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We present a solution for the Einstein-Maxwell equations which unifies both the magnetic Bertotti-

Robinson and Melvin solutions as a single metric in the axially symmetric coordinates ft; �; z; ’g.
Depending on the strength of magnetic field the spacetime manifold, unlike the cases of separate

Bertotti-Robinson and Melvin spacetime, develops singularity on the symmetry axis (� ¼ 0). Our analysis

shows, beside other things, that there are regions inaccessible to all null geodesics.
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I. INTRODUCTION

The Bertotti-Robinson (BR) [1] and Melvin (ML) [2]
solutions of Einstein-Maxwell (EM) theory have been well
known for a long time; these had significant impacts on
different aspects of general relativity. For decades they
remained in fashion and found applications in connection
with stellar objects, cosmology, string theory, etc. A recent
study discusses the similarities/differences between these
spacetimes [3]. It is shown, among other things in [3] for
instance, that the only geodesically complete static EM
spacetimes are the BR and ML solutions. Since they share
more common properties than contrasts, the natural ques-
tion arises whether it is possible to describe both solutions
in a common metric. This is precisely what we show in the
axially symmetric (i.e., t, �, z, ’ coordinates) geometry in
this paper. It should be added that large classes of Einstein-
Maxwell-Kundt solutions (for the Kundt solution see [4])
found a long time ago by Plebanski and Demianski (PD)
[5,6] both admitted separate BR and ML limits in different
coordinates through specific limits. We work out our solu-
tion entirely in the axially symmetric ft; �; z; ’g coordi-
nates and express our metric in those coordinates. Our
solution admits the BR limit but not the separate ML limit.
In other words the BR universe forms the background of
our spacetime on which ML is added. In obtaining the
solution we choose the magnetic phase of the BR solution
so that the total magnetic potential c ð�; zÞ is expressed as a
superposition, c ð�; zÞ ¼ c BRð�; zÞ þ cMLð�; zÞ. The EM
solution constructed from c ð�; zÞ is what we dub as the
‘‘unified BR and ML spacetime.’’ The solution involves
two parameters, �0 (for BR charge) and B0 (for ML
charge). The ranges of parameters are 0< j�0j<1 and
�1<B0 <1, so that our solution does not admit the
ML limit.

BR spacetime is conformally flat whereas ML is
cylindrically symmetric which becomes flat near the
axis � ! 0. For a finite � and jzj ! 1 ML is not flat.
Both are singularity free; a feature that makes them

attractive in cosmology and string theory. We remark
also that the BR solution can be obtained by a coordi-
nate transformation [7] from a spacetime of colliding
electromagnetic waves known as the Bell-Szekeres
solution [8]. Using the Ernst formalism we showed
long ago that within this formalism Bell-Szekeres and
Khan-Penrose [9] solutions can be combined through a
suitable seed function [10]. Also Schwarzschild and BR
spacetimes were interpolated by the electromagnetic
parameter in the oblate spheroidal coordinates [11].
Within similar context superposition of spinning sphe-
roids [12] from harmonic seed functions in the Zipoy-
Voorhees metric [13] were obtained. It is remarkable
that interpolation of BR and ML solutions takes place
in the static axial coordinates ð�; zÞ instead of oblate/
prolate coordinates. The latter coordinate systems are
known to admit separability in the Laplace equation and
had much impact in the development of solution gen-
eration techniques. One of the important conclusions to
be drawn in this study is that two electromagnetic fields,
which separately yield regular spacetimes, namely the
BR and ML, may yield a singular spacetime upon their
combination. Physical interpretation suggests that the
mutual magnetic fields focus each other strong enough
to result in a singularity. The singularity at � ¼ z ¼ 0

(for B0

�0
< 0 and B0

�0
> 1) does not exhibit directional

properties [14], that is, the Kretschmann scalar diverges
irrespective of the way of approach and (� ¼ 0, z > 0) is
the only singularity in our solution for arbitrary parame-
ters. An exact solution of null geodesics reveals that we
have a null-geodesically incomplete manifold. Beside
null geodesics we study the radial motion for massless/
massive particles and also the circular motion in the
z ¼ 0 plane. From the analysis of the potential the
circular motion admits stable orbits.
Organization of the paper is as follows. In Sec. II we

introduce magnetic fields in axial symmetry, solve the
equations, and derive the metric of unified BR and ML
spacetimes. The geodesic equation and its solutions are
investigated in Sec. III. The paper ends with a conclusion
in Sec. IV.
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II. MAGNETIC FIELDS IN STATIC
AXIAL SYMMETRY

