
Performance Study of Real-World Wireless Mobile
Ad Hoc Networks

Yağız Özen

Submitted to the
Institute of Graduate Studies and Research

in partial fulfilment of the requirements for the Degree of

Master of Science
in

Computer Engineering

Eastern Mediterranean University
June 2010

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

 Prof. Dr. Elvan Yılmaz
 Director (a)

I certify that this thesis satisfies the requirements as a thesis for the degree of Master
of Science in Computer Engineering.

 Prof. Dr. Hasan Kömürcügil
 Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in
scope and quality as a thesis for the degree of Master of Science in Computer
Engineering.

 Asst. Prof. Dr. Gürcü Öz
 Supervisor

Examining Committee
__

1. Assoc. Prof. Dr. Işık Aybay ______________________________

2. Assoc. Prof. Dr. Muhammed Salamah ______________________________

3. Asst. Prof. Dr. Gürcü Öz ______________________________

iii

ABSTRACT

Wireless ad hoc network is one of the most popular network types these days. The

reason for this is the advantages that wireless ad hoc networks provide for users or

group of users. The most important characteristic of wireless ad hoc networks that

make them more popular when compared with any other network type is that they do

not need any infrastructure to be setup in advance. This characteristic of wireless ad

hoc networks make the research on this topic more valuable due to increasing

number of people using wireless ad hoc networks. The fact that no fixed router is

used in the network ensures that network nodes are adaptable to the topology

changes in a mobile wireless ad hoc network. This advantage makes wireless ad hoc

networks useful in battlefield areas where there is need for networks that have a

dynamic working strategy, which does not increase the complexity of setting a

network. Other possible application areas of wireless ad hoc networks are disaster

areas, rescue emergency operations and in vehicles that satisfies the required

mobility and fast deployment network need.

This thesis provides extensive real-world experimental investigation of wireless ad

hoc networks with mobile and stationary nodes in different outdoor environments.

The performance of wireless ad hoc networks is measured under various scenarios.

For the experimental investigations, more than one network configuration and

different parameters were used in real-world outdoor environment. Conducting such

experiments and gathering information regarding the results of these experiments

will yield very valuable information since investigation of such networks requires

iv

two aspects to take into account. One of them is the simulation and modeling of these

networks and the other is the conducting of real-world experiments by using testbed

programs.

The most popular performance metrics for wireless ad hoc networks, delivery ratio,

average round trip time or average end to end delay, and average number of hops

were investigated in this study. It is seen that delivery ratio decreases with the

distance between the nodes. The average round trip time is not affected by the

distance; hence it increases with respect to application data size and the number of

intermediate nodes in the network. The average number of hops changes if the

distance between the source and the destination decreases since there will be no need

for intermediate nodes for forwarding the packets.

Keywords: Wireless Ad Hoc Networks, Outdoor Experimental Study, Performance

Evaluation, Multithreaded Programs, Wireless Ad Hoc Protocols.

v

ÖZ

Son günlerde, kablosuz ve altyapısız ağ bağlantıları en popular ağ bağlantılarının

birtanesi olmayı başarmıştır. Bunun sebebi ise kablosuz altyapısız ağ bağlantılarının

kullanıcılara sağladığı avantajlardır. Kablosuz ve alt yapısız ağ bağlantılarının

popular olmasını sağlayan en önemli etken onların en önemli özelliklerinden biri

olan, hiçbir alt yapıya dayalı olmamasıdır. Bu özellik sayesinde, bu ağların kullanım

alanları günden güne artmakta ve bu ise bu konu altında yapılan araştırmalarda

ulaşılan sonuçların çok değerli olmasına sebeb olmaktadır. Bu tür ağ bağlantılarında

herhangi bir yönlendiricinin kullanımına ihtiyaç duyulmaması, bu ağ bağlantılarının

kullanıcıların hareketli olduğu ortamlarda kullanılmasını mümkün kılmıştır.

Kablosuz ve alt yapısız ağ bağlantılarının hareketli ortamlara kolay uyum

sağlamasının getirdiği avantajla, bu tür ağ bağlantılarının savaş alanlarında

kullanılabileceği akla geliyor. Diğer kullanım alanları ise, acil kurtarma

operasyonları, felaket alanları, araçlar arası kullanım ve daha bir çok alan

listelenebilir.

Bu tez çalışmasında, geniş kapsamlı gerçek dünyada yapılan deneysel çalışmalar

sunuluyor. Bu çalışmalarda, bina dışında hareketsiz veya kullanıcılar tarafından

taşınarak hareketli hale getirilmiş bilgisayarlar kullanılmıştır. Bu deneysel

çalışmaların amaçı, kablosuz ve altyapısız ağ bağlantılarının birçok senaryo altındaki

performansını ölçmektir. Birden fazla ağ konfigurasyonu ve parametreleri

kullanılmıştır. Bu tür ağ bağlantılarının performans değerlendirilmesi iki farklı açı ile

vi

ele alınmalıdır. Birincisi simulasyon ve modelleme yapılmasıdır, ikincisi ise,

önceden tasarlanmış program yardımı ile deneysel çalışmaların yapılmasıdır.

Bu tez çalışmasında en önemli ve en çok kullanılan ölçü birimleri ele alınmıştır.

Bunlar ise, ortalama paket teslim oranı, ortalama sekme sayısı, göreçeli trafik ve bir

paketin hedefine ulaşmak için harcadığı süredir.

Anahtar kelimeler: Kablosuz ve Altyapısız Ağ Bağlantıları, Deneysel Çalışma,

Performans Değerlendirmesi, Çoklu İşlemli Programlar, Kablosuz ve Altyapısız Ağ

Bağlantı Protokolleri.

vii

TABLE OF CONTENTS

ABSTRACT ... iii

ÖZ…. .. v

LIST OF TABLES ... ix

LIST OF FIGURES .. xii

1 INTRODUCTION ... 1

2 SURVEY OF ROUTING PROTOCOLS .. 4

2.1 Unicast Routing Protocols .. 7

2.2 Multicast Routing Protocols ... 9

2.3 Anycast Routing Protocols ... 11

3 SURVEY OF EXISTING EXPERIMENTAL STUDIES 14

3.1 Main Direction to Investigate Wireless Mobile Ad Hoc Networks 14

3.2 Experimental Study in Wireless Ad Hoc Networks ... 14

3.3 Challenges in Real-World Experimental Studies ... 27

4 TEST-BED PROGRAM .. 32

4.1 Purpose of the Program .. 32

4.2 The Structure of the Program ... 32

4.3 Collected Information ... 48

5 ORGANIZATION OF EXPERIMENTS .. 50

5.1 Experiments with Two Nodes .. 51

5.2 Experiments with more than Two Nodes ... 53

5.3 Experiments with One Source Node and Three Destination Nodes 57

6 EXPERIMENTAL RESULTS AND THEIR ANALYSIS 59

viii

6.1 Performance Metrics .. 59

6.2 Results of Experiments ... 60

6.3 Discussion of the Experimental Results ... 86

6.4 Average Values and Confidence Intervals of the Investigated Performance

Metrics ... 92

7 CONCLUSION .. 94

8 REFERENCES .. 97

APPENDICES .. 103

Appendix A: The source text of the Application-Layer Program 104

Appendix B: Raw Results of the Experiments ... 121

ix

LIST OF TABLES

Table 2.1:Classification of wireless ad hoc routing protocols. 6

Table 3.1: Summarized information about the real-world experiments. 30

Table 3.2: Summarized information about the real-world experiments. (Continue) . 30

Table 6.1: The average values of round trip time which varies with distance under

different application data sizes with using two nodes. .. 61

Table 6.2: The average values of delivery ratio which varies with respect to distance

under different application data sizes with using two laptops. 62

Table 6.3: The average delivery ratio with respect to the inter arrival packet time

under different application data sizes with using two laptops. 63

Table 6.4: The average round trip time values with respect to distance under different

application data sizes with using two nodes. ... 64

Table 6.5: The average delivery ratio values with respect to distance under different

application data sizes using two nodes and an obstacle between them in scenario one.

 .. 65

Table 6.6: The average round trip time values with respect to distance under different

application data sizes using two nodes and an obstacle between them in scenario one.

 .. 66

Table 6.7: The average delivery ratio values with respect to distance under different

application data sizes in scenario two. ... 67

Table 6.8: The average round trip time values with respect to distance under different

application data sizes in scenario two. ... 68

x

Table 6.9: The average delivery ratio values with respect to distance under different

application data sizes in scenario three. ... 69

Table 6.10: The average round trip time values with respect to distance under

different application data sizes in scenario three. .. 70

Table 6.11: The average delivery ratio values with respect to number of intermediate

nodes between the source and destination nodes, under different application data

sizes. ... 71

Table 6.12: The average round trip time values with respect to number of

intermediate nodes under different application data sizes. .. 72

Table 6.13: The average round trip time values with respect to data size under two

different scenarios. ... 73

Table 6.14: The delivery ratio with respect to data size under two different scenarios.

 .. 74

Table 6.15: The average number of hop values with respect to application data size in

two different scenarios. .. 75

Table 6.16: The average delivery ratio values with respect to distance and the

application data size is fixed to 50 bytes. .. 77

Table 6.17: Average round trip time values with respect to distance when the

application data size is 50 bytes. .. 78

Table 6.18: Average delivery ratio values with respect to distance when the

application data size is 800 bytes. .. 79

Table 6.19: The average round trip time values with respect to distance when the

application data size is 800 bytes. .. 80

Table 6.20: The average delivery ratio values with respect to distance when the

application data size is 4000 bytes. .. 81

xi

Table 6.21: The average round trip time values with respect to distance when the

application data size is 4000 bytes. .. 82

Table 6.22: The overall round trip time values with respect to inter-node distance

under different application data sizes. .. 83

Table 6.23: The overall delivery ratio values with respect to distance under different

application data sizes. ... 84

Table 6.24: The average delivery ratio values with respect to data size under different

height values from the ground. ... 85

Table 6.25: Average values and 95% confidence intervals of the performance metrics

for application data size = 100 bytes. ... 92

Table 6.26: Average values and 95% confidence intervals of the performance metrics

for application data size = 1000 bytes. ... 92

Table 6.27: Average values and 95% confidence intervals of the performance metrics

for application data size = 2000 bytes. ... 93

Table 6.28: Average values and 95% confidence intervals of the performance metrics

for application data size = 4000 bytes. ... 93

Table 6.29: Average values and 95% confidence intervals of the performance metrics

for application data size = 8000 bytes. ... 93

xii

 LIST OF FIGURES

Figure 3.1: Positioning of the laptops during the experiment 18

Figure 4.1: Multicast mode for wireless network architecture. 33

Figure 4.2: Structure of the program. ... 35

Figure 4.3: A scenario of message passing in the wireless network of three nodes. 36

Figure 4.4: A simple wireless ad hoc network with three nodes. 37

Figure 4.5: The algorithm of the originating thread in the program. 38

Figure 4.6: A 128 bytes request datagram with data types (a), A 128 bytes reply

datagram with data types (b). ... 39

Figure 4.7: Data structure of a request and a reply message counter. 40

Figure 4.8: The algorithm of the relaying thread in the test-bed program. 42

Figure 4.9: Algorithm for the relaying thread at the originator node after handling a

reply message from the network. ... 43

Figure 4.10: Algorithm for the destination node after handling a request message

from network. ... 44

Figure 4.11: Algorithm for the intermediate node after handling a message (request

or reply) from the network. .. 45

Figure 4.12: Received messages at the intermediate node within a sliding window

consisting of 20 cells. ... 46

Figure 4.13: A scenario of messaging in the wireless network of four nodes. 47

Figure 5.1 : Configuration of the experiments with using two nodes. 51

Figure 5.2: A configuration of a wireless ad hoc network consisting of source node

and destination node with a building, scenario three. .. 53

xiii

Figure 5.3: A configuration of a wireless ad hoc network consisting of five nodes. . 54

Figure 5.4: A configuration of a wireless ad hoc network consisting of five nodes in

open area. ... 55

Figure 5.5: A configuration of a wireless ad hoc network consisting of ten nodes. .. 56

Figure 5.6: The position of source and destination nodes in the network. 57

Figure 6.1: Average round trip time versus distance with different data sizes. 61

Figure 6.2: The delivery ratio versus inter-node distance with different data sizes. . 62

Figure 6.3: The delivery ratio versus inter-packet transmission time with different

application data sizes. ... 63

Figure 6.4: The average round trip time versus inter-packet transmission time with

different application data sizes. .. 64

Figure 6.5: The delivery ratio versus inter-node distance, for different application

data sizes in scenario one. .. 65

Figure 6.6: The average round trip time versus inter-node distance, for different

application data sizes in scenario one. ... 66

Figure 6.7: The delivery ratio versus inter-node distance, for different application

data sizes in scenario two. .. 67

Figure 6.8: The average round trip time versus inter-node distance, for different

application data sizes in scenario two. ... 68

Figure 6.9: The delivery ratio versus inter-node distance, for different application

data sizes in scenario three. .. 69

Figure 6.10: The average round trip time versus inter-node distance, for different

application data sizes in scenario three. ... 70

Figure 6.11: The delivery ratio versus the number of intermediate nodes between the

source and destination nodes, for different application data sizes. 71

xiv

Figure 6.12: The average round trip time versus the number of intermediate nodes

between the source and destination nodes, for different application data sizes. 72

Figure 6.13: The average round trip time versus application data sizes between the

source node and the destination node in an open area with different number of fixed

nodes. ... 73

Figure 6.14: The delivery ratio versus application data sizes between the source node

and the destination node in an open area with different number of fixed nodes. 74

Figure 6.15: The average number of hop versus application data size with different

number of fixed nodes. ... 75

Figure 6.16: The delivery ratio versus inter-node distance, for different directions

with application data size is 50 bytes. .. 77

Figure 6.17: The average round trip time versus inter-node distance, for different

directions with application data size = 50 bytes. ... 78

Figure 6.18: The delivery ratio versus inter-node distance, for different directions

with application data size = 800 bytes. .. 79

Figure 6.19: The average round trip time versus inter-node distance, for different

directions with application data size = 800 bytes. ... 80

Figure 6.20: The delivery ratio versus inter-node distance, for different directions

with application data size = 4000 bytes. .. 81

Figure 6.21: The average round trip time versus inter-node distance, for different

directions with application data size = 4000 bytes. ... 82

Figure 6.22: The average round trip time (overall) versus inter-node distance for

different application data sizes. .. 83

Figure 6.23: The delivery ratio (overall) versus inter-node distance, for different

application data sizes. ... 84

xv

Figure 6.24: The average delivery ratio versus application data size under different

height of the laptops to the ground level. ... 85

1

Chapter 1

1 INTRODUCTION

Nowadays, wireless networks are one of the most popular computer networks which

use radio frequency channels to communicate between the nodes in the network

without using any wire. One of the most important benefit of wireless networks is

that they do not require any wire to connect the nodes to each other. Computers in

home or anywhere else can be connected easily by means of wireless cards. There

are two types of components used in many kinds of wireless networks: wireless

routers and access points.

Ad hoc wireless network is one of the wireless networks that enables the users of the

network to directly communicate with each other. This means that ad hoc wireless

networks do not need any routers or access points to be used in the network. Since

there is no wire and no fixed router in this kind of networks, it is not difficult to

enable the mobility in the network because the nodes will arbitrarily arrange

themselves with respect to the topology changes. The transmission area of each node

is limited. Hence, in order to reach a node that is out of a node’s transmission area,

another node should be used as intermediate node in order to forward the needed

information. Since there is no any router or access point, every node inside the

network can work as a router and fulfill the responsibility of forwarding information.

This means that there will be a multi-hop wireless link between the sender and the

receiver.

2

 The earliest mobile ad hoc networks (MANETs) were called “packet radio”

networks, and they were sponsored by DARPA in the early 1970s[1]. SURAN

(Survivable Adaptive Network) was proposed by DARPA in 1983 to support a larger

scale network [1]. The idea of multi-hop links in ad hoc networks dates back to 500

B.C., Darius I who was the king of Persia and inventor of multihop communication

system. For sending messages and news, he yelled to his men who were located at

tall structures in each remote province of his empire. This new communication

system was 25 times faster than the regular messaging system of his time.

Since each node in wireless ad hoc networks can play the role of being source,

destination, and a router, each node in the network needs to be intelligent. This

intelligence is figured out by a routing protocol that is used for packet transmission

between the network nodes. If the routing protocol of a network is well configured, it

will increase the efficiency of the network. Since the wireless ad hoc networks have

limited bandwidth, power consumption problem and mobility [2], the routing

protocol should be simple, power conserving and capable of handling fast topology

changes in the network configuration.

Easy and fast deployment of wireless ad hoc networks and the decreased dependence

on infrastructure makes this type of networks preferable in some areas. Besides being

used as cell phones and for gaming purposes, wireless ad hoc networks can also be

used in disaster areas or in search and rescue emergency operations. In our daily life,

using wireless ad hoc network in taxis, stadiums and aircrafts is also possible as for

military reasons, these networks can be deployed on battlefield areas because they

are good at mobility, it is fast and easy to setup.

3

The purpose of this thesis is to investigate the characteristics of wireless ad hoc

networks under different conditions with the use of some performance metrics. In

order to be able to investigate the characteristics, we carried out a series of

experiments in outdoor real-world network environment by the use of the developed

program.

The rest of the thesis is organized as follows. Chapter 2 presents a classification of

the routing protocols in wireless ad hoc networks to explain the behaviors of routing

protocols in various conditions. In Chapter 3, information is given about what was

done about conducting real-world experiments by using wireless ad hoc networks. In

Chapter 4, detailed information is given about the testbed program which was used in

the experiments. Chapter 5 describes the experiments that were conducted by our

research group. Chapter 6 presents the results of the conducted experiments, a

discussion of these results and presents information about the parameters and the

performance metrics. In Chapter 7, the study is concluded.

4

Chapter 2

2 SURVEY OF ROUTING PROTOCOLS

Wireless ad hoc network is a collection of nodes that communicate with each other

without requiring a hardware component such as a router for centralized control. Any

node in a wireless network can be a source node, an intermediate node which acts as

a router, and a destination node. The main characteristics of a wireless ad hoc

network can change with respect to the selected routing protocol.

There are lots of routing protocols in the literature and we can mainly classify them

as unicast, multicast and anycast. Unicast means sending the packets to a single

destination host from a source node in a specific network. There is a one to one

relationship between the source and the destination node. On the other hand,

multicast means sending a packet from a source node to a group of nodes in that

network. In this kind of network, each node has a multicast address and more than

one node can have the same multicast address in the same network. Thus, when a

packet is sent to a specific multicast address, a group of nodes receive this packet if

they belong to that address. Multicast has a one-to-many association between

network addresses and network endpoints. Lastly, anycast means sending a packet

from a source node to the nearest server or to the best localized server in the network.

In anycast mechanism, there is one or more server(s) in the network and the aim is to

send the packet to the best server among all the other servers (if there is more than

one). And the word “best” can vary with respect to the anycast protocol that is used.

5

It can be the nearest node, the least traffic involving server or any other thing

depending on what system you are using.

These three categories can also be divided into three subcategories in themselves as

reactive protocols, proactive protocols and hybrid protocols. Reactive protocols can

also be named as on demand protocols which have a mechanism of finding a route

from a source node to a destination node(s) when a source node want to send a

packet. This means that generally a route discovery mechanism is activated before

sending the original data to the destination to find out the route that is going to be

used for sending data. Moreover, there are two kinds of reactive protocols. The first

one works by combining the entire route address with the original data after finding

the best route and sending the whole packet. The intermediate nodes do not need to

care about to which node they need to forward the packet since that information will

be provided inside the packet with the data that we aim to send from the source node.

The second type of reactive protocols works by setting a routing table inside each

intermediate node. And each time a packet goes to an intermediate node, the current

node will decide where to forward the packet by looking at the table inside it. The

difference of this mechanism derives from putting the next hop address in the packet

instead of putting the entire route information.

In proactive protocol, each node maintains the routing information for every node in

the network. Depending on which protocol is being used, the number of tables

required for keeping the routing information can vary. The important thing is that,

the tables are kept updated periodically even if there is no need for a data

transmission from a source node to any destination node.

6

Table 2.1:Classification of wireless ad hoc routing protocols.
 Unicast Multicast Anycast

Reactive Protocols

AODV
DSR

TORA
LAR
ABR

MAODV
ODMRP
ABAM

A-AODV
ARDSR

Proactive Protocols

DSDV
WRP

LANMAR
OLSR
STAR
APRL

AMRIS
AMROUTE

CAMP
MOLSR

Route-Count Based
Anycast Routing

Protocol

Hybrid Protocols

ZRP
HARP
ZHLS

ZMAODV
ZODMRP

MZR

Hybrid Anycast
Routing Protocol

The combination of reactive and proactive protocols forms hybrid protocols. In most

hybrid protocols, a zone-based mechanism is used for dividing the network into

zones. The node(s) that are close to the destination node work like a proactive

protocol and periodically send information to the neighbor nodes for keeping their

routing tables up to date. The nodes that are far enough, work like a reactive protocol

by sending route discovery messages to the network. As a result, the route discovery

process takes less time and less overheads with respect to the other two types of

protocols. More information can be found in [2][3] about reactive, proactive and

hybrid protocols, their comparisons and some classifications.

In Table 2.1, the classification of some routing protocols with respect to their

transmission type and working mechanism is given. At least one protocol from each

part of the table will be explained below.

7

2.1 Unicast Routing Protocols

Ad hoc on-demand distance vector (AODV) [4] is a routing protocol which

establishes a route to a destination node only when it is necessary. This means that

AODV is a reactive protocol. It is based on DSDV and DSR [5] algorithms. It uses a

route discovery mechanism for finding a route to a destination whenever it is needed

and also it uses sequence numbering procedure. Once a route is found to a

destination, this route is used for future data sending. In the route discovery

procedure, the source node sends a route discovery message to the network and

whenever the destination node receives this message which is flooded by the source

node, it sends a reply back to the source node with the same path.

Dynamic Source Routing (DSR) protocol is also a reactive protocol in unicast class.

It uses a route discovery mechanism since it is reactive, and the main difference

between DSR and AODV is that, while sending the data packets from a source node

to a destination node, the packets in DSR carry the complete address of the route

which they will use for travelling until their destination. However, AODV only

carries the destination address in each of the data packet that is sent out by the source

node. This provides some advantages to AODV protocol in high dynamic networks

with large number of nodes since the routing overheads of AODV protocol are less

than the DSR protocol’s routing overheads. On the other hand, DSR has an important

advantage in saving more than one route to the source’s cache and whenever the

network switches from listening mode to transmitting mode, it checks the cache of

the sender to find a valid route to a destination instead of directly initializing a route

discovery procedure.

8

Optimized Link State Routing (OLSR) protocol [6] has a unicast and a proactive

working mechanism. Each node in the network exchanges Hello and Topology

Control (TC) messages between them in order to keep the topology information up to

date periodically. Since it is a proactive protocol, even though there is no need for a

transmission in the network, the nodes will know where to send a packet in case of a

need for transmission at any time. One of the features of OLSR protocol is that, it

manages to send the control packets in such a way that the packets will not be

retransmitted after a predefined value which is called Multipoint Replaying (MPR)

strategy. Only the predefined set of nodes can retransmit the TC packet in the

network but other nodes cannot.

Source-Tree Adaptive Routing (STAR) protocol [7] also works in one-to-one manner

and it is a proactive protocol. It is similar to OLSR, but in STAR, Least Overhead

Routing Approach (LORA) is used to exchange routing information. The aim of the

LORA approach is to reduce the amount of routing overhead used in the network.

Normally, the control packets are periodically exchanged in the network to see the

topology changes in the network but in this case they will be exchanged depending

on some conditions. In [3], it is stated that STAR can have a large amount of

memory and processing overheads in large and highly dynamic networks. This is

because each node needs to create/update a partial topology graph of the network.

The working mechanism of APRL [8] is proactive. Each node in the network knows

about a route to any of the other node in the network. And this is handled by

broadcasting routing beacons to network by every single node. This beacon contains

the exact copy of the sender’s routing table. The nodes that receive any beacon use

the information inside them for renewing their current routing table and then

9

propagate the renewed information to network. Nodes use the route that they learn

about first, without considering the length or quality of the route. Any route in the

table will be timeout if within a specific time that node does not receive any beacon.

Also APRL records some predefined number of alternative route as soon as a

primary route times out.

The Zone Routing Protocol (ZRP) [9] is a hybrid type protocol. The network is

divided into routing zones in this protocol. The nodes that are at maximum “d”

distance from the node “N”, belong to the same routing zone of “N”. Since hybrid

protocols are the combination of reactive and proactive protocols, the mechanism of

proactive is used inside the routing zones and the reactive mechanism is used for the

communication of different routing zones. Route discovery process of ZRP is very

similar to DSR protocol. The aim of this hybrid protocol is to reduce the control

overheads of proactive protocols and the time required for finding an optimal path to

the destination.

The routing protocols that are described above belong to unicast class. Some

developers and researchers modified some of these protocols and created a new

routing protocol that belongs to Multicast and Anycast classes. Some of the multicast

and anycast protocols will be briefly described below.

2.2 Multicast Routing Protocols

The Multicast of Ad hoc On-Demand Distance Vector (MAODV) protocols [10] is

one of the modified unicast protocols to fit in the multicast class. It is a reactive

routing protocol. AODV protocol which is a unicast protocol is extended and

MAODV is formed. MAODV provides the advantage of dynamic and multihop

10

routing between mobile nodes. In MAODV, each node has three tables. The first one

is Routing Table (RT) which works exactly in the same way with AODV. The

second one is Multicast Routing Table (MRT) which contains the information about

the multicast group addresses and the hop counts to the multicast group leader and to

other multicast group members. The third table is the request table which provides

required information for the optimization. This protocol shares many common

features with AODV.

