Performance Study of Real-World Wireless Mobile
Ad Hoc Networks

Yagiz Ozen

Submitted to the
Institute of Graduate Studies and Research
in partial fulfilment of the requirements for the Degree of

Master of Science
in
Computer Engineering

Eastern Mediterranean University
June 2010
Gazimagusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Prof. Dr. Elvan Yilmaz
Director (a)

I certify that this thesis satisfies the requirements as a thesis for the degree of Master
of Science in Computer Engineering.

Prof. Dr. Hasan Kémurcugil
Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in
scope and quality as a thesis for the degree of Master of Science in Computer
Engineering.

Asst. Prof. Dr. Giircti Oz
Supervisor

Examining Committee

1. Assoc. Prof. Dr. Isik Aybay

2. Assoc. Prof. Dr. Muhammed Salamah

3. Asst. Prof. Dr. Giirci Oz

ABSTRACT

Wireless ad hoc network is one of the most popular network types these days. The
reason for this is the advantages that wireless ad hoc networks provide for users or
group of users. The most important characteristic of wireless ad hoc networks that
make them more popular when compared with any other network type is that they do
not need any infrastructure to be setup in advance. This characteristic of wireless ad
hoc networks make the research on this topic more valuable due to increasing
number of people using wireless ad hoc networks. The fact that no fixed router is
used in the network ensures that network nodes are adaptable to the topology
changes in a mobile wireless ad hoc network. This advantage makes wireless ad hoc
networks useful in battlefield areas where there is need for networks that have a
dynamic working strategy, which does not increase the complexity of setting a
network. Other possible application areas of wireless ad hoc networks are disaster
areas, rescue emergency operations and in vehicles that satisfies the required

mobility and fast deployment network need.

This thesis provides extensive real-world experimental investigation of wireless ad
hoc networks with mobile and stationary nodes in different outdoor environments.
The performance of wireless ad hoc networks is measured under various scenarios.
For the experimental investigations, more than one network configuration and
different parameters were used in real-world outdoor environment. Conducting such
experiments and gathering information regarding the results of these experiments

will yield very valuable information since investigation of such networks requires

two aspects to take into account. One of them is the simulation and modeling of these
networks and the other is the conducting of real-world experiments by using testbed

programs.

The most popular performance metrics for wireless ad hoc networks, delivery ratio,
average round trip time or average end to end delay, and average number of hops
were investigated in this study. It is seen that delivery ratio decreases with the
distance between the nodes. The average round trip time is not affected by the
distance; hence it increases with respect to application data size and the number of
intermediate nodes in the network. The average number of hops changes if the
distance between the source and the destination decreases since there will be no need

for intermediate nodes for forwarding the packets.

Keywords: Wireless Ad Hoc Networks, Outdoor Experimental Study, Performance

Evaluation, Multithreaded Programs, Wireless Ad Hoc Protocols.

Oz

Son giinlerde, kablosuz ve altyapisiz ag baglantilar1 en popular ag baglantilarinin
birtanesi olmay1 basarmistir. Bunun sebebi ise kablosuz altyapisiz ag baglantilarinin
kullanicilara sagladigi avantajlardir. Kablosuz ve alt yapisiz ag baglantilarinin
popular olmasini saglayan en 6nemli etken onlarin en 6nemli 6zelliklerinden biri
olan, hi¢bir alt yapiya dayali olmamasidir. Bu 6zellik sayesinde, bu aglarin kullanim
alanlan1 giinden giine artmakta ve bu ise bu konu altinda yapilan arastirmalarda
ulasilan sonuglarin ¢ok degerli olmasina sebeb olmaktadir. Bu tiir ag§ baglantilarinda
herhangi bir yonlendiricinin kullanimina ihtiya¢ duyulmamasi, bu ag baglantilarinin
kullanicilarin hareketli oldugu ortamlarda kullanilmasint miimkiin kilmastir.
Kablosuz ve alt yapisiz ag baglantilarinin hareketli ortamlara kolay uyum
saglamasinin getirdigi avantajla, bu tir ag baglantilarinin savas alanlarinda
kullanilabilecegi akla geliyor. Diger kullannom alanlarn ise, acil kurtarma
operasyonlari, felaket alanlari, aracglar aras1 kullannom ve daha bir ¢ok alan

listelenebilir.

Bu tez ¢alismasinda, genis kapsamli gergek diinyada yapilan deneysel calismalar
sunuluyor. Bu c¢alismalarda, bina disinda hareketsiz veya kullanicilar tarafindan
taginarak hareketli hale getirilmis bilgisayarlar kullanilmistir. Bu deneysel
caligmalarin amagi, kablosuz ve altyapisiz ag baglantilarinin birgok senaryo altindaki
performansini Olgmektir. Birden fazla ag konfigurasyonu ve parametreleri

kullanilmistir. Bu tiir ag baglantilarinin performans degerlendirilmesi iki farkli a¢1 ile

ele almmalidir. Birincisi simulasyon ve modelleme yapilmasidir, ikincisi ise,

onceden tasarlanmis program yardimi ile deneysel calismalarin yapilmasidir.

Bu tez ¢alismasinda en onemli ve en ¢ok kullanilan 6l¢ii birimleri ele alinmistir.
Bunlar ise, ortalama paket teslim orani, ortalama sekme sayisi, goregeli trafik ve bir

paketin hedefine ulasmak i¢in harcadigi siiredir.

Anahtar kelimeler: Kablosuz ve Altyapisiz Ag Baglantilari, Deneysel Calisma,
Performans Degerlendirmesi, Coklu islemli Programlar, Kablosuz ve Altyapisiz Ag

Baglant1 Protokolleri.

Vi

TABLE OF CONTENTS

ABSTRACT e i
OZ. . ettt v
LIST OF TABLES ... IX
LIST OF FIGURES ... Xii
1 INTRODUCTION .ottt 1
2 SURVEY OF ROUTING PROTOCOLS.......ooiiieiiiieie e 4
2.1 Unicast ROUtING ProtOCOIS.cccueiieiiieie e 7
2.2 Multicast RoUting ProtoCOIS........ccccveieiiiiice e 9
2.3 Anycast ROULING ProtOCOIS.........cceiieiieie e 11
3 SURVEY OF EXISTING EXPERIMENTAL STUDIES. ..o 14
3.1 Main Direction to Investigate Wireless Mobile Ad Hoc Networks.................. 14
3.2 Experimental Study in Wireless Ad HOC Networks..........ccccvevviveiveiiesiennnn, 14
3.3 Challenges in Real-World Experimental Studies..........ccccccevvvevviiiniiveiesiennnn, 27
4 TEST-BED PROGRAM. ...t 32
4.1 Purpose of the Programccccoceiioieiiiieec e 32
4.2 The Structure of the Programcccccevieieiiiene e 32
4.3 Collected INFOrMALION........coviieiiiieieeree s 48
5 ORGANIZATION OF EXPERIMENTSoooiiiiiee e 50
5.1 Experiments With TWO NOUEScccevviiiiiieiiee e 51
5.2 Experiments with more than TWO NOUEScccevververeiiieiiere e, 53
5.3 Experiments with One Source Node and Three Destination Nodes................. 57
6 EXPERIMENTAL RESULTS AND THEIR ANALYSIS ... 59

Vi

6.1 Performance MEIIICSccooiiiiiiiiieieie s 59
6.2 ReSUlts OF EXPEIIMENTS.......ciieieeiecieie et 60
6.3 Discussion of the Experimental RESUILS...........cccoovveiviiiiiere e 86

6.4 Average Values and Confidence Intervals of the Investigated Performance

IVIBETICS ...ttt 92
T CONCLUSION. ...t 94
8 REFERENCES ...t 97
APPENDICES ...t 103
Appendix A: The source text of the Application-Layer Program............ccccceevernenne. 104
Appendix B: Raw Results of the EXPeriments..........c.cccevvevevieenesiieseene e seeseeens 121

viii

LIST OF TABLES

Table 2.1:Classification of wireless ad hoc routing protocols.ccccceeveveiivereennnne 6
Table 3.1: Summarized information about the real-world experiments. 30
Table 3.2: Summarized information about the real-world experiments. (Continue). 30
Table 6.1: The average values of round trip time which varies with distance under
different application data sizes with using two NOdes..........cccccvevvevvereriieninennn 61
Table 6.2: The average values of delivery ratio which varies with respect to distance
under different application data sizes with using two 1aptops.cccccevvveviviierieennne 62
Table 6.3: The average delivery ratio with respect to the inter arrival packet time
under different application data sizes with using two 1aptops.cccccvvveviviierieennne 63
Table 6.4: The average round trip time values with respect to distance under different
application data sizes With USING tWO NOUES.ccceiveieiieieee e 64
Table 6.5: The average delivery ratio values with respect to distance under different

application data sizes using two nodes and an obstacle between them in scenario one.

Table 6.6: The average round trip time values with respect to distance under different

application data sizes using two nodes and an obstacle between them in scenario one.

Table 6.7: The average delivery ratio values with respect to distance under different
application data Sizes iN SCENAIO tWO.cuervverieiierieeie e e ste e se e e eeas 67
Table 6.8: The average round trip time values with respect to distance under different

application data Sizes iN SCENAIO tWO.cueriveiueiierieeiie e e see e se e sreeneeas 68

Table 6.9: The average delivery ratio values with respect to distance under different
application data Sizes in SCENArIO tNree.cccveiveiieiieie e 69
Table 6.10: The average round trip time values with respect to distance under
different application data sizes in scenario three.cccccevvveieiieii e 70
Table 6.11: The average delivery ratio values with respect to number of intermediate
nodes between the source and destination nodes, under different application data
] LSRR PRSP 71
Table 6.12: The average round trip time values with respect to number of
intermediate nodes under different application data Sizes.cccvvveveevierieereeeene. 72
Table 6.13: The average round trip time values with respect to data size under two
AITFEIENT SCENATIOS. ...ttt bbb b bt 73

Table 6.14: The delivery ratio with respect to data size under two different scenarios.

Table 6.15: The average number of hop values with respect to application data size in
tWO AITFErENT SCENATTOS.e.veviiiieecese e 75
Table 6.16: The average delivery ratio values with respect to distance and the
application data size is fixed t0 50 DYLES........ccceiieiieii i 77
Table 6.17: Average round trip time values with respect to distance when the
application data SIZe IS 50 DYLES.ccvviiiiiiii i 78
Table 6.18: Average delivery ratio values with respect to distance when the
application data Size 1S 800 DYLES.cccvviiiiiiiicic e 79
Table 6.19: The average round trip time values with respect to distance when the
application data Size iS 800 DYLES.cccvviiiiiiieiie e 80
Table 6.20: The average delivery ratio values with respect to distance when the

application data Size iS 4000 DYLES.ccvviiiiiiicie e 81

Table 6.21: The average round trip time values with respect to distance when the
application data size IS 4000 DYLES.ecvueiieieeiesiese e 82
Table 6.22: The overall round trip time values with respect to inter-node distance
under different application data SIZES..........ceveiieeiieeieiie e 83
Table 6.23: The overall delivery ratio values with respect to distance under different
APPHICALION ALA SIZES.....vveveieie et sre e e e 84
Table 6.24: The average delivery ratio values with respect to data size under different
height values from the grouNnd............c.coceiieie e 85
Table 6.25: Average values and 95% confidence intervals of the performance metrics
for application data Size = 100 DYLES.cceeieirerieiie e 92
Table 6.26: Average values and 95% confidence intervals of the performance metrics
for application data size = 1000 DYLES........ccoveireiiiie e 92
Table 6.27: Average values and 95% confidence intervals of the performance metrics
for application data size = 2000 DYLES........cccveireiiiie e 93
Table 6.28: Average values and 95% confidence intervals of the performance metrics
for application data Size = 4000 DYLES........ccceiveiiiiieieee e 93
Table 6.29: Average values and 95% confidence intervals of the performance metrics

for application data size = 8000 DYLES........cccviveiiiiieiiee e 93

Xi

LIST OF FIGURES

Figure 3.1: Positioning of the laptops during the experimentccccccevvvieieennene. 18
Figure 4.1: Multicast mode for wireless network architecture.ccccceeveveennene. 33
Figure 4.2: Structure of the program. ... 35

Figure 4.3: A scenario of message passing in the wireless network of three nodes. 36
Figure 4.4: A simple wireless ad hoc network with three nodes.c.ccccceveveennene. 37
Figure 4.5: The algorithm of the originating thread in the program.c..cco....... 38

Figure 4.6: A 128 bytes request datagram with data types (a), A 128 bytes reply

datagram with data types (D).ccoeiieiieie e 39
Figure 4.7: Data structure of a request and a reply message counter................c........ 40
Figure 4.8: The algorithm of the relaying thread in the test-bed program................. 42

Figure 4.9: Algorithm for the relaying thread at the originator node after handling a
reply message from the NEIWOIK.cccvevviiiiiiiec e 43
Figure 4.10: Algorithm for the destination node after handling a request message
FrOM NEEWOTK. ..o 44
Figure 4.11: Algorithm for the intermediate node after handling a message (request
or reply) from the NEIWOIK.eoeiiece e 45

Figure 4.12: Received messages at the intermediate node within a sliding window

CONSIStING OF 20 CEIIS. ..oovreiiceie e 46
Figure 4.13: A scenario of messaging in the wireless network of four nodes. 47
Figure 5.1 : Configuration of the experiments with using two nodes. 51

Figure 5.2: A configuration of a wireless ad hoc network consisting of source node

and destination node with a building, scenario three.cccccceeveviviieviievesce e 53

xii

Figure 5.3: A configuration of a wireless ad hoc network consisting of five nodes.. 54
Figure 5.4: A configuration of a wireless ad hoc network consisting of five nodes in
(0] 0 LcT -1 =T T TSRO PRP PR 55
Figure 5.5: A configuration of a wireless ad hoc network consisting of ten nodes. .. 56
Figure 5.6: The position of source and destination nodes in the network. 57
Figure 6.1: Average round trip time versus distance with different data sizes........... 61
Figure 6.2: The delivery ratio versus inter-node distance with different data sizes. . 62
Figure 6.3: The delivery ratio versus inter-packet transmission time with different
APPHICALION ALA SIZES......veeeeieie et re e sraere s 63
Figure 6.4: The average round trip time versus inter-packet transmission time with
different application data SIZES.c.ecveieiieiieie e 64
Figure 6.5: The delivery ratio versus inter-node distance, for different application
data SIZES IN SCENATO ONE. ...uveuierieieitesie sttt ettt sttt beene e 65
Figure 6.6: The average round trip time versus inter-node distance, for different
application data Sizes iN SCENAIO ONE.ccverieeiveiieiieeiee e e eie s e ste e sra e eeesreeneeas 66
Figure 6.7: The delivery ratio versus inter-node distance, for different application
data SIZES IN SCENATO TWO.eeuieieieiieiie ettt 67
Figure 6.8: The average round trip time versus inter-node distance, for different
application data Sizes iN SCENAIO tWO.eeruerieeiieiieie e 68
Figure 6.9: The delivery ratio versus inter-node distance, for different application
data Sizes IN SCENAITO thIBE.cviiiiiieiee e 69
Figure 6.10: The average round trip time versus inter-node distance, for different
application data Sizes in SCENAIO thrEe.ccveiiiiiiiie e 70
Figure 6.11: The delivery ratio versus the number of intermediate nodes between the

source and destination nodes, for different application data sizes.cccccecereennene 71

Xiii

Figure 6.12: The average round trip time versus the number of intermediate nodes
between the source and destination nodes, for different application data sizes......... 72
Figure 6.13: The average round trip time versus application data sizes between the
source node and the destination node in an open area with different number of fixed
11T [ST PP TP PRPRPTPORPRN 73
Figure 6.14: The delivery ratio versus application data sizes between the source node
and the destination node in an open area with different number of fixed nodes. 74
Figure 6.15: The average number of hop versus application data size with different
NUMDBET OF FIXEA NOUES. ... 75
Figure 6.16: The delivery ratio versus inter-node distance, for different directions
with application data Size iS 50 DYLES.cceiveiveii i 77
Figure 6.17: The average round trip time versus inter-node distance, for different
directions with application data size =50 DYLES.ccceveviiieeiecesrce e 78
Figure 6.18: The delivery ratio versus inter-node distance, for different directions
with application data Size = 800 DYLES.ccveiveiiiie e 79
Figure 6.19: The average round trip time versus inter-node distance, for different
directions with application data size = 800 DYLES.ccceevvereereiiieiicre e 80
Figure 6.20: The delivery ratio versus inter-node distance, for different directions
with application data Size = 4000 DYLES.ccocveiiriiiiieiesee e s 81
Figure 6.21: The average round trip time versus inter-node distance, for different
directions with application data size = 4000 Dytes.ccccovieiiiiiiniiiiniere e 82
Figure 6.22: The average round trip time (overall) versus inter-node distance for
different application data SIZES.c.oiveriiiiriieie e 83
Figure 6.23: The delivery ratio (overall) versus inter-node distance, for different

APPHCALION TALA SIZES.......veiieeiiie e 84

Xiv

Figure 6.24: The average delivery ratio versus application data size under different

height of the laptops to the ground IeVel.coooi e 85

XV

Chapter 1

INTRODUCTION

Nowadays, wireless networks are one of the most popular computer networks which
use radio frequency channels to communicate between the nodes in the network
without using any wire. One of the most important benefit of wireless networks is
that they do not require any wire to connect the nodes to each other. Computers in
home or anywhere else can be connected easily by means of wireless cards. There
are two types of components used in many kinds of wireless networks: wireless

routers and access points.

Ad hoc wireless network is one of the wireless networks that enables the users of the
network to directly communicate with each other. This means that ad hoc wireless
networks do not need any routers or access points to be used in the network. Since
there is no wire and no fixed router in this kind of networks, it is not difficult to
enable the mobility in the network because the nodes will arbitrarily arrange
themselves with respect to the topology changes. The transmission area of each node
is limited. Hence, in order to reach a node that is out of a node’s transmission area,
another node should be used as intermediate node in order to forward the needed
information. Since there is no any router or access point, every node inside the
network can work as a router and fulfill the responsibility of forwarding information.
This means that there will be a multi-hop wireless link between the sender and the

receiver.

The earliest mobile ad hoc networks (MANETS) were called “packet radio”
networks, and they were sponsored by DARPA in the early 1970s[1]. SURAN
(Survivable Adaptive Network) was proposed by DARPA in 1983 to support a larger
scale network [1]. The idea of multi-hop links in ad hoc networks dates back to 500
B.C., Darius | who was the king of Persia and inventor of multihop communication
system. For sending messages and news, he yelled to his men who were located at
tall structures in each remote province of his empire. This new communication

system was 25 times faster than the regular messaging system of his time.

Since each node in wireless ad hoc networks can play the role of being source,
destination, and a router, each node in the network needs to be intelligent. This
intelligence is figured out by a routing protocol that is used for packet transmission
between the network nodes. If the routing protocol of a network is well configured, it
will increase the efficiency of the network. Since the wireless ad hoc networks have
limited bandwidth, power consumption problem and mobility [2], the routing
protocol should be simple, power conserving and capable of handling fast topology

changes in the network configuration.

Easy and fast deployment of wireless ad hoc networks and the decreased dependence
on infrastructure makes this type of networks preferable in some areas. Besides being
used as cell phones and for gaming purposes, wireless ad hoc networks can also be
used in disaster areas or in search and rescue emergency operations. In our daily life,
using wireless ad hoc network in taxis, stadiums and aircrafts is also possible as for
military reasons, these networks can be deployed on battlefield areas because they

are good at mobility, it is fast and easy to setup.

The purpose of this thesis is to investigate the characteristics of wireless ad hoc
networks under different conditions with the use of some performance metrics. In
order to be able to investigate the characteristics, we carried out a series of
experiments in outdoor real-world network environment by the use of the developed

program.

The rest of the thesis is organized as follows. Chapter 2 presents a classification of
the routing protocols in wireless ad hoc networks to explain the behaviors of routing
protocols in various conditions. In Chapter 3, information is given about what was
done about conducting real-world experiments by using wireless ad hoc networks. In
Chapter 4, detailed information is given about the testbed program which was used in
the experiments. Chapter 5 describes the experiments that were conducted by our
research group. Chapter 6 presents the results of the conducted experiments, a
discussion of these results and presents information about the parameters and the

performance metrics. In Chapter 7, the study is concluded.

Chapter 2

SURVEY OF ROUTING PROTOCOLS

Wireless ad hoc network is a collection of nodes that communicate with each other
without requiring a hardware component such as a router for centralized control. Any
node in a wireless network can be a source node, an intermediate node which acts as
a router, and a destination node. The main characteristics of a wireless ad hoc

network can change with respect to the selected routing protocol.

