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Abstract We consider a particular Bardeen black hole in
2+1-dimensions. The black hole is sourced by a radial elec-
tric field in non-linear electrodynamics (NED). The solution
is obtained anew by the alternative Hamiltonian formalism.
For r → ∞ it asymptotes to the charged BTZ black hole. It
is shown that by inserting a charged, thin shell (or ring) the
charge of the regular black hole can be screened from the
external world.

1 Introduction

Charge is one of the principal hairs associated with black
holes that can be detected classically/quantum mechanically
by external observers. The question that naturally may arise
is the following: By some artifact is it possible to hide charge
from distant observers? This is precisely what we aim to
answer in a toy model of a regular Bardeen black hole in
2+1-dimensions. For this purpose we revisit a known black
hole solution powered by a source from nonlinear electro-
dynamics (NED) [1]. With the advent of NED coupled to
gravity interesting solutions emerge as a result. The reason
for this richness originates from the arbitrary self-interaction
of electromagnetic field paving the way to a large set of pos-
sible Lagrangians. From its inception NED has built a good
reputation in removing singularities due to point charges [2].
This curative power of NED can equally be adopted to gen-
eral relativity where spacetime singularities play a promi-
nent role. As an example we cite the Reissner–Nordstrom
(RN) solution which is known to suffer from the central,
less harmful time-like singularity. By replacing the linear
Maxwell theory with NED it was shown that the space-
time singularity can be removed [3–21]. For similar pur-
poses NED can be employed in different theories as well.
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Let us add that one should not conclude that all gravity-
coupled NED solutions are singularity free. For instance, we
gave newly a solution in 2+1-dimensions where Maxwell’s
field tensor is Fμν = E0δ

t
μδθ

ν , (E0 = constant), which yields
a singular solution [22].

We must also add that apart from introducing NED cou-
pling to make a regular RN an alternative approach was con-
sidered long ago by Israel [23–25]. In [23–25] it was consid-
ered a collapsing spherical shell as a source for the Einstein-
linear Maxwell theory which served equally well to remove
the central singularity.

In this paper we elaborate on a regular Bardeen black
hole in 2 + 1-dimensions [1]. We rederive it by applying
a Legendre transformation so that from the Lagrangian we
shift to Hamiltonian of the system. The Lagrangian of the
involved NED model turns out to be transcendental whereas
the Hamiltonian becomes tractable. We show that at least
the weak energy conditions (WECs) are satisfied. By apply-
ing the extrinsic curvature formalism of Lanczos (i.e. the
cutting and pasting method) [26–29] we match the regular
interior to the chargeless BTZ spacetime [30–32] outside.
The boundary in between is a stable thin shell (or intrinsi-
cally a ring), which is the trivial version of an FRW uni-
verse. The choice of charge on the thin shell with appropri-
ate boundary conditions renders outside to be free of charge.
This amounts, by construct, to shield inner charge of the
spacetime (herein a Bardeen black hole) from the external
observer. The idea can naturally be extended to higher di-
mensional spacetimes to eliminate the black hole’s charge,
or other hairs by artificial setups.

The paper is organized as follows. In Sect. 2 we derive the
Bardeen black hole from the Hamiltonian formalism; the en-
ergy conditions and simple thermodynamics are presented.
The charge screening effect and stability of the thin shell are
described in Sect. 3. The paper is completed with Conclu-
sion in Sect. 4.
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2 Bardeen black hole in 2 + 1-dimensions

2.1 Rederivation of the solution using Hamiltonian method

Bardeen’s black hole in 2 + 1-dimensions was found by
Cataldo et al. [1]. They represented a regular black hole
in 2 + 1-dimensions whose source, in analogy with 3 + 1-
dimensional counterpart [3, 4], is NED. In this section first
we revisit the solution by introducing the Hamiltonian of the
system. The 2 + 1-dimensional action reads

I = 1

2

∫
dx3√−g

(
R − 2Λ −L(F)

)
(1)

in which F = FμνF
μν is the Maxwell invariant with R the

Ricci scalar and Λ the cosmological constant. The line ele-
ment is circular symmetric written as

ds2 = −A(r) dt2 + dr2

A(r)
+ r2 dθ2, (2)

where A(r) is the metric function to be determined. The field
2-form is chosen to be pure radial electric field (as in the
charged BTZ)

F = E(r) dt ∧ dr (3)

in which E(r) stands for the electric field to be found. The
Maxwell nonlinear equation is

d

(
�F

∂L
∂F

)
= 0, (4)

where �F is the dual of F while the Einstein-NED equations
read

Gν
μ + Λgν

μ = T ν
μ (5)

in which

T ν
μ = 1

2

(
Lδν

μ − 4
(
FμλF

νλ
) ∂L
∂F

)
. (6)