The On-Demand Multicast Routing Protocol (ODMRP) [11] is also a reactive

multicast protocol that creates routes on demand. For multicast packet transmission,

forwarding group mechanism is used. Each multicast group is related with a

forwarding group and the nodes in that forwarding group are responsible for

forwarding multicast packets of the multicast group. Protocol has two main phases

like in unicast reactive protocols which are the request phase and the reply phase. If

there is no route known for transmission of a packet, Join Request packet is delivered

to the entire network. More information can be derived from [11].

Multicast Optimized Link State Routing (MOLSR) protocol [12] is the extended

version of the OLSR protocol. It is a proactive multicast protocol using mainly two

methods while delivering the data to a group of destination nodes, two methods are

mainly used. These are tree-based or mesh-based methods. MOLSR involves tree-

based method. Multicast trees are built with the use of the exchanging of topology

control messages which are used in OLSR to see how the topology changes with

respect to time. These trees are updated whenever a topology change is detected in

the network. With the use of these trees, the shortest path to the necessary

destination(s) is found by the MOLSR.

11

Multicast routing protocol is based on Zone Routing (MZR) [13] protocol which is a

multicast protocol and at the same time it has a hybrid mechanism. MZR is a source

initiated on-demand protocol. With the use of the zone routing mechanism, it creates

a source based multicast delivery tree. It means that whenever a data need to be sent

to a multicast group, the creation of tree is triggered by the request for sending data.

The creation and maintenance of tree mechanisms in ZRP is used in MZR. The

reactive mechanism of ZRP is for the creation of source based tree and the proactive

mechanism is for keeping the zone routing table up to date by sending advertisement

messages periodically. The zones are created in the network depending on the hop

distance of a node. Having a pure proactive mechanism can corrupt the network in

terms of bandwidth. For this reason, instead of a pure proactive mechanism, a

combination of proactive and reactive mechanism can be used to prevent the

occurrence of bandwidth problem.

2.3 Anycast Routing Protocols

Anycast Ad hoc On Demand Distance Vector routing (A-AODV) [14] protocol is

based on AODV protocol. AODV protocol is extended to enable A-AODV support

anycast function. A-AODV discovers routes only when it is needed. It is a reactive

protocol. Routing tables and RREQ packets in AODV are modified for A-AODV.

Anycast Group ID is added to the routing table entry. If a route is needed for

transmission and if there is a route to any anycast server, it will be used. If there is

more than one route available, it will choose the route with the smallest hop counts

that is nearest to the server. If there is not more than one route available, RREQ

message is generated and it is proceeded to route discovery process.

12

Anycast Routing based Dynamic Source Routing (ARDSR) [15] protocol is the

extension of DSR protocol. The protocol is a reactive protocol like A-AODV and it

is an extension for the anycast networks. The routes are created only when they are

needed for data transmission. ARDSR has two phases which are route discovery and

route maintenance. When a data is needed to be sent, the source first checks its cache

if there is any route. If no route is found, ANYREQ is flooded to the neighbors. At

one point, when the destination receives this message, ANYREP message will be

replied by the anycast server. Moreover, these routes that will be stored on caches

need to be maintained since the network can be mobile. There will be some link

breakages because of the mobility. In this kind of a situation, RRER message is sent

to the source to tell that the link is broken. There are some references that compare

the performance of A-AODV and ARDSR in the literature. [16] is one of them.

In [17], an anycast proactive routing protocol is proposed. The proposed protocol

works in a proactive manner. Routing tables are recorded at every node and hop

count. Route count and lifetime are recorded for each node. Each node periodically

sends control messages to the neighbor nodes since it is a proactive protocol. With

the use of these control messages, nodes find out the shortest distance to one of the

anycast group members and also at the same distance, they count how many different

routes there are. When a node needs to forward packet, the packet is forwarded to the

shortest distance anycast member. If there are two anycast members at the same

distance, as second criteria, the packets are forwarded to the anycast group member

with the larger “number of routes” variable. This gives the advantage of having more

stable routes to the anycast server.

13

A Hybrid Anycast Routing protocol is proposed in [18] for load balancing in

heterogeneous access networks. The proposed protocol is based on AODV protocol.

Some important modifications are made on AODV to support anycast routing. The

modification involves the combination of reactive and proactive mechanisms. The

protocol consists of two regions. The first one is the proactive region and the second

one is the reactive region. Proactive region surrounds the nodes that are “m” hop

away from the anycast server and all the other nodes that do not belong to a proactive

region but belong to a reactive region. The working mechanism of the protocol

consists of five phases, Hello message transmission, Route discovery for proactive

region, Route discovery for reactive region, Route selection and Route maintenance.

Hello message transmission is done by access points (anycast servers) to make the

nodes aware they belong to a proactive region. Only the nodes that are inside the “m”

hops of distance can receive this message and distinguish themselves as a member of

a proactive region. The process of receiving the hello messages and setting them as a

member of a proactive region is the second phase (Route Discovery for proactive

region). Route Discovery for reactive region works in a similar way with AODV

route discovery but this one has more fields inside the RREQ and RREP packets.

Route selection phase is done for choosing the best route to forward the packets. A

cost metric is used in the protocol to make a healthy decision and the Route

maintenance is same as the AODV’s route maintenance. In [18], some experiments

are done to show the performance of the proposed protocol.

14

Chapter 3

3 SURVEY OF EXISTING EXPERIMENTAL STUDIES

3.1 Main Direction to Investigate Wireless Mobile Ad Hoc

Networks

In order to investigate a wireless ad hoc network’s performance, two aspects need to

be considered. One of them is the real-world experimental part and the other one is

the simulation modeling. It will not be enough to make only the simulations for the

performance measuring of wireless ad hoc networks. The reason for this is that; the

environmental effects cannot be applied in the simulations exactly in the same way

as in the real-world’s environmental conditions. The results of real-world

experimental studies can be very important for understanding the wireless ad hoc

network’s performance. The real-world experimental investigations require the use

of a large number of computers, good test-bed software on these computers and most

importantly man power to control each computer. However, finding the necessary

people for deploying such an experiment may be difficult. The next difficulty in real-

world experiments is that when repetition is needed for a conducted experiment, you

may not find the same environmental conditions since the environmental conditions

cannot be controlled by the experimenter.

3.2 Experimental Study in Wireless Ad Hoc Networks

Some assumptions are made in simulations and these assumptions can sometimes

lead to incorrect results. In [19], it was stated that some of the assumptions that are

made in simulations are not always correct in the real-world experiments. In the

15

literature some real-world experiments were conducted in order to prove that some

assumptions are not true when the real world environment is considered.

In [19] a group of outdoor experiments were conducted with 33 laptops and each

laptop had its own GPS device to receive signals from the other nodes containing the

coordinates of the node itself. In order to examine the axioms, extensive log files

which keep related information for nodes’ positions were created. The first axiom

claims that “world is flat”. In some simulation models, it is assumed that the world is

flat; but it cannot be true. In the real-world, there are hills and buildings and these

can be counted as an obstacle which considerably affects the radio signal

propagation. The second axiom is that “A radio’s transmission area is circular”. In

theoretical analysis, it is assumed that the radio signal’s transmission area is circular

and it is not exactly the same in the real-world. In the paper [19], it was stated that

the angle between the wireless cards on a laptop to another laptop’s wireless card

affects the transmission area. Another axiom is “Signal strength is a simple function

of distance”. They took into consideration only received beacons and recipient’s

signal log to obtain the signal strength associated with that beacon. When the signal

strength of individual beacons was investigated, it was noticed that there is not any

simple function that will predict the signal strength of an individual beacon based on

the distance alone. In [19], the simulation results were compared with the outdoor

results that were derived from the outdoor experiments.

In [20], some experiments were conducted for understanding the capacity of the

radio medium, the asymmetry of the used cards and the effect of broadcast on unicast

flows and the interfering range. Linux operating system was used on every laptop

and UDP packets were sent with the implementation of CBR (Constant Bit Rate). A

16

toolbox software was developed to deploy different scenarios. In this group of

experiments no routing protocol was used. Without using any routing protocol

802.11 performance was measured. Each node has a predefined table consisting

information about the nodes that will send the packets. Furthermore, the developed

software monitored many parameters during the experiments such as the time of the

packet that was sent with the information by which station it was sent, the time of

received packet and by which station it was received with which power and the noise

level information of that time being, packet flow ID and sequence number within the

flow and last-hop identificator. With the use of the software, things that were not

considered in simulations were investigated their importance was highlighted in the

real-world by conducting some experiments.

A group of experiments was conducted which helped us to understand certain issues

that need to be considered in real world experiments. One group of experiments was

about the effect of positioning the laptops in the network. For this group of

experiments, two laptops were used and no forwarding mechanism was used since

there would be only one hop in the transmission. They examined four different

positioning of those two laptops to see the effect of throughput. Each stage lasted 130

seconds. During each stage, they changed the packet sizes as 200, 500, 1000, 1400

and each was sent for 20 seconds. The remaining time was used to increase the

distance between the communications to 15 meters. The configuration of the laptops

can be seen in Figure 3.1. In position 1, as it can be seen, the wireless cards of the

laptops were facing the same direction. In position 2, the cards were set in opposite

directions. In position 3, the cards were facing each other and in the last position, as

it can be seen the cards were facing the opposite direction with one laptop’s LCD

facing directly back of the other laptop’s LCD.

17

The throughput was measured and the best throughput in terms of bits/second was

seen at position 3 where the cards were looking at each other. The worst throughput

was observed at position 2 in which the cards were facing completely the opposite

sides. In simulations, these kinds of things are not generally taken into account since

it needs to be careful while conducting experiments in real-world.

The other group of experiments was done in the paper [20], which is about sharing

the medium. The experiments were done with two stations which tried to send data to

two different stations that acted as a receiver. Then, the network was set in a way that

the two sender stations sent the packets to the same destination. After that only one

station sent data to only one destination. The results of these experiments were

investigated to see how it affected the communication.

18

Figure 3.1: Positioning of the laptops during the experiment [20].

Another group of experiments was done to see how the throughput varied when the

number of stations that transmit data in the network was increased. The experiments

were started with one transmitter and one receiver station, and the number of

transmitter was increased step-by-step until seven transmitters. At the end of the

experiments, it was noticed that the throughput increases with respect to the number

of transmitter. The reason of this can be explained by thinking the idle time of the

receiver during the experiment. When receiver receives one packet of information, it

will be inactive until the arrival of the next packet. However, if the number of

transmitter is increased, this idle period will decrease since the packets that arrive at

the receiver increase per unit time. It is called parallel decrease of back offs which

19

leads to achieve better throughput when the number of transmitter increases. It was

seen that when two nodes were communicating at max range (189 meters), the

bandwidth was fully used by the monitored destination and when they were close to

each other the bandwidth was not fully used.

They compared the simulation results with the outdoor results that they achieved.

Therefore, from the [19] [20], it should be understood that before conducting any

experiment in the real-world, the assumptions that are used in simulations shouldn’t

be used.

Other researchers stated in [21], that the common assumptions of route symmetry in

simulations of ad hoc networks are not true in real-world experiments. They found

that when the number of hops increases, the chance of any route to be symmetric

decreases. In [21], they used 16 laptops equipped with IEEE 802.11b and 802.11g

network interface cards. Four of these laptops were used to generate real-time and

non-real time UDP traffic to all other nodes in the network. The protocol that they

used was Optimized Link State Routing (OLSR). They used the default parameter

values of OLSR which can be found in [23]. They were doing the experiments for

winning the Mobile Ad hoc Network Interoperability and Cooperation Challenge

2007 (MANIAC) which is a multi-institution competition. Two of the laptops were

used for monitoring the network traffic and the topology. They used a monitoring

tool for this purpose which will be explained later on. They also designed an

application which was used for making the dynamic changes in routing and

forwarding decision by the people who played role in conducting experiments easier

and in collecting traffic and routing data at each node more efficiently and easily.

The application gives the ability to drop, forward or redirect traffic. Each team

20

analyzed each packet and decided what to do with it. The options are; forwarding it

according to the routing table, dropping the packet or redirecting the packet to a

different next hop other than the specified entry in the table. Each team controlled

two nodes during the experiments. Moreover, the program stored some information

about the routing table, number of packets accepted, dropped and forwarded by each

node. The paper focused on topology and routing subjects. The result that they

achieved showed that a high degree of topology and route changes occur, even when

there is low mobility. From the results, it is understood that routing proactively in a

real ad hoc network is extremely difficult, because when the route is more than one

hop, it is asymmetric.

In [21], information was given about a monitoring tool that was used in the

experiments. In [22], they developed this monitoring tool and used it in some

experiments. As it is mentioned, this Monitor for Mobile Ad hoc Networks (MMAN)

tool was used to gather information about the network for constructing partial

network views. Moreover, the good thing of this tool is that, it does not generate any

additional traffic in the MANET which it monitors. And it doesn’t require much

storage and processing resources. This tool can be used for network management,

security assessment and anomaly detection. OLSR protocol is used in this tool. A

number of monitoring units was distributed in the network and the units were

equipped with two network interface cards. One of them was used for MANET

packets and the other one was used for the communication of the packets between

the other Monitoring Units (MUs). These MUs collected information about the

network topology, link changes and delivered this information to the management

nodes. The advantage of using two network interface cards is that no additional

traffic was generated in the MANET. They conducted experiments in two settings.

21

One of them which was with 10 nodes MANET was deployed across a large house

while some of the nodes were inside the house, some of them were outside. And in

the second setting, 10 nodes of MANET were deployed in an office building. Some

of the node’s operating system were different. All of them were Linux but not the

same version. One node had Fedora Core 5, four nodes had Fedora Core 4 and five

nodes had Slack ware Linux 10.2. The performance of MANET was investigated in

two scenarios. In one of the scenarios only one MU was used in the MANET whose

coverage area was partial. In the second scenario two MUs were used in MANET

covering the 80%-90% of the MANET. In the environment, there were obstacles

such as walls, other electrical devices as well as the wireless networks, shadowing

and interference. Experiments were run for 6 periods and each of the periods took 30

minutes. They tested the performance of MMAN under different networking

conditions such as; with different network densities, partial and complete coverage of

the MANET, node’s cooperation levels and different traffic rates in a real world

environment. They concluded that MMAN had been successful for all the scenarios.

More information can be found about this monitoring tool in [22].

In [24], outdoor experiments were conducted for comparing four different routing

protocols. These were APRL, AODV, ODMRP and STARA. They used 33 802.11-

enabled laptops moving randomly in a field. In addition to this, they compared the

outdoor results with both indoor and simulation results for all four algorithms. For

brief information about these four algorithms, please refer to Chapter 2.

Computers used in the experiments had 10GB Hard Disk, 128MB of main memory

and a 500 MHz Intel Pentium3 CPU with 256 KB of cache. They all ran Linux

kernel version 2.2.19 with PCMCIA card manager version 3.2.4 and had Lucent

22

(Orinoco) Wavelan Turbo Gold 802.11b wireless card. There were some common

parts in each of these four algorithms. All four algorithms were implemented to

application layer through the use of a tunnel device. They were using UDP for the

traffic between a specific neighbor and multicast IP for traffic to reach every

neighbor. All four algorithms were implemented in C++ and shared a core set of

classes.

They implemented a traffic generator to each node in the network. By using this

traffic generator, a sequence of packet streams was sent to a randomly selected node

in the network. For determining the destination node, a uniform distribution was

used. For the time between the streams and packets, exponential distribution was

used. And for determining the number of packets and the sizes, Gaussian distribution

was used. The traffic generator on each laptop generated packet streams with a mean

packet size of 1200 bytes and the approximate value of the mean of the packets per

stream was 5.5. The mean delay between streams and packets was approximately 15

seconds and 3 seconds respectively.

Outdoor experiments were done in a rectangular area of 365 meters long by 225

meters wide. The area of the experiments was far enough from the campus wireless

to prevent any interference. They used GPS service on each laptop which recorded

the current position once per second and synchronized the laptop clock with the GPS

clock for time synchronization. Every 3 seconds, GPS service on each laptop

broadcast a beacon containing its own coordinate and any other coordinates that it

knew about the other nodes. The parameters were set according to the published

simulation studies which gave effective results. APRL broadcast its beacon every 6

seconds and any route which had not been refreshed by a beacon within the last 12

23

seconds expired. And STARA broadcast a NP every 2 seconds. If a path was not

explored for 6 seconds, it sent a dummy data packet. If NP_ACK didn’t come twice

from a neighbor, it was removed from the list. AODV broadcast each RREQ twice

and a route expired if it is not used for 12 seconds. Hello packets were sent every 6

seconds and if two successive hello packets were not received by a neighbor, they

were removed from the neighbor set. The movements of the laptops were handled by

dividing the field into 4 parts. Experimenters chose a position randomly between the

parts that they were not currently in, and walked to that position and repeated the

same steps after reaching there. Message delivery ratio, communication efficiency,

hops count and end-to-end latency were used as performance metrics.

There are many routing protocols for mobile ad hoc networks, but there are not many

protocols which also consider the secure routing in MANET. In [25], they modified

the existing AODV protocol and proposed SAODV (Secure-AODV). Since AODV

protocol does not concern any security system, it is vulnerable to some types of

attacks. In this reference, they introduced a “malicious node” and stated whether a

node is an attacker node without having enough information about its type. On the

other hand, if the node has enough information about its type, it is counted as a legal

node. There are mainly three different ways of attacking a network according to this

paper.

The first one is “Message Tampering Attack”. Attacker can change the content of

routing messages and forward them with wrong information. For instance, one aim

of the attacker can be analyzing the communication between the source node and a

destination node. The only way of analyzing the communication between the source

node and the destination node during the whole data flow process is to make sure that

24

the information that is being sent passes this specific route that the attacker can

analyze. If the attacker decreases the hop count information, it will increase the

chance that the packers will flow on that specific path. Moreover, the destination

sequence number can be increased by an attacker in order to make the other nodes

believe that this is a “fresher” route.

The second type of attack is “Message Dropping Attack”. The attacker nodes are set

to drop some or all data information that is passing through them. As it is known, in

ad hoc networks each node can play the role of end hosts and routers, so dropping the

packets can paralyze the network with respect to the number of message dropped.

The third type of attack is the “Message Reply (or Wormhole) Attack”. Attackers can

retransmit secretly listened messages again later in a different place. Wormhole

attack is one of the reply attacks. Wormhole attacker can send the RREQ message

directly to the destination node to prevent any other routes from being discovered.

There are some security requirements in the protocol. Source authentication is one of

them and its aim is to verify that the node is the one that it says to be. The other one

is the Neighbor Authentication and its aim is to ensure that the receiver should check

the identity of the sender and be sure that the sender really tells the truth about itself.

The other one is the Message Integrity which is used to verify that the data which is

routed has not changed during the routing process. The last one is the Access Control

which checks the rights of the nodes that are trying to access the network. The

proposed SAODV protocol uses digital signatures to verify whether the information

that does not change in the packets is true or false. Also hop count is being checked

in RREQ and RREP messages.

25

Some experiments were done to see the performance difference between AODV and

SAODV. The experiments were done in indoor environment with some parameters.

For instance, bit rate for 802.11b MAC is 11Mb/s. For AODV and SAODV, HELLO

packets are sent every 1 second. Link will be counted as broken if HELLO packet is

not received within 2 seconds. For SAODV, additional size for RREQ, RREP and

RERR are 448,448,404 bytes respectively. 448 bytes include signature, top hash,

hash, certificate, other header info. For 404 bytes includes signature, certificate and

other header info are included. The laptops that were used for experiments had Intel

Pentium M 1.6 GHz CPU with 1024 KB cache more than 60 GB Hard disk and 512

MB RAM. Totally 6 laptops were used and each of them equipped with an internal

11 a/b/g wireless LAN mini PCI adapter. The operating system was Windows XP

version 2.0. The indoor room had 17mx7m area and the laptops were placed in the

same lab. The speed of the mobility was 0.5 m/s and each session took 15 minutes.

Data rate was 11 Mb/s with auto-rate function disabled. Minimum transmission

power mode was used and the transmission range was 50m. Each user held the

laptops and walked randomly in the room. During the experiments the amount of

control overheads (RREQ, RREP, RERR) that was generated was collected. When

each time a control packet was forwarded, it was counted as one transmission. For

TCP traffic the average throughput was used. Average TCP throughput for AODV-

withAttack, withoutAttack and SAODV-withAttack, withoutAttack are the

performance metrics.

In conclusion, SAODV is effective in preventing control message tampering and data

dropping attacks under TCP traffic. All the information that is written about the

security system of a protocol will be future work. And it will be extended to support

more types of attacks.

26

There are some routing protocols that look for the shortest path by checking the

delay of packets such as; AODV and DSR. Moreover, some of them check the signal

strength. In [26], a new criterion was introduced for choosing a better route. Joint

route hop count, node stability and route traffic load balance were the criteria for

choosing the best route among all other routes. In [26], AODV and SAR protocols

were compared and the performance metrics used in the paper are, delivery ratio,

end-to-end delay, control cost, hop counts and they are all versus traffic load. An

overview of SAR is as follows.

In SAR, when there is more than one route, it selects the best one with its union

selection parameter W, which jointly considers, hop count, stability of the route and

traffic load of the route.

For the experiments, two laptops were used for measuring the transmitting capacity

of single node. Two nodes were placed very close to each other and one of them was

set to send packets to the other one without any routing. On the computers wireless

LAN card was used, based on IEEE 802.11b standards and the WEP function was

disabled on the cards. Packet length was fixed at 1024 bytes. End-to-End delay

versus Traffic Load performance metric was used for this experiment.

The other experiment was done in indoor environment. The four laptops were placed

in 8mx8m office and the source, one intermediate and the destination node were not

moving. Only one intermediate node was moving between the source and

destination. Since they couldn’t change the transmission power of the laptops they

did the mobility in that way. For outdoor experiments that they conducted, they

didn’t use any mobility. Four nodes were placed 20m-30m away from each other and

27

the source node and the destination node were selected randomly among those four

laptops. For indoor experiments, they used delivery ratio, end-to-end delay, control

cost and end-to-end delay jitter performance metrics that were measured with respect

to the system traffic load. For outdoor experiments, instead of end-to-end delay jitter,

they measured hop count performance metrics with respect to system traffic load.

They compared the results that they found with the AODV protocol results. By

looking at the outputs, it was understood that SAR has more efficient results.

3.3 Challenges in Real-World Experimental Studies

Dealing with real-world experiments can be really challenging. The most challenging

factor in the experiments is the environmental conditions on the transmission of the

wireless signals. Since the experiments are conducted outdoors, the buildings, cars,

people walking around and even the electricity poles can be counted as

environmental effects that dramatically affect the propagation of the wireless signal.

The presence or absence of these obstacles is a crucial factor for choosing the

environment where experiments are to be conducted. It should be away from any

building to prevent the risk of interference. Also there should not be car traffic

around the experiment environment since they affect the propagation of wireless

signals. The electricity poles create a huge magnetic area which can affect the results

of the experiments in a bad way. Furthermore, there should not be another wireless

service around the experiment area for preventing the inference that they can

generate. One of the most challenging factors in conducting real-world outdoor

experiments is finding an enough large area that satisfies the criterias required for

achieving results that show the pure behavior of wireless ad hoc networks. After

finding such an area, the rest is not very simple. Conserving the battery life of the

laptops is also a challenging factor in the real-world experiments since there is no

28

power supply in the fields to recharge the batteries of the laptops. Just before starting

the testbed that is developed, the laptops should be connected to the same wireless

server which is created by any of the laptops. The laptops should be connected to the

wireless server one by one since the laptops that are far away need to connect to the

network after connecting the ones that are closer to the wireless server. During this

connection period if any of the laptops in the middle disconnects from the network

by mistake, the laptops that are more distant to the wireless server than the

disconnected ones, also quit the network. Those laptops needed to be reconnected to

the network and this whole process will consume the battery life of all the laptops.

Another challenging thing while conducting experiments is the weather conditions.

The experiments are tried to be conducted within the same time interval since it is

guessed that the temperature and humidity will not be very different than the

temperature and humidity in other days. The wind, rain or even the cloudiness of the

weather cannot be predicted precisely. Even the weather forecasts cannot be very

clear when a specific time interval is considered for the experiments. If the weather is

windy, the wireless signals will not be received or sent to longer distances as in

sunny and calm weather. So bad weather will make the network setup process harder

and longer, which will consume the battery power of laptops early when the testbed

is started.

In the previous section, the effects of the positioning of the laptops were stated [20].

Also during the experiments, the positions of the laptops are arranged with respect to

the results of the experiments that are done in [20], since the positioning may affect

the results in a bad way.

29

As a result, in order to conduct any real-world experiments in outdoor environment,

the environmental conditions should be similar every day you conduct the

experiment. Every time a small problem happens in the network, battery power will

have to be spent to fix this problem. When the time passes and the weather

conditions change and the experiments will not yield fully accurate results. All these

things should be taken into consideration before and during a real-world experiment.

The summarized information about real-world experiments in ad hoc networks can

be found in Tables 3.1 and 3.2. Most of the papers listed in the Tables 3.1 and 3.2

were explained in Section 3.2 and also there are some additional papers that were not

explained. The routing protocols used in the experiments, information about the

maximum number of the nodes, the mobility, and environment of the experiment,

performance metrics and the purpose of the experiment can be found in Tables 3.1

and 3.2.

Paper Routing
Protocol(s)

Max # of
nodes

Mobility Environment Performance Metrics Purpose

[19]

APRL
AODV

ODMRP
STARA

33

 -Outdoor
-Indoor YES

• Beacon Reception
Ratio vs. Distance

• Packet Delivery
Ratio vs. Avg.
Interarrival time

Explaining the assumptions that are done
in simulations is not always true in real-
world.