There are lots of routing protocols in the literature and we can mainly classify them
as unicast, multicast and anycast. Unicast means sending the packets to a single
destination host from a source node in a specific network. There is a one to one
relationship between the source and the destination node. On the other hand,
multicast means sending a packet from a source node to a group of nodes in that
network. In this kind of network, each node has a multicast address and more than
one node can have the same multicast address in the same network. Thus, when a
packet is sent to a specific multicast address, a group of nodes receive this packet if
they belong to that address. Multicast has a one-to-many association between
network addresses and network endpoints. Lastly, anycast means sending a packet
from a source node to the nearest server or to the best localized server in the network.
In anycast mechanism, there is one or more server(s) in the network and the aim is to
send the packet to the best server among all the other servers (if there is more than

one). And the word “best” can vary with respect to the anycast protocol that is used.

It can be the nearest node, the least traffic involving server or any other thing

depending on what system you are using.

These three categories can also be divided into three subcategories in themselves as
reactive protocols, proactive protocols and hybrid protocols. Reactive protocols can
also be named as on demand protocols which have a mechanism of finding a route
from a source node to a destination node(s) when a source node want to send a
packet. This means that generally a route discovery mechanism is activated before
sending the original data to the destination to find out the route that is going to be
used for sending data. Moreover, there are two kinds of reactive protocols. The first
one works by combining the entire route address with the original data after finding
the best route and sending the whole packet. The intermediate nodes do not need to
care about to which node they need to forward the packet since that information will
be provided inside the packet with the data that we aim to send from the source node.
The second type of reactive protocols works by setting a routing table inside each
intermediate node. And each time a packet goes to an intermediate node, the current
node will decide where to forward the packet by looking at the table inside it. The
difference of this mechanism derives from putting the next hop address in the packet

instead of putting the entire route information.

In proactive protocol, each node maintains the routing information for every node in
the network. Depending on which protocol is being used, the number of tables
required for keeping the routing information can vary. The important thing is that,
the tables are kept updated periodically even if there is no need for a data

transmission from a source node to any destination node.

Table 2.1:Classification of wireless ad hoc routing protocols.

Unicast Multicast Anycast
AODV MAODV A-AODV
DSR ODMRP ARDSR
Reactive Protocols TORA ABAM
LAR
ABR
DSDV AMRIS Route-Count Based
WRP AMROUTE Anycast Routing
Proactive Protocols LANMAR CAMP Protocol
OLSR MOLSR
STAR
APRL
ZRP ZMAODV Hybrid Anycast
HARP ZODMRP Routing Protocol
Hybrid Protocols ZHLS MZR

The combination of reactive and proactive protocols forms hybrid protocols. In most
hybrid protocols, a zone-based mechanism is used for dividing the network into
zones. The node(s) that are close to the destination node work like a proactive
protocol and periodically send information to the neighbor nodes for keeping their
routing tables up to date. The nodes that are far enough, work like a reactive protocol
by sending route discovery messages to the network. As a result, the route discovery
process takes less time and less overheads with respect to the other two types of
protocols. More information can be found in [2][3] about reactive, proactive and

hybrid protocols, their comparisons and some classifications.

In Table 2.1, the classification of some routing protocols with respect to their
transmission type and working mechanism is given. At least one protocol from each

part of the table will be explained below.

2.1 Unicast Routing Protocols

Ad hoc on-demand distance vector (AODV) [4] is a routing protocol which
establishes a route to a destination node only when it is necessary. This means that
AODV is a reactive protocol. It is based on DSDV and DSR [5] algorithms. It uses a
route discovery mechanism for finding a route to a destination whenever it is needed
and also it uses sequence numbering procedure. Once a route is found to a
destination, this route is used for future data sending. In the route discovery
procedure, the source node sends a route discovery message to the network and
whenever the destination node receives this message which is flooded by the source

node, it sends a reply back to the source node with the same path.

Dynamic Source Routing (DSR) protocol is also a reactive protocol in unicast class.
It uses a route discovery mechanism since it is reactive, and the main difference
between DSR and AODV is that, while sending the data packets from a source node
to a destination node, the packets in DSR carry the complete address of the route
which they will use for travelling until their destination. However, AODV only
carries the destination address in each of the data packet that is sent out by the source
node. This provides some advantages to AODV protocol in high dynamic networks
with large number of nodes since the routing overheads of AODV protocol are less
than the DSR protocol’s routing overheads. On the other hand, DSR has an important
advantage in saving more than one route to the source’s cache and whenever the
network switches from listening mode to transmitting mode, it checks the cache of
the sender to find a valid route to a destination instead of directly initializing a route

discovery procedure.

Optimized Link State Routing (OLSR) protocol [6] has a unicast and a proactive
working mechanism. Each node in the network exchanges Hello and Topology
Control (TC) messages between them in order to keep the topology information up to
date periodically. Since it is a proactive protocol, even though there is no need for a
transmission in the network, the nodes will know where to send a packet in case of a
need for transmission at any time. One of the features of OLSR protocol is that, it
manages to send the control packets in such a way that the packets will not be
retransmitted after a predefined value which is called Multipoint Replaying (MPR)
strategy. Only the predefined set of nodes can retransmit the TC packet in the

network but other nodes cannot.

Source-Tree Adaptive Routing (STAR) protocol [7] also works in one-to-one manner
and it is a proactive protocol. It is similar to OLSR, but in STAR, Least Overhead
Routing Approach (LORA) is used to exchange routing information. The aim of the
LORA approach is to reduce the amount of routing overhead used in the network.
Normally, the control packets are periodically exchanged in the network to see the
topology changes in the network but in this case they will be exchanged depending
on some conditions. In [3], it is stated that STAR can have a large amount of
memory and processing overheads in large and highly dynamic networks. This is

because each node needs to create/update a partial topology graph of the network.

The working mechanism of APRL [8] is proactive. Each node in the network knows
about a route to any of the other node in the network. And this is handled by
broadcasting routing beacons to network by every single node. This beacon contains
the exact copy of the sender’s routing table. The nodes that receive any beacon use

the information inside them for renewing their current routing table and then

propagate the renewed information to network. Nodes use the route that they learn
about first, without considering the length or quality of the route. Any route in the
table will be timeout if within a specific time that node does not receive any beacon.
Also APRL records some predefined number of alternative route as soon as a

primary route times out.

The Zone Routing Protocol (ZRP) [9] is a hybrid type protocol. The network is
divided into routing zones in this protocol. The nodes that are at maximum “d”
distance from the node “N”, belong to the same routing zone of “N”. Since hybrid
protocols are the combination of reactive and proactive protocols, the mechanism of
proactive is used inside the routing zones and the reactive mechanism is used for the
communication of different routing zones. Route discovery process of ZRP is very
similar to DSR protocol. The aim of this hybrid protocol is to reduce the control
overheads of proactive protocols and the time required for finding an optimal path to

the destination.

The routing protocols that are described above belong to unicast class. Some
developers and researchers modified some of these protocols and created a new
routing protocol that belongs to Multicast and Anycast classes. Some of the multicast
and anycast protocols will be briefly described below.

2.2 Multicast Routing Protocols

The Multicast of Ad hoc On-Demand Distance Vector (MAODV) protocols [10] is
one of the modified unicast protocols to fit in the multicast class. It is a reactive
routing protocol. AODV protocol which is a unicast protocol is extended and

MAODYV is formed. MAODV provides the advantage of dynamic and multihop

routing between mobile nodes. In MAODV, each node has three tables. The first one
is Routing Table (RT) which works exactly in the same way with AODV. The
second one is Multicast Routing Table (MRT) which contains the information about
the multicast group addresses and the hop counts to the multicast group leader and to
other multicast group members. The third table is the request table which provides
required information for the optimization. This protocol shares many common

features with AODV.

The On-Demand Multicast Routing Protocol (ODMRP) [11] is also a reactive
multicast protocol that creates routes on demand. For multicast packet transmission,
forwarding group mechanism is used. Each multicast group is related with a
forwarding group and the nodes in that forwarding group are responsible for
forwarding multicast packets of the multicast group. Protocol has two main phases
like in unicast reactive protocols which are the request phase and the reply phase. If
there is no route known for transmission of a packet, Join Request packet is delivered

to the entire network. More information can be derived from [11].

Multicast Optimized Link State Routing (MOLSR) protocol [12] is the extended
version of the OLSR protocol. It is a proactive multicast protocol using mainly two
methods while delivering the data to a group of destination nodes, two methods are
mainly used. These are tree-based or mesh-based methods. MOLSR involves tree-
based method. Multicast trees are built with the use of the exchanging of topology
control messages which are used in OLSR to see how the topology changes with
respect to time. These trees are updated whenever a topology change is detected in
the network. With the use of these trees, the shortest path to the necessary

destination(s) is found by the MOLSR.

10

Multicast routing protocol is based on Zone Routing (MZR) [13] protocol which is a
multicast protocol and at the same time it has a hybrid mechanism. MZR is a source
initiated on-demand protocol. With the use of the zone routing mechanism, it creates
a source based multicast delivery tree. It means that whenever a data need to be sent
to a multicast group, the creation of tree is triggered by the request for sending data.
The creation and maintenance of tree mechanisms in ZRP is used in MZR. The
reactive mechanism of ZRP is for the creation of source based tree and the proactive
mechanism is for keeping the zone routing table up to date by sending advertisement
messages periodically. The zones are created in the network depending on the hop
distance of a node. Having a pure proactive mechanism can corrupt the network in
terms of bandwidth. For this reason, instead of a pure proactive mechanism, a
combination of proactive and reactive mechanism can be used to prevent the

occurrence of bandwidth problem.
2.3 Anycast Routing Protocols

Anycast Ad hoc On Demand Distance Vector routing (A-AODV) [14] protocol is
based on AODV protocol. AODV protocol is extended to enable A-AODV support
anycast function. A-AODV discovers routes only when it is needed. It is a reactive
protocol. Routing tables and RREQ packets in AODV are modified for A-AODV.
Anycast Group ID is added to the routing table entry. If a route is needed for
transmission and if there is a route to any anycast server, it will be used. If there is
more than one route available, it will choose the route with the smallest hop counts
that is nearest to the server. If there is not more than one route available, RREQ

message is generated and it is proceeded to route discovery process.

11

Anycast Routing based Dynamic Source Routing (ARDSR) [15] protocol is the
extension of DSR protocol. The protocol is a reactive protocol like A-AODV and it
is an extension for the anycast networks. The routes are created only when they are
needed for data transmission. ARDSR has two phases which are route discovery and
route maintenance. When a data is needed to be sent, the source first checks its cache
if there is any route. If no route is found, ANYREQ is flooded to the neighbors. At
one point, when the destination receives this message, ANYREP message will be
replied by the anycast server. Moreover, these routes that will be stored on caches
need to be maintained since the network can be mobile. There will be some link
breakages because of the mobility. In this kind of a situation, RRER message is sent
to the source to tell that the link is broken. There are some references that compare

the performance of A-AODV and ARDSR in the literature. [16] is one of them.

In [17], an anycast proactive routing protocol is proposed. The proposed protocol
works in a proactive manner. Routing tables are recorded at every node and hop
count. Route count and lifetime are recorded for each node. Each node periodically
sends control messages to the neighbor nodes since it is a proactive protocol. With
the use of these control messages, nodes find out the shortest distance to one of the
anycast group members and also at the same distance, they count how many different
routes there are. When a node needs to forward packet, the packet is forwarded to the
shortest distance anycast member. If there are two anycast members at the same
distance, as second criteria, the packets are forwarded to the anycast group member
with the larger “number of routes” variable. This gives the advantage of having more

stable routes to the anycast server.

12

A Hybrid Anycast Routing protocol is proposed in [18] for load balancing in
heterogeneous access networks. The proposed protocol is based on AODV protocol.
Some important modifications are made on AODV to support anycast routing. The
modification involves the combination of reactive and proactive mechanisms. The
protocol consists of two regions. The first one is the proactive region and the second
one is the reactive region. Proactive region surrounds the nodes that are “m” hop
away from the anycast server and all the other nodes that do not belong to a proactive
region but belong to a reactive region. The working mechanism of the protocol
consists of five phases, Hello message transmission, Route discovery for proactive
region, Route discovery for reactive region, Route selection and Route maintenance.
Hello message transmission is done by access points (anycast servers) to make the
nodes aware they belong to a proactive region. Only the nodes that are inside the “m”
hops of distance can receive this message and distinguish themselves as a member of
a proactive region. The process of receiving the hello messages and setting them as a
member of a proactive region is the second phase (Route Discovery for proactive
region). Route Discovery for reactive region works in a similar way with AODV
route discovery but this one has more fields inside the RREQ and RREP packets.
Route selection phase is done for choosing the best route to forward the packets. A
cost metric is used in the protocol to make a healthy decision and the Route
maintenance is same as the AODV’s route maintenance. In [18], some experiments

are done to show the performance of the proposed protocol.

13

Chapter 3

SURVEY OF EXISTING EXPERIMENTAL STUDIES

3.1 Main Direction to Investigate Wireless Mobile Ad Hoc

Networks

In order to investigate a wireless ad hoc network’s performance, two aspects need to
be considered. One of them is the real-world experimental part and the other one is
the simulation modeling. It will not be enough to make only the simulations for the
performance measuring of wireless ad hoc networks. The reason for this is that; the
environmental effects cannot be applied in the simulations exactly in the same way
as in the real-world’s environmental conditions. The results of real-world
experimental studies can be very important for understanding the wireless ad hoc
network’s performance. The real-world experimental investigations require the use
of a large number of computers, good test-bed software on these computers and most
importantly man power to control each computer. However, finding the necessary
people for deploying such an experiment may be difficult. The next difficulty in real-
world experiments is that when repetition is needed for a conducted experiment, you
may not find the same environmental conditions since the environmental conditions

cannot be controlled by the experimenter.
3.2 Experimental Study in Wireless Ad Hoc Networks

Some assumptions are made in simulations and these assumptions can sometimes
lead to incorrect results. In [19], it was stated that some of the assumptions that are

made in simulations are not always correct in the real-world experiments. In the

14

literature some real-world experiments were conducted in order to prove that some

assumptions are not true when the real world environment is considered.

In [19] a group of outdoor experiments were conducted with 33 laptops and each
laptop had its own GPS device to receive signals from the other nodes containing the
coordinates of the node itself. In order to examine the axioms, extensive log files
which keep related information for nodes’ positions were created. The first axiom
claims that “world is flat”. In some simulation models, it is assumed that the world is
flat; but it cannot be true. In the real-world, there are hills and buildings and these
can be counted as an obstacle which considerably affects the radio signal
propagation. The second axiom is that “A radio’s transmission area is circular”. In
theoretical analysis, it is assumed that the radio signal’s transmission area is circular
and it is not exactly the same in the real-world. In the paper [19], it was stated that
the angle between the wireless cards on a laptop to another laptop’s wireless card
affects the transmission area. Another axiom is “Signal strength is a simple function
of distance”. They took into consideration only received beacons and recipient’s
signal log to obtain the signal strength associated with that beacon. When the signal
strength of individual beacons was investigated, it was noticed that there is not any
simple function that will predict the signal strength of an individual beacon based on
the distance alone. In [19], the simulation results were compared with the outdoor

results that were derived from the outdoor experiments.

In [20], some experiments were conducted for understanding the capacity of the
radio medium, the asymmetry of the used cards and the effect of broadcast on unicast
flows and the interfering range. Linux operating system was used on every laptop

and UDP packets were sent with the implementation of CBR (Constant Bit Rate). A

15

toolbox software was developed to deploy different scenarios. In this group of
experiments no routing protocol was used. Without using any routing protocol
802.11 performance was measured. Each node has a predefined table consisting
information about the nodes that will send the packets. Furthermore, the developed
software monitored many parameters during the experiments such as the time of the
packet that was sent with the information by which station it was sent, the time of
received packet and by which station it was received with which power and the noise
level information of that time being, packet flow ID and sequence number within the
flow and last-hop identificator. With the use of the software, things that were not
considered in simulations were investigated their importance was highlighted in the

real-world by conducting some experiments.

A group of experiments was conducted which helped us to understand certain issues
that need to be considered in real world experiments. One group of experiments was
about the effect of positioning the laptops in the network. For this group of
experiments, two laptops were used and no forwarding mechanism was used since
there would be only one hop in the transmission. They examined four different
positioning of those two laptops to see the effect of throughput. Each stage lasted 130
seconds. During each stage, they changed the packet sizes as 200, 500, 1000, 1400
and each was sent for 20 seconds. The remaining time was used to increase the
distance between the communications to 15 meters. The configuration of the laptops
can be seen in Figure 3.1. In position 1, as it can be seen, the wireless cards of the
laptops were facing the same direction. In position 2, the cards were set in opposite
directions. In position 3, the cards were facing each other and in the last position, as
it can be seen the cards were facing the opposite direction with one laptop’s LCD

facing directly back of the other laptop’s LCD.

16

The throughput was measured and the best throughput in terms of bits/second was
seen at position 3 where the cards were looking at each other. The worst throughput
was observed at position 2 in which the cards were facing completely the opposite
sides. In simulations, these kinds of things are not generally taken into account since

it needs to be careful while conducting experiments in real-world.

The other group of experiments was done in the paper [20], which is about sharing
the medium. The experiments were done with two stations which tried to send data to
two different stations that acted as a receiver. Then, the network was set in a way that
the two sender stations sent the packets to the same destination. After that only one
station sent data to only one destination. The results of these experiments were

investigated to see how it affected the communication.

17

Pasition 2

o

Position 3

Pogieon 4

i

J

Trecaugnpot i #0D per second Throwghoul in Mb per second Throughpal in Mb per sscand Throughout in 48 par szcand.

Distance in mealars

Figure 3.1: Positioning of the laptops during the experiment [20].

7 T T T
8| ' 200 bylos packals -=-=--]
5 | % i 500 byles packals i
it 1000 byles packets i
3l ,.] A i t, ll 1400 byles packets ----]
2 L i ' i
s { F‘ Lo i
3, : L] I I. ‘a ﬁjl |L u.é. b 1 W (I 1
15m Sﬂm 45m E0m TEm QCIm 1058m 120m 135w 150m
Distance in melers
? L T T T T T T T T T
] I 200 bytes packals sorees o
5+ i 500 byles packets = -~ |
4 k- i . 1000 byies packelg sw— |
Ik Ll | I 1400 byles packels i
2t it ﬁ]
11 ;]
a rf 1 { -ﬁ l fi' i LA ..i i i] i 1 |
15m Jom d5m O0m Tom a0m 105m 120m 136m 150
Distance in melers
7 T 1 I T T M I 1 T
B ; @5 packnls ------- , .
" ¥ : mﬁmﬁum----!s i
4| i i byles packels —— J
q b ,:: } ﬁ Byl packem i --2-- i i
2} LI Y e i &]
‘;- o I::*' :LMB ||I I!..!.!.”‘ !j' lFLL i
5m o dm 10%m 120m 185m 150m
Digtanee in melers
7 1 L] T T
6 - | | 20 byies packes ------- -
5 | a 500 byles packets -~~~ i
s - 1000 bylés packets ——
al I , m 1400 byles packets -]
2t i i
EII i II Ll Il’ h“ B’“i :| i3 '. L] 1]
BOm 75m @0m 105m 120m 135m 150m

Another group of experiments was done to see how the throughput varied when the

number of stations that transmit data in the network was increased. The experiments

were started with one transmitter and one receiver station, and the number of

transmitter was increased step-by-step until seven transmitters. At the end of the

experiments, it was noticed that the throughput increases with respect to the number

of transmitter. The reason of this can be explained by thinking the idle time of the

receiver during the experiment. When receiver receives one packet of information, it

will be inactive until the arrival of the next packet. However, if the number of

transmitter is increased, this idle period will decrease since the packets that arrive at

the receiver increase per unit time. It is called parallel decrease of back offs which

18

leads to achieve better throughput when the number of transmitter increases. It was
seen that when two nodes were communicating at max range (189 meters), the
bandwidth was fully used by the monitored destination and when they were close to

each other the bandwidth was not fully used.

They compared the simulation results with the outdoor results that they achieved.
Therefore, from the [19] [20], it should be understood that before conducting any
experiment in the real-world, the assumptions that are used in simulations shouldn’t

be used.

Other researchers stated in [21], that the common assumptions of route symmetry in
simulations of ad hoc networks are not true in real-world experiments. They found
that when the number of hops increases, the chance of any route to be symmetric
decreases. In [21], they used 16 laptops equipped with IEEE 802.11b and 802.11g
network interface cards. Four of these laptops were used to generate real-time and
non-real time UDP traffic to all other nodes in the network. The protocol that they
used was Optimized Link State Routing (OLSR). They used the default parameter
values of OLSR which can be found in [23]. They were doing the experiments for
winning the Mobile Ad hoc Network Interoperability and Cooperation Challenge
2007 (MANIAC) which is a multi-institution competition. Two of the laptops were
used for monitoring the network traffic and the topology. They used a monitoring
tool for this purpose which will be explained later on. They also designed an
application which was used for making the dynamic changes in routing and
forwarding decision by the people who played role in conducting experiments easier
and in collecting traffic and routing data at each node more efficiently and easily.