To review the basics of an axially symmetric spacetime
we start with the line element

ds2 ¼ �e2Udt2 þ e�2U½e2Kðd�2 þ dz2Þ þ �2d’2� (1)

in which U, K and � are functions of � and z alone. The
EM field equations can be derived from a variational
principle of the action

I ¼
Z

Ld�dz; (2)

where

L¼K���þKz�z��½U2
�þU2

z �e�2Uðc 2
�þc 2

zÞ�: (3)

Here f�=fz denotes partial derivative of a function fð�; zÞ
with respect to �=z and c is a magnetic potential. Upon
variation the metric function � is fixed as � ¼ �, while the
two basic equations take the forms

ð�U�Þ� þ �Uzz � �e�2Uðc 2
� þ c 2

zÞ ¼ 0; (4)

ð�e�2Uc �Þ� þ �ðe�2Uc zÞz ¼ 0: (5)

TheK function is determined more appropriately by the set

K� ¼ �ðU2
� �U2

z Þ þ �e�2Uðc 2
z � c 2

�Þ; (6)

Kz ¼ 2�U�Uz � 2�e�2Uc �c z (7)

whose integrability condition is satisfied by virtue of the
field equations. The magnetic vector potential is chosen
simply by

A� ¼ �’
�� (8)

for a function �ð�; zÞ which is related to c above through

�� ¼ �e�2Uc z; (9)

�z ¼ ��e�2Uc �: (10)

The dual of the field tensor ?Fti ¼ c i implies the absence
of any electric components which is our choice here. In [3]
BR and ML solutions are summarized in detail so that we
can only record them in what follows.

A. BR and ML solutions

1. The BR solution

U ¼ UBR ¼ ln�0 þ 1

2
ln ð�2 þ z2Þ; (11)

c ¼ c BR ¼ �0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

q
; (12)

K ¼ KBR ¼ const; ð�0 ¼ constantÞ: (13)

Note that the more familiar AdS2 � S2 version of
BR spacetime is given upon the transformation

� ¼ sin �

r
; (14)

z ¼ cos �

r
; (15)

by

�2
0ds

2 ¼ 1

r2
ð�d�t2 þ dr2Þ þ d�2 þ sin 2�d’2

ð�t ¼ �2
0tÞ: (16)

2. The ML solution

U ¼ UML ¼ ln

�
1þ B2

0

4
�2

�
; (17)

c ¼ cML ¼ B0z; (18)

K ¼ KML ¼ 2 ln

�
1þ B2

0

4
�2

�
ðB0 ¼ constantÞ: (19)

B. A combined BR and ML solution

We proceed now to combine the foregoing solutions.
For this purpose we take the magnetic potential as the
superposition of the two foregoing, namely,

c ¼ c BR þ cML ¼ �0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

q
þ B0z; (20)

where B0 and �0 are the constants of ML and BR solutions
which are restricted by 0< j�0j<1 and �1<B0 <1.
To get an idea about this superposition we resort to the
axial gauge A� ¼ ð0; 0; 0; A’Þ in flat space,

ds2 ¼ �dt2 þ d�2 þ dz2 þ �2d’2: (21)

Let Að1Þ
’ ¼ �0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p
and Að2Þ

’ ¼ B0z be two magnetic
potentials where both solve the Maxwell equations

@�F
ðiÞ�� ¼ 0, (i ¼ 1, 2) with FðiÞ

�� ¼ @�A
ðiÞ
� � @�A

ðiÞ
� . It

can be checked easily that their superposition A� ¼
ð0; 0; 0; Að1Þ

’ þ Að2Þ
’ Þ solves the superposed Maxwell equa-

tion @�½�ðF1�� þ F2��Þ� ¼ 0. Upon this observation we

seek an analogous behavior in the curved spacetime and we
find out that indeed it works with some difference.
Integration of the field equations from Eq. (4) to Eq. (7)
yields the following results:

eU ¼ F; (22)

eK ¼ F2

�2 þ z2

0
@ �

1þ B0
2�0

zþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p
1
A

2B0
�0

; (23)

where the function F is given by
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F ¼ �0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

q
cosh

�
B0

�0

ln�

�
� z sinh

�
B0

�0

ln�

��
:

(24)

It is observed easily that setting B0 ¼ 0 recovers the BR
solution with a charge �0. However, the limit �0 ¼ 0 does
not exist, which means that although in flat spacetime
our electromagnetic field is a superposition of BR and
ML potentials, in curved spacetime the solution gives
only the BR limit correctly. This is in contrast with the
7-parametric PD class of EM solutions [5,6] which
admits electromagnetic fields even in the flat space limit.

In our case existence of the BR is essential while the ML
limit cannot be interpolated. Let us add also that the
metric functions of PD are expressed in its most general-
ity in quartic polynomial forms whereas our solution
involves decimal powers as well. These distinctive prop-
erties suggest that our solution is not included in the
general class of PD. The two are expressed in different
coordinates/symmetries so that transition between the
two for arbitrary cases cannot be expressed in closed
forms. More specifically, the type-D metric of the PD
class that yields separately the ML and BR limits is as
follows:

(i)

ds2ML ¼ p2

�
�QðqÞd�t2 þ dq2

QðqÞ
�
þ PðpÞ

p2
d ��2 þ p2

PðpÞdp
2: (25)

Letting QðqÞ¼1, PðpÞ¼ 4
B2
0

ðp�1Þ, (B0 ¼ constant), p ¼ 1þ B2
0

4 �2, q ¼ B2
0

2 z, ��¼’, and an overall scaling gives
the ML metric.

(ii)

ds2BR ¼ b2
�
�QðqÞdt2 þ dq2

QðqÞ
�
þ �2

�
PðpÞ
p2

d�2 þ p2

PðpÞdp
2

�
: (26)

Letting b ¼ � ¼ 1, QðqÞ ¼ q2 ¼ �2 þ z2, PðpÞ ¼ 1� p2 ¼ �2

�2þz2
, � ¼ ’, gives the BR metric in axial symme-

try with a unit charge. It remains to be seen, however, that (25) and (26) follow from the PD class of solutions in the
same coordinate patch, i.e., without further transformations in the ðp; qÞ coordinates.

Furthermore, it is worthwhile to look at the form of invariants of the spacetime. The complete form of the Kretschmann
scalar is complicated enough that we only give it in a series form around z ¼ 0 i.e.,

K¼��4	2þ4	½A1þA2�
2	þA3�

4	þA4�
6	þA5�

8	�
�4
0ð1þ�2	Þ8

þ��4	2þ4	�1½B1þB2�
2	þB3�

4	þB4�
6	þB5�

8	þB6�
10	þB7�

12	þB8�
14	�

�4
0ð1þ�2	Þ11 z

þ��4	2þ4	�2½C1þC2�
2	þC3�

4	þC4�
6	þC5�

8	þC6�
10	þC7�

12	þC8�
14	þC9�

16	þC10�
18	þC11�

20	�
�4
0ð1þ�2	Þ14

�z2þOðz3Þ; (27)

in which 	 ¼ B0

�0
� 0 and Ai, Bi and Ci are all some

polynomial functions of 	 only. Having up to second order
explicitly is enough to conclude that the solution is singular
at � ¼ 0 and z � 0 for all values of 	. This is due to the

terms C1
��4	2þ4	�2

�4
0
ð1þ�2	Þ14 z

2 and B1
��4	2þ4	�1

�4
0
ð1þ�2	Þ11 z which for z � 0

diverge for all 	. The coefficients C1 and B1 are given
explicitly by

B1 ¼ 2048

�
	�1

2

�

�
�
	6�3	5þ31

4
	4�21

2
	3þ16	2�45

4
	þ9

2

�

(28)

and

C1 ¼ 256ð�692	5 þ 380	6 þ 855	2 þ 63� 128	7

þ 1100	4 � 351	� 1196	3 þ 32	8Þ (29)

which cannot be both zero. At z ¼ 0

K¼ ��4	2þ4	

�4
0ð1þ�2	Þ8 ½A1þA2�

2	þA3�
4	þA4�

6	þA5�
8	�

(30)

which for regularity at � ¼ 0 we must have

�4	2 þ 4	 � 0: (31)