[20]

No Routing
Protocol

8

? NO

• Throughput vs.
distance

• # of packets vs.
transmission time

• SNR vs. time

To understand the effect of capacity of
the radio medium, asymmetry of the used
cards, the effect of broadcast on unicast
flows and interferencing range

[24]

APRL
AODV

ODMRP
STARA

33

 - Outdoor
-Indoor YES

• Message Delivery
Ratio

• Communication
Efficiency

• Hop Count
• End-to-End

latency

Comparison of four different protocols.

[25]

SAODV and

AODV

6

-Indoor

YES

• Throughput
• Routing Packets
• Control Overheads

To implement security mechanism to the
AODV protocol.

[26]

SAR and
AODV

4

-Indoor
-Outdoor

YES

• Delivery Ratio
• End-to-End Delay
• End-to-End Delay

Jitter
• Control Cost
• Hop Count

Introduce new criteria to choose a better
route among the others.

Table 3.1: Summarized information about the real-world experiments. Table 3.2: Summarized information about the real-world experiments. (Continue)

Table 3.1: Summarized information about the real-world experiments.

Paper Routing
Protocol(s)

Max # of
nodes

Mobility Environment Performance Metrics Purpose

[34]

MQOLSR
And

OLSR

10

 -Ring
Topology
-Fully
Connected
Topology

NO
• Average Control

Message Overhead
versus number of
nodes.

Purpose of MQOLSR is to reduce delay
jitter and increase network throughput.

[35]

Modified
AODV6

8

-Indoor

YES

• Respond time
versus Number of
nodes

• Success Rate versus
number of nodes.

To analyze the performance of IPv6 based
mobile ad hoc networks by conducting real-
world experiments.

[21]

OLSR

16

-Indoor

YES

• Percentage of time
versus Percentage
of nodes forming
the largest
connected
component

• Percentage of time
versus Percentage
of Symmetric nodes

Describe the collected data from a
heterogeneous ad hoc network created
during the MANIAC challenge
competition.

[22]

OLSR

10

-Indoor and
outdoor

YES

• Performance of
Partial Coverage
versus complete
coverage

• Traffic Load and
Cooperation

Providing solution to the challenges of
monitoring MANETs by introducing
MMAN.

Table 3.2: Summarized information about the real-world experiments.(Continued)

32

Chapter 4

4 TEST-BED PROGRAM

4.1 Purpose of the Program

In order to investigate the performance of wireless ad hoc networks some

experiments were conducted in real-world environment. The network nodes that

were involved in experiments ran a testbed program which was developed by our

research group. This application layer program was developed based on the

simulation model and presented in [27]. The purpose of this program is to monitor

the network during the experiment and produce statistics. For instance, the number of

packet received from a link can be different than the number of packets sent to a link.

The program collects some statistical information and computes information that

helps us to understand the performance of the wireless ad hoc networks.

4.2 The Structure of the Program

The program was implemented as a multithreaded C program under windows OS. In

the program, flooding scheme was used for data dissemination [28]. In this scheme, a

node transmits each message to all its neighbors. The neighbors, in their turn, rely

each received data packet to their neighbors, and so on until the message propagates

to the entire network.

33

Figure 4.1: Multicast mode for wireless network architecture.

In a wireless ad hoc network under consideration, any node wishing to transmit a

message broadcasts one or more packets to the network. Area-restricted multicast

mode of transmission mechanism is used to send each packet to the destination node.

The multicast mode here represents a limited broadcast form. Each multicast packet

is received by a group of hosts whose network interfaces have been configured to

receive multicast packets, as shown in Figure 4.1.

To multicast packets, the socket mechanism was used with the UDP transport

protocol. IP and CSMA/CA protocols were also used at the network layer and MAC

layer, respectively. The MAC layer performs the collusion detection by expecting the

Destination
node

process

Intermediate
node

process

Originator

node
process

Port Port Port

Wireless environment

Multicast IP = 234.55.66.77

Destination Port = 8888

Local Port = 8888

34

reception of an acknowledgment to any transmitted frame except multicast frames

[29]. According to [30, 31], multicast packets are not acknowledged.

In the experimental investigation same program ran on all laptop computers in the ad

hoc network configuration. There are two threads in the program - the originating

thread and the relaying thread. The simplified structure of the multithreaded program,

as it works in different nodes, is shown in Figure 4.2.

The originating thread is active only on the source node and is used to send data

packets to the destination node in the multicast mode. If the destination node is in the

coverage area of the source node the packet will be delivered directly. Otherwise it

will be sent through one or more intermediate nodes.

The relaying thread is active on all nodes that have a function of receiving multicast

messages from the network. Sending multicast messages is also performed by the

relaying thread from the intermediate and the destination nodes. The flow of messages

between the threads in the program on different nodes in wireless ad hoc network

environment is also shown in the Figure 4.2.

35

Figure 4.2: Structure of the program.

Originating
thread

Relaying
thread

Request

Reply
messages

Duplicate request
messages(discarded)

Own messages(discarded)
Source node

Originating
thread

Relaying
thread

Request/Reply
messages

Request/Reply
messages

Own messages (discarded)

Intermediate
node

Originating
thread

Relaying
thread

Request
messages

Duplicate reply
messages
(discarded)

Own messages (discarded)

Destination
node

Duplicate
request/reply
messages(discarded)

Reply
messages

36

Figure 4.3: A scenario of message passing in the wireless network of three nodes.

Figure 4.3 shows corresponding timing diagram for three nodes in the wireless ad hoc

network. In this configuration the destination node is not in the coverage area of the

originator node and the intermediate node is in the coverage area of both the

originator node and the destination node as shown in Figure 4.4.

t2

t3

t4

t1

t9

t7

t10

t8

t6

t12

Time

Originator
node

Intermediate
node

Destination
node

t5

 t11

37

Figure 4.4: A simple wireless ad hoc network with three nodes.

The originator node generates and multicasts a request message to the destination

node. This message is received by the intermediate node as a new message and by

the originator node as a back message. The originator node discards back messages.

On the other hand the intermediate node forwards the received message, in multicast

mode to the destination node. This message is received by the destination node as a

request message and by the originator node as a duplicate message.

Intermediate
node

Originator
node

Destination
node

38

Figure 4.5: The algorithm of the originating thread in the program.

The algorithm of the originating thread is shown in Figure 4.5. The originating thread

is active on the originator node and is used to send request messages to a destination

node through intermediate nodes in multicast mode. After sending all requests, the

originating thread waits for the termination of the relaying thread, then collects

Start

Is this the originator node?
No

Yes

Generate and multicast a message,

wait for some time before sending the next message

 No

Yes

Calculate statistics

Initializations

Are all messages sent?

Wait for the termination of the relaying thread

End

39

statistics and terminates as well. On other nodes (destination and intermediate) the

originating thread waits for the termination of the relaying thread and terminates.

(a)

(b)

Figure 4.6: A 128 bytes request datagram with data types (a), A 128 bytes reply
datagram with data types (b).

Figure 4.6 shows both request message and reply message attributes with their data

types. In each request message, the originator IP, the destination IP and the number

of messages are fixed. Message identifier (ID) and remaining number of messages

and hop count are changing in each message. In each reply message, the destination

IP field is set with the originator IP address. To distinguish between the request and

the reply messages Original destination IP is used in the reply messages. Each

Originator

IP

Destination

IP

Message

Identifier(ID)

Number

of messages

Remaining
number of
messages

Hop

Count

Pad

long
integer

(8 bytes)

long
integer

(8 bytes)

long integer

(8 bytes)

long integer

(8 bytes)

long integer

(8 bytes)

 integer

(4 bytes)

84 bytes

Originator
IP

Originator
IP

Message

Identifier(I
D)

Number
of

messages

Remaining
number of
message

Hop

Count

Original
destination

IP

Pad

long
integer

(8 bytes)

long
integer

(8 bytes)

long
integer

(8 bytes)

long
integer

(8 bytes)

long
integer

(8 bytes)

 integer

(4 bytes)

long
integer

(8 bytes)

76
bytes

40

Requests Replies

Number of received

messages

Number of sent

Messages

Number of received

messages

Number of sent

messages

Long integer

(8 bytes)

Long integer

(8 bytes)

Long integer

(8 bytes)

Long integer

(8 bytes)

Figure 4.7: Data structure of a request and a reply message counter.

message has an identifier (IP addresses) of the source and by looking at this identifier

the receiving side discards its own messages. Message ID is used to determine lost

messages on any node. Hop count is used to determine number hops between the

source and the destination nodes. Pad field is used to complete remaining data size.

Figure 4.7 presents the data structure of request and reply message counters. It counts

number of sent and received, request and reply messages. The array length is also

fixed to 2000 indexes. Data structure given in Figure 4.6 is used together with the

data structure given in Figure 4.7, to find number of lost and duplicated messages on

each node.

Figures 4.8 - 4.11 illustrate the algorithm of the relaying thread. The relaying thread is

active on all nodes, and used to receive multicast messages from the network and

analyze the received messages. The received message can be a request or a reply

message for all nodes in the prototype system as shown in Figure 4.8. All nodes

discard their own messages after receiving the message. In addition, any received,

duplicated request and reply messages are counted at all nodes.

41

In the program, on the originator node, when the relaying thread receives a reply

message, it checks if the message is received first time (new message) or it is a

duplicated message. The originator node saves each new reply message into the reply

messages array and compares each received new reply message with the contents of

the reply messages array. For the duplicated messages, counter of the duplicated reply

messages is increased. For the new messages, receive time of the message is figured

out and round trip time of the message is calculated and added to the sum of the round

trip times. Also hop count of the message is incremented and added to the sum of hop

count for reply messages. The simplified algorithm of the relaying thread at the

originator node is shown in Figure 4.9.

42

Figure 4.8: The algorithm of the relaying thread in the test-bed program.

 Analysis of the received message

Originator
node

received a
reply msg.

Destin. node
received

duplicated reply
msg.

Destination
node received

a request
msg.

Origin. node
received

duplicated
request msg.

Node
received
its own

msg.

Interm. node
received a

msg.
(reply/reques

t)

Discard
the

message

Inc. counter of
dupl. request

msgs.

Inc. counter of
dupl. reply

msgs.

Calculate statistics

Procedure
A

Procedure B

Procedure C

End

Start

Initializations

Extract info from the received message

Receive a message from the network

43

Figure 4.9: Algorithm for the relaying thread at the originator node after handling a

reply message from the network.

Fix received time of the msg.

Increment counter of reply msgs

Calculate round trip time

Store msg. into the reply msg. array

Originator node received a reply message

A new msg. received?

Org_flag = 0 Org_flag = 1

Analyze the message

No

Yes

Start

Calculate sum of round trip time

End

Increment counter
of duplicated reply

44

Figure 4.10: Algorithm for the destination node after handling a request message
from network.

Destination receives a request message

A new request message
received?

Dest_flag = 0

Store msg. into request msg. array

Increment counter of request msgs.

Send a reply msg. to the originator

Dest_flag = 1

Increment counter of
duplicated request

Analyze the message

No

Yes

End

Start

45

Figure 4.11: Algorithm for the intermediate node after handling a message (request
or reply) from the network.

Reply_ msg_ flag = 1

Rely_ msg_ flag = 1

A new request message received
Incr. counter of request msgs

Increment request msgs hop countStore the msg into the
array of request msgs

Forward the received msg in multicast mode to the
network

A new reply msg recevived
Incr. the counter of reply msgs

Increments reply msgs hop count
Store the msg into the array of reply msgs

Forward the reply msgs in multicast mode to
the network

Reply_ msg_ flag = 0

End

Increment
counter of

duplicated reply
message

Is received msg. a reply
msg.?

Intermediate_flag = 0
 A request msg. received

Is the msg. in the
recent received

msg. array?

Request_ msg_ flag = 0

Increment counter of duplicated
request message

Intermediate_fla
g = 1

 Is the msg.
in the
recent

received

Analyze the message

Yes No

No No

Start

Intermediate received a message

Yes Yes

46

Figure 4.12: Received messages at the intermediate node within a sliding window
consisting of 20 cells.

Almost same functions were performed at the destination node. When the destination

node receives a request message as shown in Figure 4.10, it checks if the message is

received first time (new message) or it is a duplicated message. The destination node

saves each new request message into the request messages array and compares each

received new request message with the contents of the request messages array. For the

duplicated messages counter of duplicated request messages is increased. For the

received new messages, a reply message is prepared and sent to the originator node in

the multicast mode through the intermediate nodes. Also for each received request

message, hop count of the message is incremented and added to the sum of hop count

for request messages.

An intermediate node can receive a request or a reply message from the neighbor

nodes (see Figure 4.11). For both cases, it checks if the message is received first time

(new message) or it is a duplicated message. To store recent received messages,

sliding window method is used on the intermediate nodes as outlined in Figure 4.12.

The intermediate node stores each new message (request or reply) into the

corresponding sliding window comprising 20 cells (each cell holds the received

message number at a particular moment of time).

1

……………….

2 3 19 20

2 4 1 2 3
Current
message #

1 3 4

Message # 21

47

Figure 4.13: A scenario of messaging in the wireless network of four nodes.

Each received new message is compared with the contents of the sliding window. If

the message is not a recently received one it is stored into the corresponding cell. For

the duplicated messages counter of duplicated messages is increased. For the received

new messages, after increasing the corresponding hop count a forwarding message is

prepared and sent to the neighbor nodes in the multicast mode.

The version of the program presented above cannot be used by more than one

destination nodes in an ad hoc network. The outlined program, under consideration is

extended to send a request message that is generated by the source node, to more than

one destination nodes and to receive replies from all destination nodes at the source

node. Each destination node sends a reply message for each received request message.

Source node calculates the average round trip time for the reply messages from

individual destination nodes. The delivery ratio is calculated by each destination node.

These performance metrics were discussed in the next section. In the extended

Time

Source

Node

Destination

Node 1

Destination

Node 2

Request i

Reply i

Destination

Node 3

t0

t2 t3 t4
t1

t5 t6 t7

t8 t9 t10

t11 t12 t13

t14 t15 t16

48

program out of order received messages were also investigated at both source and

destination nodes.

Figure 4.13 shows a timing diagram for one source node and three destination nodes

in the wireless ad hoc network. The source node generates and multicasts a request

message to the destination nodes at time t0. This message is received by the source

node and the destination nodes at times t1, t2, t3, and t4, respectively. The source node

always discards its own messages. The reply messages from the destination nodes

were sent at times t5 , t6 and t7 respectively and were received at times t8 , t13 and t16

4.3 Collected Information

by the source node. For simplicity back messages of the destination nodes were

discarded in the figure. A reply message of any destination node is received by the

other destination nodes as well.

In order to measure the performance of wireless ad hoc network, we need to collect

some information during the experiments. The developed program has the

responsibility of collecting information. The information that is collected is not

exactly same in all the nodes. There are some differences between the collected

information by the originator and destination or intermediate node. All the nodes fix

start and stop time of each experiment with their local host ip addresses.

The originator node saves the parameter for each experiment. It computes the average

round trip time of replies at the originator (source) node in terms of second. It also

collects the average number of reply messages received, average hop count for the

reply messages, duplicate ratio of the replies and the number of out of order reply

messages at the source node. All collected information is saved to a text file by each

node for future investigation. Each intermediate node collects average round trip time,

49

total number of received request or reply messages, total number of duplicated request

and reply messages at intermediate and total number of lost request and reply

messages at intermediate node.

The destination node collects the total number of request messages received, total

number of request messages sent, total number of duplicated request messages, total

number of request lost messages, average hop count of all the received request

messages, the number of out of order request messages and finally calculates the

delivery rate of requests. At the destination node, all these collected information is

used for the investigation of the performance of wireless ad hoc networks.

50

Chapter 5

5 ORGANIZATION OF EXPERIMENTS

Real-world experimental investigations can be categorized as indoor, fixed outdoor

and mobile outdoor setups [32]. In fixed setup, the position of the nodes does not

change in time. In mobile setup, the position of the nodes changes in time with

different speed. In this study mobile and fixed outdoor setups are considered. The

speed of the nodes is slow walking speed (~5 km/h). In our study, we conducted a

group of experiments for the investigation of wireless ad hoc networks under

different configurations and scenarios. It is important to see the behaviors of wireless

ad hoc networks with more than one configuration and scenario to understand the

overall performance in real-world. In the following sections of this chapter,

conducted experiments will be described.

The laptop computers used in the experiments have Intel Core2 Duo Processor 2.2

GHz and are equipped with 802.11b/g Wi-Fi wireless interface. Windows Vista was

used as an operating system and each laptop had 2 GB of ram and 250 GB Hard

Disk. Each laptop was placed at 50 cm height from the ground in the experimental

area. All the experiments were performed during daytime with temperature varying

between 20oC and 30oC. In each experiment, the number of requests, which were

sent from the source node to the destination node, was 2000 and the inter-packet time

(delay between transmission of each packet) at the source node was set at 100

milliseconds. The maximum data size of IEEE 802.11 standard is 2312 bytes in a

51

packet [29], with all headers of the upper layers. Therefore, for large application data

sizes (4000 and 8000 bytes), more than one packet were sent from the source node to

the destination node.

5.1 Experiments with Two Nodes

In this group of experiments, two nodes were used for the investigation of the

performance of wireless ad hoc networks. One node was arranged as the originator

node and the other one as the destination node. In the network configuration of this

group of experiments, the distance was changed from 30 meters to 120 meters step

by step and at each step the distance was increased by 30 meters. At each step, the

data size of each packet was varied from 128 bytes to 4096 bytes. The total number

of request messages was fixed at 2000 and the inter-packet transmission time

between the packets was fixed at 100 milliseconds.

Distance (m)

Figure 5.1 : Configuration of the experiments with using two nodes.

A wireless ad hoc network was conducted near the Computer Engineering

Department of the Eastern Mediterranean University. There was no physical obstacle

between the laptops in the first group of experiments as it is shown in figure 5.1.

Each conducted experiment was repeated five times with the same distance and data

size settings in order to achieve more efficient results that the average of the trials

will give us better understanding of the performance of wireless ad hoc networks.

Originator node Destination node

52

Experiments with two laptops, without any obstacles in between were used to

investigate the maximum range of a wireless node in the network.

In the second group of experiments the effect of inter-packet time (the delay between

each message) was investigated with the same configuration. In all conducted

experiments, the number of request sent was fixed to 2000. Inter-packet transmission

time is the time difference between two consecutive request packets that are sent. In

order to have a better understanding of the effect of the inter-packet transmission

time, a small group of experiments were conducted with two laptops. In Figure 5.1,

we can see that the same configuration was used in the experiments in Section 5.1

except that the distance was constant in this one. The distance between the source

node and the destination node was fixed to 150 meters while the data size was varied

between 2000,4000 and 8000 bytes. No obstacles were used between the laptops to

see the pure effect of the inter-packet transmission time on the network. The inter-

packet transmission time was changed to 10, 30, 50, 70 and 100 ms at each step and

three trials were made for each set of parameters.

Third group of experiments were done in the presence of an irregular obstacle (a

building is used here) between the source node and the destination node in real-world

environment. In this group, three different scenarios were used by changing the

distance of the source node and the destination node to the building.

In the first scenario, the source node was placed 1m near the building and its position

was kept fixed while the distance between the destination node and the source node

was changed from 10m to 30m from the source node. The second scenario was the

53

Figure 5.2: A configuration of a wireless ad hoc network consisting of source node
and destination node with a building, scenario three.

reverse of the first scenario, where the destination node was placed 1m near the

building and its position was kept fixed while the place of the source node was

changed from 10m to 30m from the destination node. Figure 5.2 presents the third

scenario, where both the source node and the destination node were placed at the

same interval from the building. Then the position of the nodes was varied by an

equal amount from the building in the range from 10m to 50m.

5.2 Experiments with more than Two Nodes

The experiments with more than two nodes, are categorized in two main groups

which are, single path experiments and multi-path experiments. In single path

experiments, there was only one path from source to destination node in the whole

network. Figure 5.3 presents a complex scenario of the network configuration that

was used in a real-world environment (deployed in EMU area) with five nodes. In all

experiments there was only one originator or source node of data packets, while the

CMPE building

D

30 m

Park

with trees

Ro
ad

S bu
ild

in
g

Car park
30 m

IENG building

3m

5m

54

Figure 5.3: A configuration of a wireless ad hoc network consisting of five nodes.

positions of the intermediate nodes and destination node, depended on the specific

scenario. In the experiments that were carried out with the use of the given network

configuration, four different scenarios were considered, with the number of

intermediate nodes varying between 0 and 3. To investigate routing in the network,

the nodes were positioned in such a way that only adjacent nodes were within the

coverage area of each other. As is shown in Figure 5.3, the source node S can only

transmit and listen to intermediate node I1. The intermediate node I1 has the source

node S and the intermediate node I2 within its coverage area. Similarly, the

intermediate node I2 can only communicate with intermediate nodes I1 and I3. The

neighbor of the destination node D is only the intermediate node I3.

CMPE building

Car park

I1
S

I2 I3

D

IENG building

50

 m

 5
0

m

50 m

70 m

Road

Park with
trees

Ro
ad

55

Figure 5.4: A configuration of a wireless ad hoc network consisting of five nodes in
open area.

In the multi-path experiments, routing and data dissemination are considered in

different ad hoc network configurations fixed nodes. Two set of experiments were

contacted. Figure 5.4 shows settings for the first set of experiments where there exist

a source node, destination node and three intermediate nodes.

At the beginning of the experiments, the nodes were distributed in the area randomly.

For instance, the source node S could transmit and listen to intermediate nodes I1, I2

.and I3. The neighbors of the destination node D were the intermediate nodes I1, I2

and I3. The destination node D could not transmit or could not listen the source node

S directly. The area of the experiment was 300m x 300m. The reason for choosing an

open field area is that it was far enough from any wireless interference that could

affect its performance. The second set of experiments was the extension of the first set

of experiments.

S

D

I3

I1

I2

190m

150m

150m

150m

150m

100m

Open field

56

Figure 5.5: A configuration of a wireless ad hoc network consisting of ten nodes.

Figure 5.5 illustrates the area where all of the experiments took place. It is located

inside the city, opposite of industrial area. As seen in Figure 5.5, there are only 1

source node, 1 destination node and 8 intermediate nodes. Source and destination

nodes were positioned in such a way that they could not communicate directly while

intermediate nodes were positioned by an arbitrary fashion. Due to the long distance

between the source and the destination nodes packets were transmitted through

intermediate nodes to the destination node. Flow of packets through intermediate

nodes again followed an arbitrary fashion.

It is nearly impossible to achieve the same results from two trials even if network

configuration and packet size remains stable due to real-world environmental factors

such as fading, attenuation, and presence of other interfering factors are not stable

[33]. Therefore, in order to get more statistical and realistic data, all of the

experiments with 5 different packet sizes are iterated 3 times and only the average of

these 3 trials was taken into the consideration.

57

5.3 Experiments with One Source Node and Three Destination

Nodes

Figure 5.6 presents settings of the source node and three destination nodes at different

directions for the network configuration deployed in an open field. The laptop

computer, which was used as the source node, was placed at the center and three

destination nodes were positioned on a circle with equal distances from the source

node and from the neighbor destination nodes. In the experiments, the place of the

source node was fixed and the place of the destination nodes was varied in the range

Figure 5.6: The position of source and destination nodes in the network.

from 30 m up to 120 m, to investigate the effect of the inter-node distance on the

performance metrics that given be described later. During these settings, all

destination nodes were within the coverage area of the source node. At each distance,

the application data size was varied between 50, 800 and 4000 bytes. Again each set

of experiment was repeated more than once in order to achieve better results.

R

Direction2
Direction1

Direction3

~ 1200

Distance

Source S

58

Normally, during all experiments, each laptop was placed 50 cm high from the ground

level. Under the same network configuration, series of experiments were conducted to

understand the effect of the high of the laptops from the ground level. The laptops

were placed 100cm height from the ground and the distance between the source and

the destinations was 120 meters. The data size was varied with respect to 50, 800,

4000 bytes and the result of experiments where laptops stood 50cm high from the

ground level was compared with the experiments where laptops were placed 100cm

high from the ground.

59

Chapter 6

6 EXPERIMENTAL RESULTS AND THEIR ANALYSIS

6.1 Performance Metrics

In this study, the performance metrics that are used in experiments are delivery ratio,

average end-to-end latency, round-trip-time (RTT) and number of hops. These

performance metrics could be used in experimental studies with different parameters

such as; distance, packet inter-arrival time, data size and number of hops between

source and destination nodes. In this study, in some group of experiments, we

considered the delivery ratio of the three destination nodes, that were calculated at

destination nodes and the average round trip time at the source node for three

destination nodes.

Formally, the delivery ratio measured at the destination on distance D is represented

by the expression (6.1).

 () ()i
i

s

N Dd D
N

= ,

where sN is the number of multicast data packets transmitted by the source node and

iN is the number of data packets delivered to the destination node i, i = 1,2,…,m

placed at distance D. From this, the delivery ratio for one source node and m

destination nodes placed at the same distance D from the source node is represented

by the expression (6.2).

(6.1)

60

 1

1

()
()

()

m

i i
i

m

i
i

d N D
d D

N D

=

=

=
∑

∑

The average round trip time, measured at the source node for a destination, can be

defined with the expression (6.3).

 i

N

ir

R
N

R
r

Σ
=

=
1

1
,

where rN is the number of replies at the source node and iR is the round trip time for

reply i , i = 1, 2, …, rN .

The average round trip time at the source node for m destination nodes can be

represented by the expression (6.4).

 j

m

j
R

m
R Σ

=
=

1

1

where Rj

∑
=

=
dN

i
i

d
d N

N
h

1

1

, is the average round trip time of destination j and j = 1,2, ..., m.