The application gives the ability to drop, forward or redirect traffic. Each team

19

analyzed each packet and decided what to do with it. The options are; forwarding it
according to the routing table, dropping the packet or redirecting the packet to a
different next hop other than the specified entry in the table. Each team controlled
two nodes during the experiments. Moreover, the program stored some information
about the routing table, number of packets accepted, dropped and forwarded by each
node. The paper focused on topology and routing subjects. The result that they
achieved showed that a high degree of topology and route changes occur, even when
there is low mobility. From the results, it is understood that routing proactively in a
real ad hoc network is extremely difficult, because when the route is more than one

hop, it is asymmetric.

In [21], information was given about a monitoring tool that was used in the
experiments. In [22], they developed this monitoring tool and used it in some
experiments. As it is mentioned, this Monitor for Mobile Ad hoc Networks (MMAN)
tool was used to gather information about the network for constructing partial
network views. Moreover, the good thing of this tool is that, it does not generate any
additional traffic in the MANET which it monitors. And it doesn’t require much
storage and processing resources. This tool can be used for network management,
security assessment and anomaly detection. OLSR protocol is used in this tool. A
number of monitoring units was distributed in the network and the units were
equipped with two network interface cards. One of them was used for MANET
packets and the other one was used for the communication of the packets between
the other Monitoring Units (MUs). These MUs collected information about the
network topology, link changes and delivered this information to the management
nodes. The advantage of using two network interface cards is that no additional

traffic was generated in the MANET. They conducted experiments in two settings.

20

One of them which was with 10 nodes MANET was deployed across a large house
while some of the nodes were inside the house, some of them were outside. And in
the second setting, 10 nodes of MANET were deployed in an office building. Some
of the node’s operating system were different. All of them were Linux but not the
same version. One node had Fedora Core 5, four nodes had Fedora Core 4 and five
nodes had Slack ware Linux 10.2. The performance of MANET was investigated in
two scenarios. In one of the scenarios only one MU was used in the MANET whose
coverage area was partial. In the second scenario two MUs were used in MANET
covering the 80%-90% of the MANET. In the environment, there were obstacles
such as walls, other electrical devices as well as the wireless networks, shadowing
and interference. Experiments were run for 6 periods and each of the periods took 30
minutes. They tested the performance of MMAN under different networking
conditions such as; with different network densities, partial and complete coverage of
the MANET, node’s cooperation levels and different traffic rates in a real world
environment. They concluded that MMAN had been successful for all the scenarios.

More information can be found about this monitoring tool in [22].

In [24], outdoor experiments were conducted for comparing four different routing
protocols. These were APRL, AODV, ODMRP and STARA. They used 33 802.11-
enabled laptops moving randomly in a field. In addition to this, they compared the
outdoor results with both indoor and simulation results for all four algorithms. For

brief information about these four algorithms, please refer to Chapter 2.

Computers used in the experiments had 10GB Hard Disk, 128MB of main memory
and a 500 MHz Intel Pentium3 CPU with 256 KB of cache. They all ran Linux

kernel version 2.2.19 with PCMCIA card manager version 3.2.4 and had Lucent

21

(Orinoco) Wavelan Turbo Gold 802.11b wireless card. There were some common
parts in each of these four algorithms. All four algorithms were implemented to
application layer through the use of a tunnel device. They were using UDP for the
traffic between a specific neighbor and multicast IP for traffic to reach every
neighbor. All four algorithms were implemented in C++ and shared a core set of

classes.

They implemented a traffic generator to each node in the network. By using this
traffic generator, a sequence of packet streams was sent to a randomly selected node
in the network. For determining the destination node, a uniform distribution was
used. For the time between the streams and packets, exponential distribution was
used. And for determining the number of packets and the sizes, Gaussian distribution
was used. The traffic generator on each laptop generated packet streams with a mean
packet size of 1200 bytes and the approximate value of the mean of the packets per
stream was 5.5. The mean delay between streams and packets was approximately 15

seconds and 3 seconds respectively.

Outdoor experiments were done in a rectangular area of 365 meters long by 225
meters wide. The area of the experiments was far enough from the campus wireless
to prevent any interference. They used GPS service on each laptop which recorded
the current position once per second and synchronized the laptop clock with the GPS
clock for time synchronization. Every 3 seconds, GPS service on each laptop
broadcast a beacon containing its own coordinate and any other coordinates that it
knew about the other nodes. The parameters were set according to the published
simulation studies which gave effective results. APRL broadcast its beacon every 6

seconds and any route which had not been refreshed by a beacon within the last 12

22

seconds expired. And STARA broadcast a NP every 2 seconds. If a path was not
explored for 6 seconds, it sent a dummy data packet. If NP_ACK didn’t come twice
from a neighbor, it was removed from the list. AODV broadcast each RREQ twice
and a route expired if it is not used for 12 seconds. Hello packets were sent every 6
seconds and if two successive hello packets were not received by a neighbor, they
were removed from the neighbor set. The movements of the laptops were handled by
dividing the field into 4 parts. Experimenters chose a position randomly between the
parts that they were not currently in, and walked to that position and repeated the
same steps after reaching there. Message delivery ratio, communication efficiency,

hops count and end-to-end latency were used as performance metrics.

There are many routing protocols for mobile ad hoc networks, but there are not many
protocols which also consider the secure routing in MANET. In [25], they modified
the existing AODV protocol and proposed SAODV (Secure-AODV). Since AODV
protocol does not concern any security system, it is vulnerable to some types of
attacks. In this reference, they introduced a “malicious node” and stated whether a
node is an attacker node without having enough information about its type. On the
other hand, if the node has enough information about its type, it is counted as a legal

node. There are mainly three different ways of attacking a network according to this

paper.

The first one is “Message Tampering Attack”. Attacker can change the content of
routing messages and forward them with wrong information. For instance, one aim
of the attacker can be analyzing the communication between the source node and a
destination node. The only way of analyzing the communication between the source

node and the destination node during the whole data flow process is to make sure that

23

the information that is being sent passes this specific route that the attacker can
analyze. If the attacker decreases the hop count information, it will increase the
chance that the packers will flow on that specific path. Moreover, the destination
sequence number can be increased by an attacker in order to make the other nodes

believe that this is a “fresher” route.

The second type of attack is “Message Dropping Attack”. The attacker nodes are set
to drop some or all data information that is passing through them. As it is known, in
ad hoc networks each node can play the role of end hosts and routers, so dropping the

packets can paralyze the network with respect to the number of message dropped.

The third type of attack is the “Message Reply (or Wormhole) Attack”. Attackers can
retransmit secretly listened messages again later in a different place. Wormhole
attack is one of the reply attacks. Wormhole attacker can send the RREQ message

directly to the destination node to prevent any other routes from being discovered.

There are some security requirements in the protocol. Source authentication is one of
them and its aim is to verify that the node is the one that it says to be. The other one
is the Neighbor Authentication and its aim is to ensure that the receiver should check
the identity of the sender and be sure that the sender really tells the truth about itself.
The other one is the Message Integrity which is used to verify that the data which is
routed has not changed during the routing process. The last one is the Access Control
which checks the rights of the nodes that are trying to access the network. The
proposed SAODV protocol uses digital signatures to verify whether the information
that does not change in the packets is true or false. Also hop count is being checked

in RREQ and RREP messages.

24

Some experiments were done to see the performance difference between AODV and
SAODV. The experiments were done in indoor environment with some parameters.
For instance, bit rate for 802.11b MAC is 11Mb/s. For AODV and SAODV, HELLO
packets are sent every 1 second. Link will be counted as broken if HELLO packet is
not received within 2 seconds. For SAODV, additional size for RREQ, RREP and
RERR are 448,448,404 bytes respectively. 448 bytes include signature, top hash,
hash, certificate, other header info. For 404 bytes includes signature, certificate and
other header info are included. The laptops that were used for experiments had Intel
Pentium M 1.6 GHz CPU with 1024 KB cache more than 60 GB Hard disk and 512
MB RAM. Totally 6 laptops were used and each of them equipped with an internal
11 a/b/g wireless LAN mini PCI adapter. The operating system was Windows XP
version 2.0. The indoor room had 17mx7m area and the laptops were placed in the
same lab. The speed of the mobility was 0.5 m/s and each session took 15 minutes.
Data rate was 11 Mb/s with auto-rate function disabled. Minimum transmission
power mode was used and the transmission range was 50m. Each user held the
laptops and walked randomly in the room. During the experiments the amount of
control overheads (RREQ, RREP, RERR) that was generated was collected. When
each time a control packet was forwarded, it was counted as one transmission. For
TCP traffic the average throughput was used. Average TCP throughput for AODV-
withAttack, withoutAttack and SAODV-withAttack, withoutAttack are the

performance metrics.

In conclusion, SAODV is effective in preventing control message tampering and data
dropping attacks under TCP traffic. All the information that is written about the
security system of a protocol will be future work. And it will be extended to support

more types of attacks.

25

There are some routing protocols that look for the shortest path by checking the
delay of packets such as; AODV and DSR. Moreover, some of them check the signal
strength. In [26], a new criterion was introduced for choosing a better route. Joint
route hop count, node stability and route traffic load balance were the criteria for
choosing the best route among all other routes. In [26], AODV and SAR protocols
were compared and the performance metrics used in the paper are, delivery ratio,
end-to-end delay, control cost, hop counts and they are all versus traffic load. An

overview of SAR is as follows.

In SAR, when there is more than one route, it selects the best one with its union
selection parameter W, which jointly considers, hop count, stability of the route and

traffic load of the route.

For the experiments, two laptops were used for measuring the transmitting capacity
of single node. Two nodes were placed very close to each other and one of them was
set to send packets to the other one without any routing. On the computers wireless
LAN card was used, based on IEEE 802.11b standards and the WEP function was
disabled on the cards. Packet length was fixed at 1024 bytes. End-to-End delay

versus Traffic Load performance metric was used for this experiment.

The other experiment was done in indoor environment. The four laptops were placed
in 8mx8m office and the source, one intermediate and the destination node were not
moving. Only one intermediate node was moving between the source and
destination. Since they couldn’t change the transmission power of the laptops they
did the mobility in that way. For outdoor experiments that they conducted, they

didn’t use any mobility. Four nodes were placed 20m-30m away from each other and

26

the source node and the destination node were selected randomly among those four
laptops. For indoor experiments, they used delivery ratio, end-to-end delay, control
cost and end-to-end delay jitter performance metrics that were measured with respect
to the system traffic load. For outdoor experiments, instead of end-to-end delay jitter,
they measured hop count performance metrics with respect to system traffic load.
They compared the results that they found with the AODV protocol results. By

looking at the outputs, it was understood that SAR has more efficient results.
3.3 Challenges in Real-World Experimental Studies

Dealing with real-world experiments can be really challenging. The most challenging
factor in the experiments is the environmental conditions on the transmission of the
wireless signals. Since the experiments are conducted outdoors, the buildings, cars,
people walking around and even the electricity poles can be counted as
environmental effects that dramatically affect the propagation of the wireless signal.
The presence or absence of these obstacles is a crucial factor for choosing the
environment where experiments are to be conducted. It should be away from any
building to prevent the risk of interference. Also there should not be car traffic
around the experiment environment since they affect the propagation of wireless
signals. The electricity poles create a huge magnetic area which can affect the results
of the experiments in a bad way. Furthermore, there should not be another wireless
service around the experiment area for preventing the inference that they can
generate. One of the most challenging factors in conducting real-world outdoor
experiments is finding an enough large area that satisfies the criterias required for
achieving results that show the pure behavior of wireless ad hoc networks. After
finding such an area, the rest is not very simple. Conserving the battery life of the

laptops is also a challenging factor in the real-world experiments since there is no

27

power supply in the fields to recharge the batteries of the laptops. Just before starting
the testbed that is developed, the laptops should be connected to the same wireless
server which is created by any of the laptops. The laptops should be connected to the
wireless server one by one since the laptops that are far away need to connect to the
network after connecting the ones that are closer to the wireless server. During this
connection period if any of the laptops in the middle disconnects from the network
by mistake, the laptops that are more distant to the wireless server than the
disconnected ones, also quit the network. Those laptops needed to be reconnected to

the network and this whole process will consume the battery life of all the laptops.

Another challenging thing while conducting experiments is the weather conditions.
The experiments are tried to be conducted within the same time interval since it is
guessed that the temperature and humidity will not be very different than the
temperature and humidity in other days. The wind, rain or even the cloudiness of the
weather cannot be predicted precisely. Even the weather forecasts cannot be very
clear when a specific time interval is considered for the experiments. If the weather is
windy, the wireless signals will not be received or sent to longer distances as in
sunny and calm weather. So bad weather will make the network setup process harder
and longer, which will consume the battery power of laptops early when the testbed

is started.

In the previous section, the effects of the positioning of the laptops were stated [20].
Also during the experiments, the positions of the laptops are arranged with respect to
the results of the experiments that are done in [20], since the positioning may affect

the results in a bad way.

28

As a result, in order to conduct any real-world experiments in outdoor environment,
the environmental conditions should be similar every day you conduct the
experiment. Every time a small problem happens in the network, battery power will
have to be spent to fix this problem. When the time passes and the weather
conditions change and the experiments will not yield fully accurate results. All these

things should be taken into consideration before and during a real-world experiment.

The summarized information about real-world experiments in ad hoc networks can
be found in Tables 3.1 and 3.2. Most of the papers listed in the Tables 3.1 and 3.2
were explained in Section 3.2 and also there are some additional papers that were not
explained. The routing protocols used in the experiments, information about the
maximum number of the nodes, the mobility, and environment of the experiment,
performance metrics and the purpose of the experiment can be found in Tables 3.1

and 3.2.

29

Table 3.1: Summarized information about the real-world experiments.

Paper | Routing Max # of Mobility Environment | Performance Metrics Purpose
Protocol(s) nodes
-Outdoor e Beacon Reception | Explaining the assumptions that are done
APRL YES -Indoor Ratio vs. Distance | in simulations is not always true in real-
[19] AODV 33 e Packet Delivery world.
ODMRP Ratio vs. Avg.
STARA Interarrival time
e Throughput vs. To understand the effect of capacity of
distance the radio medium, asymmetry of the used
[20] No Routing 8 NO ? e #of packets vs. cards, the effect of broadcast on unicast
Protocol transmission time | flows and interferencing range
e SNRvs. time
- Outdoor e Message Delivery | Comparison of four different protocols.
APRL YES -Indoor Ratio
AODV 33 e Communication
[24] ODMRP Efficiency
STARA e Hop Count
e End-to-End
latency
-Indoor e Throughput To implement security mechanism to the
e Routing Packets AODV protocol.
YES e Control Overheads
[25] | SAODV and 6
AODV
-Indoor e Delivery Ratio Introduce new criteria to choose a better
SAR and -Outdoor e End-to-End Delay | route among the others.
AODV 4 YES e End-to-End Delay
[26] Jitter
e Control Cost
e Hop Count

Table 3.2: Summarized information about the real-world experiments.(Continued)

e Traffic Load and
Cooperation

Paper | Routing Max # of Mobility Environment | Performance Metrics Purpose
Protocol(s) nodes
-Ring e Average Control Purpose of MQOLSR is to reduce delay
10 NO Topology Message Overhead | jitter and increase network throughput.
MQOLSR -Fully versus number of
[34] And Connected nodes.
OLSR Topology
-Indoor e Respond time To analyze the performance of IPv6 based
Modified versus Number of mobile ad hoc networks by conducting real-
AODV6 8 YES nodes world experiments.
[35] e Success Rate versus
number of nodes.
-Indoor e Percentage of time | Describe the collected data from a
versus Percentage heterogeneous ad hoc network created
OLSR 16 of nodes forming during the MANIAC challenge
[21] YES the largest competition.
connected
component
e Percentage of time
versus Percentage
of Symmetric nodes
-Indoor and e Performance of Providing solution to the challenges of
outdoor Partial Coverage monitoring MANETs by introducing
OLSR 10 YES versus complete MMAN.
[22] coverage

Chapter 4

TEST-BED PROGRAM

4.1 Purpose of the Program

In order to investigate the performance of wireless ad hoc networks some
experiments were conducted in real-world environment. The network nodes that
were involved in experiments ran a testbed program which was developed by our
research group. This application layer program was developed based on the
simulation model and presented in [27]. The purpose of this program is to monitor
the network during the experiment and produce statistics. For instance, the number of
packet received from a link can be different than the number of packets sent to a link.
The program collects some statistical information and computes information that

helps us to understand the performance of the wireless ad hoc networks.
4.2 The Structure of the Program

The program was implemented as a multithreaded C program under windows OS. In
the program, flooding scheme was used for data dissemination [28]. In this scheme, a
node transmits each message to all its neighbors. The neighbors, in their turn, rely
each received data packet to their neighbors, and so on until the message propagates

to the entire network.

32

Originator Intermediate Destination
node node node
process process process
Port Port Port

Multicast IP = 234.55.66.77

Destination Port = 8888 /\

Local Port = 8888

Wireless environment

Figure 4.1: Multicast mode for wireless network architecture.

In a wireless ad hoc network under consideration, any node wishing to transmit a
message broadcasts one or more packets to the network. Area-restricted multicast
mode of transmission mechanism is used to send each packet to the destination node.
The multicast mode here represents a limited broadcast form. Each multicast packet
is received by a group of hosts whose network interfaces have been configured to

receive multicast packets, as shown in Figure 4.1.

To multicast packets, the socket mechanism was used with the UDP transport
protocol. 1P and CSMAJ/CA protocols were also used at the network layer and MAC

layer, respectively. The MAC layer performs the collusion detection by expecting the

33

reception of an acknowledgment to any transmitted frame except multicast frames

[29]. According to [30, 31], multicast packets are not acknowledged.

In the experimental investigation same program ran on all laptop computers in the ad
hoc network configuration. There are two threads in the program - the originating
thread and the relaying thread. The simplified structure of the multithreaded program,

as it works in different nodes, is shown in Figure 4.2.

The originating thread is active only on the source node and is used to send data
packets to the destination node in the multicast mode. If the destination node is in the
coverage area of the source node the packet will be delivered directly. Otherwise it

will be sent through one or more intermediate nodes.

The relaying thread is active on all nodes that have a function of receiving multicast
messages from the network. Sending multicast messages is also performed by the
relaying thread from the intermediate and the destination nodes. The flow of messages
between the threads in the program on different nodes in wireless ad hoc network

environment is also shown in the Figure 4.2.

34

Source node

Own messages(discarded)

Originating Relaying
thread thread
Request Reply Duplicate re.quest
messages(discarded)
messages
Intermediate
node
Own messages (discarded)
_/
OriginXing Relaying ' .
thread thread Duplicate
\ request/reply
I l messages(discarded)
Request/Reply Request/Reply
messages messages
Destination
node
Own messages (discarded)
\ 7/
Origingfting Relaying _
thread thread Duplicate reply
~ X messages
(discarded)
Request Reply
messages messages

Figure 4.2: Structure of the program.

35

Originator Intermediate Destination

node node node
t1
ts
t, /
t5 t4 t6
t;
to > tg
) tio [11
t12
VL A VL
Time

Figure 4.3: A scenario of message passing in the wireless network of three nodes.

Figure 4.3 shows corresponding timing diagram for three nodes in the wireless ad hoc
network. In this configuration the destination node is not in the coverage area of the
originator node and the intermediate node is in the coverage area of both the

originator node and the destination node as shown in Figure 4.4.

36

Originator Intermediate Destination

node node node

Figure 4.4: A simple wireless ad hoc network with three nodes.

The originator node generates and multicasts a request message to the destination
node. This message is received by the intermediate node as a new message and by
the originator node as a back message. The originator node discards back messages.
On the other hand the intermediate node forwards the received message, in multicast
mode to the destination node. This message is received by the destination node as a

request message and by the originator node as a duplicate message.

37

Initializations

}

No
/IS this the originator node?>

Yes [

y

Generate and multicast a message,

wait for some time before sending the next message

No

Avre all messages sent?

1 Yes

v

Wait for the termination of the relaying thread

l

Calculate statistics

Figure 4.5: The algorithm of the originating thread in the program.

The algorithm of the originating thread is shown in Figure 4.5. The originating thread
Is active on the originator node and is used to send request messages to a destination
node through intermediate nodes in multicast mode. After sending all requests, the

originating thread waits for the termination of the relaying thread, then collects

38

statistics and terminates as well. On other nodes (destination and intermediate) the

originating thread waits for the termination of the relaying thread and terminates.

(@)
Originator | Destination Message Number Remaining Hop Pad
number of
IP IP Identifier(ID) | of messages messages Count
long long long integer long integer long integer integer
integer integer
(8 bytes) (8 bytes) (8 bytes) (4 bytes) 84 bytes
(8 bytes) (8 bytes)
(b)
Originator | Originator Message Number Remaining Hop Original Pad
IP IP - of number of destination
Identifier(l messages message Count IP
D)
long long long long long integer long 76
integer integer integer integer integer integer bytes
(4 bytes)
(8 bytes) (8 bytes) (8 bytes) (8 bytes) (8 bytes) (8 bytes)

Figure 4.6: A 128 bytes request datagram with data types (a), A 128 bytes reply

datagram with data types (b).