We add that
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A1¼768�2304	þ3328	2�2304	3þ1792	5þ256	6

(32)

which has no real roots. The condition (31) implies that for
0 � 	 � 1 the origin is a regular point. Having clarified
the role of the BR parameter �0, i.e., that �0 � 0, so that in
the rest of our analysis we may set �0 ¼ 1 without loss of
generality. In brief for z ¼ 0 and � ¼ 0 the solution is

regular if 0 � B0

�0
� 1 and singular for other values of B0

�0
.

Once more we recall that 	 ¼ B0

�0
¼ 0 corresponds to the

BR limit whose Kretschmann scalar is 8
�4
0

and the solution is

regular everywhere. The Maxwell 2-form of our solution is
expressed by

F ¼ ð��d�þ�zdzÞ ^ d’; (33)

where �� and �z are defined by (9) and (10). As a result

we obtain for the Maxwell invariants

I1 ¼ 1

2
F��F

�� ¼ �2
0e

�2K

�
1þ B2

0

�2
0

þ 2B0z

�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p
�
; (34)

I2 ¼ 1

2
F��

?F�� ¼ 0 (35)

in which K was found in (23).
Nevertheless the following transformations,


 ¼ �þ iz; du ¼ dt� �e�2Ud’;

dv ¼ �2e2Udt;
(36)

cast (1) into the Kundt form [4]

ds2 ¼ duðdvþHduÞ þ P�2d
d �
 (37)

in which H ¼ e2U and P ¼ eðK�UÞ.

III. GEODESIC MOTION IN CYLINDRICAL
COORDINATES

The geodesic equations for the metric given in (1) are
(without loss of generality we choose �0 ¼ 1)

d

ds

�
@L

@ _x�

�
� @L

@x�
¼ 0 (38)

in which

2L ¼ �e2U _t2 þ e�2U½e2Kð _�2 þ _z2Þ þ �2 _’2� (39)

and a dot means d
ds . From the t and ’ equations one finds

_t ¼ Ee�2U; _’ ¼ ‘2

�2
e2U: (40)

Using L ¼ " ¼ �1,þ1, 0 for timelike, spacelike, and null
geodesics the other two equations are

d

ds
ðe�2Ue2K _�Þ ¼ �U�E

2e�2U þ ðK� �U�Þ

�
�
"þ E2e�2U � ‘4

�2
e2U

�
� ‘4

�2
U�e

2U

þ ‘4

�3
e2U (41)

and

d

ds
ðe�2Ue2K _zÞ ¼ �UzE

2e�2U þ ð�Uz þ KzÞ

�
�
"þ E2e�2U � ‘4

�2
e2U

�
� ‘4

�2
Uze

2U:

(42)

We parametrize now � with z so that �0 ¼ d�
dz and express

geodesics in a single equation,

�
E2e�2U þ�þ ‘4

�2
e2U

�
ðU� � �0UzÞ � �ðK� � Kz�

0Þ

� ‘4

�3
e2U þ �

1þ �02 �
00 ¼ 0; (43)

where � ¼ "þ E2e�2U � ‘4

�2 e
2U. Let us consider the null

(" ¼ 0) geodesics in a plane of ’ ¼ ’0 which implies
‘ ¼ 0 and therefore (43) becomes (with E2 ¼ 1)

ð2U� � K�Þ � �0ð2Uz � KzÞ þ �00

1þ �02 ¼ 0: (44)

The explicit form of the latter equation reads as

d2�

dz2
¼ 2

�
1þ

�
d�

dz

�
2
�
�

�
z

�2 þ z2

�
d�

dz
� �

z

�

þ B0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p
�
d�

dz
þ z

�

�
þ B2

0

2�

�
(45)

which is still complicated enough for an exact solution.
Luckily we obtain an exact solution valid for jB0j> 2
given by