Another performance metric is the average number of hops, measured at the

destination node, expressed with the expression;

where Ni is the number of hops for request i where i=1,2,3,….,Nd

6.2 Results of Experiments

.

The result of experiments that was explained in section 5.1 and configured in Figure

5.1 is presented in Figures 6.1-6.2. Figures demonstrate the dependence of the average

(6.3)

(6.4)

(6.2)

(6.6)

61

Table 6.1: The average values of round trip time which varies with distance under
different application data sizes with using two nodes.
Inter-node
distance,m

Application data size(bytes)

100 500 1000 2000 4000 8000
30 0.176 0.944 15.779 15.984 32.600 77.801
60 0.187 1.063 15.745 15.938 32.200 78.210
90 0.227 1.005 15.743 15.903 31.700 78.210

120 0.837 1.192 15.894 16.133 32.270 74.580
150 0.160 0.903 15.708 15.801 31.600 74.750

Figure 6.1: Average round trip time versus distance with different data sizes.

round trip time and delivery ratio on distance with different application data sizes.

Also the exact average values of the results can be seen from the Table 6.1-6.2 which

they were used to draw the figures.

62

Table 6.2: The average values of delivery ratio which varies with respect to distance
under different application data sizes with using two laptops.
Inter-node
distance,m

Application data size(bytes)

100 500 1000 2000 4000 8000
30 0.965 0.964 0.970 0.961 0.940 0.935
60 0.987 0.980 0.948 0.977 0.990 0.984
90 0.972 0.990 0.948 0.992 0.995 0.988

120 0.864 0.895 0.950 0.900 0.853 0.714
150 0.787 0.783 0.722 0.469 0.412 0.256

Figure 6.2: The delivery ratio versus inter-node distance with different data sizes.

The result of the experiments that was configured in Figure 5.1 is shown in Tables

6.3-6.4 and presented in Figures 6.3 and 6.4. In Figure 6.3, the effect of inter-packet

transmission time on delivery ratio is demonstrated while in Figure 6.4, the effect of

inter-packet transmission time on round trip time is demonstrated.

63

Table 6.3: The average delivery ratio with respect to the inter arrival packet time
under different application data sizes with using two laptops.

Figure 6.3: The delivery ratio versus inter-packet transmission time with different
application data sizes.

Inter-packet
transmission time,
ms

Application data size(bytes)

2000 4000 8000
10 0.745 0.608 0.446
30 0.967 0.709 0.631
50 0.899 0.809 0.551
70 0.982 0.977 0.802

100 0.984 0.976 0.945

64

Table 6.4: The average round trip time values with respect to distance under different
application data sizes with using two nodes.

Figure 6.4: The average round trip time versus inter-packet transmission time with
different application data sizes.

Inter-packet
transmission
time, ms

Application data size(bytes)

2000 4000 8000
10 22.867 52.07 97.939
30 16.23 37.926 89.373
50 21.64 38.998 76.130
70 15.89 31.887 77.38

100 15.7 31.68 77.897

65

Table 6.5: The average delivery ratio values with respect to distance under different
application data sizes using two nodes and an obstacle between them in scenario one.
Inter-node
distance, m

Application data size (bytes)

100 1000 2000 4000
10 0.994 0.998 0.993 0.990
20 0.970 0.841 0.777 0.792
30 0.882 0.665 0.532 0.418

Figure 6.5: The delivery ratio versus inter-node distance, for different application
data sizes in scenario one.

The result of the experiments that was configured in figure 5.2 with different

scenarios are given in Tables 6.5-6.10 and presented in Figures 6.5-6.10. In Figures

6.5 and 6.6, the effect of inter-node distance on delivery ratio and round trip time with

different application data sizes can be seen for the first scenario respectively. In

Figures 6.7 and 6.8, again the effect of inter-node distance on delivery ratio and round

trip time with different application data sizes can be seen but for scenario two. The

effect of the inter-node distance on delivery ratio and round trip time is demonstrated

in Figures 6.9 and 6.10 for third scenario.

66

Table 6.6: The average round trip time values with respect to distance under different
application data sizes using two nodes and an obstacle between them in scenario one.
Inter-node
distance, m

Application data size(bytes)

100 1000 2000 4000

10 0.191 15.832 16.009 32.510

20 0.193 15.824 15.938 31.826

30 0.229 16.278 15.815 31.712

Figure 6.6: The average round trip time versus inter-node distance, for different

application data sizes in scenario one.

67

Table 6.7: The average delivery ratio values with respect to distance under different
application data sizes in scenario two.
Inter-node
distance, m

Application data size (bytes)

100 1000 2000 4000
10 0.999 0.999 0.998 0.997
20 0.996 0.975 0.840 0.869
30 0.686 0.781 0.705 0.64

Figure 6.7: The delivery ratio versus inter-node distance, for different application
data sizes in scenario two.

68

Table 6.8: The average round trip time values with respect to distance under different
application data sizes in scenario two.
Inter-node
distance, m

Application data size (bytes)

100 1000 2000 4000

10 0.198 15.69 15.836 31.780

20 0.062 15.657 15.853 31.78
30 0.548 17.507 15.913 32.13

Figure 6.8: The average round trip time versus inter-node distance, for different
application data sizes in scenario two.

69

Table 6.9: The average delivery ratio values with respect to distance under different
application data sizes in scenario three.
Inter-node
distance, m

Application data size (bytes)

100 1000 2000 4000

10 0.988 0.959 0.837 0.56

20 0.921 0.844 0.734 0.575

40 0.552 0.518 0.399 0.189

Figure 6.9: The delivery ratio versus inter-node distance, for different application
data sizes in scenario three.

70

Table 6.10: The average round trip time values with respect to distance under
different application data sizes in scenario three.

Figure 6.10: The average round trip time versus inter-node distance, for different
application data sizes in scenario three.

Inter-node
distance, m

Application data size (bytes)

100 1000 2000 4000

10 0.227 15.748 15.902 31.862

20 0.156 15.718 15.971 31.999

40 0.295 15.775 15.816 31.603

71

Table 6.11: The average delivery ratio values with respect to number of intermediate
nodes between the source and destination nodes, under different application data
sizes.
Number of
intermediate
nodes

Application data size (bytes)

100 1000 2000 4000 8000

0 0.972 0.948 0.992 0.995 0.988

1 0.919 0.953 0.861 0.809 0.359

2 0.812 0.886 0.660 0.421 0.187

3 0.716 0.847 0.445 0.228 0.070

Figure 6.11: The delivery ratio versus the number of intermediate nodes between the
source and destination nodes, for different application data sizes.

In single path group of experiments that is configured in figure 5.3 the number of

intermediate nodes between the source and destination node was varied from 0 to 3

and a series of experiments were performed with different application data sizes.

Table 6.11-6.12 and the corresponding figures 6.11 and 6.12 show the behavior of

72

packet (message) delivery ratio and average round trip time on the number of

intermediate nodes between the source and destination nodes.

Table 6.12: The average round trip time values with respect to number of
intermediate nodes under different application data sizes.
Number of
intermediate
nodes

Application data size (bytes)

100 1000 2000 4000 8000
0 0.227 15.743 15.903 31.700 78.210
1 2.17 25.66 60.94 111.969 249.99
2 16.05 62.66 94.41 190.5 410.9
3 17.98 78.97 180.78 261.25 515

Figure 6.12: The average round trip time versus the number of intermediate nodes
between the source and destination nodes, for different application data sizes.

73

Table 6.13: The average round trip time values with respect to data size under two
different scenarios.

Application data size,
bytes

Average Round Trip time (ms)

5 nodes 10 nodes
50 1.072 16.24
400 11.835 32.15
800 36.65 57.12
2000 61.461 157.7
4000 131.874 347.3

Figure 6.13: The average round trip time versus application data sizes between the

source node and the destination node in an open area with different number of fixed
nodes.

The result of multi-path experiments that was performed with the network

configuration presented in Figure 5.4 and Figure 5.5 is shown in Tables 6.13-6.15 and

presented in Figures 6.13-6.15. Routing and data dissemination from the source node

to the destination node is investigated in these configurations with fixed and mobile

nodes. The graphs display the comparative results of the experiments.

74

Table 6.14: The delivery ratio with respect to data size under two different scenarios.
Application data
size, bytes

Delivery ratio
5 nodes 10 nodes

50 0.986 0.957
400 0.985 0.933
800 0,981 0,911
2000 0.951 0.652
4000 0.741 0.405

Figure 6.14: The delivery ratio versus application data sizes between the source node
and the destination node in an open area with different number of fixed nodes.

75

Table 6.15: The average number of hop values with respect to application data size in
two different scenarios.

Application data
size, bytes

Average number of hops
5 nodes 10 nodes

50 1.091 2.255
400 1.166 2.285
800 1.372 2.39
2000 1.515 2.726
4000 1.575 3.135

Figure 6.15: The average number of hop versus application data size with different
number of fixed nodes.

The result of experiments that was performed with the network configuration shown

in Figure 5.6 is given in Tables 6.16-6.24 and presented in figures 6.16-6.24. During

the performance of the experiments, the source node was placed at the center and

three destination nodes were positioned on a circle with equal distances from the

source node and from the neighbor destination nodes as explained in the previous

section of the thesis. The inter-node distance between the source node and the

76

destination nodes was varied from 30m to 120m. In all these distances, the three

destination nodes were in the coverage area of the source node. After 120m the source

node could not reach to the destination node under the given conditions.

Graphs in Figures 6.16-6.21 demonstrate the dependence of the delivery ratio and

average round trip time on inter-node distance with different application data sizes for

the first group of experiments. In the graphs corresponding performance metric values

are given for three different directions with the overall value of three destinations.

Graphs in Figures 6.22 and 6.23 present delivery ratio and overall average round trip

time on inter-node distance with different application data sizes.

In Table 6.24 and the corresponding in Figure 6.24, the effect of the distance of the

laptops to the ground level can be seen. A small group of experiments were conducted

to see the delivery ratio difference between laptops 50cm high from the ground and

laptops 100cm high from the ground with 120 meter distance between two nodes.

77

Table 6.16: The average delivery ratio values with respect to distance and the
application data size is fixed to 50 bytes.

Figure 6.16: The delivery ratio versus inter-node distance, for different directions
with application data size is 50 bytes.

Inter-node
distance, m

Delivery ratio

Direction 1 Direction 2 Direction 3 Overall

30 0.999 0.999 0.999 0.999

60 0.998 0.986 0.998 0.998

90 0.988 0.932 0.996 0.972

120 0.819 0.703 0.788 0.770

78

Table 6.17: Average round trip time values with respect to distance when the
application data size is 50 bytes.

Inter-node
distance, m

Average round trip time (ms)

Direction 1 Direction 2 Direction 3 Overall

30 0.150 0.122 0.110 0.128

60 0.201 0.198 0.244 0.214

90 0.336 0.210 0.299 0.281

120 0.672 0.567 0.659 0.633

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140

Inter-node distance, m

 A
v

e
ra

g
e

 R
o

u
n

d
 T

ri
p

 T
im

e
,m

s

Direction 1

Direction 2

Direction 3

Overall

Figure 6.17: The average round trip time versus inter-node distance, for different

directions with application data size = 50 bytes.

79

Table 6.18: Average delivery ratio values with respect to distance when the
application data size is 800 bytes.
Inter-node
distance, m

Delivery ratio

Direction1 Direction2 Direction3 Overall
30 0.999 0.999 0.999 0.999
60 0.994 0.988 0.993 0.992
90 0.863 0.944 0.727 0.844

120 0.830 0.684 0.752 0.755

Figure 6.18: The delivery ratio versus inter-node distance, for different directions

with application data size = 800 bytes.

80

Table 6.19: The average round trip time values with respect to distance when the
application data size is 800 bytes.

10

12

14

16

18

20

22

24

26

0 20 40 60 80 100 120 140

Inter-node distance, m

A
v

e
ra

g
e

 R
o

u
n

d
 T

ri
p

 T
im

e
,m

s

Direction 1

Direction 2

Direction 3

Overall

Figure 6.19: The average round trip time versus inter-node distance, for different

directions with application data size = 800 bytes.

Inter-node
distance, m

Average round trip time (ms)

Direction1 Direction 2 Direction 3 Overall

30 23.947 19.787 18.7 20.811

60 18.72 17.463 18.446 18.212

 90 16.492 17.018 20.991 18.167

120 21.845 24.977 17.244 21.355

81

Table 6.20: The average delivery ratio values with respect to distance when the
application data size is 4000 bytes.
Inter-node distance,
m

Delivery ratio

Direction1 Direction 2 Direction 3 Overall
30 0.989 0.926 0.989 0.968
60 0.99 0.942 0.991 0.974
90 0.961 0.700 0.969 0.877

120 0.769 0.373 0.487 0.543

Figure 6.20: The delivery ratio versus inter-node distance, for different directions

with application data size = 4000 bytes.

82

Table 6.21: The average round trip time values with respect to distance when the
application data size is 4000 bytes.
Inter-node
distance, m

Average round trip time (ms)

Direction1 Direction2 Direction3 Overall
30 32.846 33.223 28.781 31.617
60 36.2 32.905 30.275 33.127
90 46.954 35.786 46.5 43.08

120 41.366 39.751 31.25 37.456

Figure 6.21: The average round trip time versus inter-node distance, for different

directions with application data size = 4000 bytes.

83

Table 6.22: The overall round trip time values with respect to inter-node distance
under different application data sizes.
Inter-node distance, m Application data sizes (bytes)

50 800 4000
30 0.128 20.811 31.617
60 0.214 18.210 33.127
90 0.281 18.167 43.080

120 0.633 21.355 37.456

Figure 6.22: The average round trip time (overall) versus inter-node distance for
different application data sizes.

84

Table 6.23: The overall delivery ratio values with respect to distance under different
application data sizes.

Inter-node distance, m Application data size (bytes)
50 800 4000

30 0.999 0.999 0.968
60 0.998 0.992 0.974
90 0.972 0.844 0.877

120 0.770 0.755 0.543

Figure 6.23: The delivery ratio (overall) versus inter-node distance, for different

application data sizes.

85

Table 6.24: The average delivery ratio values with respect to data size under different
height values from the ground.

Figure 6.24: The average delivery ratio versus application data size under different
height of the laptops to the ground level.

Application data size,
bytes

Delivery ratio

Height=50cm Height=100cm

50 0.770 0.996

800 0.755 0.998

4000 0.543 0.995

86

6.3 Discussion of the Experimental Results

In Section 5.1, some group of experiments were conducted between two nodes to

understand the behavior of delivery ratio and the average round trip time with

different application data size and inter-node distances. More information can be

found in Section 5.1 in this study. Based on the obtained experimental results that

were explained in Section 5.1, one can make the following inferences.

• The average round trip time and delivery ratio metrics depend on the number

of intermediate nodes between the source node and the destination node and

the size of the application data.

• As Figure 6.2 demonstrates, the delivery ratio which is almost constant at low

distances (up to 90 m) starts to decrease at high inter-node distances for all

application data sizes. The decrement in delivery ratio increases as

application data size increases.

• The average round trip time increases with the increase of the application data

size (Figure 6.1). Especially it is quite high for a large application data size,

since in this case there is more than one packet transmission. For small

application data size it remains quite low. From the same graph it is also clear

that the average round trip time does not depend on the distance between two

nodes, if the destination node is in the coverage area of the source node.

From the results of the second group of experiments that were conducted in Section

5.1, one can say that:

• As the inter-packet transmission time increases between the packets, the

delivery ratio also increases (Figure 6.3). This will allow more packets to get

to their destinations, as there is less possibility of collision since the load of

87

the network is low. From the same graph, it can be seen that the delivery ratio

is lower for high application data sizes since there is a fragmentation of the

packets.

• Figures 6.4 show that for the same inter-packet transmission time, the average

round trip time, is high for high application data size and on the other hand, it

is decreasing slowly as the inter-packet transmission time is increased.

Based on the results of experiments that were configured in Figure 5.2, these

inferences can be made.

• As it was expected, the average round trip time increases with the increase of

the application data size (Figures 6.6, 6.8 and 6.10). Especially it is quite high

for a large application data size, since in this case, there is more than one

packet transmission. For small application data size it remains quite low. As it

was explained before, if the destination node is in the coverage area of the

source node, the distance between them do not affect the average round trip

time.

• Figures 6.5, 6.7, and 6.9 show that the packet delivery ratio considerably

decreases with the increase in the inter-node distance between the source node

and the destination node. This performance metric is quite low for large

number of inter-nodes distances, since large number of packets is lost on the

way from the source node to the destination node.

• From the same graphs of Figures 6.5, 6.7, and 6.9 one can also see that, there

is a large decrement in the packet delivery ratio when application packet size

increases (especially for 4000 bytes and 8000 bytes). In wireless ad hoc

88

networks Bit Error Rate of a radio link is high, therefore, the probability of a

packet to get corrupted or lost increases with the increasing packet size. For a

large application data size, more than one packet is transmitted since there is a

limitation on the frame size in IEEE 802.11 MAC layer [33].

In the experiments with the network configuration given in Figure 5.3, the number of

intermediate node varied and the performance metrics are calculated for different

application data sizes. The analyses of the results are as follows.

• The used performance metrics depend on the number of intermediate nodes

between the source node and the destination node and the size of the

application data.

• Figure 6.11 shows that the packet delivery ratio considerably decreases with

the increase in the number of intermediate nodes between the source node and

the destination node. This performance metric is quite low for large number of

intermediate nodes, since large number of packets is lost on the way from the

source node to the destination node.

• As the number of intermediate node increases between the source node and

the destination node, the average round trip time also increases (Figure 6.12).

Each intermediate node performs some processing of the received packets.

With the increase of the number of the intermediate nodes, the total packet

delay also increases.

89

Based on the obtained experimental results from experiments that were configured in

Figures 5.4 and 5.5, one can make the following inferences.

• The average round trip time increases with the increase of the application

data size (Figure 6.13). Especially it is quite high for a large application

data size, since in this case, there is more than one packet transmission.

For small application data size it remains quite low. From the same graph,

it is also clear that, the average round trip time with 10 nodes experiments

case is higher than the average round trip time with 5 nodes in the

network. When there are more nodes, the source node and the destination

node are too far from each other.

• From Figure 6.14, it is noticeable that the delivery ratio is quit lower for

the 10 nodes experiments case especially for large application data sizes.

This is because in the 10 nodes case, we have increased the inter-node

distance between the source node and the destination node and then filled

the in-between distance by the intermediate nodes. Therefore, we have a

decrease in the delivery ratio.

• Graph in Figure 6.15, illustrates the average number of hops from the

source node to the destination node. Number of hops taken by each packet

is increasing due to increase in packet size. Additionally, it is clear that

number of hops taken by packets whose sizes are greater than 2000 bytes

is at higher level when compared to smaller sized packets.

90

Based on the obtained experimental results from experiments that are configured in

Figure 5.6, one can make the following inferences.

• The average round trip time depends on the application data size and the

delivery ratio depends on the inter-node distance between the source node

and the destination node and the application data size.

• The average round trip time increases with the increase of the application

data size as it can be seen from the investigation of Figures 6.17, 6.19,

6.21, 6.22. Especially it is quite high for a large application data size, since

in this case, there is more than one packet transmission. For small

application data size it remains quite low. From the same graph, it is also

clear that, the average round trip time does not depend on the distance

between two nodes, if the destination node is in the coverage area of the

source node.

• Figures 6.16, 6.18, 6.20 and 6.23 show that the packet delivery ratio

considerably decreases with the increase in the inter-node distance

between the source node and the destination node. This performance

metric is quite low for large number of inter-nodes distances, since large

number of packets is lost on the way from the source node to the

destination node.

• From the graph of Figure 6.23 one can also see that, there is a large

decrement in the packet delivery ratio when application packet size

increases (especially for 4000 bytes. The reason of this is the

fragmentation of the packets).

91

• In Figure 6.24, it can be seen that the delivery ratio is high when the nodes

are placed higher positions from the ground level. Putting the nodes

100cm height from the ground level gave us better results when it is

compared with 50cm height.

92

6.4 Average Values and Confidence Intervals of the Investigated

Performance Metrics

In this section, average values and confidence intervals of the investigated

performance metrics of the experiments that are configured in Figure 5.3 are

provided. The performance metrics that were used in the experiments are delivery

ratio and average round trip time.

Table 6.25: Average values and 95% confidence intervals of the performance metrics
for application data size = 100 bytes.

Metric

The number of intermediate nodes between source and
destination when application data size is 100 bytes

0 1 2

Delivery ratio 0.972±0.003 0.919±0.029 0.812±0.145

Average round
trip time

0.227±0.032 2.17±1.549 16.05±0.227

Table 6.26: Average values and 95% confidence intervals of the performance metrics
for application data size = 1000 bytes.

Metric

The number of intermediate nodes between source and
destination when application data size is 1000 bytes

0 1 2

Delivery ratio 0.948±0.083 0.953±0.014 0.886±0.108

Average round
trip time

15.743±0.100 25.66±0.336 62.66±0.366

93

Table 6.27: Average values and 95% confidence intervals of the performance metrics
for application data size = 2000 bytes.

Metric

The number of intermediate nodes between source and
destination when application data size is 2000 bytes

0 1 2

Delivery ratio 0.992±0.013 0.861±0.079 0.660±0.367

Average round
trip time

15.903±0.061 60.94±0.244 94.41±0.305

Table 6.28: Average values and 95% confidence intervals of the performance metrics
for application data size = 4000 bytes.

Metric

The number of intermediate nodes between source and
destination when application data size is 4000 bytes

0 1 2

Delivery ratio 0.995±0.002 0.809±0.153 0.421±0.027

Average round
trip time

31.7±0.088 111.969±0.271 190.5±5.236

Table 6.29: Average values and 95% confidence intervals of the performance metrics
for application data size = 8000 bytes.

Metric

The number of intermediate nodes between source and
destination when application data size is 8000 bytes

0 1 2

Delivery ratio 0.988±0.003 0.359±0.048 0.187±0.097

Average round
trip time

78.210±0.168 249.99±2.787 410.9±7.339

94

Chapter 7

7 CONCLUSION

An application layer multithreaded program which has been developed in [37] was

used for experimental investigation of data transmission in wireless ad hoc networks.

In this program, pure flooding method is used for packet transmission or routing

between the nodes.

A large number of experiments were conducted in an attempt to investigate the

characteristics of the wireless ad hoc network in outdoor real-world network

environment using the program. As a result, more than 500 experiments were run and

a vast amount of raw data, (more than 6000 values out of 1000 data files), was

analyzed. A number of performance metrics were observed under different

conditions.

In the thesis, first of all, an extensive survey of routing protocols is introduced. Based

on this survey, a classification of existing routing protocols is done with respect to

their transmission method and categorized as unicast, multicast and anycast routing

protocols. Another classification is done based on the working mechanism for each

given category as reactive, proactive and hybrid protocols. Survey results of the

existing experimental studies for investigating the performance of wireless mobile ad

hoc networks have been also presented in the thesis.

95

Through our survey, it is found that in the literature, some experimental work is done

to evaluate wireless mobile ad hoc routing protocols [21][22][25][34] and investigate

the effect of 802.11 on real ad hoc scenarios [20]. These evaluations are done based

on the distance between mobile nodes, node mobility, number of hops, traffic load,

data size, transmission speed and inter-packet transmission time. The common

performance metrics are given as delivery ratio, hop count, round trip time or end-to-

end delay, throughput and control overhead.

In this study, we have considered delivery ratio, round trip time, number of hops with

respect to application data size, hop count and inter-node distance under different

wireless ad hoc network scenarios in outdoor environment. In the literature generally

the experiments were done using linux operating system where in this study windows

operating system was used.

In [24], some experiments were done in rectangular area. In their network

configuration, all the nodes generate traffic and send the generated traffic to

randomly selected destinations. Message delivery ratio, communication efficiency,

hop count and end-to-end latency were used as a performance metrics and they used

fixed packet size which was randomly generated with a mean 1200 bytes. In [26], the

performance of the ad hoc network was investigated through the condunted

experiments. The parameter which was used in the experiments is the system traffic

load. The inter-node distance and the application data size in the experiments were

kept fixed.

In [36], some experiments were conducted inside the campus with four nodes with

some parameters such as the application data size and the inter-arrival packet time.

96

End-to-end delay and throughput were used as a performance metrics. For measuring

the end-to-end delay in the network, Ping utility was utilized as a data source. The

application data size was varied from 64 bytes up to 48856 bytes and the inter-arrival

packet time was varied between 10 ms and 15 seconds.

In this study, the application data size was varied from 100 bytes up to 8000 bytes

during the experiments and the inter-arrival packet time varied from 10ms up to

100ms. We are not be able to compare our results with other researchers’ results

completely because of the difference in the used performance metrics, parameter

types, routing method and network configurations. Although in [36], same

performance metrics were used with this study and it can be seen that the end-to-end

delay (round trip time) increases when the application data size is increased and end-

to-end delay is higher when the inter-arrival packet time is very low such as 10ms or

30 ms. After 50 ms, end-to-end delay does not change with respect to inter-arrival

packet time. However, in [36], they did not measure how the delivery ratio is

affected with the inter-arrival packet time. In this thesis, it is also measured and it’s

effects are discussed.

The developed program and the results of the experiments can be used for

investigation of different schemes of routing and information dissemination in real-

world wireless ad hoc network and as data for sensible simulations. Also, as a future

work, with the use of the program testing of existing routing protocols can be done in

real-world environments as well as new routing protocols can be developed to

improve performance of wireless mobile ad hoc networks.

97

8 REFERENCES

 [1] Siva Ram Murthy C., & Manoj B. S.(2004). Ad hoc wireless networks:

Architectures and protocols. Prentice Hall.