Figure 4.6 shows both request message and reply message attributes with their data

types. In each request message, the originator IP, the destination IP and the number

of messages are fixed. Message identifier (ID) and remaining number of messages

and hop count are changing in each message. In each reply message, the destination

IP field is set with the originator IP address. To distinguish between the request and

the reply messages Original destination IP is used in the reply messages. Each

39

Requests Replies

Number of received Number of sent Number of received Number of sent
messages Messages messages messages
Long integer Long integer Long integer Long integer
(8 bytes) (8 bytes) (8 bytes) (8 bytes)

Figure 4.7: Data structure of a request and a reply message counter.

message has an identifier (IP addresses) of the source and by looking at this identifier
the receiving side discards its own messages. Message ID is used to determine lost
messages on any node. Hop count is used to determine number hops between the

source and the destination nodes. Pad field is used to complete remaining data size.

Figure 4.7 presents the data structure of request and reply message counters. It counts
number of sent and received, request and reply messages. The array length is also
fixed to 2000 indexes. Data structure given in Figure 4.6 is used together with the
data structure given in Figure 4.7, to find number of lost and duplicated messages on

each node.

Figures 4.8 - 4.11 illustrate the algorithm of the relaying thread. The relaying thread is
active on all nodes, and used to receive multicast messages from the network and
analyze the received messages. The received message can be a request or a reply
message for all nodes in the prototype system as shown in Figure 4.8. All nodes
discard their own messages after receiving the message. In addition, any received,

duplicated request and reply messages are counted at all nodes.

40

In the program, on the originator node, when the relaying thread receives a reply
message, it checks if the message is received first time (new message) or it is a
duplicated message. The originator node saves each new reply message into the reply
messages array and compares each received new reply message with the contents of
the reply messages array. For the duplicated messages, counter of the duplicated reply
messages is increased. For the new messages, receive time of the message is figured
out and round trip time of the message is calculated and added to the sum of the round
trip times. Also hop count of the message is incremented and added to the sum of hop
count for reply messages. The simplified algorithm of the relaying thread at the

originator node is shown in Figure 4.9.

41

y

Initializations

y

Receive a message from the network

y

Extract info from th

e received message

y

Analysis of the received message

A 4

A

y

y

\ 4

\ 4

Node Origin. node Destin. node Originator Destination Interm. node
received received received node node received received a
its own duplicated duplicated reply received a a request msg.

msg. request msg. msg. reply msg. msg. (reply/reques

t)
Discard Inc. counter of Inc. counter of Procedure Procedure B Procedure C
the dupl. request dupl. reply A
message msgs. msgs.

A 4

Calculate statistics

Figure 4.8: The algorithm of the relaying thread in the test-bed program.

42

A

Originator node received a reply message

y

Analyze the message

v

No

< A new msg. received?

4

Yes

Org flag=0

1

Store msg. into the reply msg. array

|

Fix received time of the msg.

A 4

Increment counter of reply msgs

\ 4

Calculate round trip time

Calculate sum of round trip time

Org_flag=1

)

Increment counter
of duplicated reply

¥

Figure 4.9: Algorithm for the relaying thread at the originator node after handling a

reply message from the network.

43

Destination receives a request message

Analyze the message

A new request message No
received?

Yes
Dest flag=0 Dest flag=1
Store msg. into request msg. array Increment counter of

duplicated request

Increment counter of request msgs.

Send a reply msg. to the originator

End

Figure 4.10: Algorithm for the destination node after handling a request message
from network.

44

Intermediate received a message

y

Analyze the message

l

No Is received msg. a repl

~~ msg.?

y Yes

Intermediate_flag=0
A request msg. received

Is the msg. in the \
No
recent received

msg. array?

Yes

\ 4

Request_ msg_flag=0

y

Intermediate_fla
g=1

Is the msg.
in the
recent

received

No

Yes

y

Reply _msg_flag=0

y

Rely_msg_ flag=1

Reply _msg_flag =1

y

Increment counter of duplicated

request message

|

Increment
counter of
duplicated reply
message

}

}

A new request message received
Incr. counter of request msgs
Increment request msgs hop countStore the msg into the
array of request msgs
Forward the received msg in multicast mode to the

A new reply msg recevived
Incr. the counter of reply msgs
Increments reply msgs hop count
Store the msg into the array of reply msgs
Forward the reply msgs in multicast mode to
the network

¥

network

i
Figure 4.11: Algorithm for the intermediate node

after handling a message (request

or reply) from the network.

45

Message # 21

/

v

1 4 3

C t
ml;;rszge 4 2/ ,1/ % Z X

1 2 3 19 20

Figure 4.12: Received messages at the intermediate node within a sliding window
consisting of 20 cells.

Almost same functions were performed at the destination node. When the destination
node receives a request message as shown in Figure 4.10, it checks if the message is
received first time (new message) or it is a duplicated message. The destination node
saves each new request message into the request messages array and compares each
received new request message with the contents of the request messages array. For the
duplicated messages counter of duplicated request messages is increased. For the
received new messages, a reply message is prepared and sent to the originator node in
the multicast mode through the intermediate nodes. Also for each received request
message, hop count of the message is incremented and added to the sum of hop count

for request messages.

An intermediate node can receive a request or a reply message from the neighbor
nodes (see Figure 4.11). For both cases, it checks if the message is received first time
(new message) or it is a duplicated message. To store recent received messages,
sliding window method is used on the intermediate nodes as outlined in Figure 4.12.
The intermediate node stores each new message (request or reply) into the
corresponding sliding window comprising 20 cells (each cell holds the received

message number at a particular moment of time).

46

Source Destination Destination Destination

Node Node 1 Node 2 Node 3
Request i Lo
& ts ty
ty
ts te t; .
Reply i
| R - ply
ts tg tio
ti3 th, t
t16 t15 t14
Time

Figure 4.13: A scenario of messaging in the wireless network of four nodes.

Each received new message is compared with the contents of the sliding window. If
the message is not a recently received one it is stored into the corresponding cell. For
the duplicated messages counter of duplicated messages is increased. For the received
new messages, after increasing the corresponding hop count a forwarding message is

prepared and sent to the neighbor nodes in the multicast mode.

The version of the program presented above cannot be used by more than one
destination nodes in an ad hoc network. The outlined program, under consideration is
extended to send a request message that is generated by the source node, to more than
one destination nodes and to receive replies from all destination nodes at the source
node. Each destination node sends a reply message for each received request message.
Source node calculates the average round trip time for the reply messages from
individual destination nodes. The delivery ratio is calculated by each destination node.

These performance metrics were discussed in the next section. In the extended

47

program out of order received messages were also investigated at both source and

destination nodes.

Figure 4.13 shows a timing diagram for one source node and three destination nodes
in the wireless ad hoc network. The source node generates and multicasts a request
message to the destination nodes at time to. This message is received by the source
node and the destination nodes at times t;, t,, t3, and t4, respectively. The source node
always discards its own messages. The reply messages from the destination nodes
were sent at times ts , tg and t; respectively and were received at times tg , t;3and tig
by the source node. For simplicity back messages of the destination nodes were
discarded in the figure. A reply message of any destination node is received by the

other destination nodes as well.
4.3 Collected Information

In order to measure the performance of wireless ad hoc network, we need to collect
some information during the experiments. The developed program has the
responsibility of collecting information. The information that is collected is not
exactly same in all the nodes. There are some differences between the collected
information by the originator and destination or intermediate node. All the nodes fix

start and stop time of each experiment with their local host ip addresses.

The originator node saves the parameter for each experiment. It computes the average
round trip time of replies at the originator (source) node in terms of second. It also
collects the average number of reply messages received, average hop count for the
reply messages, duplicate ratio of the replies and the number of out of order reply
messages at the source node. All collected information is saved to a text file by each

node for future investigation. Each intermediate node collects average round trip time,

48

total number of received request or reply messages, total number of duplicated request
and reply messages at intermediate and total number of lost request and reply

messages at intermediate node.

The destination node collects the total number of request messages received, total
number of request messages sent, total number of duplicated request messages, total
number of request lost messages, average hop count of all the received request
messages, the number of out of order request messages and finally calculates the
delivery rate of requests. At the destination node, all these collected information is

used for the investigation of the performance of wireless ad hoc networks.

49

Chapter 5

ORGANIZATION OF EXPERIMENTS

Real-world experimental investigations can be categorized as indoor, fixed outdoor
and mobile outdoor setups [32]. In fixed setup, the position of the nodes does not
change in time. In mobile setup, the position of the nodes changes in time with
different speed. In this study mobile and fixed outdoor setups are considered. The
speed of the nodes is slow walking speed (~5 km/h). In our study, we conducted a
group of experiments for the investigation of wireless ad hoc networks under
different configurations and scenarios. It is important to see the behaviors of wireless
ad hoc networks with more than one configuration and scenario to understand the
overall performance in real-world. In the following sections of this chapter,

conducted experiments will be described.

The laptop computers used in the experiments have Intel Core2 Duo Processor 2.2
GHz and are equipped with 802.11b/g Wi-Fi wireless interface. Windows Vista was
used as an operating system and each laptop had 2 GB of ram and 250 GB Hard
Disk. Each laptop was placed at 50 cm height from the ground in the experimental
area. All the experiments were performed during daytime with temperature varying
between 20°C and 30°C. In each experiment, the number of requests, which were
sent from the source node to the destination node, was 2000 and the inter-packet time
(delay between transmission of each packet) at the source node was set at 100

milliseconds. The maximum data size of IEEE 802.11 standard is 2312 bytes in a

50

packet [29], with all headers of the upper layers. Therefore, for large application data
sizes (4000 and 8000 bytes), more than one packet were sent from the source node to

the destination node.
5.1 Experiments with Two Nodes

In this group of experiments, two nodes were used for the investigation of the
performance of wireless ad hoc networks. One node was arranged as the originator
node and the other one as the destination node. In the network configuration of this
group of experiments, the distance was changed from 30 meters to 120 meters step
by step and at each step the distance was increased by 30 meters. At each step, the
data size of each packet was varied from 128 bytes to 4096 bytes. The total number
of request messages was fixed at 2000 and the inter-packet transmission time

between the packets was fixed at 100 milliseconds.

Destination node

Originator node

A
Y

Distance (m)

Figure 5.1 : Configuration of the experiments with using two nodes.

A wireless ad hoc network was conducted near the Computer Engineering
Department of the Eastern Mediterranean University. There was no physical obstacle
between the laptops in the first group of experiments as it is shown in figure 5.1.
Each conducted experiment was repeated five times with the same distance and data
size settings in order to achieve more efficient results that the average of the trials

will give us better understanding of the performance of wireless ad hoc networks.

51

Experiments with two laptops, without any obstacles in between were used to

investigate the maximum range of a wireless node in the network.

In the second group of experiments the effect of inter-packet time (the delay between
each message) was investigated with the same configuration. In all conducted
experiments, the number of request sent was fixed to 2000. Inter-packet transmission
time is the time difference between two consecutive request packets that are sent. In
order to have a better understanding of the effect of the inter-packet transmission
time, a small group of experiments were conducted with two laptops. In Figure 5.1,
we can see that the same configuration was used in the experiments in Section 5.1
except that the distance was constant in this one. The distance between the source
node and the destination node was fixed to 150 meters while the data size was varied
between 2000,4000 and 8000 bytes. No obstacles were used between the laptops to
see the pure effect of the inter-packet transmission time on the network. The inter-
packet transmission time was changed to 10, 30, 50, 70 and 100 ms at each step and

three trials were made for each set of parameters.

Third group of experiments were done in the presence of an irregular obstacle (a
building is used here) between the source node and the destination node in real-world
environment. In this group, three different scenarios were used by changing the

distance of the source node and the destination node to the building.

In the first scenario, the source node was placed 1m near the building and its position
was kept fixed while the distance between the destination node and the source node

was changed from 10m to 30m from the source node. The second scenario was the

52

IENG building

3m : ! !

— ; - !

30m %D : 30 m i E

Park ke ! | Car park '
N i ' '

with trees ! : i

Road

CMPE building

Figure 5.2: A configuration of a wireless ad hoc network consisting of source node
and destination node with a building, scenario three.
reverse of the first scenario, where the destination node was placed 1m near the
building and its position was kept fixed while the place of the source node was
changed from 10m to 30m from the destination node. Figure 5.2 presents the third
scenario, where both the source node and the destination node were placed at the
same interval from the building. Then the position of the nodes was varied by an

equal amount from the building in the range from 10m to 50m.
5.2 Experiments with more than Two Nodes

The experiments with more than two nodes, are categorized in two main groups
which are, single path experiments and multi-path experiments. In single path
experiments, there was only one path from source to destination node in the whole
network. Figure 5.3 presents a complex scenario of the network configuration that
was used in a real-world environment (deployed in EMU area) with five nodes. In all

experiments there was only one originator or source node of data packets, while the

53

IENG building

Park with
trees

————

Road

Car park CMPE building

)L

50m

.-____—~
| J S —

/Y

-

Figure 5.3: A configuration of a wireless ad hoc network consisting of five nodes.

Road

positions of the intermediate nodes and destination node, depended on the specific
scenario. In the experiments that were carried out with the use of the given network
configuration, four different scenarios were considered, with the number of
intermediate nodes varying between 0 and 3. To investigate routing in the network,
the nodes were positioned in such a way that only adjacent nodes were within the
coverage area of each other. As is shown in Figure 5.3, the source node S can only
transmit and listen to intermediate node 1;. The intermediate node I; has the source
node S and the intermediate node I, within its coverage area. Similarly, the
intermediate node I, can only communicate with intermediate nodes I; and I3. The

neighbor of the destination node D is only the intermediate node 3.

54

S 190m ﬁ\({

50m

00m
150m CD/'

150m

f

I

1

D
Open field 150m O\A

Figure 5.4: A configuration of a wireless ad hoc network consisting of five nodes in
open area.

In the multi-path experiments, routing and data dissemination are considered in
different ad hoc network configurations fixed nodes. Two set of experiments were
contacted. Figure 5.4 shows settings for the first set of experiments where there exist

a source node, destination node and three intermediate nodes.

At the beginning of the experiments, the nodes were distributed in the area randomly.
For instance, the source node S could transmit and listen to intermediate nodes I, I,
.and I3. The neighbors of the destination node D were the intermediate nodes I, I
and 3. The destination node D could not transmit or could not listen the source node
S directly. The area of the experiment was 300m x 300m. The reason for choosing an
open field area is that it was far enough from any wireless interference that could
affect its performance. The second set of experiments was the extension of the first set

of experiments.

55

IN;'4 <--169m->

L4

19
N? wttmes M8 et 3O M-

2
®
INT 2 u-:\\
3

ry
(]
1=
o
(—4
-
3

Z
L9 <=90m->

~
“Slpy INT 1 (i00?

Figure 5.5: A configuration of a wireless ad hoc network consisting of ten nodes.

Figure 5.5 illustrates the area where all of the experiments took place. It is located
inside the city, opposite of industrial area. As seen in Figure 5.5, there are only 1
source node, 1 destination node and 8 intermediate nodes. Source and destination
nodes were positioned in such a way that they could not communicate directly while
intermediate nodes were positioned by an arbitrary fashion. Due to the long distance
between the source and the destination nodes packets were transmitted through
intermediate nodes to the destination node. Flow of packets through intermediate

nodes again followed an arbitrary fashion.

It is nearly impossible to achieve the same results from two trials even if network
configuration and packet size remains stable due to real-world environmental factors
such as fading, attenuation, and presence of other interfering factors are not stable
[33]. Therefore, in order to get more statistical and realistic data, all of the
experiments with 5 different packet sizes are iterated 3 times and only the average of

these 3 trials was taken into the consideration.

56

5.3 Experiments with One Source Node and Three Destination

Nodes

Figure 5.6 presents settings of the source node and three destination nodes at different
directions for the network configuration deployed in an open field. The laptop
computer, which was used as the source node, was placed at the center and three
destination nodes were positioned on a circle with equal distances from the source
node and from the neighbor destination nodes. In the experiments, the place of the

source node was fixed and the place of the destination nodes was varied in the range

. . // N
Direction, @ S N @
- ~ H H
hEA Pt . Direction,
N —_—
// ‘>/’ -7 “\\ S \
\
/ ’ \\ — T2 AN '
! ’ A \ \ \
1 / PN \ \ \
1 1 N N R “\\
] N N \ Iy .
k | ! . / \ \ — Distance
! 1 f N \ 1 !
! 1) 1 ! !
| \ \ f 1 '
\ \ \ ' 1 !
\ \ \ ’ 1 'I
\ \ ’ U
\ \ . Source S / , /
\ \ ’ /
\ \ \\ ,/ ’ ’l
/
\\ \\ \\\ ’/’ 7 7
. o Tteeee- L y
\\ \\ /, 7’
\\ \\~~ _4” 4
L 4
N .
< .
Tl O
Directions

Figure 5.6: The position of source and destination nodes in the network.

from 30 m up to 120 m, to investigate the effect of the inter-node distance on the

performance metrics that given be described later. During these settings, all

destination nodes were within the coverage area of the source node. At each distance,
the application data size was varied between 50, 800 and 4000 bytes. Again each set

of experiment was repeated more than once in order to achieve better results.

57

Normally, during all experiments, each laptop was placed 50 cm high from the ground
level. Under the same network configuration, series of experiments were conducted to
understand the effect of the high of the laptops from the ground level. The laptops
were placed 100cm height from the ground and the distance between the source and
the destinations was 120 meters. The data size was varied with respect to 50, 800,
4000 bytes and the result of experiments where laptops stood 50cm high from the
ground level was compared with the experiments where laptops were placed 100cm

high from the ground.

58

Chapter 6

EXPERIMENTAL RESULTS AND THEIR ANALYSIS

6.1 Performance Metrics

In this study, the performance metrics that are used in experiments are delivery ratio,
average end-to-end latency, round-trip-time (RTT) and number of hops. These
performance metrics could be used in experimental studies with different parameters
such as; distance, packet inter-arrival time, data size and number of hops between
source and destination nodes. In this study, in some group of experiments, we
considered the delivery ratio of the three destination nodes, that were calculated at
destination nodes and the average round trip time at the source node for three

destination nodes.

Formally, the delivery ratio measured at the destination on distance D is represented

by the expression (6.1).

di(D):NIi\I(D) | (6.1)

S
where N, is the number of multicast data packets transmitted by the source node and

N, is the number of data packets delivered to the destination node i, i = 1,2,...,m

placed at distance D. From this, the delivery ratio for one source node and m
destination nodes placed at the same distance D from the source node is represented

by the expression (6.2).

59

S d,N, (D)
d(D)=1% 6.2)

ZNi(D)

The average round trip time, measured at the source node for a destination, can be

defined with the expression (6.3).

R=—>»R (6.3)

where N, is the number of replies at the source node and R;is the round trip time for

reply i,i=1,2,..., N

re

The average round trip time at the source node for m destination nodes can be

represented by the expression (6.4).

R=—YR (6.4)

where R;, is the average round trip time of destinationjand j=1,2, ..., m.

Another performance metric is the average number of hops, measured at the

destination node, expressed with the expression;

1
d i=1

where N; is the number of hops for request i where i=1,2,3,....,Ng.
6.2 Results of Experiments

The result of experiments that was explained in section 5.1 and configured in Figure

5.1 is presented in Figures 6.1-6.2. Figures demonstrate the dependence of the average

60

Table 6.1: The average values of round trip time which varies with distance under
pplication data sizes with using two nodes.

different al

Inter-node Application data size(bytes)
distance,m
100 500 1000 2000 4000 8000
30 0.176 0.944 15.779 15.984 32.600| 77.801
60 0.187 1.063 15.745 15.938 32.200| 78.210
90 0.227 1.005 15.743 15.903 31.700| 78.210
120 0.837 1.192 15.894 16.133 32.270| 74.580
150 0.160 0.903 15.708 15.801 31.600| 74.750
90
go |Application datasize
bytes @ —® —
2 . =100
=B=500
co _ —4—1000
g =& 2000
g g =—E4000
= —o— 3000
% 40
§ 20 B ii— — —— i
x
g 20
< [i > e |
10
o b ———— — |

20

40

60 80 100
Inter-node distance,m

120

140 160

Figure 6.1: Average round trip time versus distance with different data sizes.

round trip time and delivery ratio on distance with different application data sizes.

Also the exact average values of the results can be seen from the Table 6.1-6.2 which

they were used to draw the figures.

61

Table 6.2: The average values of delivery ratio which varies with respect to distance
under different application data sizes with using two laptops.

Inter-node Application data size(bytes)
distance,m
100 500 1000 2000 4000| 8000
30 0.965 0.964 0.970 0.961 0.940| 0.935
60 0.987 0.980 0.948 0.977 0.990| 0.984
90 0.972 0.990 0.948 0.992 0.995| 0.988
120 0.864 0.895 0.950 0.900 0.853| 0.714
150 0.787 0.783 0.722 0.469 0.412| 0.256
1,200
1,000
° 0,300 \\\
E
>
E 0.600 Application data size,
= bytes \
[a)
—=—100 \
0400 —— =500
== 1000 \
——2000
0,200 —m=4000
—8—3000
0,000
0 20 40 60 80 100 120 140 160

Inter-node distance,m

Figure 6.2: The delivery ratio versus inter-node distance with different data sizes.