� ¼
8><
>:
��

B0

2

�
2 � 1

�
1=2

z; B0 <�2; z > 0

�
��

B0

2

�
2 � 1

�
1=2

z; B0 > 2; z < 0:
(46)

As we stated above jB0j> 2 yields singularity at �¼z¼0,
and our particular solution is valid only for this case. For
each given jB0j> 2 we have a wedge region of ð�; zÞ
which does not cover all the ð�; zÞ plane. This is the
indication that our particular solution does not yield a
null-geodesically complete spacetime. The BR and ML
spacetimes are known both to be geodesically complete
whereas our particular example provides a case of their
combination which is at least null-geodesically incom-
plete. This can be observed by resorting to the solution
(46) to obtain (let us choose B0 ¼ �4, for simplicity)
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d�

d�
¼ const

�8ð3�8 þ 1Þ2 ; (47)

where � is the affine parameter for null geodesics.
A similar equation follows also for dz

d� . Equation (47) yields

a highly localized solution for �ð�Þ [and zð�Þ] justifying
the expected incompleteness. Another interesting solution
for (45) can be found exactly when B0 ¼ �1. The solution
in this case is a circle of arbitrary radius a in the plane of
ð�; zÞ with equation �2 þ z2 ¼ a2. Figure 1 displays the
numerical plot from Eq. (45) for specific initial conditions.

A. Geodesic motion in the z ¼ 0 plane for B0 ¼ �0

As we have shown above, the plane z ¼ 0 has no singu-

larity if 0 � B0

�0
� 1. This makes it distinguished from the

other planes z ¼ z0 � 0. Setting B0

�0
¼ 1 is also the only

value in this interval which makes the power of � integer.
Therefore, we are interested to consider the geodesic
motion of a massive particle with unit mass in this
spacetime i.e.,

ds2 ¼ ��2
0ð�2 þ 1Þ2

4
dt2 þ �2

0ð�2 þ 1Þ2
4�2

d�2

þ 4

�2
0

�2

ð�2 þ 1Þ2 d’
2: (48)

The Lagrangian is given by

L ¼ ��2
0ð�2 þ 1Þ2

8
_t2 þ �2

0ð�2 þ 1Þ2
8�2

_�2

þ 2

�2
0

�2

ð�2 þ 1Þ2 _’2; (49)

in which an overdot shows the derivative with respect to the
affine parameter �. The conservation of energy and angular
momentum is obvious such that

@L
@ _t

¼ ��2
0ð�2 þ 1Þ2

4
_t ¼ �E (50)

and

@L
@ _’

¼ 4

�2
0

�2

ð�2 þ 1Þ2 _’ ¼ ‘: (51)

Having g��
dx�

d�
dx�

d� ¼ ��, where � ¼ 0=1 (for unit mass)

yields the null or timelike geodesics, implies

��2
0ð�2þ1Þ2

4
_t2þ�2

0ð�2þ1Þ2
4�2

_�2þ 4

�2
0

�2

ð�2þ1Þ2 _’2 ¼��

(52)

or upon using the conserved quantities one finds

_�2 ¼ 16�2E2

�4
0ð�2 þ 1Þ4 �

4�2�

�2
0ð�2 þ 1Þ2 � ‘2: (53)

1. Radial motion of massive particle

Let us consider, as the first case, the motion with zero
angular momentum of a massive particle, i.e., ‘ ¼ 0 and
� ¼ 1. These in turn yield

_�2 ¼ 16�2E2

�4
0ð�2 þ 1Þ4 �

4�2

�2
0ð�2 þ 1Þ2 (54)

which after getting help from

_�2 ¼
�
@�

@�

�
2 ¼

�
@�

@t

�
2
�
@t

@�

�
2 ¼

�
@�

@t

�
2 16E2

�4
0ð�2 þ 1Þ4 (55)

one finds

�
@�

@t

�
2 ¼ �2 � �2

0�
2ð�2 þ 1Þ2
4E2

: (56)

Nevertheless, one may set the affine parameter to be the
proper time � and therefore