[2] Liu C., & Kaiser J. (2005). A Survey of mobile Ad Hoc network Routing

Protocols. University of Magdeburg.

[3] Abolhasan M., Wysocki T.A., & Dutkiewicz E. (2004). A Review of Routing

Protocols for Mobile Ad hoc Networks. In Elsevier Journal of Ad hoc

Networks, 2 , 1-22.

 [4] Perkins C. E., & Royer E. M. (1999). Ad Hoc On Demand Distance Vector

routing. Proceedings of 2nd IEEE Workshop, Mobile Computer System and

Applications, 90-100.

[5] Johnson D. B., & Maltz D. A. (1996). Dynamic Source routing in ad hoc

wireless networks. in Mobile Computing, vol. 353, Chapter 5, pp. 153-181,

Kluwer Academic Publishers.

[6] Jacquet P., Muhlethaler P., Clausen T., Laouiti A., Qayyum A., & Viennot L.

(2001). Optimized link state routing protocol for ad hoc networks. In

Proceedings of the 5th IEEE Multi Topic Conference (INMIC 2001).

98

[7] Garcia-Luna-Aceves J. J., & Spohn C. M. (1999). Source-tree routing in

wireless networks. In Proceedings of the Seventh Annual International

Conference on Network Protocols, Toronto, Canada, 273-282.

[8] Karp B., & Kung H. T. (1998). Dynamic neighbor discovery and loopfree,

multi-hop routing for wireless, mobile networks. Harvard University.

[9] Haas Z. J. (1997). A New Routing Protocol For The Reconfigurable Wireless

Networks. In Proceedings of 6th IEEE International Conference on Universal

Personal Communications, IEEE ICUPC'97, San Diego, California, 562-566.

[10] Royer E. M., & Perkins C. E. (1999). Multicast Operation of the Ad hoc On-

Demand Distance Vector Routing Protocol. In Proc. Of the 5th annual

ACM/IEEE International Conference on Mobile Computing and Networking

(MobiCom), Seattle, WA, 207-218.

[11] Lee S., Gerla M., & Chiang C. (1999). On-Demand Multicast Routing Protocol.

In Proc. of the Wireless Communications and Networking Conference (WCNC),

New Orleans, LA,1298-1302.

[12] Jacquet P., Minet P., Laouiti A., Viennot L., Clausen T., & Adjih C. (2001).

Multicast optimized link state routing. IETF Internet Draft: draft-ietfmanet-

olsr-molsr.

99

[13] Devarapalli V., & Sidhu D. (2001). MZR: A Multicast Protocol for Mobile Ad

Hoc Networks. In IEEE International Conference on Communications (ICC),

Helsinki, Finland.

[14] Wang J., Zheng Y., Jia W. (2003). An AODV-Based Anycast Protocol in

Mobile Ad hoc Network. International Symp. of IEEE on Personal,Indoor, and

Mobile Radio Communication Proceedings.

[15] Peng G., Yang J., & Gao C. (2004). ARDSR: An Anycast Routing Protocol for

Mobile Ad hoc Network. Symp. On Emerging Technologies of IEEE on Mobile

and Wireless Communication.

[16] Saeed A., Khan L., Shah N., & Ali H. (2009). Performance Comparison of two

Anycast based reactive routing protocols for mobile Ad Hoc networks.

International Conferance on 2nd Computer, Control and Communication (IC4

2009). 1-6.

[17] Martin M., & Takuro S. (2009). Route-Count Based Anycast Routing in

Wireless Ad Hoc Networks. Vehicular Technology Conference Fall (VTC

2009-Fall), 2009 IEEE 70th. 1-5.

[18] Kashif S., Lijuan C., Tu W., & Teresa D. (2008). A Hybrid Anycast Routing

Protocol for Load Balancing in Heterogeneous Access Networks. Computer

Communications and Networks, 2008. ICCCN '08. Proceedings of 17th

International Conference.1-6.

100

[19] Kotz D., Newport C., Gray R.S, Liu J., Yuan Y., & Elliott C. (2004).

Experimental Evaluation of Wireless Simulation Assumptions. In Proceedings

of MSWiM 2004.

[20] Dhoutaut D., & Guerin-Lassous I. (2003). Experiments with 802.11b in ad hoc

configurations. The 14th IEEE 2003 International Symposium on Personal,

Indoor and Mobile Radio Communication Proceedings. 1618-1622.

[21] Srivastava V., Hilal A.B., Thompson M.S., Chattha J.N., MacKenzie A. B., &

DaSilva L.A. (2008). Characterizing Mobile Ad Hoc Networks – The

MANIAC Challenge Experiment. In WiNTECH.

[22] Kazemi H., Hadjichristofi G., & DaSilvia L. A. (2008). MMAN – A Monitor

for Mobile Ad Hoc Networks: Design, Implementation, and Experimental

Evaluation. In WiNTEC.

[23] Macker J., & Lee R. (2007). http://cs.itd.nrl.navy.mil/work/olsr/

[24] Gray R.S., Kotz D., Newport C., Dubrovsky N., Fiske A., Liu J., Masone C.,

McGrath S., & Yuan Y. (2004). Outdoor Experimental comparison of four ad

hoc routing algorithms. In Proceedings of MSWiM 2004.

[25] Juwad M.F., & Al-Raweshidy H.S. (2008). Experimental Performance

Comparison between SAODV&AODV. Second Asia International Conference

on Modelling & Simulation. 247-252.

101

[26] Zhong X., Mei S., Wang Y., & Wang J. (2004). Experimental Evaluation of

Stable Adaptive Routing Protocol. In proceedings of WCNC 2004. 1563-1567.

[27] Oz G., Kostin A., Oyeniyi A. M., Sharghi Z., & Seifzadeh S. (2008). Prototype

Application-Layer Test Bed for Implementation and Investigation of Routing

and Data Dissemination in Wireless Mobile Ad Hoc Networks. In 10th

International Workshop on Сomputer Science and Information Technologies

CSIT2008, 27-31.

 [28] Obraczka K., & Kumar V. (2001). Flooding for Reliable Multicast in Multi-

hop Ad Hoc Networks. Wireless networks, Springer, vol. 7, no. 6.

[29] Crow B. P., Widjaja I., Kim J. G., & Sakaim P. T. (1997). IEEE 802.11

Wireless Local Area Networks. IEEE communication Magazines. 116-126.

[30] Brenner P. (1997). A Technical Tutorial on the IEEE 802.11 Protocol. Breez-

eCom.

[31] Vincent L., & Margaret M. (2009). Repeatable and Realistic Experimentation

in Mobile Wireless Networks. IEEE Transactions on Mobile Computing, vol 8,

Issue 12, 1718-1728.

[32] Yu S., Zhou W., & Wu Y. (2002). Research on Network Anycast. Proc. of the

Fifth Intl. Conf. on Algorithms and Architectures for Parallel Processing

(ICA3PP02). 154-161.

102

 [33] Kotz D., Newport C., Gray R. S., & Liu J. (2007). Experimental Evaluation of

Wireless Simulation Assumptions. Transactions of the Society for Modeling

and Simulation International, vol. 83, 643-661.

 [34] Cao J., & Wu W. (2008). A multi-metric QoS Routing Method for Ad Hoc

Network. The 4th International Conference on Mobile Ad hoc and Sensor

Networks, 99-102.

[35] Dow C.R., Hsuan P., & Hwang S.F. (2006). Design and Implementation of

Anycast Protocols for Mobile Ad Hoc Networks. ICACT2006.419-424.

[36] Toh C. K., Chen R., Delwar M., & Allen D. (2000). Experimenting with an Ad

Hoc wireless network on campus: insights and experiences. ACM SIGMETRICS

Performance Evaluation Review. 21-29.

[37] Methods, Models and Algorithm of Dissemination of information in Wireless

Mobile Ad Hoc Networks BAB-A-08-10, EMU, October 2009 - March 2011

(ongoing).

103

APPENDICES

104

Appendix A: The Source Text of the Application-Layer Program

/* A protocol for an ad hoc wireless networks */
/* */
/* Usage: For the originator: prgname output_filename num_of_msg msg_size dest_IP delay */
/* For the others :progname output_filename */
/*
 */
/* num_of_msg is the number of sent message */
/* destination_IP is the destination host IP */
/* Visual C++ Environment. */
/* In Project-->Settings-->Object/library: */
/* the libraries LIBCMT.lib and WSOCK32.lib must be added */
/* and "Ignore all default libraries" be selected. */
/* */
/* Initially start destination, then intermediate and finaly start originator */
/* on different wireless hosts. */
/* */
/* On the originator host, originating thread will send request, */
/* relaying thread will discard its own message. */
/* On the other hosts originating thread will not send anything, */
/* will wait for the termination of the relaying thread. */
/* */
/* Average number of hops(hop counts is added) */
/* originator and intermediate nodes */
/* Filename : adhoc.cpp */
/* Last Update : March 16, 2010 */
/* */
/**/

#define _MT /* to use a declaration of _beginthreadex() in
process.h */

#include <time.h>
#include <stdio.h>
#include <windows.h>
#include <stdlib.h>
#include <memory.h> /* Not necessary */
#include <string.h>
#include <process.h>
#include "multcast.h"

/* Default multicast and destination port number to use */
#define DESTINATION_MCAST "234.55.66.77"
#define MY_PORT 8888
#define DESTINATION_PORT 8888

// ************************** modified part 1 out of 4 ***********************************
#define MAX_NO_OF_NODES 10
// ************************** modified part 1 finished ***********************************
#define MAXWIN 20 /* Maximum number in sliding window */
#define MAXMSGS 2100 /* Maximum number of messages */

/* Variables */
int WSAInitFailed;
char strDestMulti[MAXHOSTNAME] = {DESTINATION_MCAST};
char strSrcMulti[MAXHOSTNAME] = {DESTINATION_MCAST};

u_short nDestPort = DESTINATION_PORT;
u_short nMyPort = MY_PORT;

SOCKET hSockSnd = INVALID_SOCKET; /* To send in originating thread */
SOCKET hSockRcv = INVALID_SOCKET; /* To receive in relaying thread */
SOCKET hSockFrwrd = INVALID_SOCKET; /* To send in relaying thread */

struct sockaddr_in stDestAddr, stSrcAddr;
WSADATA stWSAData;

static int nOptName = IP_ADD_MEMBERSHIP; /* Multicast option */
static int nLoopback = IP_MULTICAST_LOOP; /* Multicast loopback option */
static int nRecvTimeout = SO_RCVTIMEO; /* Time of for
recvfrom() */

/* Variables for roundtrip time calculations */
struct RoundTrip
{
 long msg_id;
 /* message identifier */
 DWORD sndtime; /* Send time of the request message
*/
 DWORD rcvtime; /* Receive time of the reply message */
 DWORD rtttime; /* Round trip time of the message */
};

/* Variable to find average round trip time */
DWORD sum_rtt_org = 0;
double average_rtt_org;
long total_ave_val = 0;

DWORD sum_rtt_inter = 0;
double average_rtt_inter;

/* Variables to calculate average hop count at the originator and the destination */

105

long sum_hop_cnt_org = 0;
double average_hop_cnt_org;
int hop_cnt_rply = 0;

long sum_hop_cnt_dest = 0;
double average_hop_cnt_dest;
int hop_cnt_rqst = 0;

struct RoundTrip OrgRtt[MAXMSGS];
struct RoundTrip InterRtt[MAXMSGS];

char rcvbuffer[9000]; /* Storage for a received message */
char destbuffer[9000]; /* Storage for send message at destination */
char sndbuffer[9000]; /* Storage for send message at intermediate */

/* Message Attributes */
long msg_id; /* Msg id: 1, 2,....;incremented by the snding thread in generator */
long dest_IP; /* Destination(receiver) IP address */
long originator_IP; /* Sender(source) IP adress */
long msg_num;
 /* Total number of messages */
long remain_msg; /* Remaining number of messages */
int hop_cnt;
 /* Number of hops */

long destination_IP; /* Keeps the dest IP entered from command line */
long original_dest_IP; /* dest IP, inserted into the send msg by the destination */
long msg_sndr_IP; /* remote host(sender) IP */

/* Defines message type */
struct MsgCnt
{
 long Received;
 long Sent;
};

/* Defines received messages */
struct RcvdMsg
{
 struct MsgCnt Requests;
 struct MsgCnt Replies;
};

struct RcvdMsg OrgMsg;
 /* Message at orginator */
struct RcvdMsg DestMsg;
 /* Message at destination */
struct RcvdMsg InterMsg; /* Message at intermediate */

/* Defines lost messages */
struct LostMsg
{
 long Requests;
 long Replies;
};

struct LostMsg OrgLost; /* Lost messages at orginator */
struct LostMsg DestLost; /* Lost messages at destination */
struct LostMsg InterLost; /* Lost messages at intermediate
*/

/* Defines duplicated messages */
struct DupMsg
{
 long Requests;
 long Replies;
};

struct DupMsg OrgDup; /* Duplicated messages at
orginator */
struct DupMsg DestDup; * Duplicated messages at
destination */
struct DupMsg InterDup; /* Duplicated messages at intermediate */

/* Array of requst msgs for intermediate nodes. */
long RelyLostMsgs[MAXMSGS]= {0};

/* Array of reply msgs for intermediate nodes. */
long RplyLostMsgs[MAXMSGS]= {0};

/* Array of structure for received messages at destination node and originating node */
struct ReceivedMessages
{
 long msg_id;
 int hop_cnt;
 int eflag;
 int indx;

};

struct ReceivedMessages RcvdMsgs[MAXMSGS]; /* Array of request msgs at destination node */
struct ReceivedMessages RplyMsgs[MAXMSGS]; /* Array of reply msgs at originating node */
struct ReceivedMessages AllRcvdSwindow[MAXMSGS]; /* Array of reply msgs at destination node */
struct ReceivedMessages AllRplySwindow[MAXMSGS]; /* Array of reply msgs at originating node */
long CombinedDest[MAXMSGS]={0};
long CombinedOrg[MAXMSGS]={0};

struct ReceivedMessages RcvdMsgsInter[MAXMSGS];/* Array of request msgs at intermediate */
struct ReceivedMessages RplyMsgsInter[MAXMSGS]; /* Array of reply msgs at intermediate */

106

/* Array of structure for sliding windows **/
struct SlidingWindow /* Structure of a sliding window */
{ long msg_id;
 /* Message Ids in the sliding window */
 int eflag; /* Shows the abcense or precense of array
*/
};

struct SlidingWindow RqstSwindow[MAXWIN]; /* Sliding IDs of recent requst messages */
struct SlidingWindow RplySwindow[MAXWIN]; /* Sliding IDs of recent reply messages */

/* Counter for Request sliding window array elements */
int RqstSWcount = 0;

/* Counter for Reply sliding window array elements */
int RplySWcount = 0;

/* Shows if requst message is already in the sliding window array or not */
int msg_rely_flag = 0;

/* Shows if reply message is already in the sliding window array or not */
int msg_rply_flag = 0;

/* Counter for request/reply transmissions at intermediate */
int request_reply_inter = 0;

/* Message length */
int msg_length;

/* Variables needed to get local IP **/
 char szErrorMessage[129];
 char szLocalHostName[129];
 unsigned long ulInetAddr;
 struct hostent *pHostEnt;
 int nRC;
 long Local_IP;

 FILE *fout;

// ****************************** modified part 2 out of 5 ********************************

struct received_message_ip_counter
{
 long received_message_ip;
 int received_message_counter;
};

struct received_message_ip_counter find_message_sender[MAX_NO_OF_NODES];
int flag_msg=0;

// ***************************** modified part 2 finished *********************************

/***/
/* Relaying thread execution
 */
/* It receives multicast datagrams from the network
 */
/***/

unsigned _stdcall RelayingThread(LPVOID lpArg)
{

HANDLE hArg = (HANDLE) lpArg; /* Convert parameter. Not used */

int nRet;
int WSAErr;
struct sockaddr_in rcvaddr, sndaddr, rmtaddr;
int addrlen, sndlen;
int cnt, i, j;

static struct ip_mreq stIp; /* For setting multicast receiving */

//int RcvTimeOut = 50000; /* Time out value for receiving, ms */
int RcvTimeOut = 100000; /* Time out value for receiving, ms */

/* Initialize requst sliding window, create an empty array */
 for (j=0; j<MAXWIN; j++)
 {
 RqstSwindow[j].eflag = 0;
 RqstSwindow[j].msg_id = 0;
 }

/* Initialize reply sliding window, create an empty array */
 for (j=0; j<MAXWIN; j++)
 {
 RplySwindow[j].eflag = 0;
 RplySwindow[j].msg_id = 0;
 }

/* Initialize RcvdMsgs array elements */
for (j=0; j<MAXMSGS; j++)
 {
 RcvdMsgs[j].eflag = 0;
 RcvdMsgs[j].msg_id = 0;
 RcvdMsgs[j].hop_cnt = 0;
 }

/* Initialize RplyMsgs array elements */
for (j=0; j<MAXMSGS; j++)
 {

107

 RplyMsgs[j].eflag = 0;
 RplyMsgs[j].msg_id = 0;
 RplyMsgs[j].hop_cnt = 0;
 }

/* Initialize AllRcvdSwindow array elements */
for (j=0; j<MAXMSGS; j++)
 {
 AllRcvdSwindow[j].eflag = 0;
 AllRcvdSwindow[j].msg_id = 0;
 }

/* Initialize AllRplySwindow array elements */
for (j=0; j<MAXMSGS; j++)
 {
 AllRplySwindow[j].eflag = 0;
 AllRplySwindow[j].msg_id = 0;
 }

/* Initialize RcvdMsgsInter array elements */
for (j=0; j<MAXMSGS; j++)
 {
 RcvdMsgsInter[j].eflag = 0;
 RcvdMsgsInter[j].msg_id = 0;
 }

/* Initialize RplyMsgsInter array elements */
for (j=0; j<MAXMSGS; j++)
 {
 RplyMsgsInter[j].eflag = 0;
 RplyMsgsInter[j].msg_id = 0;
 }

/* Initialize InterMsg struct elements */
 InterMsg.Requests.Received = 0;
 InterMsg.Requests.Sent = 0;
 InterMsg.Replies.Sent = 0;
 InterMsg.Replies.Received = 0;

/* Initialize OrgMsg struct elements */
 OrgMsg.Requests.Received = 0;
 OrgMsg.Requests.Sent = 0;
 OrgMsg.Replies.Sent = 0;
 OrgMsg.Replies.Received = 0;

/* Initialize DestMsg struct elements */
 DestMsg.Requests.Received = 0;
 DestMsg.Requests.Sent = 0;
 DestMsg.Replies.Sent = 0;
 DestMsg.Replies.Received = 0;

/* Initialize InterLost struct elements */
 InterLost.Requests = 0;
 InterLost.Replies = 0;

/* Initialize OrgLost struct elements */
 OrgLost.Requests = 0;
 OrgLost.Replies = 0;

/* Initialize DestLost struct elements */
 DestLost.Requests = 0;
 DestLost.Replies = 0;

/* Initialize InterDup struct elements */
 InterDup.Requests = 0;
 InterDup.Replies = 0;

/* Initialize OrgDup struct elements */
 OrgDup.Requests = 0;
 OrgDup.Replies = 0;

/* Initialize DestDup struct elements */
 DestDup.Requests = 0;
 DestDup.Replies = 0;

// ****************************** modified part 3 out of 5 ********************************

for(i=0; i<MAX_NO_OF_NODES; i++)
{
 find_message_sender[i].received_message_ip=0;
 find_message_sender[i].received_message_counter=0;
}

// ***************************** modified part 3 finished *********************************

/************* Create a receive socket and check it *************************************/
hSockRcv = socket(PF_INET,SOCK_DGRAM,0);

if (hSockRcv == INVALID_SOCKET)
{
 WSAErr =WSAGetLastError();
 printf("SNDRCV1, rcv: WSAErr= %d\n",WSAErr); exit(1);
}
 printf("ADHOC, rcv: Socket %d for receiving was created\n",hSockRcv);

/* Now initialize my own address */
rcvaddr.sin_family = PF_INET;
rcvaddr.sin_addr.s_addr = htonl(INADDR_ANY); /* OS decides */
rcvaddr.sin_port = htons(nMyPort);
addrlen = sizeof(rcvaddr);

/************** Create a send socket and check it **************************************/

108

hSockFrwrd = socket(PF_INET, SOCK_DGRAM, 0);

if (hSockFrwrd == INVALID_SOCKET)
{
 WSAErr =WSAGetLastError();
 printf("SNDRCV1, rcv: WSAErr= %d\n",WSAErr); exit(1);
}
printf("ADHOC, rcv: Socket %d for forwarding was created\n",hSockFrwrd);

/* Now initialize sender socket address */
 sndaddr.sin_family = PF_INET;
 sndaddr.sin_addr.s_addr = inet_addr(DESTINATION_MCAST);
 sndaddr.sin_port = htons(nDestPort);
 sndlen = sizeof(sndaddr);

/********************** Binding to my own IP address **********************************/
nRet = bind(hSockRcv, (struct sockaddr FAR *)&rcvaddr, sizeof(rcvaddr));
if (nRet == SOCKET_ERROR)
{
 perror ("ADHOC, rcv: bind(): err");
 WSACleanup(); exit(1);
}

/* Preparing to get datagrams multicast to IP = DESTINATION_MCAST */
stIp.imr_multiaddr.s_addr = inet_addr(DESTINATION_MCAST);
stIp.imr_interface.s_addr = htonl(INADDR_ANY); /* Any
interface */

/* Set a multicast receiving option for itself */
nRet = setsockopt(hSockRcv, IPPROTO_IP, nOptName,
 (char * FAR)&stIp, sizeof(struct ip_mreq));

if (nRet == SOCKET_ERROR)
{
 perror("ADHOC, rcv: setsockopt():err");
 WSACleanup();exit(1);
}

printf ("ADHOC, rcv: Multicast socket option is OK\n");

/* Set a time out option for receiving */
nRet = setsockopt(hSockRcv, SOL_SOCKET, nRecvTimeout,
 (char * FAR)&RcvTimeOut, sizeof(RcvTimeOut));

if (nRet == SOCKET_ERROR)
{
 perror("ADHOC, rcv: setsockopt():err");
 WSACleanup();exit(1);
}

printf ("ADHOC, rcv: Time out socket option is OK\n");

/******************************** Get Local IP ***************************************/

 nRC = gethostname(szLocalHostName, sizeof(szLocalHostName));
 if (nRC == -1)
 {
 perror(szErrorMessage); exit(EXIT_FAILURE);
 }

 if ((ulInetAddr = inet_addr(szLocalHostName)) == ((unsigned long)-1L))
 {
 if ((pHostEnt = gethostbyname(szLocalHostName)) == NULL)
 {
 perror(szErrorMessage);
 exit(EXIT_FAILURE);
 }
 memcpy((char *)&rcvaddr.sin_addr, (char *)pHostEnt->h_addr,pHostEnt->h_length);
 }
 else
 {
 memcpy((char *)&rcvaddr.sin_addr, (char *)&ulInetAddr, sizeof(
 ulInetAddr));
 }

 printf(" Local Host IP Address (Dot) = [%s]\n", inet_ntoa(rcvaddr.sin_addr));

/* Converts Internet Protocol dotted address into a proper address */
 Local_IP = inet_addr(inet_ntoa(rcvaddr.sin_addr));
// printf("\tLocal Host IP address rcvaddr.sin_addr = %ld\n\n", rcvaddr.sin_addr);
 printf("\tLocal Host IP address (ulong) = %ld\n\n", Local_IP);
 fprintf(fout, "Local Host IP address (ulong) = %ld\n\n", Local_IP);

/***/

/* Receiving multicast messages */
 while(1)
 /* Endless cycle */
 {
 printf("\n****waiting in receiving loop.....\n");
 cnt = recvfrom(hSockRcv, rcvbuffer, sizeof(rcvbuffer), 0,
 (struct sockaddr *)&rmtaddr, &addrlen);

 if (cnt < 0) /* A timeout has occured, nothing received! */
 {
 printf("Time out elapsed, Nothing to receive. Terminate the thread.\n\n");
 break;
 }

/* sender(remote) IP (can be originator or any other host before destination) */
 msg_sndr_IP = inet_addr(inet_ntoa(rmtaddr.sin_addr));

109

// printf("A message received from: %ld\n", msg_ndr_IP);
// fprintf(fout, "A message received from: %ld\n", msg_sndr_IP);

/* Extract received info from the received messages and save */
// sscanf(rcvbuffer, "%ld %ld %ld %ld %ld %ld %ld\n", &originator_IP, &dest_IP,
// &msg_id, &msg_num, &remain_msg, &total_attempt, &original_dest_IP);

 sscanf(rcvbuffer, "%ld %ld %ld %ld %ld %d %ld\n",
 &originator_IP, &dest_IP, &msg_id, &msg_num, &remain_msg, &hop_cnt,
&original_dest_IP);

// fprintf(fout, "Received buffer: %s\n", rcvbuffer);
 printf("Received buffer: %s\n", rcvbuffer);

/***************************** Compare sender IP with local IP ***********************/
/* Any node receives its own message
 */
/**/

 if (msg_sndr_IP == Local_IP)
 {
/* Node receives its own message, discard it */
// printf("\nNode received its own message from itself, discard it.\n\n");
// fprintf(fout, "\nNode received its own message from itself, discard it.\n\n");
 for (i=0; i<sizeof(rcvbuffer); i++)
 rcvbuffer[i] = ' ';
 continue;
 }