The result of the experiments that was configured in Figure 5.1 is shown in Tables

6.3-6.4 and presented in Figures 6.3 and 6.4. In Figure 6.3, the effect of inter-packet

transmission time on delivery ratio is demonstrated while in Figure 6.4, the effect of

inter-packet transmission time on round trip time is demonstrated.

62

Table 6.3: The average delivery ratio with respect to the inter arrival packet time
under different application data sizes with using two laptops.

Inter-packet
transmission time,
ms

Application data size(bytes)

2000 4000 8000
10 0.745 0.608 0.446
30 0.967 0.709 0.631
50 0.899 0.809 0.551
70 0.982 0.977 0.802
100 0.984 0.976 0.945
1,2
1
Application
data
o 038 size, hytes
—
°
-
g b ——2000
g 0,4 —e— 4000
—d— 3000
0,2
0
0 10 20 30 40 50 60 70 80 S50 100 110

Inter-packet transmission time, ms

Figure 6.3: The delivery ratio versus inter-packet transmission time with different

application data sizes.

63

Table 6.4: The average round trip time values with respect to distance under different
application data sizes with using two nodes.

Inter-packet Application data size(bytes)
transmission
time, ms
2000 4000 8000
10 22.867 52.07 97.939
30 16.23 37.926 89.373
50 21.64 38.998 76.130
70 15.89 31.887 77.38
100 15.7 31.68 77.897
120
w 100
£ Application
mn data
§ 30 size, bytes
e}
2
bt
g 60 —— 2000
5 —8— 4000
s 40 —4—5000
@
-]
T \,—/‘*\,__.
0
0 20 40 60 80 100 120

Inter-packet transmission time, ms

Figure 6.4: The average round trip time versus inter-packet transmission time with
different application data sizes.

64

Table 6.5: The average delivery ratio values with respect to distance under different
application data sizes using two nodes and an obstacle between them in scenario one.

Inter-node Application data size (bytes)
distance, m
100 1000 2000 4000
10 0.994 0.998 0.993 0.990
20 0.970 0.841 0.777 0.792
30 0.882 0.665 0.532 0.418
1,1
1
Application data
size, bytes
0,9 T—
——100
08
2 \\\ —a—1000
g 0,7 —k— 2000
D \\ S ——4000
o
0,6 \\
0,5 \
0,4
03

0

5 10

15 20

Inter-node distance, m
Figure 6.5: The delivery ratio versus inter-node distance, for different application
data sizes in scenario one.

25 30

35

The result of the experiments that was configured in figure 5.2 with different

scenarios are given in Tables 6.5-6.10 and presented in Figures 6.5-6.10. In Figures

6.5 and 6.6, the effect of inter-node distance on delivery ratio and round trip time with

different application data sizes can be seen for the first scenario respectively. In

Figures 6.7 and 6.8, again the effect of inter-node distance on delivery ratio and round

trip time with different application data sizes can be seen but for scenario two. The

effect of the inter-node distance on delivery ratio and round trip time is demonstrated

in Figures 6.9 and 6.10 for third scenario.

65

Table 6.6: The average round trip time values with respect to distance under different
application data sizes using two nodes and an obstacle between them in scenario one.

Ir_lter-node Application data size(bytes)
distance, m
100 1000 2000 4000
10 0.191 15.832 16.009 32.510
20 0.193 15.824 15.938 31.826
30 0.229 16.278 15.815 31.712
35
-~ —e °
30
w
£
o 25
E
- Application data
g- 20 size, bytes
frar]
i ——100
5 M—ﬂ
3 15
; ——1000
=T}
S 10 ——2000
U
< —e—14000
5
0 + $ *
0 10 20 30 40

Inter-node distance, m

Figure 6.6: The average round trip time versus inter-node distance, for different
application data sizes in scenario one.

66

Table 6.7: The average delivery ratio values with respect to distance under different
application data sizes in scenario two.

Inter-node Application data size (bytes)
distance, m
100 1000 2000 4000
10 0.999 0.999 0.998 0.997
20 0.996 0.975 0.840 0.869
30 0.686 0.781 0.705 0.64
1,05

Application data
size, bytes

ratio

0,85
i
g 08 ——100
o \
a —e—1000
0,75

N

0.7 \\, —&— 4000
0,65
’ n
0,6
0 5 10 15 20 25 30 35

Inter-node distance, m

Figure 6.7: The delivery ratio versus inter-node distance, for different application
data sizes in scenario two.

67

Table 6.8: The average round trip time values with respect to distance under different
application data sizes in scenario two.

Inter-node .. .
. Application data size (bytes
distance, m PP (bytes)
100 1000 2000 4000
10 0.198 15.69 15.836 31.780
20 0.062 15.657 15.853 31.78
30 0.548 17.507 15.913 32.13
35
o *r— —0
L 30
E\ App!ication data
§ . size, hytes
-3
; ——100
S 20
o ——1000
gjn r.é:
g 15 . —4—2000
-
—8— 4000
10
5
0 * * —
0 10 15 20 25 30 35

Inter-node distance, m

Figure 6.8: The average round trip time versus inter-node distance, for different

68

application data sizes in scenario two.

Table 6.9: The average delivery ratio values with respect to distance under different
application data sizes in scenario three.

Inter-node Application data size (bytes)
distance, m
100 1000 2000 4000
10 0.988 0.959 0.837 0.56
20 0.921 0.844 0.734 0.575
40 0.552 0.518 0.399 0.189
11

1

0,8 Application data
\\ \\ size, bytes
0,7 \ \\
06 \ \\.. i
——1000
05 .’_’.\
\ \ ——2000
0,4

\ —e— 1000
03
0,2 \.

01

Delivery ratio

0 5 10 15 20 25 30 35 40 45
Inter-node distance, m

Figure 6.9: The delivery ratio versus inter-node distance, for different application
data sizes in scenario three.

69

Table 6.10: The average round trip time values with respect to distance under
different application data sizes in scenario three.

Ir_1ter-node Application data size (bytes)
distance, m
100 1000 2000 4000
10 0.227 15.748 15.902 31.862
20 0.156 15.718 15.971 31.999
40 0.295 15.775 15.816 31.603
35
° —— o
30
w 25
E
v Application data
g i Is:ze,tl)\gte: t
e 20
b
< . . . ——100
=]
; 15
%n ——1000
< 10 ——2000
—— 4000
5
0 A
0 5 10 15 20 25 30 35 40 45

Inter-node distance, m

Figure 6.10: The average round trip time versus inter-node distance, for different
application data sizes in scenario three.

70

Table 6.11: The average delivery ratio values with respect to number of intermediate
nodes between the source and destination nodes, under different application data
sizes.

!\lumber 9f Application data size (bytes)

intermediate

nodes

100 1000 2000 4000 8000
0 0.972 0.948 0.992 0.995 0.988
1 0.919 0.953 0.861 0.809 0.359
2 0.812 0.886 0.660 0.421 0.187
3 0.716 0.847 0.445 0.228 0.070
12

~k
; \ \\‘
0,6
Application data size, \.
bytes

04 == 100
== 1000
02 == 2000

=i~ 4000 \
——3000

Delivery ratio

0 1 1 2 2 3 3 4
Number of intermediate nodes

Figure 6.11: The delivery ratio versus the number of intermediate nodes between the
source and destination nodes, for different application data sizes.

In single path group of experiments that is configured in figure 5.3 the number of
intermediate nodes between the source and destination node was varied from 0 to 3
and a series of experiments were performed with different application data sizes.

Table 6.11-6.12 and the corresponding figures 6.11 and 6.12 show the behavior of

71

packet (message) delivery ratio and average round trip time on the number of

intermediate nodes between the source and destination nodes.

Table 6.12: The average round trip time values with respect to number of
intermediate nodes under different application data sizes.

Number of Application data size (bytes)

intermediate

nodes

100 1000 2000 4000 8000
0| 0.227 15.743 15.903 31.700 78.210
1 2.17 25.66 60.94 111.969 249.99
2| 16.05 62.66 94.41 190.5 410.9
3| 17.98 78.97 180.78 261.25 515
800,000

Application datasize,
700,000 bytes
—4=100
600,000 —1000
== 000
500,000
=##=4000 /
400,000 =000 /
300,000 /
200,000 /
e
—l

Average round trip time,ms

100,000 /

—i
*

0,000 S

0 1 1 2 2 3 3 4
Number of intermediate nodes

Figure 6.12: The average round trip time versus the number of intermediate nodes
between the source and destination nodes, for different application data sizes.

72

Table 6.13: The average round trip time values with respect to data size under two
different scenarios.

o] Average Round Trip time (ms)
Application data size,
bytes 5 nodes 10 nodes
50 1.072 16.24
400 11.835 32.15
800 36.65 57.12
2000 61.461 157.7
4000 131.874 347.3
400
=f="5 nodes

350 "

300 =410 nodes /

250 /

200 /

150 /

100 / "

50 —/ /

. .‘/’.‘:_’7//

50 400 800 2000 4000
Application data size, bytes

Average round trip time, ms

Figure 6.13: The average round trip time versus application data sizes between the
source node and the destination node in an open area with different number of fixed
nodes.

The result of multi-path experiments that was performed with the network
configuration presented in Figure 5.4 and Figure 5.5 is shown in Tables 6.13-6.15 and
presented in Figures 6.13-6.15. Routing and data dissemination from the source node
to the destination node is investigated in these configurations with fixed and mobile

nodes. The graphs display the comparative results of the experiments.

73

Table 6.14: The delivery ratio with respect to data size under two different scenarios.

Application data Delivery ratio

size, bytes 5 nodes 10 nodes
50 0.986 0.957

400 0.985 0.933

800 0,981 0,911

2000 0.951 0.652

4000 0.741 0.405

N~ =
. \\

~N

0,6

Delivery ratio

0,4 t ¥

02 == 5 nodes

=g=10 nodes

50 400 300 2000 4000

Application data size, bytes

Figure 6.14: The delivery ratio versus application data sizes between the source node
and the destination node in an open area with different number of fixed nodes.

74

Table 6.15: The average number of hop values with respect to application data size in
two different scenarios.

Application data Average number of hops
size, bytes 5 nodes 10 nodes
50 1.091 2.255
400 1.166 2.285
800 1.372 2.39
2000 1.515 2.726
4000 1.575 3.135
3,5
3 —
8 /
2 25 e
5 e i
o 2
Nl
E
2 15 r——
g.JO .-—_/-
E
g 1
< =="5 nodes
0,5
=10 nodes
0
50 400 800 2000 4000

Application data size, bytes

Figure 6.15: The average number of hop versus application data size with different
number of fixed nodes.

The result of experiments that was performed with the network configuration shown
in Figure 5.6 is given in Tables 6.16-6.24 and presented in figures 6.16-6.24. During
the performance of the experiments, the source node was placed at the center and
three destination nodes were positioned on a circle with equal distances from the
source node and from the neighbor destination nodes as explained in the previous

section of the thesis. The inter-node distance between the source node and the

75

destination nodes was varied from 30m to 120m. In all these distances, the three
destination nodes were in the coverage area of the source node. After 120m the source

node could not reach to the destination node under the given conditions.

Graphs in Figures 6.16-6.21 demonstrate the dependence of the delivery ratio and
average round trip time on inter-node distance with different application data sizes for
the first group of experiments. In the graphs corresponding performance metric values

are given for three different directions with the overall value of three destinations.

Graphs in Figures 6.22 and 6.23 present delivery ratio and overall average round trip

time on inter-node distance with different application data sizes.

In Table 6.24 and the corresponding in Figure 6.24, the effect of the distance of the
laptops to the ground level can be seen. A small group of experiments were conducted
to see the delivery ratio difference between laptops 50cm high from the ground and

laptops 100cm high from the ground with 120 meter distance between two nodes.

76

Table 6.16: The average delivery ratio values with respect to distance and the
application data size is fixed to 50 bytes.

Inter-node Delivery ratio
distance, m
Direction 1 | Direction 2 Direction 3 Overall
30 0.999 0.999 0.999 0.999
60 0.998 0.986 0.998 0.998
90 0.988 0.932 0.996 0.972
120 0.819 0.703 0.788 0.770
1,2
1 =
0,8
o \
©
506
U === irection 1
o
0,4
=@=[Direction 2
=pem [Virection 3
0,2
=gy erall
0
0 20 40 60 80 100 120 140

Inter-node distance,m

Figure 6.16: The delivery ratio versus inter-node distance, for different directions
with application data size is 50 bytes.

77

Table 6.17: Average round trip time values with respect to distance when the
application data size is 50 bytes.

Inter-node Average round trip time (ms)
distance, m
Direction 1 Direction 2 Direction 3 Overall
30 0.150 0.122 0.110 0.128
60 0.201 0.198 0.244 0.214
90 0.336 0.210 0.299 0.281
120 0.672 0.567 0.659 0.633

09 —4—Direction 1

0.8 | —®—Direction2

0.7 [— =—k—Direction3

0.6 [—overall /‘
05 ///

. 4

Average Round Trip Time,ms

01

0 20 40 60 80 100 120 140

Inter-node distance, m

Figure 6.17: The average round trip time versus inter-node distance, for different
directions with application data size = 50 bytes.

78

Table 6.18: Average delivery ratio values with respect to distance when the
application data size is 800 bytes.

Inter-node Delivery ratio
distance, m
Directionl Direction2 Direction3 Overall
30 0.999 0.999 0.999 0.999
60 0.994 0.988 0.993 0.992
90 0.863 0.944 0.727 0.844
120 0.830 0.684 0.752 0.755
1,2
1
0,8
°
g =g==Direction 1
> 06
o
b
T == Direction2
a 04
== Direction 3
02
== Overall
0
0 20 40 60 80 100 120 140

Inter-node distance,m

Figure 6.18: The delivery ratio versus inter-node distance, for different directions
with application data size = 800 bytes.

79

Table 6.19: The average round trip time values with respect to distance when the
application data size is 800 bytes.

Inter-node Average round trip time (ms)
distance, m
Directionl Direction 2 | Direction 3 Overall
30 23.947 19.787 18.7 20.811
60 18.72 17.463 18.446 18.212
90 16.492 17.018 20.991 18.167
120 21.845 24.977 17.244 21.355
26 | —e—Direction 1
24 — —*—Direction2 4 /
QE; 2 | —k—Direction 3 \ /
£
" % | —Overall /‘\ //‘
;8 N
"4
B 16
< 1
1
10
0 20 40 60 80 100 120 140

Inter-node distance, m

Figure 6.19: The average round trip time versus inter-node distance, for different
directions with application data size = 800 bytes.

80

Table 6.20: The average delivery ratio values with respect to distance when the
application data size is 4000 bytes.

Inter-node distance, Delivery ratio
m
Directionl Direction 2 Direction 3 Overall
30 0.989 0.926 0.989 0.968
60 0.99 0.942 0.991 0.974
90 0.961 0.700 0.969 0.877
120 0.769 0.373 0.487 0.543
1,2
1
0,8
2 \\)
-
o
Z 06 :
g =4=Direction 1 \
v
a
04 ——=@=Direction? N
==p={Direction 3
0,2
=f=verall
0
0 20 40 60 80 100 120 140

Inter-node distance,m

Figure 6.20: The delivery ratio versus inter-node distance, for different directions
with application data size = 4000 bytes.

81

Table 6.21: The average round trip time values with respect to distance when the

application data size is 4000 bytes.

Inter-node Average round trip time (ms)
distance, m
Directionl Direction2 Direction3 Overall
30 32.846 33.223 28.781 31.617
60 36.2 32.905 30.275 33.127
90 46.954 35.786 46.5 43.08
120 41.366 39.751 31.25 37.456
80
70 == Direction 1
E == [irection 2
g 60
E =g [irection 3
=1
f_;é 50 —fi= Overall
3
&
Q
&
@ 40
k-
30 —
20
0 20 40 60 80 100 120 140

Inter-node distance, m

Figure 6.21: The average round trip time versus inter-node distance, for different
directions with application data size = 4000 bytes.

82

Table 6.22: The overall round trip time values with respect to inter-node distance
under different application data sizes.

Inter-node distance, m Application data sizes (bytes)
50 800 4000
30 0.128 20.811 31.617
60 0.214 18.210 33.127
90 0.281 18.167 43.080
120 0.633 21.355 37.456
50
45
/ \A Application
w 35 Datasize
E — (bytes)
v
£ 30
2 25 —e—50bytes
-
2 2 — — —a—300
2 15 —i— 4000
10
5
0 ¥ v * — |
0 20 40 60 30 100 120 140

Inter-node distance, m

Figure 6.22: The average round trip time (overall) versus inter-node distance for
different application data sizes.

83

Table 6.23: The overall delivery ratio values with respect to distance under different
application data sizes.

Inter-node distance, m Application data size (bytes)
50 800 4000
30 0.999 0.999 0.968
60 0.998 0.992 0.974
90 0.972 0.844 0.877
120 0.770 0.755 0.543
1,2
1 =
0,8 Application
\% [atasize (bytes)
)
,E
Z 06 ——50
m ’
% \‘ —=—300
a}
——4000
0,4
0,2

0 20 40 60 80 100 120 140
Inter-node distance, m

Figure 6.23: The delivery ratio (overall) versus inter-node distance, for different
application data sizes.

84

Table 6.24: The average delivery ratio values with respect to data size under different
height values from the ground.

Application data size, Delivery ratio
bytes
Height=50cm Height=100cm
50 0.770 0.996
800 0.755 0.998
4000 0.543 0.995
12
1 B L L
08
L
T
>
g 0f —,
2
I
[a]
04
0,2 =50 Cm
=B=-100cm
0
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Application datasize, byte

Figure 6.24: The average delivery ratio versus application data size under different
height of the laptops to the ground level.

85

6.3 Discussion of the Experimental Results

In Section 5.1, some group of experiments were conducted between two nodes to

understand the behavior of delivery ratio and the average round trip time with

different application data size and inter-node distances. More information can be

found in Section 5.1 in this study. Based on the obtained experimental results that

were explained in Section 5.1, one can make the following inferences.

The average round trip time and delivery ratio metrics depend on the number
of intermediate nodes between the source node and the destination node and
the size of the application data.

As Figure 6.2 demonstrates, the delivery ratio which is almost constant at low
distances (up to 90 m) starts to decrease at high inter-node distances for all
application data sizes. The decrement in delivery ratio increases as
application data size increases.

The average round trip time increases with the increase of the application data
size (Figure 6.1). Especially it is quite high for a large application data size,
since in this case there is more than one packet transmission. For small
application data size it remains quite low. From the same graph it is also clear
that the average round trip time does not depend on the distance between two

nodes, if the destination node is in the coverage area of the source node.

From the results of the second group of experiments that were conducted in Section

5.1, one can say that:

As the inter-packet transmission time increases between the packets, the
delivery ratio also increases (Figure 6.3). This will allow more packets to get

to their destinations, as there is less possibility of collision since the load of

86

the network is low. From the same graph, it can be seen that the delivery ratio
is lower for high application data sizes since there is a fragmentation of the

packets.

Figures 6.4 show that for the same inter-packet transmission time, the average
round trip time, is high for high application data size and on the other hand, it

is decreasing slowly as the inter-packet transmission time is increased.

Based on the results of experiments that were configured in Figure 5.2, these

inferences can be made.

As it was expected, the average round trip time increases with the increase of
the application data size (Figures 6.6, 6.8 and 6.10). Especially it is quite high
for a large application data size, since in this case, there is more than one
packet transmission. For small application data size it remains quite low. As it
was explained before, if the destination node is in the coverage area of the
source node, the distance between them do not affect the average round trip

time.

Figures 6.5, 6.7, and 6.9 show that the packet delivery ratio considerably
decreases with the increase in the inter-node distance between the source node
and the destination node. This performance metric is quite low for large
number of inter-nodes distances, since large number of packets is lost on the

way from the source node to the destination node.

From the same graphs of Figures 6.5, 6.7, and 6.9 one can also see that, there
is a large decrement in the packet delivery ratio when application packet size

increases (especially for 4000 bytes and 8000 bytes). In wireless ad hoc

87

networks Bit Error Rate of a radio link is high, therefore, the probability of a
packet to get corrupted or lost increases with the increasing packet size. For a
large application data size, more than one packet is transmitted since there is a

limitation on the frame size in IEEE 802.11 MAC layer [33].

In the experiments with the network configuration given in Figure 5.3, the number of

intermediate node varied and the performance metrics are calculated for different

application data sizes. The analyses of the results are as follows.

The used performance metrics depend on the number of intermediate nodes
between the source node and the destination node and the size of the
application data.

Figure 6.11 shows that the packet delivery ratio considerably decreases with
the increase in the number of intermediate nodes between the source node and
the destination node. This performance metric is quite low for large number of
intermediate nodes, since large number of packets is lost on the way from the
source node to the destination node.

