

d

dτ
ln(Ṙ2 + f ) = d

dR
ln ( f ), (29)

which admits

Ṙ2 = Ṙ2
0 f. (30)

Using the explicit form of f upon integration yields

ln

⎛

⎜⎜
⎝

2R2√ f + �
(

2R2

�2 − M
)

2R2
0
√

f0 + �

(
2R2

0
�2 − M

)

⎞

⎟⎟
⎠ = 2Ṙ0

�
(τ − τ0). (31)

Perhaps it would be much easier to comment on R if we could
find a closed form for it but even in this form one can see
that the motion is not oscillatory. This means that although

the speed of the throat does not increase dramatically with
respect to R the equilibrium is not stable.

4 Conclusion

For a TSW in 2+1-dimensions it is observed that by pasting
two counter-rotating shells at the throat the off-diagonal ele-
ments of the surface energy tensor S j

i (and the related K j
i )

vanish. That is, although Sττ and Sψψ are not affected the glu-

ing procedure sets Sψτ = Sτψ = 0.This amounts to the mutual
cancelation of the upper and lower pressure components of
the fluid, leaving only the pressure component Sψψ �= 0.

The effect of the rotation on the geometry, however,
remains intact as it depends on the square of the angular
momentum (J2). The stability of a counter-rotating TSW for
a gas of linear equation of state turns out to make the TSW
more stable. For very fast rotation the stability region grows
much larger in the parameter space. For a velocity depen-
dent perturbation, however, it is shown that the TSW is no
more stable. That is, after a perturbation of the throat radius
(R0) that depends on the initial speed (Ṙ0 �= 0), no matter
how small, it does not return to the equilibrium radius R0

again. Although our work is confined to the simple 2 + 1-
dimensional spacetime it is our belief that similar behaviors
are exhibited also by the higher-dimensional TSWs.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
Funded by SCOAP3 / License Version CC BY 4.0.

References

1. M. Visser, Phys. Rev. D 39, 3182 (1989)
2. M. Visser, Nucl. Phys. B 328, 203 (1989)
3. M. Visser, Lorentzian Wormholes—from Einstein to Hawking

(American Institute of Physics, New York, 1995)
4. E. Poisson, M. Visser, Phys. Rev. D 52, 7318 (1995)
5. P.R. Brady, J. Louko, E. Poisson, Phys. Rev. D 44, 1891 (1991)
6. M. Ishak, K. Lake, Phys. Rev. D 65, 044011 (2002)
7. C. Simeone, Int. J. Mod. Phys. D 21, 1250015 (2012)
8. E.F. Eiroa, C. Simeone, Phys. Rev. D 82, 084039 (2010)
9. F.S. Lobo, Phys. Rev. D 71, 124022 (2005)

10. E.F. Eiroa, C. Simeone, Phys. Rev. D 71, 127501 (2005)
11. E.F. Eiroa, Phys. Rev. D 78, 024018 (2008)
12. F.S.N. Lobo, P. Crawford, Class. Quantum Grav. 22, 4869 (2005)
13. N.M. Garcia, F.S.N. Lobo, M. Visser, Phys. Rev. D 86, 044026

(2012)
14. S.H. Mazharimousavi, M. Halilsoy, Z. Amirabi, Phys. Lett. A 375,

3649 (2011)
15. M. Sharif, M. Azam, Eur. Phys. J. C 73, 2407 (2013)
16. M. Sharif, M. Azam, Eur. Phys. J. C 73, 2554 (2013)
17. S. Habib Mazharimousavi, M. Halilsoy, Eur. Phys. J. C 73, 2527

(2013)

123



Eur. Phys. J. C (2014) 74:3073 Page 5 of 5 3073

18. G.A.S. Dias, J.P.S. Lemos, Phys. Rev. D 82, 084023 (2010)
19. F. Rahaman, M. Kalam, S. Chakraborty, Gen. Rel. Grav. 38, 1687

(2006)
20. S. Habib Mazharimousavi, M. Halilsoy, Z. Amirabi, Class. Quan-

tum Grav. 28, 025004 (2011)
21. C. Bejarano, E.F. Eiroa, C. Simeone, General formalism for the sta-

bility of thin-shell wormholes in 2+1 dimensions. arXiv:1405.7670
22. F. Rahaman, A. Banerjee, I. Radinschi, Int. J. Theor. Phys. 51, 1680

(2011)
23. A. Banerjee, Int. J. Theor. Phys. 52, 2943 (2013)
24. M.H. Dehghani, M.R. Mehdizadeh, Phys. Rev. D 85, 024024

(2012)
25. Z. Amirabi, M. Halilsoy, S. Mazharimousavi, Phys. Rev. D 88,

124023 (2013)
26. S. Habib Mazharimousavi, M. Halilsoy, Z. Amirabi, Phys. Rev. D

81, 104002 (2010)
27. M.G. Richarte, C. Simeone, Phys. Rev. D 76, 087502 (2007)
28. E.F. Eiroa, C. Simeone, Phys. Rev. D 70, 044008 (2004)
29. M. Sharif, M. Azam, JCAP 04, 023 (2013)
30. E. Rubín de Celis, O.P. Santillan, C. Simeone, Phys. Rev. D 86,

124009 (2012)
31. C. Bejarano, E.F. Eiroa, C. Simeone, Phys. Rev. D 75, 027501

(2007)

32. K.A. Bronnikov, V.G. Krechet, J.P.S. Lemos, Phys. Rev. D 87,
084060 (2013)

33. M.G. Richarte, Phys. Rev. D 87, 067503 (2013)
34. S. Habib Mazharimousavi, M. Halilsoy, Z. Amirabi, Phys. Rev. D

89, 084003 (2014)
35. C. Bejarano, E.F. Eiroa, Phys. Rev. D 84, 064043 (2011)
36. P.E. Kashargin, S.V. Sushkov, Grav. Cosmol. 17, 119 (2011)
37. V. Diemer, E. Smolarek, Class. Quant. Grav. 30, 175014 (2013)
38. R.B. Mann, J.J. Oh, M.-I. Park, Phys. Rev. D 79, 064005 (2009)
39. T. Delsate, J.V. Rocha, R. Santarelli, Phys. Rev. D 89, 121501(R)

(2014)
40. M. Bañados, C. Teitelboim, J. Zanelli, Phys. Rev. Lett. 69, 1849

(1992)
41. C. Martinez, C. Teitelboim, J. Zanelli, Phys. Rev. D 619, 104013

(2000)
42. W. Israel, Nuovo Cimento 44B, 1 (1966)
43. V. de la Cruzand, W. Israel, Nuovo Cimento 51A, 774 (1967)
44. J.E. Chase, Nuovo Cimento 67B, 136 (1970)
45. S.K. Blau, E.I. Guendelman, A.H. Guth, Phys. Rev. D 35, 1747

(1987)
46. R. Balbinot, E. Poisson, Phys. Rev. D 41, 395 (1990)
47. J.P. Krisch, E.N. Glass, Class. Quant. Grav. 26, 175010 (2009)

123

http://arxiv.org/abs/1405.7670

	Counter-rotational effects on stability of 2+1-dimensional thin-shell wormholes
	Abstract 
	1 Introduction
	2 Rotating thin-shell wormhole
	3 Angular momentum and stability
	3.1 Linear gas
	3.2 Small velocity dependent perturbation

	4 Conclusion
	References