/********************* Destination rcves a reply msge from neighbour nodes ************/
/************Increment duplicated reply mesg count at destination node ****************/
/**/
 if ((original_dest_IP == Local_IP)&&(dest_IP == originator_IP))
 {
// printf("\nDestination received reply back message, count the message.\n");
// fprintf(fout, "\nDestination received reply back message, count the message.\n");
/* Increment counter of duplicated request messages at the destination */
 DestDup.Replies++;

/* Clear the receive buffer */
 for (i=0; i<sizeof(rcvbuffer); i++)
 rcvbuffer[i] = ' ';
 continue;
 }

/************************ Compare originator IP with local IP ************************/
/* Originator node receives a message, it can be a back msg from any node */
/* or a reply message from the destination
 */
/**/

 if (originator_IP == Local_IP)
 {
 if ((dest_IP == originator_IP) && (original_dest_IP == destination_IP))
 {
/* Originator rcves a reply msge from dest */
// fprintf(fout, "Originator receives a reply message \n");
// printf("Originator receives a reply message \n");
 int org_flag = 0; /* message is received first time
*/

/* Check if message is already received, it is already in the reply msg array */
 for(i=0; i<MAXMSGS; i++)
 if (RplyMsgs[i].msg_id == msg_id)
 {
 org_flag = 1; /* duplicated message */
 OrgDup.Replies++; /* Incrmt counter of duplctd rply
msgs */
 // printf("Total Number of duplicated reply msgs at
origntr: %d\n",
 // OrgDup.Replies);
// fprintf(fout, "Total Number of dplctd reply msgs at
orig:%d\n",
// OrgDup.Replies);
 }

 if (org_flag == 0) /* Save received mssge in to the reply array
*/
 {
 hop_cnt_rply = hop_cnt;/* Save received message hop cnt */
 hop_cnt_rply++; /* Increment hop count of reply messages */

 RplyMsgs[msg_id-1].msg_id = msg_id; /* save the message */
// RplyMsgs[msg_id-1].hop_cnt = hop_cnt_rply; /* Save hop count
*/
 RplyMsgs[msg_id-1].eflag = 1; /* Set the flag */
 RplyMsgs[msg_id-1].indx = msg_id-1; /* Save the index */

/* Fix receive time of the message and message id into the RttArray */
 OrgRtt[msg_id-1].rcvtime = GetTickCount();
 OrgRtt[msg_id-1].msg_id = msg_id;

/* Increment counter of reply messages */
 OrgMsg.Replies.Received++;

/* Calculate sum of the hop count */
// sum_hop_cnt_org = sum_hop_cnt_org + RplyMsgs[msg_id-1].hop_cnt;
 sum_hop_cnt_org = sum_hop_cnt_org + hop_cnt_rply;

/* Calculate round trip time of the reply message */

110

 OrgRtt[msg_id-1].rtttime = OrgRtt[msg_id-1].rcvtime -
 OrgRtt[msg_id-1].sndtime;

/* Calculate sum of round trip time */
 sum_rtt_org = sum_rtt_org + OrgRtt[msg_id-1].rtttime;

// printf("Round trip time=%ld of message=%ld\n",
// OrgRtt[msg_id-1].rtttime, msg_id);

// printf("Total Number of reply messages at originator: %d\n",
// OrgMsg.Replies.Received);

// fprintf(fout,"Round trip time=%ld of msg =%ld and sum of rtt =
%ld\n",
// OrgRtt[msg_id-1].rtttime, msg_id, sum_rtt_org);

// fprintf(fout, "Total Number of reply messages at originator:
%d\n",
// OrgMsg.Replies.Received);

/* Save the message in all reply sliding window array */
 i=0;
 int swoflag = 0;
 while((i<MAXMSGS) && (swoflag == 0))
 {
 if(AllRplySwindow[i].eflag == 0)
 {
 AllRplySwindow[i].msg_id = msg_id;
 AllRplySwindow[i].eflag = 1;
 swoflag = 1;
 }
 i++;
 }

 }
 /* end if (org_flag == 0) */

 org_flag = 0;
 } /* end if ((dest_IP == originator_IP) && (original_dest_IP == destination_IP)) */

/* Originator received request back message */
 if ((dest_IP == destination_IP)&&(msg_sndr_IP != originator_IP))
 {
// printf("\nOriginator received request back message, count the
message.\n");
// fprintf(fout,"\nOriginator received request back message, count the
message.\n");

/* Increment counter of duplicated request messages at the originator */
 OrgDup.Requests++;
 }

/* Clear the receive buffer */
 for (i=0; i<sizeof(rcvbuffer); i++)
 rcvbuffer[i] = ' ';
 continue;
 } /* if((dest_IP == originator_IP) && (originator_IP == Local_IP))*/

/***************************** Compare received msg dest.IP with local IP ************/
/*****************Destination node receives a request msg from the neighbors **********/
/**/
 if ((dest_IP == Local_IP)&&(Local_IP != originator_IP))/* I am the destintion */
 {

// ***************************** modified part 4 out of 5 **************************
// fprintf(fout, "A message received from: %ld\n", msg_sndr_IP);
// fprintf(fout, "Received buffer: %s\n", rcvbuffer);

 int flag_msg = 0; /* a message not receved from that ip before */
 for(i=0; i<MAX_NO_OF_NODES; i++)
 {
 if(find_message_sender[i].received_message_ip == msg_sndr_IP)
 {
 find_message_sender[i].received_message_counter++;
 flag_msg = 1;
 }
 }

 i=0;
 if(flag_msg==0)
 {
 while((flag_msg==0) && (i < MAX_NO_OF_NODES))
 {
 if(find_message_sender[i].received_message_ip == 0)
 {
 find_message_sender[i].received_message_ip =
msg_sndr_IP;
 find_message_sender[i].received_message_counter++;
 flag_msg = 1;
 }
 i++;
 }
 }

 flag_msg = 0;

// **************************** modified part 4 finished ***************************

// printf("Destination received a request message \n");

111

 int dest_flag = 0; /* message is received first time */

/* Check if message is already received, it is already in the received msg array */
 for(i=0; i<MAXMSGS; i++)
 if (RcvdMsgs[i].msg_id == msg_id)
 {
 dest_flag = 1;
 /* duplicated message */
 DestDup.Requests++;/* Increment duplicated received messages */
// printf("Total Number of duplicated message at destination:
%d\n",
// DestDup.Requests);
// fprintf(fout,"Total Number of duplicated msg at destination:
%d\n",
// DestDup.Requests);
 }

 if (dest_flag == 0) /* Save received message in to the array */
 {
/* Fix receive time of the request message and message id into the RttArray at destn. */
// RttArray[msg_id-1].rcvtimedest = GetTickCount();

 hop_cnt_rqst = hop_cnt;
 hop_cnt_rqst++; /* Increment hop count of request */

 RcvdMsgs[msg_id-1].msg_id = msg_id; /* Save the message */
// RcvdMsgs[msg_id-1].hop_cnt = hop_cnt_rqst; /* Save the hop cnt */
 RcvdMsgs[msg_id-1].eflag = 1; /* Set the message flag
*/
 RcvdMsgs[msg_id-1].indx = msg_id-1; /* Save the index */

/* Increment counter of received msgs */
 DestMsg.Requests.Received++;
// printf("Total number of request messages at destination %d\n",
// DestMsg.Requests.Received);
// fprintf(fout, "Total Number of request messages at destination %d\n",
// DestMsg.Requests.Received);

/* Calculate sum of the hop count */
// sum_hop_cnt_dest = sum_hop_cnt_dest + RcvdMsgs[msg_id-
1].hop_cnt;

/* Calculate sum of the hop count */
 sum_hop_cnt_dest = sum_hop_cnt_dest + hop_cnt_rqst;

/* Save the message in all reply sliding window array */
 i=0;
 int swdflag = 0;
 while((i<MAXMSGS) && (swdflag == 0))
 {
 if(AllRcvdSwindow[i].eflag == 0)
 {
 AllRcvdSwindow[i].msg_id = msg_id;
 AllRcvdSwindow[i].eflag = 1;
 swdflag = 1;
 }
 i++;
 }

/***************** Send a reply message to the originator ****************************/

// hop_cnt = 0;/* reset reply hop counter for new message */
 int reply_hop_cnt = 0;/* reset reply hop counter for new rply message */

 sprintf(destbuffer, "%ld %ld %ld %ld %ld %d %ld\n", originator_IP,
 originator_IP, msg_id, msg_num, remain_msg, reply_hop_cnt,
dest_IP);

 cnt = sendto(hSockFrwrd, destbuffer, cnt, 0,
 (struct sockaddr *) &sndaddr, sndlen);

 if (cnt < 0)
 {
 perror ("SNDRCV1,snd: sendto() err");
 WSACleanup();
 exit (1);
 }
// printf("A msg %s was sent from the dest. to orig. \n\n",
// destbuffer);
// fprintf(fout, "A msg %s was sent from the dest. to orig. \n\n",
// destbuffer);

 DestMsg.Replies.Sent++; /* Increment counter of sent reply mesgs */
 }
 /* end if (dest_flag == 0) */

 dest_flag = 0;

/* Clear the destination buffer */
 for (i=0; i<sizeof(destbuffer); i++)
 destbuffer[i] = ' ';
 } /* end of if (dest_IP == Local_IP) */

/***/
/* Intermediate node received a message
 */
/* Received msg can ve a reply msg from destination or request msg to the dest. */
/***/

112

 else
 {
// printf("Intermediate node received a message \n");
// fprintf(fout, "Intermediate node receives a message \n");
 int interm_flag = 0; /* Used to separate reply and request message */

 if (dest_IP == originator_IP)
 interm_flag = 1; /* This is a reply message */

 if(interm_flag == 1)
 {
// printf("A reply msg received\n");
// fprintf(fout, "A reply msg received\n");

/* Check if this message id is in the reply sliding array */
 msg_rply_flag = 1; /* Message is not in the array */
 for(i=0; i<MAXWIN; i++)
 if(RplySwindow[i].msg_id == msg_id)
 {
 msg_rply_flag = 0; /* Back msg, do not
save */
 InterDup.Replies++; /* Increment back reply message
count */
// printf("Total number of received back reply msgs
%d\n",
// InterDup.Replies);
// fprintf(fout, "Total number of back reply msgs %d\n",
// InterDup.Replies);
 }

 } /* end of reply message */

 else /* this is a request message */
 {
// printf("A request msg received\n");
// fprintf(fout,"A request msg received\n");
/* Check if this message id is in the request sliding array */
 msg_rely_flag = 1; /* Message is not in the array */
 for(i=0; i<MAXWIN; i++)
 if(RqstSwindow[i].msg_id == msg_id)
 {
 msg_rely_flag = 0; /* Back msg, do not
save */
 InterDup.Requests++;/* Increment back request msg
conter */
// printf("Total number of received back request msgs
%d\n",
// InterDup.Requests);
// fprintf(fout, "Total number of back request msgs
%d\n",
// InterDup.Requests);
 }
 } /* End of request message */

 interm_flag = 0;

 }/* End of intermediate node receives a message */

/**************************** Request message computations starts ******************/
 if (msg_rely_flag == 1) /* Message is not in the array save it */
 {
 InterMsg.Requests.Received++; /* Increment counter of requst messages */
// printf("Total number of received request msgs %d\n",
// InterMsg.Requests.Received);
// fprintf(fout, "Total number of received request msgs %d\n",
// InterMsg.Requests.Received);

/* Save the message in to the array of request messages for intermediate node */
 RelyLostMsgs[msg_id-1]= msg_id;

/* Save this message id into the sliding Ids of the recent request messages */
 i = 0;
 int weflag = 0;
 while ((i<MAXWIN) && (weflag == 0))
 {
 if (RqstSwindow[i].eflag == 0)
 {
 RqstSwindow[i].msg_id = msg_id;
 RqstSWcount++; /* increment # of elements in sliding
window */
 RqstSwindow[i].eflag = 1;
 weflag = 1;
 }
 i++;
 }

/* Print the array element */
/* for (k=0; k<MAXWIN; k++)
 {
// printf("Current msg nmbrs bfr sliding= %ld array entry status = %d \n",
// RqstSwindow[k].msg_id, RqstSwindow[k].eflag);
 fprintf(fout, "Current request msg nmbrs bfr sliding=%ld array entry
status=%d\n",
 RqstSwindow[k].msg_id, RqstSwindow[k].eflag);
 }
*/
/* Reorganization of Sliding window(when there is no place in the window) */
 if(RqstSWcount == MAXWIN)
 {
 for (i=1; i<MAXWIN; i++)
 RqstSwindow[i-1].msg_id = RqstSwindow[i].msg_id;

113

 RqstSwindow[MAXWIN - 1].eflag = 0;
 RqstSwindow[MAXWIN - 1].msg_id = 0;
 RqstSWcount--; /* Decrement number of elements in sliding window */
 }

/* Print the array element */
/* for (k=0; k<MAXWIN; k++)
 {
 printf("Current msg numbers after sliding= %ld array entry status = %d
\n",
 RqstSwindow[k].msg_id, RqstSwindow[k].eflag);
 }
*/

/* Clear sndbuffer */
 for(i=0; i<sizeof(sndbuffer); i++)
 sndbuffer[i] = ' ';

/* Forward the received message in multicast mode to the network */
 for(i=0; i<sizeof(sndbuffer); i++)
 sndbuffer[i] = rcvbuffer[i];

// printf("Received buffer: %s\n", rcvbuffer);
// fprintf(fout, "\nSend request message from intermediate. node: %s\n", sndbuffer);

 hop_cnt_rqst = hop_cnt; /* Save received message hop cnt */
 hop_cnt_rqst++; /* Increment hop count of requests */

/* Insert the new value of hop count into the message (sndbuffer) */
 sprintf(sndbuffer, "%ld %ld %ld %ld %ld %d\n",
 originator_IP, dest_IP, msg_id, msg_num, remain_msg, hop_cnt_rqst);

 cnt = sendto(hSockFrwrd, sndbuffer, cnt, 0,
 (struct sockaddr *) &sndaddr, sndlen);

 if (cnt < 0)
 {
 perror ("SNDRCV1,snd: sendto() err");
 WSACleanup();
 exit (1);
 }

/* Save the message into the request array of intermediate node */
 RcvdMsgsInter[msg_id-1].msg_id = msg_id;

/* Fix send time of message */
 InterRtt[msg_id-1].sndtime = GetTickCount();
// fprintf(fout, "Send time = %ld of message= %ld\n", InterRtt[msg_id-1].sndtime, msg_id);

// printf("A request message %s was sent from intermediate node\n", sndbuffer);
// fprintf(fout, "A request message %s was sent from intermediate node\n", sndbuffer);
// fprintf(fout, "request hop cnt %d \n", hop_cnt_rqst);

 InterMsg.Requests.Sent++; /* Increment counter of request(sent) messages
*/

/* Reset msg_rqst_flag */
 msg_rely_flag = 0;

 }/* end of msg_rqst_flag == 1 */

/*********************** request message computations ends ********************************/

/******************** Reply message computations starts ********************************/
 if (msg_rply_flag == 1) /* Message is not in the array, save it */
 {
 InterMsg.Replies.Received++; /* Increment counter of reply(received) messages */
// printf("Total number of received reply msgs %d\n",
// InterMsg.Replies.Received);
// fprintf(fout, "Total number of received reply msgs %d\n",
// InterMsg.Replies.Received);

/* Save the message in to the array of reply messages for intermediate node */
 RplyLostMsgs[msg_id-1] = msg_id;

/* Save the message into the reply array of intermediate node */
 RplyMsgsInter[msg_id-1].msg_id = msg_id;

 if((RplyMsgsInter[msg_id-1].msg_id == RcvdMsgsInter[msg_id-1].msg_id) &&
 (RplyMsgsInter[msg_id-1].msg_id!= 0))
 {
/* A reply is received already sent request message calculate round trip time of the message */
 request_reply_inter++; /* Incr. request/reply transmission counter at
inter */

/* Fix receive time of the message and message id into the InterRtt */
 InterRtt[msg_id-1].rcvtime = GetTickCount();
 InterRtt[msg_id-1].msg_id = msg_id;

// fprintf(fout, "Receive time = %ld of message= %ld\n", InterRtt[msg_id-
1].rcvtime, msg_id);

/* Calculate round trip time */
 InterRtt[msg_id-1].rtttime = InterRtt[msg_id-1].rcvtime -
 InterRtt[msg_id-1].sndtime;

/* Calculate sum of round trip time */
 sum_rtt_inter = sum_rtt_inter + InterRtt[msg_id-1].rtttime;

114

// printf("Round trip time=%ld of message=%ld at intermediate\n",
// InterRtt[msg_id-1].rtttime, msg_id);

 }
/* Save this message id into the sliding Ids of the recent request messages */
 i = 0;
 int weflag = 0;
 while ((i<MAXWIN) && (weflag == 0))
 {
 if (RplySwindow[i].eflag == 0)
 {
 RplySwindow[i].msg_id = msg_id;
 RplySWcount++; /* increment number of elements in
sliding window */
 RplySwindow[i].eflag = 1;
 weflag = 1;
 }
 i++;
 }

/* Print the array element */
/* for (k=0; k<MAXWIN; k++)
 {
// printf("Current msg numbers before sliding=%ld array entry status = %d \n",
// RplySwindow[k].msg_id, RplySwindow[k].eflag);
 fprintf(fout, "Current reply msg numbers before sliding=%ldarray entry status=%d \n",
 RplySwindow[k].msg_id, RplySwindow[k].eflag);
 }
*/
/* Reorganization of Sliding window(when there is no place in the window) */
 if(RplySWcount == MAXWIN)
 {
 for (i=1; i<MAXWIN; i++)
 RplySwindow[i-1].msg_id = RplySwindow[i].msg_id;

 RplySwindow[MAXWIN - 1].eflag = 0;
 RplySwindow[MAXWIN - 1].msg_id = 0;
 RplySWcount--; /* Decrement number of elements in sliding window
*/
 }

/* Print the array element */
/* for (k=0; k<MAXWIN; k++)
 {
 printf("Current msg numbers after sliding=%ld array entry status = %d \n",
 RplySwindow[k].msg_id, RplySwindow[k].eflag);
 }
*/

/* Clear sndbuffer */
 for(i=0; i<sizeof(sndbuffer); i++)
 sndbuffer[i] = ' ';

/* Forward the received message in multicast mode to the network */
 for(i=0; i<sizeof(sndbuffer); i++)
 sndbuffer[i]=rcvbuffer[i];

 // printf("Received buffer: %s\n", rcvbuffer);
// fprintf(fout, "\nSend reply message from intermediate node: %s\n", sndbuffer);

 hop_cnt_rply = hop_cnt;
 hop_cnt_rply++;
 /* Increment number of hops */

/* Insert the new value of hop count in the message (sndbuffer) */
// sprintf(sndbuffer, "%ld %ld %ld %ld %ld %d %ld\n", originator_IP,
// dest_IP, msg_id, msg_num, remain_msg, hop_cnt_rply,
original_dest_IP);

/* Insert the new value of hop count in the message (sndbuffer) */
 sprintf(sndbuffer, "%ld %ld %ld %ld %ld %d %ld\n", originator_IP,
 originator_IP, msg_id, msg_num, remain_msg, hop_cnt_rply,
original_dest_IP);

 cnt = sendto(hSockFrwrd, sndbuffer, cnt, 0,
 (struct sockaddr *) &sndaddr, sndlen);

 if (cnt < 0)
 {perror ("SNDRCV1,snd: sendto() err"); WSACleanup(); exit (1);}

// fprintf(fout, "A reply message %s was sent from intermediate node.\n", sndbuffer);
// printf("A reply message %s was sent from intermediate node.\n", sndbuffer);
// fprintf(fout, "reply hop cnt %d \n", hop_cnt_rply);

 InterMsg.Replies.Sent++; /* Increment counter of reply (sent) messages */

/* Reset msg_rply_flag */
 msg_rply_flag = 0;

 }/* end of msg_rply_flag == 1 case */

/******************************** Reply message computations ends ***********************/

 for (i=0; i<sizeof(rcvbuffer); i++)
 rcvbuffer[i] = ' ';

 for (i=0; i<sizeof(sndbuffer); i++)
 sndbuffer[i] = ' ';

 for (i=0; i<sizeof(destbuffer); i++)
 destbuffer[i] = ' ';

115

 } /* End of while */

/***************************** Find the number of lost messages at the nodes ***********/
/* Find the number of lost messages(reply) at the originator */

 int initiate_cnt1=0;/* Used to discard the lost at the beginning of the experiment */

 for(i=0; i<msg_num; i++)
 {
 if(RplyMsgs[i].eflag != 0)
 initiate_cnt1=1;/* Lost countings start after receiving first reply message*/

 if(RplyMsgs[i].eflag == 0 && initiate_cnt1 == 1)
 OrgLost.Replies++;

 }
 initiate_cnt1=0;
 printf("Total Number of reply lost msgs at originator node: %d\n", OrgLost.Replies);

/* Find number of lost messages(request) at the destination */
 for(i=0; i<msg_num; i++)
 {
 if(RcvdMsgs[i].eflag != 0)
 initiate_cnt1=1;

 if(RcvdMsgs[i].eflag == 0 && initiate_cnt1==1)
 DestLost.Requests++;
 }
 initiate_cnt1=0;
 printf("Total Number of request lost messages at dest: %d\n", DestLost.Requests);

/* Find number of lost messages(reply) at the intermediate */
 for(i=0; i<msg_num; i++)
 {
 if(RplyLostMsgs[i] != 0)
 initiate_cnt1=1;

 if(RplyLostMsgs[i] == 0 && initiate_cnt1==1)
 InterLost.Replies++;
 }
 initiate_cnt1=0;
 printf("Total Number of reply lost messages at interm: %d\n", InterLost.Replies);

/* Find number of lost messages(request) at the intermediate */
 for(i=0; i<msg_num; i++)
 {
 if(RelyLostMsgs[i] != 0)
 initiate_cnt1=1;

 if(RelyLostMsgs[i] == 0 && initiate_cnt1 == 1)
 InterLost.Requests++;
 }
 initiate_cnt1=0;
 printf("Total Number of request lost messages at interm: %d\n\n", InterLost.Requests);

 printf("********Relaying thread terminating....\n");

return 0;
}

/**/
/* The originating thread. */
/* It initializes all threads. */
/**/

int main(int argc, char *argv[])

{
HANDLE hRcvThread;
HANDLE hArg;
 /* Not used */
int i,j;
int WSAErr;
struct sockaddr_in addr;
int addrlen, cnt;
unsigned uWorkThreadId;
DWORD dwResult;

static struct ip_mreq stIpReq;

int flag=0;
 /* For generator */

char msgbuffer[9000];
 /* Send message buffer */

/* Message Attributes */
long msgid = 0; /* Msg id: 1, 2,....;incremented by the snding thread in gnrator */
long destIP;
 /* Destination IP */
long originatorIP; /* Sender(source) IP adress */
long msgnum; /* Total number of messages */
long remainmsg; /* Remaining messages */

int hopcnt; /* Number of hops */

int Dest_out_of_order_cnt=0; /* Counter for our of order request messages */
int Org_out_of_order_cnt=0; /* Counter for our of order replies messages */

char tmpbuf[128];

116

char tmpbuf1[128];

/* For the originator */
if (argc == 6)
 /* For the originator */
{
 printf("Usage:%s [output_fname][num_of_msg] [msg_size][dest_IP][delay] \n", argv[0]);
 flag = 1;
}

/* For intermediate and destination nodes */
if (argc == 2) /* For intermediate nodes and
destination */
 printf("Usage:%s [output file name] \n", argv[0]);

/* Open a file for the output messages */

fout = fopen(argv[1], "w");
if (!fout)
 {
 printf("The file could not be open\n");
 exit(1);
 }

/* Initialize WinSock DLL */

WSAInitFailed= WSAStartup(WSA_VERSION, &stWSAData);
if(WSAInitFailed != 0)
{
 printf("SNDRCV1: InitFailed = %d\n",WSAInitFailed);
 exit(1);
}

/* Create manual reset event */

//hMsgOfTypeACK = CreateEvent(NULL, TRUE, FALSE, NULL);
/* Collect all statistics */

fprintf(fout, " Statistics for mobile nodes \n");
fprintf(fout, " ----------------------------------- \n\n");

/* Display operating system-style date and time. */
 _strdate(tmpbuf);
 fprintf(fout, "Start date = %s\n", tmpbuf);
 printf("Start date = %s\n", tmpbuf);
 _strtime(tmpbuf1);
 fprintf(fout, "Start time = %s\n\n", tmpbuf1);
 printf("Start time = %s\n\n", tmpbuf1);

/***/
/* Create child thread (RelayingThread) for receiving multicast datagrams */
/***/

hRcvThread = (HANDLE) _beginthreadex(NULL, 0, RelayingThread,
 (void *) hArg, 0, &uWorkThreadId);
if(!hRcvThread)
 {
 printf("SNDRCV1: thread error creating\n");
 WSACleanup();
 exit (0xFFFFFFFF);

 }

if (flag == 1) /* originator is performing sending */
{ /* beginning of if (flag == 1) */

/* Now create a socket for sending and check it */

 hSockSnd = socket(PF_INET,SOCK_DGRAM,0);
 /* printf ("hSock = %d\n", hSock); */

 if (hSockSnd == INVALID_SOCKET)
 {
 WSAErr =WSAGetLastError();
 printf("SNDRCV1, snd: WSAErr = %d\n",WSAErr); exit(1);
 }
 printf("ADHOC, snd: Socket %d was created for sending\n",hSockSnd);

/* Initialize the address for sending */

 addr.sin_family = PF_INET;
 addr.sin_addr.s_addr = inet_addr(DESTINATION_MCAST);
 addr.sin_port = htons(nDestPort);
 addrlen = sizeof(addr);

/* Sleep a bit for another process to start */
 Sleep (5000);