As the number of intermediate node increases between the source node and
the destination node, the average round trip time also increases (Figure 6.12).
Each intermediate node performs some processing of the received packets.
With the increase of the number of the intermediate nodes, the total packet

delay also increases.

88

Based on the obtained experimental results from experiments that were configured in

Figures 5.4 and 5.5, one can make the following inferences.

The average round trip time increases with the increase of the application
data size (Figure 6.13). Especially it is quite high for a large application
data size, since in this case, there is more than one packet transmission.
For small application data size it remains quite low. From the same graph,
it is also clear that, the average round trip time with 10 nodes experiments
case is higher than the average round trip time with 5 nodes in the
network. When there are more nodes, the source node and the destination

node are too far from each other.

From Figure 6.14, it is noticeable that the delivery ratio is quit lower for
the 10 nodes experiments case especially for large application data sizes.
This is because in the 10 nodes case, we have increased the inter-node
distance between the source node and the destination node and then filled
the in-between distance by the intermediate nodes. Therefore, we have a

decrease in the delivery ratio.

Graph in Figure 6.15, illustrates the average number of hops from the
source node to the destination node. Number of hops taken by each packet
is increasing due to increase in packet size. Additionally, it is clear that
number of hops taken by packets whose sizes are greater than 2000 bytes

is at higher level when compared to smaller sized packets.

89

Based on the obtained experimental results from experiments that are configured in

Figure 5.6, one can make the following inferences.

The average round trip time depends on the application data size and the
delivery ratio depends on the inter-node distance between the source node

and the destination node and the application data size.

The average round trip time increases with the increase of the application
data size as it can be seen from the investigation of Figures 6.17, 6.19,
6.21, 6.22. Especially it is quite high for a large application data size, since
in this case, there is more than one packet transmission. For small
application data size it remains quite low. From the same graph, it is also
clear that, the average round trip time does not depend on the distance
between two nodes, if the destination node is in the coverage area of the

source node.

Figures 6.16, 6.18, 6.20 and 6.23 show that the packet delivery ratio
considerably decreases with the increase in the inter-node distance
between the source node and the destination node. This performance
metric is quite low for large number of inter-nodes distances, since large
number of packets is lost on the way from the source node to the

destination node.

From the graph of Figure 6.23 one can also see that, there is a large
decrement in the packet delivery ratio when application packet size
increases (especially for 4000 bytes. The reason of this is the

fragmentation of the packets).

90

e In Figure 6.24, it can be seen that the delivery ratio is high when the nodes
are placed higher positions from the ground level. Putting the nodes
100cm height from the ground level gave us better results when it is

compared with 50cm height.

91

6.4 Average Values and Confidence Intervals of the Investigated

Performance Metrics

In this section, average values and confidence intervals of the investigated

performance metrics of the experiments that are configured in Figure 5.3 are

provided. The performance metrics that were used in the experiments are delivery

ratio and average round trip time.

Table 6.25: Average values and 95% confidence intervals of the performance metrics
for application data size = 100 bytes.

The number of intermediate nodes between source and
destination when application data size is 100 bytes

Metric
0 1 2
Delivery ratio 0.972+0.003 0.919+0.029 0.812+0.145
Average round 0.227+0.032 2.17+£1.549 16.05+0.227
trip time

Table 6.26: Average values and 95% confidence intervals of the performance metrics
for application data size = 1000 bytes.

The number of intermediate nodes between source and
destination when application data size is 1000 bytes

trip time

Metric
0 1 2
Delivery ratio 0.948+0.083 0.953+0.014 0.886+0.108
Average round 15.743+0.100 25.66+0.336 62.66+0.366

92

Table 6.27: Average values and 95% confidence intervals of the performance metrics
for application data size = 2000 bytes.

The number of intermediate nodes between source and
destination when application data size is 2000 bytes

Metric
0 1 2
Delivery ratio 0.992+0.013 0.861+0.079 0.660+0.367
Average round 15.903+0.061 60.94+0.244 94.41+0.305
trip time

Table 6.28: Average values and 95% confidence intervals of the performance metrics
for application data size = 4000 bytes.

The number of intermediate nodes between source and
destination when application data size is 4000 bytes

Metric
0 1 2
Delivery ratio 0.995+0.002 0.809+0.153 0.421+0.027
Average round 31.7+0.088 111.969+0.271 190.5+5.236
trip time

Table 6.29: Average values and 95% confidence intervals of the performance metrics
for application data size = 8000 bytes.

The number of intermediate nodes between source and
destination when application data size is 8000 bytes

trip time

Metric
0 1 2
Delivery ratio 0.988+0.003 0.359+0.048 0.187+0.097
Average round 78.210+0.168 249.99+2.787 410.9+7.339

93

Chapter 7

CONCLUSION

An application layer multithreaded program which has been developed in [37] was
used for experimental investigation of data transmission in wireless ad hoc networks.
In this program, pure flooding method is used for packet transmission or routing

between the nodes.

A large number of experiments were conducted in an attempt to investigate the
characteristics of the wireless ad hoc network in outdoor real-world network
environment using the program. As a result, more than 500 experiments were run and
a vast amount of raw data, (more than 6000 values out of 1000 data files), was
analyzed. A number of performance metrics were observed under different

conditions.

In the thesis, first of all, an extensive survey of routing protocols is introduced. Based
on this survey, a classification of existing routing protocols is done with respect to
their transmission method and categorized as unicast, multicast and anycast routing
protocols. Another classification is done based on the working mechanism for each
given category as reactive, proactive and hybrid protocols. Survey results of the
existing experimental studies for investigating the performance of wireless mobile ad

hoc networks have been also presented in the thesis.

94

Through our survey, it is found that in the literature, some experimental work is done
to evaluate wireless mobile ad hoc routing protocols [21][22][25][34] and investigate
the effect of 802.11 on real ad hoc scenarios [20]. These evaluations are done based
on the distance between mobile nodes, node mobility, number of hops, traffic load,
data size, transmission speed and inter-packet transmission time. The common
performance metrics are given as delivery ratio, hop count, round trip time or end-to-

end delay, throughput and control overhead.

In this study, we have considered delivery ratio, round trip time, number of hops with
respect to application data size, hop count and inter-node distance under different
wireless ad hoc network scenarios in outdoor environment. In the literature generally
the experiments were done using linux operating system where in this study windows

operating system was used.

In [24], some experiments were done in rectangular area. In their network
configuration, all the nodes generate traffic and send the generated traffic to
randomly selected destinations. Message delivery ratio, communication efficiency,
hop count and end-to-end latency were used as a performance metrics and they used
fixed packet size which was randomly generated with a mean 1200 bytes. In [26], the
performance of the ad hoc network was investigated through the condunted
experiments. The parameter which was used in the experiments is the system traffic
load. The inter-node distance and the application data size in the experiments were

kept fixed.

In [36], some experiments were conducted inside the campus with four nodes with

some parameters such as the application data size and the inter-arrival packet time.

95

End-to-end delay and throughput were used as a performance metrics. For measuring
the end-to-end delay in the network, Ping utility was utilized as a data source. The
application data size was varied from 64 bytes up to 48856 bytes and the inter-arrival

packet time was varied between 10 ms and 15 seconds.

In this study, the application data size was varied from 100 bytes up to 8000 bytes
during the experiments and the inter-arrival packet time varied from 10ms up to
100ms. We are not be able to compare our results with other researchers’ results
completely because of the difference in the used performance metrics, parameter
types, routing method and network configurations. Although in [36], same
performance metrics were used with this study and it can be seen that the end-to-end
delay (round trip time) increases when the application data size is increased and end-
to-end delay is higher when the inter-arrival packet time is very low such as 10ms or
30 ms. After 50 ms, end-to-end delay does not change with respect to inter-arrival
packet time. However, in [36], they did not measure how the delivery ratio is
affected with the inter-arrival packet time. In this thesis, it is also measured and it’s

effects are discussed.

The developed program and the results of the experiments can be used for
investigation of different schemes of routing and information dissemination in real-
world wireless ad hoc network and as data for sensible simulations. Also, as a future
work, with the use of the program testing of existing routing protocols can be done in
real-world environments as well as new routing protocols can be developed to

improve performance of wireless mobile ad hoc networks.

96

REFERENCES

[1] Siva Ram Murthy C., & Manoj B. S.(2004). Ad hoc wireless networks:

Architectures and protocols. Prentice Hall.

[2] Liu C., & Kaiser J. (2005). A Survey of mobile Ad Hoc network Routing

Protocols. University of Magdeburg.

[3] Abolhasan M., Wysocki T.A., & Dutkiewicz E. (2004). A Review of Routing
Protocols for Mobile Ad hoc Networks. In Elsevier Journal of Ad hoc

Networks, 2 , 1-22.

[4] Perkins C. E., & Royer E. M. (1999). Ad Hoc On Demand Distance Vector
routing. Proceedings of 2nd IEEE Workshop, Mobile Computer System and

Applications, 90-100.

[5] Johnson D. B., & Maltz D. A. (1996). Dynamic Source routing in ad hoc
wireless networks. in Mobile Computing, vol. 353, Chapter 5, pp. 153-181,

Kluwer Academic Publishers.

[6] Jacquet P., Muhlethaler P., Clausen T., Laouiti A., Qayyum A., & Viennot L.
(2001). Optimized link state routing protocol for ad hoc networks. In

Proceedings of the 5th IEEE Multi Topic Conference (INMIC 2001).

97

[7] Garcia-Luna-Aceves J. J., & Spohn C. M. (1999). Source-tree routing in
wireless networks. In Proceedings of the Seventh Annual International

Conference on Network Protocols, Toronto, Canada, 273-282.

[8] Karp B., & Kung H. T. (1998). Dynamic neighbor discovery and loopfree,

multi-hop routing for wireless, mobile networks. Harvard University.

[9] Haas Z. J. (1997). A New Routing Protocol For The Reconfigurable Wireless
Networks. In Proceedings of 6th IEEE International Conference on Universal

Personal Communications, IEEE ICUPC'97, San Diego, California, 562-566.

[10] Royer E. M., & Perkins C. E. (1999). Multicast Operation of the Ad hoc On-
Demand Distance Vector Routing Protocol. In Proc. Of the 5" annual
ACM/IEEE International Conference on Mobile Computing and Networking

(MobiCom), Seattle, WA, 207-218.

[11] Lee S., Gerla M., & Chiang C. (1999). On-Demand Multicast Routing Protocol.
In Proc. of the Wireless Communications and Networking Conference (WCNC),

New Orleans, LA,1298-1302.

[12] Jacquet P., Minet P., Laouiti A., Viennot L., Clausen T., & Adjih C. (2001).
Multicast optimized link state routing. IETF Internet Draft: draft-ietfmanet-

olsr-molsr.

98

[13]

[14]

[15]

[16]

[17]

[18]

Devarapalli V., & Sidhu D. (2001). MZR: A Multicast Protocol for Mobile Ad
Hoc Networks. In IEEE International Conference on Communications (ICC),

Helsinki, Finland.

Wang J., Zheng Y., Jia W. (2003). An AODV-Based Anycast Protocol in
Mobile Ad hoc Network. International Symp. of IEEE on Personal,Indoor, and

Mobile Radio Communication Proceedings.

Peng G., Yang J., & Gao C. (2004). ARDSR: An Anycast Routing Protocol for
Mobile Ad hoc Network. Symp. On Emerging Technologies of IEEE on Mobile

and Wireless Communication.

Saeed A., Khan L., Shah N., & Ali H. (2009). Performance Comparison of two
Anycast based reactive routing protocols for mobile Ad Hoc networks.
International Conferance on 2nd Computer, Control and Communication (1C4

2009). 1-6.

Martin M., & Takuro S. (2009). Route-Count Based Anycast Routing in
Wireless Ad Hoc Networks. Vehicular Technology Conference Fall (VTC

2009-Fall), 2009 IEEE 70™. 1-5.

Kashif S., Lijuan C., Tu W., & Teresa D. (2008). A Hybrid Anycast Routing
Protocol for Load Balancing in Heterogeneous Access Networks. Computer
Communications and Networks, 2008. ICCCN '08. Proceedings of 17th

International Conference.1-6.

99

[19] Kotz D., Newport C., Gray R.S, Liu J., Yuan Y., & Elliott C. (2004).
Experimental Evaluation of Wireless Simulation Assumptions. In Proceedings

of MSWiM 2004.

[20] Dhoutaut D., & Guerin-Lassous 1. (2003). Experiments with 802.11b in ad hoc
configurations. The 14™ IEEE 2003 International Symposium on Personal,

Indoor and Mobile Radio Communication Proceedings. 1618-1622.

[21] Srivastava V., Hilal A.B., Thompson M.S., Chattha J.N., MacKenzie A. B., &
DaSilva L.A. (2008). Characterizing Mobile Ad Hoc Networks — The

MANIAC Challenge Experiment. In WiNTECH.

[22] Kazemi H., Hadjichristofi G., & DaSilvia L. A. (2008). MMAN — A Monitor
for Mobile Ad Hoc Networks: Design, Implementation, and Experimental

Evaluation. In WINTEC.

[23] Macker J., & Lee R. (2007). http://cs.itd.nrl.navy.mil/work/olsr/

[24] Gray R.S., Kotz D., Newport C., Dubrovsky N., Fiske A., Liu J., Masone C.,
McGrath S., & Yuan Y. (2004). Outdoor Experimental comparison of four ad

hoc routing algorithms. In Proceedings of MSWiM 2004.

[25] Juwad M.F., & Al-Raweshidy H.S. (2008). Experimental Performance
Comparison between SAODV&AODV. Second Asia International Conference

on Modelling & Simulation. 247-252.

100

[26] Zhong X., Mei S., Wang Y., & Wang J. (2004). Experimental Evaluation of

Stable Adaptive Routing Protocol. In proceedings of WCNC 2004. 1563-1567.

[27] Oz G., Kostin A., Oyeniyi A. M., Sharghi Z., & Seifzadeh S. (2008). Prototype
Application-Layer Test Bed for Implementation and Investigation of Routing
and Data Dissemination in Wireless Mobile Ad Hoc Networks. In 10th

International Workshop on Computer Science and Information Technologies

CSIT2008, 27-31.

[28] Obraczka K., & Kumar V. (2001). Flooding for Reliable Multicast in Multi-

hop Ad Hoc Networks. Wireless networks, Springer, vol. 7, no. 6.

[29] Crow B. P., Widjaja I., Kim J. G., & Sakaim P. T. (1997). IEEE 802.11

Wireless Local Area Networks. IEEE communication Magazines. 116-126.

[30] Brenner P. (1997). A Technical Tutorial on the IEEE 802.11 Protocol. Breez-

eCom.

[31] Vincent L., & Margaret M. (2009). Repeatable and Realistic Experimentation
in Mobile Wireless Networks. IEEE Transactions on Mobile Computing, vol 8,

Issue 12, 1718-1728.

[32] YuS., Zhou W., & Wu Y. (2002). Research on Network Anycast. Proc. of the
Fifth Intl. Conf. on Algorithms and Architectures for Parallel Processing

(ICA3PP02). 154-161.

101

[33] Kotz D., Newport C., Gray R. S., & Liu J. (2007). Experimental Evaluation of
Wireless Simulation Assumptions. Transactions of the Society for Modeling

and Simulation International, vol. 83, 643-661.

[34] Cao J., & Wu W. (2008). A multi-metric QoS Routing Method for Ad Hoc
Network. The 4th International Conference on Mobile Ad hoc and Sensor

Networks, 99-102.

[35] Dow C.R., Hsuan P., & Hwang S.F. (2006). Design and Implementation of

Anycast Protocols for Mobile Ad Hoc Networks. ICACT2006.419-424.

[36] Toh C. K., Chen R., Delwar M., & Allen D. (2000). Experimenting with an Ad
Hoc wireless network on campus: insights and experiences. ACM SIGMETRICS

Performance Evaluation Review. 21-29.

[37] Methods, Models and Algorithm of Dissemination of information in Wireless

Mobile Ad Hoc Networks BAB-A-08-10, EMU, October 2009 - March 2011

(ongoing).

102

APPENDICES

103

Appendix A: The Source Text of the Application-Layer Program

/* A protocol for an ad hoc wireless networks */
/* */
/* Usage: For the originator: prgname output_filename num_of _msg msg_size dest_IP delay */
/* For the others zprogname output_filename */
/>

*/
/* num_of_msg is the number of sent message */
/* destination_IP is the destination host IP */
/* Visual C++ Environment. */
/* In Project-->Settings-->0Object/library: */
/* the libraries LIBCMT.lib and WSOCK32.lib must be added */
/* and "Ignore all default libraries” be selected. */
/* */
/* Initially start destination, then intermediate and finaly start originator */
/* on different wireless hosts. */
/* */
/* On the originator host, originating thread will send request, */
/* relaying thread will discard its own message. */
/* On the other hosts originating thread will not send anything, */
/* will wait for the termination of the relaying thread. */
/* */
/* Average number of hops(hop counts is added) */
/* originator and intermediate nodes */
/* Filename : adhoc.cpp */
/* Last Update : March 16, 2010 */
/* */
/ /
#define _MT /* to use a declaration of _beginthreadex() in

process.h */

#include <time.h>

#include <stdio.h>

#include <windows.h>

#include <stdlib.h>

#include <memory.h> /* Not necessary */
#include <string.h>

#include <process.h>

#include "multcast.h"

/* Default multicast and destination port number to use */

#define DESTINATION_MCAST ''234.55.66.77"
#define MY_PORT 8888
#define DESTINATION_PORT 8888

// modified part 1 out of 4

#define MAX_NO_OF_NODES 10

// modified part 1 finished

#define MAXWIN 20
#define MAXMSGS 2100

/* Variables */

int WSAlnitFailed;

char strDestMulti[MAXHOSTNAME] = {DESTINATION_MCAST};
char strSrcMulti[MAXHOSTNAME] = {DESTINATION_MCAST};

u_short nDestPort = DESTINATION_PORT;
u_short nMyPort = MY_PORT;

SOCKET hSockSnd = INVALID_SOCKET;
SOCKET hSockRcv = INVALID_SOCKET;
SOCKET hSockFrwrd = INVALID_SOCKET;

struct sockaddr_in stDestAddr, stSrcAddr;
WSADATA stWSAData;

static int nOptName = IP_ADD_MEMBERSHIP;
static int nLoopback = IP_MULTICAST_LOOP;
static int nRecvTimeout = SO_RCVTIMEO;
recvfrom() */

/* Variables for roundtrip time calculations */
struct RoundTrip

{
long msg_id;
/* message identifier */
DWORD sndtime;
*/
DWORD rcvtime;
DWORD rtttime;
}:

/* Variable to find average round trip time */
DWORD sum_rtt_org = O;
double average_rtt_org;
long total_ave_val = 0;

DWORD sum_rtt_inter = 0;
double average_rtt_inter;

/* Maximum number in sliding window */
/* Maximum number of messages */

/* To send in originating thread */
/* To receive in relaying thread */
/* To send in relaying thread */

/* Multicast option */
/* Multicast loopback option */
/* Time of for

/* Send time of the request message

/* Receive time of the reply message */
/* Round trip time of the message */

/* Variables to calculate average hop count at the originator and the destination */

long sum_hop_cnt_org = 0;
double average_hop_cnt_org;
int hop_cnt_rply = 0;

long sum_hop_cnt_dest = 0;
double average_hop_cnt_dest;
int hop_cnt_rgst = 0;

struct RoundTrip OrgRtt[MAXMSGS];
struct RoundTrip InterRtt[MAXMSGS];

char rcvbuffer[9000];
char destbuffer[9000];
char sndbuffer[9000];

/* Message Attributes */

/* Storage for a received message */
/* Storage for send message at destination */
/* Storage for send message at intermediate */

2,....;incremented by the snding thread in generator */
/* Destination(receiver) IP address */
/* Sender(source) IP adress */

long msg_id; /* Msg id: 1,
long dest_IP;
long originator_IP;
long msg_num;

/* Total number of messages */
long remain_msg;

int hop_cnt;

/* Remaining number of messages */

/* Number of hops */

long destination_IP;
long original_dest_IP; /*
long msg_sndr_IP;

/* Defines message type */
struct MsgCnt

long Received;
long Sent;
3

/* Defines received messages */
struct RcvdMsg

struct MsgCnt Requests;
struct MsgCnt Replies;
IS

struct RcvdMsg OrgMsg;
/* Message at orginator
struct RcvdMsg DestMsg;
/* Message at destination */
struct RcvdMsg InterMsg;

/* Defines lost messages */
struct LostMsg

long Requests;
long Replies;

}:

struct LostMsg OrglLost;
struct LostMsg DestlLost;
struct LostMsg InterlLost;
*/

/* Defines duplicated messages */
struct DupMsg

long Requests;
long Replies;

}:

struct DupMsg OrgDup;
orginator */

struct DupMsg DestDup;
destination */

struct DupMsg InterDup;

/* Keeps the dest IP entered from command line */

dest IP, inserted into the send msg by the destination */

/* remote host(sender) IP */

*/

/* Message at intermediate */

/* Lost messages at orginator */
/* Lost messages at destination */
/* Lost messages at intermediate