We note that F = 2FtrF
tr and therefore

T t
t = T r

r = 1

2

(
L− 2F ∂L

∂F

)
, (7)

while

T θ
θ = 1

2
L. (8)

We apply now the Legendre transformation [3, 4] Pμν =
∂L
∂F Fμν with P = PμνP

μν = ( ∂L
∂F )2F to introduce the

Hamiltonian density as

H = 2F ∂L
∂F −L. (9)

If one assumes that H = H(P) then from the latter equation

∂H
∂P dP =

(
∂L
∂F + 2F ∂2L

∂F2

)
dF (10)

which implies

∂H
∂P d

((
∂L
∂F

)2

F
)

= 1
∂L
∂F

∂

∂F

((
∂L
∂F

)2

F
)

dF (11)

and consequently

∂H
∂P = 1

∂L
∂F

. (12)

Using the inverse transformation Fμν = ∂H
∂P Pμν one finds

F = ( ∂H
∂P )2P and finally

L = 2P ∂H
∂P −H. (13)

As a result of the Legendre transformation the Maxwell
equations become

d
(�P

) = 0 (14)

in which P =Pμν dxμ ∧ dxν and

T ν
μ = 1

2

((
2P ∂H

∂P −H
)

δν
μ − 4

(
PμλP

νλ
)∂H
∂P

)
. (15)

From our field ansatz one easily finds that

T t
t = T r

r = −H
2

, (16)

while

T θ
θ = 1

2

(
2P ∂H

∂P −H
)

. (17)

Let us choose now

H = 2q2P
s2P − 2q2

(18)

in which q and s are two constants. Also from (3) we know
that

P =D(r)dt ∧ dr (19)

and therefore the Maxwell equation (14) implies

D(r) = Q

r
. (20)

Here Q is an integration constant related to charge of the
possible solution. Having D(r) available one finds P =
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− 2Q2

r2 and therefore

H = 2Q2

s2 + r2
(21)

in which Q = q is used. The t t /rr component of the Einstein
equation with Gt

t = Gr
r = A′(r)

2r
reads

A′(r)
2r

+ Λ = − Q2

(s2 + r2)
(22)

for a prime denoting d
dr

, which admits the following solution
for the metric function:

A(r) = C + r2

	2
− Q2 ln

(
r2 + s2), (23)

where C is an integration constant and 1
	2 = −Λ. The θθ

component of energy momentum tensor is found to be

T θ
θ = Q2(r2 − s2)

(r2 + s2)2
. (24)

One can check that with Gθ
θ = A′′(r)

2 the θθ component of
the Einstein equations is also satisfied. Herein, without go-
ing through the detailed calculations, we refer to the Brown
and York formalism [33, 34] to show that −C in (23) is the
mass of the black hole i.e., C = −M . Such details in 2 + 1-
dimensions can also be found in Ref. [35]. The asymptotic
behavior of the solution at large r is the standard charged

BTZ solution i.e.,

lim
r→∞A(r) = −M + r2

	2
− 2Q2 ln r. (25)

For small r it behaves as

lim
r→0

A(r) = −M − Q2 ln s2 + r2

	2
(26)

which makes the metric locally (anti-)de Sitter. Furthermore,
one observes that all invariants are finite at any r ≥ 0 [1].
Next, explicit form of the Lagrangian density with respect
to P is given by

L = −2Q2P(2Q2 + s2P)

(2Q2 − s2P)2
(27)

and the closed form of the electric field i.e., E(r) = ∂H
∂P D(r)

becomes

E(r) = − Qr3

(s2 + r2)2
. (28)

We comment that E(r) is also regular everywhere and at
large r it behaves similar to the standard linear Maxwell field
theory. In all our results, setting s to zero takes our solution
to the standard charged BTZ solution. We must add that the
metric function (23) provides a regular solution. Depending
on the parameters M , (or C), Q and s it may give a black
hole with single/double horizon, or no horizon at all (see
Figs. 1 and 2).