/* Sending messages, with one second delay between them */

 for (i=0; i<(atoi(argv[2])); i++)
 {
 originatorIP = Local_IP;
 /* Sender IP */
 destIP = inet_addr(argv[4]); /* Converts IP to unsigned long
*/
 destination_IP = destIP; /* Global, used in relying thread
*/
 msgnum = atoi(argv[2]);
 msgid = msgid+1; /* Increment and send the message
identifier */
 remainmsg = msgnum-msgid;

117

 hopcnt = 0;
 /* Number of hops */

// printf("\nSend msg from the orgntr:\norgntr IP=%ld\n dest.IP=%ld\n msgID=%ld\n",
// originatorIP, destIP, msgid);

/* inet_addr(inet_ntoa(addr.sin_addr)): unsigned */
/* long inet_ntoa(addr.sin_addr):dotted from */

 msg_length = atoi(argv[3]); /* Fix size of send message */

 sprintf(msgbuffer, "%ld %ld %ld %ld %ld %d\n",
 originatorIP, destIP, msgid, msgnum, remainmsg, hopcnt);

 cnt = sendto(hSockSnd, msgbuffer, msg_length, 0,
 (struct sockaddr *) &addr, addrlen);
 if (cnt < 0)
 {
 perror ("SNDRCV1,snd: sendto() err");
 WSACleanup();
 exit (1);
 }

/* Fix send time of message */
 OrgRtt[msgid-1].sndtime = GetTickCount();
// fprintf(fout, "Send time = %ld of message= %ld\n", OrgRtt[msgid-1].sndtime, msgid);

// printf("ADHOC, snd: Message number %ld was sent\n\n", msgid);
// printf("Send message from the originator: %s\n", msgbuffer);

 /*end while(attempt < 5) */

 Sleep (atoi(argv[5])); /* Sleep time before the next message */
// Sleep (1000); /* Sleep 1000 ms, 1 second */
 } /* end of for (i=0; i<(atoi(argv[2])); i++)
*/
}
 /* end of if (flag == 1) */

/* Wait until the relaying thread has exited */
 dwResult = WaitForSingleObject(hRcvThread,INFINITE);

/* Display operating system-style date and time. */
 _strdate(tmpbuf);
 fprintf(fout, "Stop date = %s\n", tmpbuf);
 printf("Stop date = %s\n", tmpbuf);
 _strtime(tmpbuf1);
 fprintf(fout, "Stop time = %s\n\n", tmpbuf1);
 printf("Stop time = %s\n\n", tmpbuf1);

/* Calculate average round trip time */
 if (flag == 1)
 {
 fprintf(fout, " Originator Node Results: \n");
 fprintf(fout, " Parameters: \n");
 fprintf(fout, "-------------\n\n");
 //printf("Message size = %d\n", atoi(argv[3]));
 fprintf(fout, "Number of messages = %d\n", atoi(argv[2]));
 fprintf(fout, "Message size = %d\n", atoi(argv[3]));
 fprintf(fout, "Intermediate time at the originator = %d ms\n\n", atoi(argv[5]));

/**/

 fprintf(fout, "Total number of reply messages at originator: %d\n",
 OrgMsg.Replies.Received);

 fprintf(fout, "Total number of duplicated request msgs at originator: %d\n",
 OrgDup.Requests);

 fprintf(fout, "Total number of duplicated reply messages at originator:%d\n",
 OrgDup.Replies);

 fprintf(fout, "Total number of lost reply msgs at originator: %d\n",
 OrgLost.Replies - DestLost.Requests);

 fprintf(fout, "Total number of lost msgs at originator(request+replies): %d\n\n",
OrgLost.Replies);

 /* Calculate average round trip time */
 average_rtt_org = (double) sum_rtt_org/OrgMsg.Replies.Received;

// printf("Average round trip time=%lf for %ld messages\n",
// average_rtt_org, OrgMsg.Replies.Received);

// fprintf(fout, "Sum of Round trip time=%ld for %ld messages\n",
// sum_rtt_org, OrgMsg.Replies.Received);

 fprintf(fout, "Average Round trip time = %.3lf milliseconds\n\n",
 average_rtt_org);

 fprintf(fout, "Delivery ratio of replies : %.3lf\n\n",
 (double) OrgMsg.Replies.Received/(OrgMsg.Replies.Received+OrgLost.Replies -
DestLost.Requests));

 fprintf(fout, "Delivery ratio (RTT): %.3lf\n\n",
 (double) OrgMsg.Replies.Received/(OrgMsg.Replies.Received+OrgLost.Replies));

118

/* Calculate average number of hops for reply messages */

 average_hop_cnt_org = (double)sum_hop_cnt_org/OrgMsg.Replies.Received;

 fprintf(fout, "Sum of hop cnt=%ld for %ld messages\n\n",
 sum_hop_cnt_org, OrgMsg.Replies.Received);

// printf("Average hop count =%.3lf for %ld reply messages\n",
// average_hop_cnt_org, OrgMsg.Replies.Received);

 fprintf(fout, "Average hop count =%.3lf for %ld reply messages\n\n",
 average_hop_cnt_org, OrgMsg.Replies.Received);

// printf("Duplicate Ratio (of received replies) =%.3lf \n",
// (double)OrgDup.Replies/OrgMsg.Replies.Received);

 fprintf(fout, "Duplicate ratio (of received replies) =%.3lf \n\n",
 (double)OrgDup.Replies/OrgMsg.Replies.Received);

/* Create combined array */
 for(i=0,j=0; i<msgnum; i++)
 {
 if(RplyMsgs[i].msg_id!=0)
 {
 CombinedOrg[i]=AllRplySwindow[j].msg_id;
 j++;
 }

 }

/* fprintf(fout, "\nCombined array content at originator:\n\n");
 for(i=0; i<msgnum; i++)
 {
 fprintf(fout, "%5ld ", CombinedOrg[i]);
 if ((i+1) % 10 == 0)
 fprintf(fout,"\n");
 }

*/

/* Find number of out of order receiving messages */

 for(i=0; i<msgnum; i++)
 if((CombinedOrg[i]!= 0) && (CombinedOrg[i] != i+1)) /* Do not count lost msgs */
 Org_out_of_order_cnt++;

 fprintf(fout, "\nNumber of out of order reply msgs = %d\n", Org_out_of_order_cnt);

 fprintf(fout, "Reply array content at originator:\n");
 for(i=0; i<msgnum; i++)
 {
 fprintf(fout, "%5ld ", RplyMsgs[i].msg_id);
 if ((i+1) % 10 == 0)
 fprintf(fout,"\n");
 }

 fprintf(fout, "\nRound trip times for each messages at originator:\n");
 for(i=0; i<msgnum; i++)
 {
 fprintf(fout, "%5ld ", OrgRtt[i].rtttime);
 if ((i+1) % 10 == 0)
 fprintf(fout,"\n");
 }
/*
 fprintf(fout, "\nAll Reply Sliding window array content at originator:\n");
 for(i=0; i<msgnum; i++)
 {
 fprintf(fout, "%5ld ", AllRplySwindow[i].msg_id);
 if ((i+1) % 10 == 0)
 fprintf(fout,"\n");
 }
*/

 }

 else
 {
 fprintf(fout, " \n\n\nDestination Node Results: \n\n");

 fprintf(fout, "Total number of request messages at destination: %d\n",
 DestMsg.Requests.Received);

 fprintf(fout, "Total number of sent reply messages from destination: %d\n",
 DestMsg.Replies.Sent);

 fprintf(fout, "Total number of duplicated request messages at destination: %d\n",
 DestDup.Requests);

 fprintf(fout, "Total number of duplicated reply msgs at destination: %d\n",
 DestDup.Replies);

 fprintf(fout, "Total number of lost request msgs at dest: %d\n\n", DestLost.Requests);

 fprintf(fout, "Delivery ratio (requests): %.3lf\n\n",
 (double) DestMsg.Requests.Received/(DestMsg.Requests.Received+DestLost.Requests));

/* Calculate average number of hops for request messages */

 average_hop_cnt_dest = (double)sum_hop_cnt_dest/DestMsg.Requests.Received;

119

// printf("Average hop count =%.3lf for %ld request messages\n",
// average_hop_cnt_dest, DestMsg.Requests.Received);

 fprintf(fout, "Sum of hop cnt=%ld for %ld messages\n\n",
 sum_hop_cnt_dest, DestMsg.Requests.Received);

 fprintf(fout, "Average hop count =%.3lf \n\n", average_hop_cnt_dest);
//****************************** modified part 5 out of 5 ***

 for(i=0; i<MAX_NO_OF_NODES; i++)
 {
 if(find_message_sender[i].received_message_ip!=0)
 {
 if(find_message_sender[i].received_message_ip==originator_IP)
 {
 fprintf(fout, "Node with IP: %d (originator) sent %d messages to
the destination\n",
 find_message_sender[i].received_message_ip,
find_message_sender[i].received_message_counter);
 }
 else
 {
 fprintf(fout, "Node with IP: %d sent %d messages to the
destination\n",
 find_message_sender[i].received_message_ip,
find_message_sender[i].received_message_counter);
 }
 }
 }

//****************************** modified part 5 finished ***

/* Create combined array */
 for(i=0,j=0; i<msg_num; i++)
 {
 if(RcvdMsgs[i].msg_id!=0)
 {
 CombinedDest[i]=AllRcvdSwindow[j].msg_id;
 j++;
 }

 }
/*
 fprintf(fout, "\nCombined array content at destination:\n\n");
 for(i=0; i<msg_num; i++)
 {
 fprintf(fout, "%5ld ", CombinedDest[i]);
 if ((i+1) % 10 == 0)
 fprintf(fout,"\n");
 }

*/

/* Find number of out of order receiving messages */

 for(i=0; i<msg_num; i++)
 if((CombinedDest[i]!= 0) && (CombinedDest[i] != i+1)) /* Do not count lost msgs */
 Dest_out_of_order_cnt++;

 fprintf(fout, "\nNumber of out of order request msgs = %d\n", Dest_out_of_order_cnt);

 fprintf(fout, "\nRequest array content at destination:\n\n");
 for(i=0; i<msg_num; i++)
 {
 fprintf(fout, "%5ld ", RcvdMsgs[i].msg_id);
 if ((i+1) % 10 == 0)
 fprintf(fout,"\n");
 }

/* fprintf(fout, "\nAll Request Sliding window array content at destination:\n");
 for(i=0; i<msg_num; i++)
 {
 fprintf(fout, "%5ld ", AllRcvdSwindow[i].msg_id);
 if ((i+1) % 10 == 0)
 fprintf(fout,"\n");
 }
*/

 fprintf(fout, " \n\nIntermediate Node Results: \n\n");

 /* Calculate average round trip time at intermediate */
 average_rtt_inter = (double) sum_rtt_inter/request_reply_inter;

// printf("Average round trip time=%lf for %ld messages\n", average_rtt_inter,
request_reply_inter);

// fprintf(fout, "Sum of Round trip time=%ld for %ld messages\n", sum_rtt_inter,
request_reply_inter);

 fprintf(fout, "\nAverage Round Trip time at intermediate= %.3lf milliseconds\n\n",
 average_rtt_inter);

 fprintf(fout, "Total Number of request/reply transmissions at intermediate: %d\n",
 request_reply_inter);

 fprintf(fout, "Total number of request msgs at intermediate: %d\n",
 InterMsg.Requests.Received);

 fprintf(fout, "Total number of sent request msgs at intermediate: %d\n",
 InterMsg.Requests.Sent);

120

 fprintf(fout, "Total number of reply msgs at intermediate: %d\n",
 InterMsg.Replies.Received);

 fprintf(fout, "Total number of sent reply msgs at intermediate: %d\n",
 InterMsg.Replies.Sent);

 fprintf(fout, "Total number of duplicated reply msgs at intermediate: %d\n",
 InterDup.Replies);

 fprintf(fout, "Total number of duplicated request msgs at intermediate: %d\n",
 InterDup.Requests);

 fprintf(fout, "Total Number of lost request msgs at interm: %d\n", InterLost.Requests);

 fprintf(fout, "Total Number of lost reply msgs at interm: %d\n", InterLost.Replies);

/* fprintf(fout, "\n\nRequest lost message array content at intermediate:\n");
 for(i=0; i<msg_num; i++)
 {
 fprintf(fout, "%5ld ", RelyLostMsgs[i]);
 if ((i+1) % 10 == 0)
 fprintf(fout,"\n");
 }

 fprintf(fout, "\nReply lost message array content at intermediate:\n");
 for(i=0; i<msg_num; i++)
 {
 fprintf(fout, "%5ld ", RplyLostMsgs[i]);
 if ((i+1) % 10 == 0)
 fprintf(fout,"\n");
 }

*/
 fprintf(fout, "\nRequest array content at intermediate:\n");
 for(i=0; i<msg_num; i++)
 {
 fprintf(fout, "%5ld ", RcvdMsgsInter[i].msg_id);
 if ((i+1) % 10 == 0)
 fprintf(fout,"\n");
 }

 fprintf(fout, "\nReply array content at intermediate:\n");
 for(i=0; i<msg_num; i++)
 {
 fprintf(fout, "%5ld ", RplyMsgsInter[i].msg_id);
 if ((i+1) % 10 == 0)
 fprintf(fout,"\n");
 }

 fprintf(fout, "\nRound trip times for each messages at intermediate\n");
 for(i=0; i<msg_num; i++)
 {
 fprintf(fout, "%5ld ", InterRtt[i].rtttime);
 if ((i+1) % 10 == 0)
 fprintf(fout,"\n");
 }

 }

CloseHandle(hRcvThread);
fclose(fout);
WSACleanup(); /* Matching cleanup for startup */
return 0;
}

121

Appendix B: Raw Results of the Experiments

Results of experiments with 10 nodes (10 laptops) varying message size without
mobility

Time: 10:00 Date: 21/03/2010

Number of sent requests = 2000 Inter packet time (delay) = 100 ms

Size of data = 100 bytes Distance = mobility

Performance Metric Data size
(bytes)

Trials

1st 2nd 3rd
Average Round Trip Time (ms) 15.55 16.98 16.2

Total number of reply messages at
originator

1640 1424 1468

Total number of duplicated request
messages at originator

7773 7716 7963

Total number of duplicated reply
messages at originator

4718 4059 3997

Total number of lost reply
messages at originator

360 576 532

Total number of lost messages at
originator (request + replies)

360 576 532

Delivery ratio (replies) 0.82 0.71 0.73

Delivery ratio (RTT) 0.82 0.71 0.73

Average hop count 2.359 2.171 2.270

Duplicate ratio (replies) 2.877 2.850 2.723

Number of out of order reply msgs 15 16 20

122

Performance Metric

Data size
(bytes

Trials

1st 2nd 3rd

Destination Results

Total number of request messages
at destination

 1908 1931 1905

Total number of sent reply
messages from destination

1908 1931 1905

Total number of duplicated request
messages at destination

4406 3650 4207

Total number of lost request
messages at destination

92 69 95

Delivery ratio 0.954 0.9655 0.9525

Average hop count 2.137 2.264 2.366

Number of received msgs from
originator

Number of out of order request
messages

4 15 19

Intermediate 3 Results
Average Round Trip (ms) 3.812539 15.90809

6
15.4911

28
Total number of request/reply
transmissions at intermediate

1595 1371 1409

Total number of received request
messages at intermediate

1934 1930 1918

Total number of received reply messages
at intermediate

1598 1375 1414

Total number of duplicated reply
messages at intermediate

4491 3248 3619

Total number of duplicated request
messages at intermediate

 6515 6073 6637

Total number of lost request messages at
intermediate

 402 625 586

Total number of lost reply messages at
intermediate

 66 70 82

Intermediate 4 Results
Average Round Trip (ms) 14.111817 14.37600

6
14.0246

65
Total number of request/reply
transmissions at intermediate

1574 1367 1419

Total number of received request
messages at intermediate

1921 1921 1922

Total number of received reply messages
at intermediate

1577 1372 1426

Total number of duplicated reply
messages at intermediate

3639 3279 3757

Total number of duplicated request
messages at intermediate

5338 4445 4907

Total number of lost request messages at
intermediate

79 79 78

Total number of lost reply messages at
intermediate

473 628 574

123

Intermediate 5 Results
Average Round Trip (ms) 16,876894 11,18529

4
14,0254

60
Total number of request/reply
transmissions at intermediate

 1584 1360 1414

Total number of received request
messages at intermediate

1933 1923 1916

Total number of received reply messages
at intermediate

1587 1363 1417

Total number of duplicated reply
messages at intermediate

3431 2580 3017

Total number of duplicated request
messages at intermediate

6106 5530 6293

Total number of lost request messages at
intermediate

67 77 84

Total number of lost reply messages at
intermediate

413 637 583

Intermediate 6 Results
Average Round Trip (ms) 16.155473 15.75251

1
14.1614

69
Total number of request/reply
transmissions at intermediate

1608 1394 1443

Total number of received request
messages at intermediate

1976 1977 1960

Total number of received reply messages
at intermediate

1618 1406 1454

Total number of duplicated reply
messages at intermediate

1618 2318 2926

Total number of duplicated request
messages at intermediate

5592 4618 5723

Total number of lost request messages at
intermediate

24 23 40

Total number of lost reply messages at
intermediate

382 594 546

Intermediate 7 Results
Average Round Trip (ms) 3.318874 8.386555 4.811573

Total number of request/reply
transmissions at intermediate

1314 1309 1348

Total number of received request
messages at intermediate

1763 1890 1927

Total number of received reply messages
at intermediate

1522 1424 1464

Total number of duplicated reply
messages at intermediate

3693 3081 3500

Total number of duplicated request
messages at intermediate

2236 2788 2827

Total number of lost request messages at
intermediate

74 110 73

Total number of lost reply messages at
intermediate

315 576 536

Intermediate 9 Results
Average Round Trip (ms) 7.537927 4.984074 5.04827

6

124

Results of experiments with 10 nodes (10 laptops) varying message size without
mobility

Time: 10:00 Date: 21/03/2010

Number of sent requests = 2000 Inter packet time (delay) = 100 ms

Total number of request/reply
transmissions at intermediate

1582 1193 1160

Total number of received request
messages at intermediate

1953 1738 1629

Total number of received reply messages
at intermediate

1608 1288 1238

Total number of duplicated reply
messages at intermediate

2691 1772 1883

Total number of duplicated request
messages at intermediate

3145 1776 1827

Total number of lost request messages at
intermediate

47 114 110

Total number of lost reply messages at
intermediate

392 564 501

Intermediate 11 Results
Average Round Trip (ms) 7.860299 9.932318 11.1138

39
Total number of request/reply
transmissions at intermediate

1539 1182 1344

Total number of received request
messages at intermediate

1950 1822 1935

Total number of received reply messages
at intermediate

1643 1360 1462

Total number of duplicated reply
messages at intermediate

3259 1733 2279

Total number of duplicated request
messages at intermediate

2354 1441 2328

Total number of lost request messages at
intermediate

50 178 65

Total number of lost reply messages at
intermediate

357 640 538

Intermediate 12 Results
Average Round Trip (ms) 14.055625 16.63815

8
16.9731

64
Total number of request/reply
transmissions at intermediate

1600 1368 1416

Total number of received request
messages at intermediate

1935 1933 1922

Total number of received reply messages
at intermediate

1600 1370 1418

Total number of duplicated reply
messages at intermediate

3673 1925 2328

Total number of duplicated request
messages at intermediate

6441 4396 5295

Total number of lost request messages at
intermediate

65 67 78

Total number of lost reply messages at
intermediate

400 630 582

125

Size of data = 400 bytes Distance = mobility

Originator Results

Performance Metric Data size
(bytes)

Trials

1st 2nd 3rd
Average Round Trip Time (ms) 28.98 33.74 33.74

Total number of reply messages at
originator

1272 1265 1405

Total number of duplicated request
messages at originator

6616 6695 7018

Total number of duplicated reply
messages at originator

3531 2866 3510

Total number of lost reply
messages at originator

725 734 595

Total number of lost messages at
originator (request + replies)

725 734 595

Delivery ratio (replies) 0.636 0.632 0.702

Delivery ratio (RTT) 0.637 0.633 0.703

Average hop count 2.298 2.274 2.243

Duplicate ratio (replies) 2.776 2.266 2.498

Number of out of order reply msgs 6 8 6

Performance Metric

Data size
(bytes

Trials

1st 2nd 3rd

Destination Results

Total number of request messages
at destination

 1861 1880 1861

Total number of sent reply
messages from destination

1861 1880 1861

Total number of duplicated request
messages at destination

2412 2945 2998

Total number of lost request
messages at destination

139 119 139

Delivery ratio 0.9305 0.94047 0.9305

Average hop count 2.171 2.346 2.339

Number of received msgs from
originator

Number of out of order request
messages

6 14 6

Intermediate 3 Results

126

Average Round Trip (ms) 20.549035 28.65734
8

32.1428
57

Total number of request/reply
transmissions at intermediate

1244 1252 1379

Total number of received request
messages at intermediate

1941 1919 1914

Total number of received reply messages
at intermediate

1250 1254 1389

Total number of duplicated reply
messages at intermediate

2861 2508 2823

Total number of duplicated request
messages at intermediate

 4257 4903 4532

Total number of lost request messages at
intermediate

 59 81 86

Total number of lost reply messages at
intermediate

 747 732 611

Intermediate 4 Results
Average Round Trip (ms) 27.003265 22.59509

7

Total number of request/reply
transmissions at intermediate

1225 1183

Total number of received request
messages at intermediate

 1923 1851

Total number of received reply messages
at intermediate

1236 1244

Total number of duplicated reply
messages at intermediate

2336 2151

Total number of duplicated request
messages at intermediate

3439 2554

Total number of lost request messages at
intermediate

77 149

Total number of lost reply messages at
intermediate

761 755

Intermediate 5 Results
Average Round Trip (ms) 32.526837 26.00408

5
29.9111

94
Total number of request/reply
transmissions at intermediate

1211 1224 1340

Total number of received request
messages at intermediate

1933 1931 1907

Total number of received reply messages
at intermediate

1218 1231 1346

Total number of duplicated reply
messages at intermediate

2230 1821 2115

Total number of duplicated request
messages at intermediate

4147 4111 4387

Total number of lost request messages at
intermediate

67 69 93

Total number of lost reply messages at
intermediate

779 768 654

Intermediate 6 Results
Average Round Trip (ms) 28.359098 28.01680

0
24.4415

31
Total number of request/reply
transmissions at intermediate

1242 1250 1411

127

Total number of received request
messages at intermediate

1979 1951 1950

Total number of received reply messages
at intermediate

1250 1265 1416

Total number of duplicated reply
messages at intermediate

2243 1921 3120

Total number of duplicated request
messages at intermediate

4309 3813 3987

Total number of lost request messages at
intermediate

21 49 50

Total number of lost reply messages at
intermediate

747 734 584

Intermediate 7 Results
Average Round Trip (ms) 10.635870 14.693817 14.156897

Total number of request/reply
transmissions at intermediate

736 1019 1160

Total number of received request
messages at intermediate

1455 1582 1659

Total number of received reply messages
at intermediate

1287 1159 1331

Total number of duplicated reply
messages at intermediate

1990 2395 2456

Total number of duplicated request
messages at intermediate

795 1652 1870

Total number of lost request messages at
intermediate

421 144 200

Total number of lost reply messages at
intermediate

588 565 528

Intermediate 9 Results
Average Round Trip (ms) 25.264151 17.23427

5
18.8393

54
Total number of request/reply
transmissions at intermediate

1166 1097 1301

Total number of received request
messages at intermediate

1920 1782 1826

Total number of received reply messages
at intermediate

1207 1250 1399

Total number of duplicated reply
messages at intermediate

1111 1563 1615

Total number of duplicated request
messages at intermediate

1685 1242 1162

Total number of lost request messages at
intermediate

80 165 174

Total number of lost reply messages at
intermediate

790 698 601

Intermediate 11 Results
Average Round Trip (ms) 14.300334 21.00000

0
16.7860

30
Total number of request/reply
transmissions at intermediate

899 1165 1131

Total number of received request
messages at intermediate

1600 1850 1719

Total number of received reply messages
at intermediate

1309 1249 1337

128

Total number of duplicated reply
messages at intermediate

1389 1346 1257

Total number of duplicated request
messages at intermediate

1118 1546 1105

Total number of lost request messages at
intermediate

400 147 281

Total number of lost reply messages at
intermediate

688 750 663

Intermediate 12 Results
Average Round Trip (ms) 23.601942 30.57154

3
36.2386

53
Total number of request/reply
transmissions at intermediate

1236 1251 1366

Total number of received request
messages at intermediate

1947 1930 1926

Total number of received reply messages
at intermediate

1241 1257 1371

Total number of duplicated reply
messages at intermediate

2105 1717 1755

Total number of duplicated request
messages at intermediate

4209 3785 4077

Total number of lost request messages at
intermediate

53 66 74

Total number of lost reply messages at
intermediate

756 735 629

Results of experiments with 10 nodes (10 laptops) varying message size without
mobility

Time: 10:00 Date: 21/03/2010

Number of sent requests = 2000 Inter packet time (delay) = 100 ms

Size of data = 800 bytes Distance = mobility

Originator Results

Performance Metric Data size
(bytes)

Trials

1st 2nd 3rd
Average Round Trip Time (ms) 60.82 52.42 58.12

Total number of reply messages at
originator

1269 1424 1517

Total number of duplicated request
messages at originator

6161 5695 6362

Total number of duplicated reply
messages at originator

2835 3161 3532

Total number of lost reply 731 575 483

129

messages at originator

Total number of lost messages at
originator (request + replies)