�
@�

@�

�
2 ¼ 16�2E2

�4
0ð�2 þ 1Þ4 �

4�2

�2
0ð�2 þ 1Þ2 : (57)

Now suppose the particle starts from rest at � ¼ �0 where
@�
@t ¼ @�

@� ¼ 0, which gives

E2 ¼ �2
0ð�2

0 þ 1Þ2
4

: (58)

Hence, the equations of motion become

�
@�

@t

�
2 ¼ �2 � �2ð�2 þ 1Þ2

ð�2
0 þ 1Þ2 (59)

and

FIG. 1 (color online). Plotting of �ðzÞ versus z in accordance
with the geodesics equation (45), for specific values of
B0 (�0 ¼ 1). The initial conditions are chosen such that
�ð0Þ ¼ 1 and �0ð0Þ ¼ 0.
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�
@�

@�

�
2 ¼ 4�2ð�2

0 þ 1Þ2
�2
0ð�2 þ 1Þ4 � 4�2

�2
0ð�2 þ 1Þ2 : (60)

In Fig. 2 we plot � versus t (a) and � (b). It is very clear that
the motion is periodic which means that the particle is
attracted by the origin and while it approaches the origin it
gains energy, and this energy causes it to pass the origin
and in the other direction slows down to rest, and in the
same way repeats the motion. The difference between the
period of motion measured by an observer on the particle
and an observer in the lab is also manifested in the figures.

2. Radial motion of a massless particles

In the same way, one may study the motion of a null
particle with � ¼ 0 and ‘ ¼ 0. The equation of motion
[Eq. (53)] then reads

_�2 ¼ 16�2E2

�4
0ð�2 þ 1Þ4 (61)

which after using the chain rule we find�
d�

dt

�
2 ¼ �2; (62)

whose explicit solution is given by

� ¼ �0e
�t; (63)

where � refers to the direction of motion.

3. Circular motion

Towork out the circular motion of a particle on the plane
z ¼ 0 we use the chain rule in (53) to find�
d�

d’

�
2 ¼ 162�6E2

�8
0ð�2 þ 1Þ8‘2 �

64�6�

�6
0ð�2 þ 1Þ6‘2 �

16�4

�4
0ð�2 þ 1Þ4 :

(64)

As usual we introduce u ¼ 1
� to change the equation of

motion in the form of

�
du

d’

�
2 ¼ 256u14E2

�8
0ðu2 þ 1Þ8‘2 �

64u10�

�6
0ðu2 þ 1Þ6‘2 �

16u8

�4
0ðu2 þ 1Þ4

¼ AðuÞ: (65)

Having a photon (� ¼ 0) or a massive particle (� ¼ 1)
moving on a circular orbit means AðuÞjuc ¼ 0 and having

an equilibrium path needs an additional condition
dAðuÞ
du juc ¼ 0. Herein �c ¼ 1

uc
is the radius of the equilib-

rium circular orbit. For the massive particle (� ¼ 1) these
conditions yield

E2 ¼ ðu2c � 1Þðu2c þ 1Þ2�2
0

4ðu2c � 3Þu4c
(66)

and

‘2 ¼ 8u2c
�2
0ðu2c þ 1Þ2ðu2c � 3Þ (67)

and therefore the radius of the circular path is found to be
the positive root of the following equation:

ðu4c � 1Þðu2c þ 1Þ4 ¼ 32E2

�4
0‘

2
u6c: (68)

From the latter equation we see that for E ¼ 0 a circular
path with uc ¼ 1 is possible. This is in fact the maximum
value of the possible radius for a circular motion. Particles
with higher energy may be able to orbit about the origin
with a radius less than 1.
For a massless particle the same conditions dictate a

single circular path with

uc ¼
ffiffiffi
3

p
(69)

and energy satisfying

E2

‘2
¼ 16

27
�4
0: (70)

4. Stability of the circular motion

To see whether the circular path of the particles found
above are stable or not we go back to Eq. (54) and rewrite it
in the form of one-dimensional motion

1

2

�
d�

d�

�
2 þ Veff ¼ 0; (71)