Fig. 1 A plot of V ′′(a0) versus β and a0 with Q = 1, 	2 = 1 and
M1 = M1c in (A) M1 = 0.5M1c in (B) and M1 = 1.5M1c in (C). For
all three plots M2 = 1.2M1 and s = 0.5. In the right bottom we also

plot the metric function for r < a0 to show that the possible horizon
remains inside the thin shell. Figures (A) and (B) manifest stability for
the thin shell against a linear perturbation
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Fig. 2 A plot of V ′′(a0) versus β and a0 with Q = 1, 	2 = 1 and
M1 = M1c in (A) M1 = 0.5M1c in (B) and M1 = 1.5M1c in (C). For
all three plots M2 = 1.2M1 and s = 0.2. In the right bottom we also

plot the metric function for r < a0 to show that the possible horizon
remains inside the thin shell. Figures (A) and (B) manifest stability for
the thin shell against a linear perturbation

2.2 Energy conditions and thermodynamics in brief

In this part we would like to check the energy conditions
such as the weak (WECs) and the strong energy conditions
(SECs). As we have found, the energy density is given by

ρ = −T t
t = Q2

(s2 + r2)
(29)

while the radial and tangential pressures are given respec-
tively by

pr = T r
r = − Q2

(s2 + r2)
(30)

and

pθ = T θ
θ = Q2(r2 − s2)

(r2 + s2)2
. (31)

WECs imply (i) ρ ≥ 0 (ii), ρ + pr ≥ 0 and (iii) ρ + pθ ≥ 0.
All of these conditions are trivially satisfied. The SECs state
that in addition to WECs we must also have ρ +pr +pθ ≥ 0
leading to the condition

Q2(r2 − s2)

(r2 + s2)2
≥ 0 (32)

which is satisfied for r ≥ s. In conclusion WECs are satisfied
everywhere while SECs are satisfied only for r ≥ s.

To complete our solution we look at the thermodynamics
of the solution. (A comprehensive study on thermodynamics
of Einstein–Born–Infeld black holes in three dimensions can
be found in Ref. [36].) If we consider rh to be the radius of
the event horizon then

A(rh) = 0 (33)

which implies that the mass is given by

M = r2
h

	2
− Q2 ln

(
r2
h + s2). (34)

From the first law of thermodynamics dM = T dS + Φ dQ

in which S = 2πrh is the entropy and Φ is the electric po-
tential all measured at the horizon, one can write

T =
(

∂M

∂S

)
Q

= rh(r
2
h + s2 − Q2	2)

2π	2(r2
h + s2)

. (35)

Finally we write the heat capacity as CQ = T (∂T
∂S

) which is
given by

CQ = rh(r
2
h + s2 − Q2	2)

16π3	4(r2
h + s2)3

× (r4
h + r2

h(2s2 + Q2	2) + s2(s2 − 	2Q2))

16π3	4(r2
h + s2)3

. (36)
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One observes that lims→0 T = r2
h−Q2	2

2π	2rh
and lims→0 CQ =

r4
h−Q4	4

16π3	4r3
h

which are the thermodynamic quantities of charged

BTZ.
In brief, we rederived the 2 + 1-dimensional version

of the regular Bardeen black hole. Our source is NED
with an electric field Ftr �= 0, in 2 + 1-dimensions. Our
Maxwell invariant F = FμνF

μν is regular everywhere.
For r → ∞ our solution goes to the charged BTZ so-
lution. For r → 0 the solution is locally (anti)-de Sit-
ter which globally can be interpreted as a topological de-
fect.

3 Charge screening by a thin stable shell

In this section we shall use the formalism introduced by
Eiroa and Simeone [29] to construct a thin shell (not bub-
ble) which may shield the charge of the regular Bardeen
black hole given above. (There are some other related
works in 2 + 1-dimensions which are given in Refs. [37–
41].) Therefore we employ the Bardeen black hole solu-
tion in 2 + 1-dimensions for r < a (region 1 with f1(r) =
A(r) in (2)) and the de Sitter BTZ black hole solution
for r > a (region 2 with f2(r) = A(r) in (2)) in which
a is the radius of the thin shell under construction. The
extrinsic line element on the shell (or ring) is written
as

ds2
12 = −dτ 2 + a2 dθ2, (37)

where τ is the proper time on our time-like shell. One must
note that our shell is not dynamic in general but in order to
investigate the stability of the thin shell against a linear per-
turbation, we let the radius a to be a function of the proper
time τ which is measured by an observer on the shell. This
indeed does not mean that the bulk metric is time depen-
dent. This method has been introduced by Israel [23–25]
and being used widely to study the stability of thin shell and
thin-shell wormholes ever since [42–48]. The Einstein equa-
tions on the shell become Lanczos equations [23–29] which
are given by

−[
K

j
i

] + [K]δj
i = 8πS

j
i (38)

in which one finds [26–29] the energy density on the
shell

σ = −Sτ
τ = 1

8πa

(√
f1(a) + ȧ2 −

√
f2(a) + ȧ2

)
(39)

and the pressure

p = Sθ
θ = 2ä + f ′

2(a)