/* Duplicated messages at

* Duplicated messages at

/* Duplicated messages at intermediate */

/* Array of requst msgs for intermediate nodes. */

long RelyLostMsgs[MAXMSGS]= {0};

/* Array of reply msgs for intermediate nodes. */

long RplyLostMsgs[MAXMSGS]= {0};

/* Array of structure for received messages at destination node and

struct ReceivedMessages

long msg_id;
int hop_cnt;
int eflag;
int indx;

}:

struct ReceivedMessages
struct ReceivedMessages
struct ReceivedMessages
struct ReceivedMessages
long CombinedDest[MAXMSGS]={0};
long CombinedOrg[MAXMSGS]={0};

RplyMsgs[MAXMSGS] ;

AlIRcvdSwindow[MAXMSGS] ;
AlIRplySwindow[MAXMSGS] ;

originating node */

RcvdMsgs[MAXMSGS]; /* Array of request msgs at destination node */

/* Array of reply msgs at originating node */
/* Array of reply msgs at destination node */
/* Array of reply msgs at originating node */

struct ReceivedMessages RcvdMsgsInter[MAXMSGS];/* Array of request msgs at intermediate */

struct ReceivedMessages RplyMsgslInter[MAXMSGS];

/* Array of reply msgs at intermediate */

105

/* Array of structure for sliding windows **/
struct SlidingWindow

int eflag;

struct Sli
struct Sli

ingWindow RgstSwindow[MAXWIN];
ingWindow RplySwindow[MAXWIN];

/* Counter for Request sliding window array elements */
int RgstSWcount = 0O;

/* Counter for Reply sliding window array elements */
int RplySWcount = 0;

/* Structure of a sliding window */
long msg_id;

/* Message Ids in the sliding window */
/* Shows the abcense or precense of array

/* Sliding IDs of recent requst messages */
/* Sliding IDs of recent reply messages */

/* Shows if requst message is already in the sliding window array or not */

int msg_rely_flag = 0;

/* Shows if reply message is already in the sliding window array or not */

int msg_rply_flag = 0;

/* Counter for request/reply transmissions at intermediate */

int request_reply_inter = 0;

/* Message length */
int msg_length;

/* Variables needed to get local IP **/
char szErrorMessage[129];
char szLocalHostName[129];
unsigned long ul InetAddr;

struct hostent *pHostEnt;
int NnRC;
long Local_IP;
FILE *fout;
// modified part 2 out of 5

struct received_message_ip_counter

long received_message_ip;
int received_message_counter;

¥

struct received_message_ip_counter find_message_sender[MAX_NO_OF NODES];

int flag_msg=0;

// modified part 2 finished

/ /
/* Relaying thisad execution

/* 1t receives multicast datagrams from the network

/ /

unsigned _stdcall RelayingThread(LPVOID IpArg)
{

HANDLE hArg = (HANDLE) IpArg;

int nRet;

int WSAErr;

struct sockaddr_in rcvaddr, sndaddr, rmtaddr;
int addrlen, sndlen;

int cnt, i, j;
static struct ip_mreq stlp;

//int RcvTimeOut = 50000;
int RcvTimeOut = 100000;

/* Initialize requst sliding window, create an empty array */
for (§=0; J<MAXWIN; j++)
{

RgstSwindow[j]-eflag = O;
RgstSwindow[j]-msg_id = 0;
3

/* Initialize reply sliding window, create an empty array */
for (§J=0; J<MAXWIN; j++)
{

RplySwindow[j]-eflag = 0;
RplySwindow[j]-msg_id = 0;
3

/* Initialize RcvdMsgs array elements */
for (J=0; jJ<MAXMSGS; j++)
{

RcvdMsgs[j]-eflag = O;

RcvdMsgs[j]-msg_id = 0O;

RcvdMsgs[j]-hop_cnt = 0;
3

/* Initialize RplyMsgs array elements */
for (J=0; jJ<MAXMSGS; j++)
{

106

/* Convert parameter. Not used */

/* For setting multicast receiving */

/* Time out value for receiving, ms */
/* Time out value for receiving, ms */

RplyMsgs[j]-.eflag = 0;

RplyMsgs[j]-msg_id = 0;

RplyMsgs[j]-hop_cnt = 0;
3

/* Initialize AllRcvdSwindow array elements */
for (J=0; J<MAXMSGS; j++)
{

AllRcvdSwindow[j]-eflag = O;
AllRcvdSwindow[j] -msg_id = O;
3

/* Initialize AlIRplySwindow array elements */
for (J=0; jJ<MAXMSGS; j++)
{

AllIRplySwindow[j]-.eflag = O;
AlIRplySwindow[j]-msg_id = O;
3

/* Initialize RcvdMsgsinter array elements */
for (J=0; jJ<MAXMSGS; j++)
{

RcvdMsgsinter[j].eflag = 0;
RcvdMsgsiInter[j]-msg_id = O;
3

/* Initialize RplyMsgsinter array elements */
for (J=0; jJ<MAXMSGS; j++)
{

RplyMsgsinter[j].eflag = 0;
RplyMsgsinter[j]-msg_id = O;

/* Initialize InterMsg struct elements */
InterMsg.Requests.Received = 0;
InterMsg.Requests.Sent = 0O;
InterMsg.Replies.Sent = 0;
InterMsg.Replies.Received = 0;

/* Initialize OrgMsg struct elements */
OrgMsg.Requests.Received = 0;
OrgMsg.Requests.Sent = 0O;
OrgMsg.Replies.Sent = 0;
OrgMsg.Replies.Received = 0;

/* Initialize DestMsg struct elements */
DestMsg.Requests.Received = 0;
DestMsg.Requests.Sent = 0;
DestMsg.Replies.Sent = 0;
DestMsg.Replies.Received = 0;

/* Initialize InterLost struct elements */
InterLost.Requests = 0O;
InterLost.Replies = 0;

/* Initialize OrgLost struct elements */
OrglLost.Requests = 0;
OrgLost.Replies = 0;

/* Initialize DestLost struct elements */
DestLost._Requests = 0;
DestLost.Replies = 0;

/* Initialize InterDup struct elements */
InterDup.Requests = 0O;
InterDup.Replies = 0;

/* Initialize OrgDup struct elements */
OrgDup.Requests = 0;
OrgDup.Replies = 0;

/* Initialize DestDup struct elements */
DestDup.Requests = 0;
DestDup.Replies = 0;

// modified part 3 out of 5
for(i=0; §<MAX_NO_OF_NODES; i++)
find_message_sender[i].received_message_ip=0;

find_message_sender[i].received_message_counter=0;

¥

// modified part 3 finished

[FFHFRRRAkkxkx Create a receive socket and check it
hSockRcv = socket(PF_INET,SOCK_DGRAM,0);

if (hSockRcv == INVALID_SOCKET)
{

WSAErr =WSAGetLastError();
printf("'SNDRCV1, rcv: WSAErr= %d\n",WSAErr); exit(l);

printf(*'ADHOC, rcv: Socket %d for receiving was created\n',hSockRcv);

ialize my own address */
_family = PF_INET;

_addr.s_addr = htonl (INADDR_ANY);
_port = htons(nMyPort);

addrlen = sizeof(rcvaddr);

[FFFFFIARKARA** Create a send socket and check it

107

/* 0S decides */

hSockFrwrd = socket(PF_INET, SOCK_DGRAM, 0);
if (hSockFrwrd == INVALID_SOCKET)

WSAErr =WSAGetLastError();
printf('SNDRCV1, rcv: WSAErr= %d\n",WSAErr); exit(l);

3
printf("'ADHOC, rcv: Socket %d for forwarding was created\n',hSockFrwrd);

/* Now initialize sender socket address */
sndaddr.sin_family = PF_INET;
sndaddr.sin_addr.s_addr = inet_addr(DESTINATION_MCAST);
sndaddr.sin_port = htons(nDestPort);
sndlen = sizeof(sndaddr);

/ Binding to my own IP address /
nRet = bind(hSockRcv, (struct sockaddr FAR *)&rcvaddr, sizeof(rcvaddr));
if (nRet == SOCKET_ERROR)

perror (“"ADHOC, rcv: bindQ: err™);
WSACleanup(); exit(l);
3

/* Preparing to get datagrams multicast to IP = DESTINATION_MCAST */
stlp.imr_multiaddr.s_addr = inet_addr(DESTINATION_MCAST);

stip.imr_interface.s_addr = htonl (INADDR_ANY); /*
interface */
/* Set a multicast receiving option for itself */
nRet = setsockopt(hSockRcv, IPPROTO_IP, nOptName,
(char * FAR)&stlp, sizeof(struct ip_mreq));
if (nRet == SOCKET_ERROR)
{
perror(*"ADHOC, rcv: setsockopt():err™);
WSACleanup();exit(l);
3
printf (“ADHOC, rcv: Multicast socket option is OK\n");
/* Set a time out option for receiving */
nRet = setsockopt(hSockRcv, SOL_SOCKET, nRecvTimeout,
(char * FAR)&RcvTimeOut, sizeof(RcvTimeOut));
if (nRet == SOCKET_ERROR)
{
perror(*ADHOC, rcv: setsockopt():err');
WSACleanup();exit(l);
3
printf (“"ADHOC, rcv: Time out socket option is OK\n');
/ Get Local IP /
nRC = gethostname(szLocalHostName, sizeof(szLocalHostName));
if (nRC == -1)
{
perror(szErrorMessage); exit(EXIT_FAILURE);
if (C ullnetAddr = inet_addr(szLocalHostName)) == ((unsigned long)-1L))
{
if ((pHostEnt = gethostbyname(szLocalHostName)) == NULL)
{
perror(szErrorMessage);
exit(EXIT_FAILURE);
3
memcpy((char *)&rcvaddr.sin_addr, (char *)pHostEnt->h_addr,pHostEnt->h_length);
3
else
{
memcpy((char *)&rcvaddr.sin_addr, (char *)&ullnetAddr, sizeof(
ul InetAddr));
3
printf(* Local Host IP Address (Dot) = [%s]\n", inet_ntoa(rcvaddr.sin_addr));
/* Converts Internet Protocol dotted address into a proper address */
Local_IP = inet_addr(inet_ntoa(rcvaddr.sin_addr));
// printf("\tLocal Host IP address rcvaddr.sin_addr = %ld\n\n", rcvaddr.sin_addr);
printf(""\tLocal Host IP address (ulong) = %ld\n\n", Local_IP);
fprintf(fout, "Local Host IP address (ulong) = %ld\n\n", Local_IP);
/ /
/* Receiving multicast messages */
while(1)
/* Endless cycle */
{
printf(C"\n****waiting in receiving loop..... \n");
cnt = recvfrom(hSockRcv, rcvbuffer, sizeof(rcvbuffer), O,
(struct sockaddr *)&rmtaddr, &addrlen);
if (cnt < 0) /* A timeout has occured, nothing received! */

printf("'Time out elapsed, Nothing to receive. Terminate the thread.\n\n");

break;

3

/* sender(remote) IP (can be originator or any other host before destination) */
msg_sndr_IP = inet_addr(inet_ntoa(rmtaddr.sin_addr));

108

Any

//
//

/*
//
//

printf("'A message received from: %ld\n",
A message received from: %ld\n",

fprintf(fout,

Extract received
sscanf(rcvbuffer,

msg_ndr_IP);
msg_sndr_IP);

info from the received messages and save */
"%ld %Id %Ild %1d %ld %ld %ld\n",

&originator_IP, &dest_IP,

&msg_id, &msg_num, &remain_msg, &total_attempt, &original_dest_IP);

sscanf(rcvbuffer,

“%ld %Id %ld %ld %ld %d %ld\n",

&originator_IP, &dest_IP, &msg_id, &msg_num, &remain_msg, &hop_cnt,

&original_dest_IP);
// fprintf(fout, "Received buffer: %s\n", rcvbuffer);

printf("'Received buffer: %s\n", rcvbuffer);
/ Compare sender IP with local IP /
/* Any node receives its own message

*/

/ /

if (msg_sndr_IP == Local_IP)
/* Node receives its own message, discard it */
// printf(C"\nNode received its own message from itself, discard it.\n\n");
// fprintf(fout, '"\nNode received its own message from itself, discard it.\n\n");

for (i=0; i<sizeof(rcvbuffer);

rcvbuffer[i] =
continue;

i++)

Destination rcves a reply msge from neighbour nodes *****#xiuixy

/************Increment duplicated reply mesg count at destination node *** i/

/

//
//
/*

/*

if ((original_dest_IP
{

printf('"\nDestination
fprintf(fout, '"\nDestination

received reply back message,

/

Local_IP)&&(dest_IP == originator_IP))

count the message-\n");
received reply back message, count the message.\n");

Increment counter of duplicated request messages at the destination */

DestDup.Replies++;

Clear the receive buffer */
for (i=0;
rcvbuffer[i] =
continue;

|<S|zeof(rcvbuffer)

i++)

/>
/>

Originator node receives a message,

Compare originator IP with local IP
it can be a back msg from any node
or a reply message from the destination

*/

if (originator_IP == Local_IP)
if ((dest_IP

{
Originator rcves a reply msge from dest

== originator_IP) && (original_dest_IP == destination_IP))

/* message is received first time

/* */
// fprintf(fout, "Originator receives a reply message \n");
// printf('Originator receives a reply message \n");
int org_flag = 0;
*/
/* Check if message is already received, it is already in the reply msg array */

Ffor(i=0; i<MAXMSGS; i++)
if (RplyMsgs[i]-msg_id == msg_id)
{
org_flag = 1; /* duplicated message */
OrgDup.Replies++; /* Incrmt counter of duplctd rply
msgs */
// printf("Total Number of duplicated reply msgs at
origntr: %d\n",
// OrgDup.Replies);
// fprintf(fout, "Total Number of dplctd reply msgs at
orig:%d\n",
// OrgDup.Replies);
3
if (org_flag == 0) /* Save received mssge in to the reply array
*/
{
hop_cnt_rply = hop_cnt;/* Save received message hop cnt */
hop_cnt_rply++; /* Increment hop count of reply messages */
RplyMsgs[msg_id-1].msg_id = msg_id; /* save the message */
// RplyMsgs[msg_id-1].hop_cnt = hop_cnt_rply; /* Save hop count
*/
RplyMsgs[msg_id-1].eflag = 1; /* Set the flag */
RplyMsgs[msg_id-1].indx = msg_id-1; /* Save the index */
/* Fix receive time of the message and message id into the RttArray */

OrgRtt[msg_id-1].rcvtime =
OrgRtt[msg_id-1].msg_id =

/* Increment counter of reply messages */

GetTickCount();
msg_id;

OrgMsg.Replies._Received++;

/* Calculate sum of the hop count */
//
/* Calculate round trip time of the reply message */

sum_hop_cnt_org
sum_hop_cnt_org

109

sum_hop_cnt_org + RplyMsgs[msg_id-1].hop_cnt;
sum_hop_cnt_org + hop_cnt_rply;

OrgRtt[msg_id-1].rtttime = OrgRtt[msg_id-1].rcvtime -
OrgRtt[msg_id-1].sndtime;

/* Calculate sum of round trip time */
sum_rtt_org = sum_rtt_org + OrgRtt[msg_id-1].rtttime;

// printf("'Round trip time=%ld of message=%ld\n",

// OrgRtt[msg_id-1].rtttime, msg_id);

// printf("'Total Number of reply messages at originator: %d\n",

// OrgMsg.Replies.Received);

// fprintf(fout,"Round trip time=%ld of msg =%ld and sum of rtt =
%ld\n",

// OrgRtt[msg_id-1].rtttime, msg_id, sum_rtt_org);

// fprintf(fout, "Total Number of reply messages at originator:
%d\n*,

// OrgMsg.Replies.Received);

/* Save the message in all reply sliding window array */
i=0;
int swoflag = 0;
while((i<MAXMSGS) && (swoflag == 0))

{
ifT(AIIRplySwindow[i].eflag == 0)
{
AllIRplySwindow[i].msg_id msg_id;
AllIRplySwindow[i].eflag = 1;
swoflag = 1;
1
i++;
3

/* end if (org_flag == 0) */

org_flag = 0;
} 7* end if ((dest_IP == originator_IP) && (original_dest_IP == destination_IP)) */

/* Originator received request back message */
if ((dest_IP == destination_IP)&&(msg_sndr_IP != originator_IP))

// printf("\nOriginator received request back message, count the
message-\n");
// fprintf(fout, " \nOriginator received request back message, count the
message-\n");

/* Increment counter of duplicated request messages at the originator */
OrgDup.Requests++;
3

/* Clear the receive buffer */
for (i=0; i<sizeof(rcvbuffer); i++)
rcvbuffer[i] = * ~;
continue;
} 7* if((dest_IP == originator_IP) && (originator_IP == Local_IP))*/

Compare received msg dest.IP with local IP ***xskskxixiy
/*****************Destlnatlon node receives a request msg from the neighbors ******xixx/
/

/
if ((dest_IP == Local_IP)&&(Local_IP != originator_IP))/* | am the destintion */
{

// modified part 4 out of 5
// fprintf(fout, "A message received from: %ld\n', msg_sndr_IP);
// fprintf(fout, “Received buffer: %s\n", rcvbuffer);

int flag_msg = 0; /* a message not receved from that ip before */
for(i=0; i<MAX_NO_OF_NODES; i++)
{

if(find_message_sender[i].received_message_ip == msg_sndr_IP)

find_message_sender[i].received_message_counter++;
flag_msg =

¥

i=0;
if(flag_msg==0)
{

while((flag_msg==0) && (i < MAX_NO_OF_NODES))
{
if(find_message_sender[i].received_message_ip == 0)
find_message_sender[i].received_message_ip =

msg_sndr_IP;
find_message_sender[i].received_message_counter++;

flag_msg =
1
i++;
3
3
flag_msg =
// modified part 4 finished
// printf('Destination received a request message \n');

110

int dest_flag = 0; /* message is received first time */

/* Check if message is already received, it is already in the received msg array */

for(i=0; §<MAXMSGS; i++)
if (RcvdMsgs[i]-msg_id == msg_id)
{
dest_flag = 1;
/* duplicated message */
DestDup.Requests++;/* Increment duplicated received messages */
// printf(""Total Number of duplicated message at destination:
%d\n"",
// DestDup.Requests);
// fprintf(fout,"Total Number of duplicated msg at destination:
%d\n"",
// DestDup.Requests);
3
if (dest_flag == 0) /* Save received message in to the array */

/* Fix receive time of the request message and message id into the RttArray at destn. */

//

//

*/

/>
//

1].