Veff ¼ � 8�2E2

�4
0ð�2 þ 1Þ4 þ

2�2�

�2
0ð�2 þ 1Þ2 þ

‘2

2
: (72)

An expansion of Veff about � ¼ �c yields (we note that at
the equilibrium circular path both Veff and its first deriva-
tive vanish) �

dx

d�

�
2 þ V 00

effð�cÞx2 ¼ 0; (73)

FIG. 2. Radial fall from � ¼ 1 through � ¼ 0 (in the z ¼ 0
plane) for a fixed angle as a function of the coordinate time
[Fig. 2(a)]/proper time [Fig. 2(b)].The particle crosses� ¼ 0 freely
since � ¼ 0 ¼ z is not singular in the chosen interval B0

�0
¼ 1.
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where x ¼ �� �c and

V 00
effð�cÞ ¼ 16ð2u4c � 3u2c þ 3Þu4c

ðu2c � 3Þðu2c þ 1Þ4�2
0

: (74)

A second derivative with respect to � from (71) admits

�
d2x

d�2

�
þ V00

effð�cÞx ¼ 0 (75)

which has an oscillatory motion of x with respect to �
(stable motion) if V 00

effð�cÞ> 0. Figure 3 displays V 00
effð�cÞ

versus �c. As it is clear those orbits whose radius is less
than 1ffiffi

3
p are stable. A similar argument can be repeated for

the massless particles. The effective potential and its first
derivative at � ¼ �c ¼ 1ffiffi

3
p are zero while

V 00
effð�cÞ ¼ 243E2

32�4
0

(76)

which is clearly positive. Therefore the orbit of a photon is
stable which is unlike the Schwarzschild and Reissner-
Nordström spacetime.

5. Null geodesics in Kundt form

The Lagrangian of an uncharged particle moving in the
spacetime identified by (37) reads as

L ¼ _u _vþH _u2 þ e2ðK�UÞð _�2 þ _z2Þ (77)

in which (� � d
d� ). The first equation

d
d� ð@L@ _vÞ ¼ @L

@v yields

€u ¼ 0 (78)

which in turn implies _u ¼ constant. This basically suggests
that our affine parameter � is u. The second equation
d
d� ð@L@ _uÞ ¼ @L

@u gives

dv

du
þ 2H ¼ 0; (79)

where 0 is an integration constant. The other two
equations are also given by

€�þ ðK �UÞ�ð _�2 � _z2Þ þ 2 _� _zðK �UÞz ¼ _�U�e
2ð2U�KÞ

(80)

and

€zþ ðK �UÞzð _z2 � _�2Þ þ 2 _� _zðK �UÞ� ¼ _zUze
2ð2U�KÞ

(81)

in which herein (� � d
du ). For ’ ¼ constant, one finds

du ¼ dt, and the equation (79) is satisfied if 0 ¼ 0.
For null geodesics we find from (77) that

ð�2
u þ z2uÞ ¼ e2ð2U�KÞ (82)

and upon the symmetry between � and z we set � ¼ �z
with � ¼ constant to get (we choose also �0 ¼ 1)

dz

e2U�K
¼ duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2
p (83)

in which du ¼ dt. A substitution and integration admits

z ¼
�
B2
0 � 1

k0
ðt� t0Þ

� 1

B2
0
�1 ðB2

0 � 1Þ; (84)

where k0 ¼ �
2B0þB2

0ffiffiffiffiffiffiffiffiffi
1þ�2

p
ð1þ

ffiffiffiffiffiffiffiffiffi
1þ�2

p
Þ2B0 and t0 is an integration

constant. For B2
0 ¼ 1 we find

k0 ln z ¼ t� t0: (85)

This brief analysis of Kundt’s null geodesics recovers the
equivalent results of the previous analysis. Namely, that the
exact integrals of geodesics in a section of the ð�; zÞ plane
does not cover the whole plane. We conclude therefore that
null geodesic incompleteness remains intact irrespective of
the representation of the metric.