16π
√

f2(a) + ȧ2
− 2ä + f ′

1(a)

16π
√

f1(a) + ȧ2
. (40)

Note that a ‘prime’ is derivative with respect to a while a
‘dot’ is with respect to proper time. Having energy con-
served implies that

d

dτ
(aσ ) + p

da

dτ
= 0 (41)

for any dynamic shell (ring) as a is a function of proper time
τ . If one considers the equilibrium radius to be at a = a0

the energy density and pressure at equilibrium are given
by

σ0 = 1

8πa0

(√
f1(a0) − √

f2(a0)
)

(42)

and

p0 = f ′
2(a0)

16π
√

f2(a0)
− f ′

1(a0)

16π
√

f1(a0)
. (43)

Furthermore a linear perturbation causes the pressure and
energy density to vary as p 	 p0 + βσ in which β is a pa-
rameter equivalent to the speed of sound on the shell. Next,
one can, in principle, solve the conservation of energy equa-
tion to find

σ =
(

a

a0

)1+β(
σ0 + p0

1 + β

)
− p0

1 + β
. (44)

The dynamic of the energy density also is given by (39)
which together imply a one dimensional equation of motion
for the shell is given by

ȧ2 + V (a) = 0 (45)

with

V (a) = f1(a) + f2(a)

2
−

(
f1(a) − f2(a)

16πaσ

)2

− (4πaσ)2.

(46)

At the equilibrium V (a0) = V ′(a0) = 0 and the first nonzero
term is the second derivative of the potential at a = a0

which must be positive to have an oscillatory motion for
the shell upon linear perturbation. This in turn means
that the shell will be stable. In Figs. 1 and 2 we plot
the region in which V ′′(a0) ≥ 0 or the stable regions
with

f1(a) = −M1 + a2

	2
− Q2

1 ln
(
a2 + s2) (47)

and

f2(a) = −M2 + a2

	2
. (48)



Page 6 of 7 Eur. Phys. J. C (2013) 73:2527

To do so we used a critical mass

M1c = Q2[1 − ln
(
Q2	2)] − s2

	2
(49)

at which for M1 > M1c a black hole with two horizons
forms inside the thin shell and for M1 < M1c the solution
for inside thin shell is non-black hole while M1 = M1c rep-
resents the extremal black hole inside the thin shell. We
note that a distant observer does not detect any electric
charge of the black hole. Therefore the black hole struc-
ture of the spacetime inside the shell may not be seen
even though a was supposed to be larger than the hori-
zon. In this case the thin shell carries a charge Q2 = −Q1

which completely shields the black hole nature of the space-
time. In fact Figs. 1 and 2 show that the thin shell is sta-
ble for all values of β irrespective of whether we have
an extremal black hole or no black hole at all. However
in the case of non-black hole solution which are shown
in Figs. 1B and 2B, if the initial radius of the ring a0

(which is also the equilibrium radius) is set less than rmin

in which f ′
1(rmin) = 0, such perturbation may make the ring

to collapse to a point. In such case still there is no sin-
gularity and the remained spacetime is BTZ solution. Fur-
thermore, since the internal black hole is regular, the thin
shell behaves like an ordinary object with no singularity in-
side.

4 Conclusion

No doubt, Einstein/Einstein–Maxwell theory has limited
scopes in 2 + 1-dimensional spacetimes which has been
studied extensively during the recent decade [30–32]. With
nonlinear electrodynamics (NED) fresh ideas has been
pumped into the spacetime and served well as far as re-
moval of singularities is concerned [35, 49–52]. Most of
the black hole properties in 3 + 1-dimensional spacetime
has counterparts in 2 + 1-dimensions with yet some differ-
ences. One common property is the existence of the regular
Bardeen black hole which is sourced by a radial electric field
in 2+1-dimensions whereas the source in 3+1-dimensions
happened to be magnetic. By encircling the central regular
Bardeen black hole by a charged thin shell and matching in-
side to outside in accordance with the Lanczos’ conditions
we erase the entire effect of charge to the outside world.
Such a thin shell (or ring) does not seem a mere illusion, but
is a reality since it turns out to be stable against linear per-
turbations. The idea works in the case of a regular interior
black hole well but remains to be proved whether it is appli-
cable for a singular black hole. From astrophysical point of
view is it possible that a natural, concentric thin shell with
equal (but opposite) charge to that of a central black hole
forms to cancel external effect of charge at all? Admittedly

our analysis here relates only to the 2 + 1-dimensional case
but it is natural to expect a similar charge screening effect in
higher dimensions as well.
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