731 575 483

Delivery ratio (replies) 0.634 0.712 0.758

Delivery ratio (RTT) 0.634 0.712 0.758

Average hop count 2.331 2.336 2.417

Duplicate ratio (replies) 2.234 2.22 2.328

Number of out of order reply msgs 30 17 9

Performance Metric

Data size
(bytes

Trials

1st 2nd 3rd

Destination Results

Total number of request messages
at destination

 1794 1834 1843

Total number of sent reply
messages from destination

1794 1834 1843

Total number of duplicated request
messages at destination

2205 2214 2553

Total number of lost request
messages at destination

206 165 157

Delivery ratio 0.897 0.917459 0.9215

Average hop count 2.488 2.258 2.426

Number of received msgs from
originator

Number of out of order request
messages

37 9 7

Intermediate 3 Results
Average Round Trip (ms) 43.898632 46.31501

8
41.3131

79
Total number of request/reply
transmissions at intermediate

1243 1365 1472

Total number of received request
messages at intermediate

1888 1885 1894

Total number of received reply messages
at intermediate

1260 1385 1489

Total number of duplicated reply
messages at intermediate

2536 2395 2827

Total number of duplicated request
messages at intermediate

 4112 3715 3680

Total number of lost request messages at
intermediate

 112 115 106

Total number of lost reply messages at
intermediate

 740 614 511

Intermediate 4 Results
Average Round Trip (ms) 27.003265 22.59509

7
27.0032

65

130

Total number of request/reply
transmissions at intermediate

1225 1183 1225

Total number of received request
messages at intermediate

 1923 1851 1923

Total number of received reply messages
at intermediate

1236 1244 1236

Total number of duplicated reply
messages at intermediate

2336 2151 2336

Total number of duplicated request
messages at intermediate

3439 2554 3439

Total number of lost request messages at
intermediate

77 149 77

Total number of lost reply messages at
intermediate

761 755 761

Intermediate 5 Results
Average Round Trip (ms) 62.442942 57.96503

5
55,6315

42
Total number of request/reply
transmissions at intermediate

1183 1144 1433

Total number of received request
messages at intermediate

1893 1897 1893

Total number of received reply messages
at intermediate

1195 1165 1446

Total number of duplicated reply
messages at intermediate

1564 994 1879

Total number of duplicated request
messages at intermediate

3746 3406 3732

Total number of lost request messages at
intermediate

107 103 107

Total number of lost reply messages at
intermediate

805 833 554

Intermediate 6 Results
Average Round Trip (ms) 57.157109 50.26163

7
41.1093

75
Total number of request/reply
transmissions at intermediate

1273 1246 1536

Total number of received request
messages at intermediate

1942 1943 1948

Total number of received reply messages
at intermediate

1284 1265 1543

Total number of duplicated reply
messages at intermediate

1870 1664 3328

Total number of duplicated request
messages at intermediate

4381 3558 4175

Total number of lost request messages at
intermediate

58 56 52

Total number of lost reply messages at
intermediate

716 733 457

Intermediate 7 Results
Average Round Trip (ms) 26.372851 20.676069 21.088406

Total number of request/reply
transmissions at intermediate

1105 1099 1380

Total number of received request
messages at intermediate

1749 1595 1834

131

Total number of received reply messages
at intermediate

1295 1546 1574

Total number of duplicated reply
messages at intermediate

2148 2350 2774

Total number of duplicated request
messages at intermediate

1162 1057 1206

Total number of lost request messages at
intermediate

188 404 166

Total number of lost reply messages at
intermediate

642 453 426

Intermediate 9 Results
Average Round Trip (ms) 30.761 28.1666

67
Total number of request/reply
transmissions at intermediate

 1000 1302

Total number of received request
messages at intermediate

 1457 1726

Total number of received reply messages
at intermediate

 1169 1507

Total number of duplicated reply
messages at intermediate

 1172 1879

Total number of duplicated request
messages at intermediate

 831 1083

Total number of lost request messages at
intermediate

 256 274

Total number of lost reply messages at
intermediate

 544 493

Intermediate 11 Results
Average Round Trip (ms) 28.021079 33.55831

9
30.5503

08
Total number of request/reply
transmissions at intermediate

1186 1166 1461

Total number of received request
messages at intermediate

1814 1687 1890

Total number of received reply messages
at intermediate

1322 1411 1550

Total number of duplicated reply
messages at intermediate

1892 1127 2744

Total number of duplicated request
messages at intermediate

1647 1196 2135

Total number of lost request messages at
intermediate

186 312 110

Total number of lost reply messages at
intermediate

678 588 450

Intermediate 12 Results
Average Round Trip (ms) 54.608273 51.14849

4
58.4864

13
Total number of request/reply
transmissions at intermediate

1233 1394 1472

Total number of received request
messages at intermediate

1896 1917 1922

Total number of received reply messages
at intermediate

1245 1406 1480

Total number of duplicated reply
messages at intermediate

1774 1476 2113

132

Total number of duplicated request
messages at intermediate

3224 3019 4208

Total number of lost request messages at
intermediate

104 83 78

Total number of lost reply messages at
intermediate

755 593 520

Results of experiments with 10 nodes (10 laptops) varying message size without
mobility

Time: 10:00 Date: 21/03/2010

Number of sent requests = 2000 Inter packet time (delay) = 100 ms

Size of data = 2000 bytes Distance = mobility

Originator Results

Performance Metric Data size
(bytes)

Trials

1st 2nd 3rd
Average Round Trip Time (ms) 149.66 150.74 173.08

Total number of reply messages at
originator

495 441 411

Total number of duplicated request
messages at originator

3132 3321 3026

Total number of duplicated reply
messages at originator

513 439 403

Total number of lost reply
messages at originator

1505 1549 1589

Total number of lost messages at
originator (request + replies)

1505 1549 1589

Delivery ratio (replies) 0.247 0.221 0.205

Delivery ratio (RTT) 0.248 0.222 0.205

Average hop count 2.78 2.737 3.088

Duplicate ratio (replies) 1.036 0.995 0.981

Number of out of order reply msgs 2 2 7

Performance Metric

Data size
(bytes

Trials

1st 2nd 3rd

133

Destination Results

Total number of request messages
at destination

 1361 1398 1158

Total number of sent reply
messages from destination

1361 1398 1158

Total number of duplicated request
messages at destination

865 981 680

Total number of lost request
messages at destination

639 602 842

Delivery ratio 0.6805 0.699 0.579

Average hop count 2.647 2.569 2.964

Number of received msgs from
originator

Number of out of order request
messages

19 10 13

Intermediate 3 Results
Average Round Trip (ms) 75.079167 87.70388

3
91.2137

93
Total number of request/reply
transmissions at intermediate

480 412 435

Total number of received request
messages at intermediate

1479 1543 1397

Total number of received reply messages
at intermediate

519 430 444

Total number of duplicated reply
messages at intermediate

480 333 415

Total number of duplicated request
messages at intermediate

 1533 1680 1478

Total number of lost request messages at
intermediate

 521 457 603

Total number of lost reply messages at
intermediate

 1481 1560 1556

Intermediate 4 Results
Average Round Trip (ms) 58.919450 68.70340

7
55.4667

90
Total number of request/reply
transmissions at intermediate

509 449 542

Total number of received request
messages at intermediate

1462 1502 1239

Total number of received reply messages
at intermediate

558 525 612

Total number of duplicated reply
messages at intermediate

505 464 502

Total number of duplicated request
messages at intermediate

1066 1301 718

Total number of lost request messages at
intermediate

538 498 761

Total number of lost reply messages at
intermediate

1442 1465 1388

Intermediate 5 Results
Average Round Trip (ms) 102.68791

9
105.8342

70
123.243

323

134

Total number of request/reply
transmissions at intermediate

298 356 337

Total number of received request
messages at intermediate

1432 1559 1353

Total number of received reply messages
at intermediate

345 370 354

Total number of duplicated reply
messages at intermediate

141 181 186

Total number of duplicated request
messages at intermediate

984 1405 1197

Total number of lost request messages at
intermediate

568 441 647

Total number of lost reply messages at
intermediate

1655 1620 1646

Intermediate 6 Results
Average Round Trip (ms) 89.350711 87.94594

6
96.9129

35
Total number of request/reply
transmissions at intermediate

422 370 402

Total number of received request
messages at intermediate

1475 1467 1361

Total number of received reply messages
at intermediate

484 431 431

Total number of duplicated reply
messages at intermediate

339 367 346

Total number of duplicated request
messages at intermediate

1507 1340 1233

Total number of lost request messages at
intermediate

524 533 639

Total number of lost reply messages at
intermediate

1516 1559 1569

Intermediate 7 Results
Average Round Trip (ms) 33.701205 35.932331 30.007449

Total number of request/reply
transmissions at intermediate

415 399 537

Total number of received request
messages at intermediate

831 1061 1083

Total number of received reply messages
at intermediate

716 578 709

Total number of duplicated reply
messages at intermediate

665 552 705

Total number of duplicated request
messages at intermediate

402 585 541

Total number of lost request messages at
intermediate

917 782 917

Total number of lost reply messages at
intermediate

1028 1262 1291

Intermediate 9 Results
Average Round Trip (ms) 63.397297 35.20418

8
57.5304

35
Total number of request/reply
transmissions at intermediate

370 382 230

Total number of received request
messages at intermediate

1210 1150 714

135

Total number of received reply messages
at intermediate

511 597 405

Total number of duplicated reply
messages at intermediate

210 346 150

Total number of duplicated request
messages at intermediate

450 280 120

Total number of lost request messages at
intermediate

727 850 1180

Total number of lost reply messages at
intermediate

1423 1393 1489

Intermediate 11 Results
Average Round Trip (ms) 60.492925 59.23893

8
58.4677

06
Total number of request/reply
transmissions at intermediate

424 339 449

Total number of received request
messages at intermediate

1013 1115 1075

Total number of received reply messages
at intermediate

656 492 583

Total number of duplicated reply
messages at intermediate

216 274 249

Total number of duplicated request
messages at intermediate

357 475 411

Total number of lost request messages at
intermediate

987 885 925

Total number of lost reply messages at
intermediate

1344 1498 1417

Intermediate 12 Results
Average Round Trip (ms) 124.08453

6
129.5906

98
134.687

192
Total number of request/reply
transmissions at intermediate

485 430 406

Total number of received request
messages at intermediate

1660 1717 1575

Total number of received reply messages
at intermediate

497 434 410

Total number of duplicated reply
messages at intermediate

261 204 240

Total number of duplicated request
messages at intermediate

2006 1861 1801

Total number of lost request messages at
intermediate

340 283 425

Total number of lost reply messages at
intermediate

1503 1542 1590

Results of experiments with 10 nodes (10 laptops) varying message size without
mobility

136

Time: 10:00 Date: 21/03/2010

Number of sent requests = 2000 Inter packet time (delay) = 100 ms

Size of data = 4000 bytes Distance = mobility

Originator Results

Performance Metric Data size
(bytes)

Trials

1st 2nd 3rd
Average Round Trip Time (ms) 314.79 330.75 396.33

Total number of reply messages at
originator

155 76 150

Total number of duplicated request
messages at originator

1884 1966 1766

Total number of duplicated reply
messages at originator

110 53 129

Total number of lost reply
messages at originator

1839 1843 1850

Total number of lost messages at
originator (request + replies)

1839 1843 1850

Delivery ratio (replies) 0.077 0.039 0.075

Delivery ratio (RTT) 0.078 0.04 0.075

Average hop count 2.987 3.039 3.307

Duplicate ratio (replies) 0.71 0.697 0.86

Number of out of order reply msgs 0 0 0

Performance Metric

Data size
(bytes

Trials

1st 2nd 3rd

Destination Results

Total number of request messages
at destination

 811 895 725

Total number of sent reply
messages from destination

811 895 725

Total number of duplicated request
messages at destination

353 285 409

Total number of lost request
messages at destination

1189 1105 1275

Delivery ratio 0.4055 0.4475 0.3625

Average hop count 3.051 2.985 3.37

Number of received msgs from
originator

Number of out of order request
messages

8 10 6

137

Intermediate 3 Results
Average Round Trip (ms) 167.76973

7
200.4054

05
187.517

045
Total number of request/reply
transmissions at intermediate

152 74 176

Total number of received request
messages at intermediate

1062 1203 886

Total number of received reply messages
at intermediate

166 78 190

Total number of duplicated reply
messages at intermediate

122 49 124

Total number of duplicated request
messages at intermediate

 610 556 452

Total number of lost request messages at
intermediate

 938 797 1114

Total number of lost reply messages at
intermediate

 1828 1841 1810

Intermediate 4 Results
Average Round Trip (ms) 121.45029

2
111.4655

17
112.013

825
Total number of request/reply
transmissions at intermediate

171 116 217

Total number of received request
messages at intermediate

862 1034 797

Total number of received reply messages
at intermediate

207 134 256

Total number of duplicated reply
messages at intermediate

111 65 233

Total number of duplicated request
messages at intermediate

346 357 476

Total number of lost request messages at
intermediate

1138 966 1203

Total number of lost reply messages at
intermediate

1787 1854 1744

Intermediate 5 Results
Average Round Trip (ms) 234.43939

4
209.5294

12
265.890

323
Total number of request/reply
transmissions at intermediate

66 51 155

Total number of received request
messages at intermediate

878 1228 1034

Total number of received reply messages
at intermediate

96 66 165

Total number of duplicated reply
messages at intermediate

24 14 56

Total number of duplicated request
messages at intermediate

323 426 658

Total number of lost request messages at
intermediate

1122 772 966

Total number of lost reply messages at
intermediate

1898 1853 1835

Intermediate 6 Results
Average Round Trip (ms) 168.65517

2
189.1875

00
224.719

298
Total number of request/reply
transmissions at intermediate

116 80 171

138

Total number of received request
messages at intermediate

871 998 999

Total number of received reply messages
at intermediate

176 105 185

Total number of duplicated reply
messages at intermediate

92 49 115

Total number of duplicated request
messages at intermediate

444 541 620

Total number of lost request messages at
intermediate

1129 1002 1001

Total number of lost reply messages at
intermediate

1818 1883 1815

Intermediate 7 Results
Average Round Trip (ms) 45.725490 77.227723 54.315972

Total number of request/reply
transmissions at intermediate

204 101 288

Total number of received request
messages at intermediate

581 576 749

Total number of received reply messages
at intermediate

371 183 367

Total number of duplicated reply
messages at intermediate

221 101 344

Total number of duplicated request
messages at intermediate

184 225 441

Total number of lost request messages at
intermediate

1242 1287 1251

Total number of lost reply messages at
intermediate

1464 1676 1633

Intermediate 9 Results
Average Round Trip (ms) 111.58771

9
95.95348

8
156.125

828
Total number of request/reply
transmissions at intermediate

114 86 151

Total number of received request
messages at intermediate

 651 796 715

Total number of received reply messages
at intermediate

189 133 201

Total number of duplicated reply
messages at intermediate

48 41 88

Total number of duplicated request
messages at intermediate

100 101 417

Total number of lost request messages at
intermediate

1343 1204 1174

Total number of lost reply messages at
intermediate

1805 1864 1680

Intermediate 11 Results
Average Round Trip (ms) 111.22613

1
126.8160

92
93.4983

71
Total number of request/reply
transmissions at intermediate

199 87 307

Total number of received request
messages at intermediate

713 637 796

Total number of received reply messages
at intermediate

288 156 368

139

Total number of duplicated reply
messages at intermediate

82 32 303

Total number of duplicated request
messages at intermediate

243 158 438

Total number of lost request messages at
intermediate

1285 1360 1204

Total number of lost reply messages at
intermediate

1706 1703 1632

Intermediate 12 Results
Average Round Trip (ms) 268.96732

0
289.6250

00
321.515

337
Total number of request/reply
transmissions at intermediate

153 64 163

Total number of received request
messages at intermediate

1510 1603 1276

Total number of received reply messages
at intermediate

154 66 166

Total number of duplicated reply
messages at intermediate

58 18 68

Total number of duplicated request
messages at intermediate

1070 1073 1014

Total number of lost request messages at
intermediate

490 397 724

Total number of lost reply messages at
intermediate

1840 1853 1834

Average of 3 experiments with 10 nodes (10 laptops) varying message size
without mobility

Time: 10:00 Date: 21/3/2010

Number of sent requests = 2000 Inter packet time (delay) = 100 ms

Size of data = variable bytes

Performance Metric Message size (bytes)

100 400 800 2000 4000

140

Originator Results

Average Round Trip Time (ms) 16.24 32.15 57.12 157.7 347.3

Total number of reply messages
at originator

1510 1314 1403 449 127

Total number of duplicated
request messages at originator

7817 6776 6072 3159 1872

Total number of duplicated reply
messages at originator

4258 3302 3176 451 97.33

Total number of lost reply
messages at originator

489 684 596 1547 1844

Total number of lost messages at
originator (request + replies)

489 684 596 1547 1844

Delivery ratio (replies) 0.75 0.65 0.701 0.224 0.063

Delivery ratio (RTT) 0.76 0.65 0.701 0.225 0.064

Average hop count 2.266 2.271 2.361 2.868 3.111

Number of out of order reply
msgs

17 6.66 18 3.66 0

Destination Results

Total number of request
messages at destination

1914.6666
67 1867.333333

1823.6666
67

1305.6666
67

810.33333
33

Total number of sent reply
messages from destination

1914.6666
67 1867.333333

1823.6666
67

1305.6666
67

810.33333
33

Total number of duplicated
request messages at destination

4087.6666
67 2785 2324 842 349

Total number of lost request
messages at destination

85.333333
33 132.3333333 176

694.33333
33

1189.6666
67

Delivery ratio 0.9573333
33 0.933823333

0.9119863
33

0.6528333
33

0.4051666
67

Average hop count 2.2556666
67 2.285333333

2.3906666
67

2.7266666
67

3.1353333
33

Number of received msgs from
originator

Number of out of order request
messages

12.6666 8.6666 17.6666 14 8

141

Performance Metric Message size (bytes)

100 400 800 2000 4000
Intermediate 3 Results

Average Round Trip (ms) 11.73725
4333 27,1164133

43,842276
33

84,66561
433

185,2307
29

Total number of request/reply
transmissions at intermediate

1458.33 1291,66 1360 442,33 134

Total number of received request
messages at intermediate

1927.33 1924,66 1889 1473 1050,33

Total number of received reply
messages at intermediate

1462.3 1297,66 1378 464,33 144,666

Total number of duplicated reply
messages at intermediate

3786 2730,66 2586 409,33 98,33

Total number of duplicated request
messages at intermediate

6408,33 4564 3835,66 1563,66 539,33

Total number of lost request messages
at intermediate

537,666 75,33 111 524 997,88

Total number of lost reply messages at
intermediate

72.666 696,666 621,666 1532,33 1826,33

Intermediate 4 Results
Average Round Trip (ms) 14.17082

93
 24.7991775

45.402339
7

61.02988
23

114.97654
5

Total number of request/reply
transmissions at intermediate

1453.3
 1204

958.333

500
168

Total number of received request
messages at intermediate

1921.3 1887 1377.6 1401 897.66

Total number of received reply
messages at intermediate

1458.3 1240 969.666 565 199

Total number of duplicated reply
messages at intermediate

3558.3 2243.5 1682.666 490.3 136.33

Total number of duplicated request
messages at intermediate

4896.6 2996.5 2489 1028.3 393

Total number of lost request messages
at intermediate

78.666 113 71 599 1102.33

Total number of lost reply messages at
intermediate

558.333 758 479 1431.66 1461.66

142

Performance Metric Message size (bytes)

100 400 800 2000 4000
Intermediate 5 Results

Average Round Trip (ms)

14,02922 29,480705 40,163011
110,58850

4
236,61971

0

Total number of request/reply
transmissions at intermediate

1452,667 1258,333 1253,333 330,3333 90,66667

Total number of received request
messages at intermediate

1924 1923,667 1894,333 1448 1046,667

Total number of received reply
messages at intermediate

1455,667 1265 1268,667 356,3333 109

Total number of duplicated reply
messages at intermediate

3009,333 2055,333 1479 169,3333 31,33333

Total number of duplicated request
messages at intermediate

5976,333 4215 3628 1195,333 469

Total number of lost request messages
at intermediate

76 76,33333 105,6667 552 953,3333

Total number of lost reply messages at
intermediate

544,3333 733,6667 730,6667 1640,333 1862

Performance Metric Message size (bytes)

100 400 800 2000 4000

Intermediate 6 Results

Average Round Trip (ms) 15.356484
33 26.939143

49.509373
67

191.40319
733

194.18732
33

Total number of request/reply
transmissions at intermediate

1481.6666
67 1301

1351.6666
667 398 122.33333

Total number of received request
messages at intermediate 1971 1960

1944.3333
33 1434.3333 956

Total number of received reply
messages at intermediate

1492.6666
67 1310.333333 1364

448.66666
67

155.33333
33

Total number of duplicated reply
messages at intermediate

2287.3333
33 2428

2287.3333
333

350.66666
7

85.333333
33

Total number of duplicated request
messages at intermediate

5311 4036.333333 4038 1360 535

Total number of lost request messages
at intermediate

29 40 55.33333 565.33333 1044

Total number of lost reply messages at
intermediate 507.33333

688.3333333 635.3333 1548
1838.6666

143

3 667

Performance Metric Message size (bytes)

100 400 800 2000 4000

Intermediate 7 Results

Average Round Trip (ms) 5.5056673 13.162195 22.712442 33.213662 59.089728

Total number of request/reply
transmissions at intermediate

1323.6667 971.66667 1194.6667 450.33333 197.66667

Total number of received request
messages at intermediate

1860 1565.3333 1726 991.66667 635.33333

Total number of received reply
messages at intermediate

1470 1259 1471.6667 667.66667 307

Total number of duplicated reply
messages at intermediate

3424.6667 2280.3333 2424 640.66667 222

Total number of duplicated request
messages at intermediate

2617 1439 1141.6667 509.33333 283.33333

Total number of lost request messages
at intermediate

85.666667 255 252.66667 872 1260

Total number of lost reply messages at
intermediate

475.66667 560.33333 507 1193.6667 1591

Performance Metric Message size (bytes)

100 400 800 2000 4000

Intermediate 9 Results

Average Round Trip (ms) 5.856759 20.445926 29.463833 52.043973 121.2223

Total number of request/reply
transmissions at intermediate

 3935 1188 1151 327.3333 117

Total number of received request
messages at intermediate

1773.3333 1842.6666 1591.5 1024.6667 720.6667

Total number of received reply
messages at intermediate

1378 1285.3333 1338 504.3333 174.3333

Total number of duplicated reply
messages at intermediate

2115.3333 1429.6667 1525.5 235.3333 59

Total number of duplicated request
messages at intermediate

2249.3333 1363 957 283.3333 206

Total number of lost request messages
at intermediate

90.33333 139.6667 265 919 1240.3333

Total number of lost reply messages at
intermediate

485.66667 696.3333 518.5 1435 1783

Performance Metric Message size (bytes)

100 400 800 2000 4000

144

Intermediate 11 Results

Average Round Trip (ms) 9.6354853
33 17.36212133 30.709902

59.399856
33

110.51351
3

Total number of request/reply
transmissions at intermediate

1355 1068 1271 404 197.66

Total number of received request
messages at intermediate

1902.33 1723 1797 1067.66 715.33

Total number of received reply
messages at intermediate

1488.33 1298.33 1427.66 577 270.66

Total number of duplicated reply
messages at intermediate

2423.66 1330.66 1921 246.33 139

Total number of duplicated request
messages at intermediate

2041 1256.33 1659.33 414.33 279.66

Total number of lost request messages
at intermediate

97.66 276 202.66 932.33 1283

Total number of lost reply messages at
intermediate

511.66 700.33 575 1419.66 1680.33

Performance Metric Message size (bytes)

100 400 800 2000 4000

Intermediate 12 Results

Average Round Trip (ms) 15.888982
3

30.13737933
33

54.747726
6

12945414
2

293.36921
9

Total number of request/reply
transmissions at intermediate

1416.3333
3

1284.333333
3

1366.3333
3333333

470.33333
333

126.66666
6667

Total number of received request
messages at intermediate 1298.3

1934.333333
3

1911.6666
6667

1650.6666
66667 1463

Total number of received reply
messages at intermediate

1462.6666
667

1289.666666
667 1377 447

128.66666
6667

Total number of duplicated reply
messages at intermediate 2642 1859

1787.6666
6667 235 48

Total number of duplicated request
messages at intermediate 5377.3

3768.333333
3

3483.6666
6667

1889.3333
3333

1152.3333
3333

Total number of lost request messages
at intermediate 70 64.3

88.333333
3333

349.33333
3333 537

Total number of lost reply messages at
intermediate 537.3 706.6

622.66666
6667 1545

1842.3333
3333

	ABSTRACT
	ÖZ
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	SURVEY OF ROUTING PROTOCOLS
	Unicast Routing Protocols
	Multicast Routing Protocols
	Anycast Routing Protocols

	SURVEY OF EXISTING EXPERIMENTAL STUDIES
	Main Direction to Investigate Wireless Mobile Ad Hoc Networks
	Experimental Study in Wireless Ad Hoc Networks
	Challenges in Real-World Experimental Studies

	TEST-BED PROGRAM
	Purpose of the Program
	The Structure of the Program
	Collected Information

	ORGANIZATION OF EXPERIMENTS
	Experiments with Two Nodes
	Experiments with more than Two Nodes
	Experiments with One Source Node and Three Destination Nodes

	EXPERIMENTAL RESULTS AND THEIR ANALYSIS
	Performance Metrics
	Results of Experiments
	Discussion of the Experimental Results
	Average Values and Confidence Intervals of the Investigated Performance Metrics

	CONCLUSION
	REFERENCES
	APPENDICES
	Appendix A: The Source Text of the Application-Layer Program
	Appendix B: Raw Results of the Experiments