IV. CONCLUSION

Being inspired by the superposed solutions in colliding
wave spacetimes which unfortunately received no atten-
tion, we show here in a similar manner that BR and ML
spacetimes can be combined in a single metric. The dis-
tinction between the two problems, i.e., colliding waves
and axial symmetry, is that in the latter case superposition
worked in the more familiar cylindrical ð�; zÞ coordinates
rather than the prolate/oblate ones. The obtained metric
inherits the imprints of both solutions. It is not conformally
flat for instance, and regularity at the origin, i.e., at � ¼
z ¼ 0, holds provided in 0 � B0

�0
� 1. For an arbitrary ML

parameter, however, our solution becomes singular on the
symmetry axis. Due to the fractional powers of � our
solution is neither smooth nor flat on the symmetry axis.
The exact solution of geodesics reveals that null geodesics

FIG. 3. Stability condition for particles in circular orbits. From
Eq. (74), V00ð�cÞ is plotted versus the circular radius �c. It is
observed that for �c <

1ffiffi
3

p we have stable orbits since it gives

V 00ð�cÞ> 0.
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in the singular manifold are not complete whereas BR and
ML spacetimes separately are known to admit complete
geodesics. One drawback of our solution is that �0 ! 0
limit, i.e., the ML limit, does not exist. In a single coor-
dinate patch the large type-D Einstein-Maxwell family of
Plebanski and Demianski (PD) also suffers a similar prob-
lem. In this regard our overall impression is that our
nonsmooth solution does not belong to the class of PD.

Finally we add that this simple example may serve to pave
the way for further ‘‘superposed’’ spacetimes in general
relativity, including the higher dimensional ones.
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Einstein’s General Relativity, Cambridge Monographs

on Mathematical Physics (Cambridge University Press,
Cambridge, United Kingdom, 2009).

[7] S. Chandrasekhar and B. C. Xanthopoulos, Proc. R. Soc. A
410, 311 (1987).

[8] P. Bell and P. Szekeres, Gen. Relativ. Gravit. 5, 275 (1974).
[9] K. A. Khan and R. Penrose, Nature (London) 229, 185

(1971).
[10] M. Halilsoy, J. Math. Phys. (N.Y.) 34, 3553 (1993).
[11] M. Halilsoy, Gen. Relativ. Gravit. 25, 275 (1993).
[12] M. Halilsoy, J. Math. Phys. (N.Y.) 33, 4225 (1992).
[13] D.M. Zipoy, J. Math. Phys. (N.Y.) 7, 1137 (1966); B. H.

Voorhees, Phys. Rev. D 2, 2119 (1970).
[14] R. Gautreau and J. L. Anderson, Phys. Lett. 25A, 291

(1967).

S. HABIB MAZHARIMOUSAVI AND M. HALILSOY PHYSICAL REVIEW D 88, 064021 (2013)

064021-8

http://dx.doi.org/10.1103/PhysRev.116.1331
http://dx.doi.org/10.1016/0031-9163(64)90801-7
http://dx.doi.org/10.1088/0370-1298/67/3/305
http://dx.doi.org/10.1088/0264-9381/28/21/215012
http://dx.doi.org/10.1088/0264-9381/28/21/215012
http://dx.doi.org/10.1098/rspa.1962.0224
http://dx.doi.org/10.1016/0003-4916(76)90240-2
http://dx.doi.org/10.1016/0003-4916(76)90240-2
http://dx.doi.org/10.1063/1.524295
http://dx.doi.org/10.1063/1.524295
http://dx.doi.org/10.1142/S0218271806007742
http://dx.doi.org/10.1142/S0218271806007742
http://dx.doi.org/10.1098/rspa.1987.0041
http://dx.doi.org/10.1098/rspa.1987.0041
http://dx.doi.org/10.1007/BF00770217
http://dx.doi.org/10.1038/229185a0
http://dx.doi.org/10.1038/229185a0
http://dx.doi.org/10.1063/1.530044
http://dx.doi.org/10.1007/BF00756262
http://dx.doi.org/10.1063/1.529822
http://dx.doi.org/10.1063/1.1705005
http://dx.doi.org/10.1103/PhysRevD.2.2119
http://dx.doi.org/10.1016/0375-9601(67)90655-X
http://dx.doi.org/10.1016/0375-9601(67)90655-X