/*

Increment counter of received msgs

Calculate sum of the hop count */
hop_cnt;

Calculate sum of the hop count */

RttArray[msg_id-1]-rcvtimedest = GetTickCount();

hop_cnt_rqgst = hop_cnt;

hop_cnt_rgst++; /* Increment hop count of request */
RcvdMsgs[msg_id-1].-msg_id = msg_id; /* Save the message */
RcvdMsgs[msg_id-1].hop_cnt = hop_cnt_rgst; /* Save the hop cnt */
RcvdMsgs[msg_id-1].eflag = 1; /* Set the message flag
RcvdMsgs[msg_id-1].indx = msg_id-1; /* Save the index */

*/
DestMsg.Requests.Received++;
printf("'Total number of request messages at destination %d\n",
DestMsg.Requests.Received);
fprintf(fout, "Total Number of request messages at destination %d\n",
DestMsg.Requests.Received);

sum_hop_cnt_dest = sum_hop_cnt_dest + RcvdMsgs[msg_id-

sum_hop_cnt_dest = sum_hop_cnt_dest + hop_cnt_rqgst;

/* Save the message in all reply sliding window array */

i=0;

int swdflag = 0;

while((i<MAXMSGS) && (swdflag == 0))

{
if(AlIRcvdSwindow[i].eflag == 0)
{

AllRcvdSwindow[i].msg_id = msg_id;
AllRcvdSwindow[i].eflag = 1;

swdflag = 1;
1
i++;
b
Ak Send a reply message to the originator /
// hop_cnt = 0;/* reset reply hop counter for new message */
int reply_hop_cnt = 0;/* reset reply hop counter for new rply message */
sprintf(destbuffer, "%ld %ld %ld %Ild %ld %d %ld\n", originator_IP,
originator_IP, msg_id, msg_num, vremain_msg, reply_hop_cnt,
dest_IP);
cnt = sendto(hSockFrwrd, destbuffer, cnt, O,
(struct sockaddr *) &sndaddr, sndlen);
if (cnt < 0)
perror ('SNDRCV1,snd: sendto() err™);
WSACleanup(Q);
exit (1);
3
// printf('A msg %s was sent from the dest. to orig. \n\n",
// destbuffer);
// fprintf(fout, "A msg %s was sent from the dest. to orig. \n\n",
// destbuffer);
DestMsg.Replies.Sent++; /* Increment counter of sent reply mesgs */
}
/* end if (dest_flag == 0) */
dest_flag = 0;
/* Clear the destination buffer */

for (i=0;

i<sizeof(destbuffer); i++)
destbuffer[i] = = *;

T /* end of if (dest_IP == Local_IP) */
/ /
/* Intermediate node received a message
*/
/* Received msg can ve a reply msg from destination or request msg to the dest. */
/ /

111

else

{
// printf("Intermediate node received a message \n");
// fprintf(fout, "Intermediate node receives a message \n');
int interm_flag = 0; /* Used to separate reply and request message */
if (dest_IP == originator_IP)
interm_flag = 1; /* This is a reply message */
if(interm_flag == 1)
{
// printf(”A reply msg received\n');
// fprintf(fout, "A reply msg received\n™);

/* Check if this message id is in the reply sliding array */
msg_rply_flag = 1; /* Message is not in the array */

Ffor(i=0; i<MAXWIN; i++)
if(RplySwindow[i].-msg_id == msg_id)
{
msg_rply_flag = 0; /* Back msg, do not
save */
InterDup.Replies++; /* Increment back reply message
count */
// printf("Total number of received back reply msgs
%d\n**
// InterDup.Replies);
// fprintf(fout, "Total number of back reply msgs %d\n",
// InterDup.Replies);
b
} /* end of reply message */
else /* this is a request message */
// printf(”A request msg received\n');
// fprintf(fout,”A request msg received\n');
/* Check if this message id is in the request sliding array */
msg_rely_flag = 1; /* Message is not in the array */
Ffor(i=0; i<MAXWIN; i++)
if(RgstSwindow[i].-msg_id == msg_id)
msg_rely_flag = 0; /* Back msg, do not
save */
InterDup.Requests++;/* Increment back request msg
conter */
// printf('Total number of received back request msgs
%d\n*,
// InterDup.Requests);
// fprintf(fout, "Total number of back request msgs
%d\n*,
// InterDup.Requests);
} /7* End of request message */
interm_flag = O;
}/* End of intermediate node receives a message */
/ Request message computations starts *** kit /
if (msg_rely_flag == 1) /* Message is not in the array save it */
InterMsg.Requests.Received++; /* Increment counter of requst messages */
// printf('Total number of received request msgs %d\n",
// InterMsg.Requests.Received);
// fprintf(fout, "Total number of received request msgs %d\n",
// InterMsg.Requests.Received);

/* Save the message in to the array of request messages for intermediate node */
RelyLostMsgs[msg_id-1]= msg_id;

/* Save this message id into the sliding lds of the recent request messages */
i =0;
int weflag = 0;
while ((i<MAXWIN) && (weflag == 0))

{
if (RgstSwindow[i].-eflag == 0)
{
RgstSwindow[i].msg_id = msg_id;
RgstSWcount++; /* increment # of elements in sliding
window */
RgstSwindow[i].eflag = 1;
weflag = 1;
. 3
i++;
3
/* Print the array element */
/* for (k=0; K<MAXWIN; k++)
{
// printf('Current msg nmbrs bfr sliding= %ld array entry status = %d \n",
// RgstSwindow[k] -msg_id, RgstSwindow[k].eflag);
fprintf(fout, '"Current request msg nmbrs bfr sliding=%ld array entry
status=%d\n",
RgstSwindow[k] -msg_id, RgstSwindow[k].eflag);
3

*/
/* Reorganization of Sliding window(when there is no place in the window) */
if(RgstSWcount == MAXWIN)

{
for (i=1; i<MAXWIN; i++)
RgstSwindow[i-1].msg_id = RgstSwindow[i].msg_id;

112

RgstSwindow[MAXWIN - 1].eflag = 0O;
RgstSwindow[MAXWIN - 1].msg_id = O;

RgstSWcount--; /* Decrement number of elements in sliding window */
3
/* Print the array element */
/* for (k=0; K<MAXWIN; k++)
{
printf('Current msg numbers after sliding= %ld array entry status = %d
\n*",
RgstSwindow[k] -msg_id, RgstSwindow[k].eflag);
3

*/

/* Clear sndbuffer */
for(i=0; i<sizeof(sndbuffer); i++)

sndbuffer[i] = = *;

/* Forward the received message in multicast mode to the network */
for(i=0; i<sizeof(sndbuffer); i++)

sndbuffer[i] = rcvbuffer[i];

// printf(*'Received buffer: %s\n", rcvbuffer);

// fprintf(fout, '\nSend request message from intermediate. node: %s\n", sndbuffer);
hop_cnt_rgst = hop_cnt; /* Save received message hop cnt */
hop_cnt_rgst++; /* Increment hop count of requests */

/* Insert the new value of hop count into the message (sndbuffer) */
sprintf(sndbuffer, "%ld %ld %1d %ld %ld %d\n",
originator_IP, dest_IP, msg_id, msg_num, remain_msg, hop_cnt_rgst);
cnt = sendto(hSockFrwrd, sndbuffer, cnt, O,

(struct sockaddr *) &sndaddr, sndlen);
if (cnt < 0)
{
perror ('SNDRCV1,snd: sendto() err');
WSACleanup();
exit (1);
b

/* Save the message into the request array of intermediate node */
RcvdMsgsinter[msg_id-1].msg_id = msg_id;

/* Fix send time of message */

InterRtt[msg_id-1].sndtime = GetTickCount();

// fprintf(fout, “Send time = %ld of message= %ld\n", InterRtt[msg_id-1].sndtime, msg_id);

// printf('A request message %s was sent from intermediate node\n', sndbuffer);

// fprintf(fout, "A request message %s was sent from intermediate node\n", sndbuffer);

// fprintf(fout, "request hop cnt %d \n", hop_cnt_rgst);

InterMsg.Requests.Sent++; /* Increment counter of request(sent) messages

*/

/* Reset msg_rgst_flag */
msg_rely_flag = 0;

}/* end of msg_rqgst_flag == */
/ request message computations ends /
/ Reply message computations starts /
if (msg_rply_flag == 1) /* Message is not in the array, save it */
InterMsg.Replies.Received++; /* Increment counter of reply(received) messages */

// printf('Total number of received reply msgs %d\n",

// InterMsg.Replies.Received);

// fprintf(fout, "Total number of received reply msgs %d\n",

// InterMsg.Replies.Received);

/* Save the message in to the array of reply messages for intermediate node */

RplyLostMsgs[msg_id-1] = msg_id;
/* Save the message into the reply array of intermediate node */
RplyMsgsinter[msg_id-1].msg_id = msg_id;
if((RplyMsgsinter[msg_id-1].msg_i RcvdMsgsinter[msg_id-1].msg_id) &&
(RplyMsgsinter[msg_id-1].msg_id!= 0))
{
/* A reply is received already sent request message calculate round trip time of the message */
request_reply_inter++; /* Incr. request/reply transmission counter at
inter */
/* Fix receive time of the message and message id into the InterRtt */
InterRtt[msg_id-1].rcvtime = GetTickCount();
InterRtt[msg_id-1].msg_id = msg_id;
// fprintf(fout, "Receive time = %ld of message= %ld\n', InterRtt[msg_id-

1] -rcvtime, msg_id);
/* Calculate round trip time */
InterRtt[msg_id-1].rtttime = InterRtt[msg_id-1].rcvtime -
InterRtt[msg_id-1].sndtime;

/* Calculate sum of round trip time */
sum_rtt_inter = sum_rtt_inter + InterRtt[msg_id-1].rtttime;

113

// printf("'Round trip time=%ld of message=%ld at intermediate\n",
// InterRtt[msg_id-1].rtttime, msg_id);

/* Save this message id into the sliding lds of the recent request messages */
i =0;
int weflag = 0;
while ((i<MAXWIN) && (weflag == 0))

{
if (RplySwindow[i].eflag == 0)
{
RplySwindow[i]-msg_id = msg_id;
RplySWcount++; /* increment number of elements in
sliding window */
RplySwindow[i].eflag = 1;
weflag = 1;
. 3
it++;
3
/* Print the array element */
/* for (k=0; K<MAXWIN; k++)
{
// printf(*'Current msg numbers before sliding=%ld array entry status = %d \n",
// RplySwindow[k] -msg_id, RplySwindow[k].eflag);

fprintf(fout, "Current reply msg numbers before sliding=%ldarray entry status=%d \n",
RplySwindow[k] -msg_id, RplySwindow[k].eflag);
3

*/
/* Reorganization of Sliding window(when there is no place in the window) */
if(RplySWcount == MAXWIN)

for (i=1; i<MAXWIN; i++)
RplySwindow[i-1].msg_id = RplySwindow[i].msg_id;

RplySwindow[MAXWIN - 1].eflag = 0O;
RplySwindow[MAXWIN - 1].msg_id = O;

RplySWcount--; /* Decrement number of elements in sliding window
*/
3
/* Print the array element */
/* for (k=0; K<MAXWIN; k++)
printf('Current msg numbers after sliding=%ld array entry status = %d \n",
RplySwindow[k] -msg_id, RplySwindow[k].eflag);
3

*/

/* Clear sndbuffer */
for(i=0; i<sizeof(sndbuffer); i++)
sndbuffer[i] = * *;

/* Forward the received message in multicast mode to the network */
for(i=0; i<sizeof(sndbuffer); i++)
sndbuffer[i]=rcvbuffer[i];

// printf("'Received buffer: %s\n", rcvbuffer);
// fprintf(fout, '\nSend reply message from intermediate node: %s\n', sndbuffer);

hop_cnt_rply = hop_cnt;
hop_cnt_rply++;
/* Increment number of hops */

/* Insert the new value of hop count in the message (sndbuffer) */

// sprintf(sndbuffer, "%ld %ld %Ild %ld %ld %d %ld\n", originator_IP,

// dest_IP, msg_id, msg_num, remain_msg, hop_cnt_rply,
original_dest_IP);

/* Insert the new value of hop count in the message (sndbuffer) */
sprintf(sndbuffer, "%ld %ld %Ild %ld %ld %d %ld\n", originator_IP,
originator_IP, msg_id, msg_num, remain_msg, hop_cnt_rply,
original_dest_IP);

cnt = sendto(hSockFrwrd, sndbuffer, cnt, O,
(struct sockaddr *) &sndaddr, sndlen);

if (cnt < 0)
{perror ('SNDRCV1,snd: sendto() err'); WSACleanup(); exit (1);}
// fprintf(fout, "A reply message %s was sent from intermediate node.\n", sndbuffer);
// printf(""'A reply message %s was sent from intermediate node.\n", sndbuffer);
// fprintf(fout, “reply hop cnt %d \n", hop_cnt_rply);
InterMsg.Replies.Sent++; /* Increment counter of reply (sent) messages */

/* Reset msg_rply_flag */
msg_rply_flag = 0;

}/* end of msg_rply_flag == 1 case */

/ Reply message computations ends /

for (i=0; i<sizeof(rcvbuffer); i++)
rcvbuffer[i] = * ~;

for (i=0; i<sizeof(sndbuffer); i++)
sndbuffer[i] = * *;

for (i=0; i<sizeof(destbuffer); i++)
destbuffer[i] = = *;

} /7* End of while */

Find the number of lost messages at the nodes ****x*iixx/
/* Find the number of lost messages(reply) at the originator */

int initiate_cntl=0;/* Used to discard the lost at the beginning of the experiment */
Ffor(i=0; i<msg_num; i++)

if(RplyMsgs[i].-eflag != 0)
initiate_cntl=1;/* Lost countings start after receiving first reply message*/

if(RplyMsgs[i].-eflag == 0 && initiate_cntl == 1)
OrgLost.Replies++;

initiate_cntl=0;
printf('Total Number of reply lost msgs at originator node: %d\n*, OrgLost.Replies);

/* Find number of lost messages(request) at the destination */
for(i=0; i<msg_num; i++)
{
iTf(RcvdMsgs[i].eflag = 0)
initiate_cntl=1;

if(RcvdMsgs[i]-eflag == 0 && initiate_cntl==1)
DestLost.Requests++;

initiate_cntl=0;
printf('Total Number of request lost messages at dest: %d\n", DestLost.Requests);

/* Find number of lost messages(reply) at the intermediate */
Ffor(i=0; i<msg_num; i++)

{
if(RplyLostMsgs[i] !'= 0)
initiate_cntl=1;
if(RplyLostMsgs[i] == 0 && initiate_cntl==1)
InterLost.Replies++;
}

initiate_cntl=0;
printf('Total Number of reply lost messages at interm: %d\n", InterLost.Replies);

/* Find number of lost messages(request) at the intermediate */
Ffor(i=0; i<msg_num; i++)

if(RelyLostMsgs[i] !'= 0)
initiate_cntl=1;

if(RelyLostMsgs[i] == 0 && initiate_cntl == 1)
InterLost.Requests++;

initiate_cntl=0;
printf("'Total Number of request lost messages at interm: %d\n\n", InterLost.Requests);

printf('********Relaying thread terminating....\n");
return O;
/ /
/* The originating thread. */
/* It initializes all threads. */
/ /

int main(int argc, char *argv[])

{
HANDLE hRcvThread;
HANDLE hArg;
/* Not used */
int i,j;
int WSAErr;
struct sockaddr_in addr;
int addrlen, cnt;
unsigned uWorkThreadld;
DWORD dwResult;

static struct ip_mreq stlpReq;

int flag=0;
/* For generator */

char msgbuffer[9000];
/* Send message buffer */

/* Message Attributes */
long msgid = 0; /* Msg id: 1, 2,....;incremented by the snding thread in gnrator */
long destlIP;

/* Destination IP */

long originatorlP; /* Sender(source) IP adress */
long msgnum; /* Total number of messages */
long remainmsg; /* Remaining messages */

int hopcnt; /* Number of hops */

int Dest_out_of order_cnt=0; /* Counter for our of order request messages */
int Org_out_of _order_cnt=0; /* Counter for our of order replies messages */

char tmpbuf[128];

115

char tmpbuf1[128];

/* For the originator */
if (argc == 6)

{

/* For the originator */

printf('Usage:%s [output_fname][num_of _msg] [msg_size][dest_IP][delay] \n", argv[0]);
flag = 1;
3

/* For intermediate and destination nodes */
if (argc == 2) /* For intermediate nodes
destination */

printf('Usage:%s [output file name] \n", argv[0]);

/* Open a file for the output messages */

fout = fopen(argv[1l], "w™);
if (Ifout)

{

printf('The file could not be open\n');
exit(1l);

3

/* Initialize WinSock DLL */

WSAInitFailed= WSAStartup(WSA_VERSION, &stWSAData);
if(WSAInitFailed !'= 0)
{
printf('SNDRCV1: InitFailed = %d\n",WSAlnitFailed);
exit(1l);
3

/* Create manual reset event */

//hMsgOfTypeACK = CreateEvent(NULL, TRUE, FALSE, NULL);
/* Collect all statistics */

fprintf(fout, ™ Statistics for mobile nodes \n");
fprintf(fout, ™ \n\n");

/* Display operating system-style date and time. */
_strdate(tmpbuf);
fprintf(fout, "Start date = %s\n", tmpbuf);
printf('Start date = %s\n", tmpbuf);
_strtime(tmpbufl);
fprintf(fout, ""Start time = %s\n\n", tmpbufl);
printf('Start time = %s\n\n", tmpbufl);

/ /
/* Create child thread (RelayingThread) for receiving multicast datagrams */
/ /

hRcvThread = (HANDLE) _beginthreadex(NULL, O, RelayingThread,
(void *) hArg, 0, &uWorkThreadld);
if('hRevThread)
printf(*'SNDRCV1: thread error creating\n');

WSACleanup(Q);
exit (OxFFFFFFFF);

¥

if (flag == 1) /* originator is performing sending */
{ /* beginning of if (flag == 1) */

/* Now create a socket for sending and check it */

hSockSnd = socket(PF_INET,SOCK_DGRAM,0);
/* printf ('hSock = %d\n", hSock); */

if (hSocksSnd == INVALID_SOCKET)
{

WSAErr =WSAGetLastError();
printf("'SNDRCV1, snd: WSAErr = %d\n",WSAErr); exit(l);

3

printf(*'ADHOC, snd: Socket %d was created for sending\n",hSockSnd);
/* Initialize the address for sending */

addr.sin_family = PF_INET;

addr.sin_addr.s_addr = inet_addr(DESTINATION_MCAST);

addr.sin_port = htons(nDestPort);

addrlen = sizeof(addr);

/* Sleep a bit for another process to start */
Sleep (5000);

/* Sending messages, with one second delay between them */
for (i=0; i<(atoi(argv[2])); i++)
{

originatorlP = Local_IP;
/* Sender 1P */

and

destlIP = inet_addr(argv[4]); /* Converts IP to unsigned long

*/

destination_IP = destlP; /* Global, used in relying thread

*/
msgnum = atoi(argv[2]);

msgid = msgid+1; /* Increment and send the message

identifier */
remainmsg = msgnum-msgid;

116

//
// originatorlP, destlP, msgid);
/* inet_addr(inet_ntoa(addr.sin_addr)): unsigned */

/>

hopcnt = 0;

/* Number of hops */

printf('"\nSend msg from the orgntr:\norgntr IP=%ld\n dest.IP=%ld\n msglD=%ld\n",

long inet_ntoa(addr.sin_addr):dotted from */

msg_length = atoi(argv[3]);

/* Fix size of send message */

/* Fix send time of

sprintf(msgbuffer, “%ld %ld %ld %ld %ld %d\n",
originatorlP, destlP, msgid, msgnum, remainmsg, hopcnt);

cnt = sendto(hSockSnd, msgbuffer, msg_length, O,
(struct sockaddr *) &addr, addrlen);

if (cnt < 0)

{

perror (*'SNDRCV1,snd: sendto() err');
WSACleanup(Q);
exit (1);

3

message */
OrgRtt[msgid-1].-sndtime = GetTickCount();

// fprintf(fout, "Send time = %ld of message= %ld\n", OrgRtt[msgid-1].sndtime, msgid);
// printf('ADHOC, snd: Message number %ld was sent\n\n", msgid);
// printf(*'Send message from the originator: %s\n", msgbuffer);
/*end while(attempt < 5) */
Sleep (atoi(argv[5])); /* Sleep time before the next message */
// Sleep (1000); /* Sleep 1000 ms, 1 second */
3} /* end of for (i=0; i<(atoi(argv[2])); i++)
*/
3
/* end of if (flag == 1) */
/* Wait until the relaying thread has exited */
dwResult = WaitForSingleObject(hRcvThread, INFINITE);
/* Display operating system-style date and time. */
_strdate(tmpbuf);
fprintf(fout, "Stop date = %s\n", tmpbuf);
printf(*'Stop date = %s\n", tmpbuf);
_strtime(tmpbufl);
fprintf(fout, "Stop time = %s\n\n", tmpbufl);
printf(*'Stop time = %s\n\n", tmpbufl);
/* Calculate average round trip time */
if (flag == 1)
fprintf(fout, " Originator Node Results: \n");
fprintf(fout, ' Parameters: \n");
fprintf(fout, "————————————- \n\n"");
//printf(“"Message size = %d\n", atoi(argv[3]));
fprintf(fout, “Number of messages = %d\n', atoi(argv[2]));
fprintf(fout, "Message size = %d\n", atoi(argv[3]));
fprintf(fout, "Intermediate time at the originator = %d ms\n\n", atoi(argv[5]));
/ /
fprintf(fout, "Total number of reply messages at originator: %d\n",
OrgMsg.Replies.Received);
fprintf(fout, "Total number of duplicated request msgs at originator: %d\n",
OrgDup.Requests);
fprintf(fout, “"Total number of duplicated reply messages at originator:%d\n*,
OrgDup.Replies);
fprintf(fout, "Total number of lost reply msgs at originator: %d\n",
OrgLost.Replies - DestLost.Requests);
fprintf(fout, "Total number of lost msgs at originator(request+replies): %d\n\n",

OrgLost.Replies);

//
//

//
//

DestLost.Requests));

/* Calculate average round trip time */
average_rtt_org = (double) sum_rtt_org/OrgMsg.Replies.Received;

printf(*'Average round trip time=%1f for %ld messages\n",
average_rtt_org, OrgMsg.Replies.Received);

fprintf(fout, "'Sum of Round trip time=%ld for %ld messages\n",
sum_rtt_org, OrgMsg.Replies.Received);

fprintf(fout, "Average Round trip time = %.31F milliseconds\n\n",
average_rtt_org);

fprintf(fout, "Delivery ratio of replies : %.31Ff\n\n",
(double)

fprintf(fout, "Delivery ratio (RTT): %.3IF\n\n",

(double) OrgMsg.Replies.Received/(OrgMsg.Replies.Received+OrgLost.Replies))

117

OrgMsg.Replies.Received/(OrgMsg.Replies.Received+OrgLost.Replies

/* Calculate average number of hops for reply messages */
average_hop_cnt_org = (double)sum_hop_cnt_org/OrgMsg.Replies.Received;

fprintf(fout, "Sum of hop cnt=%ld for %ld messages\n\n‘,
sum_hop_cnt_org, OrgMsg.Replies.Received);

// printf(*'Average hop count =%.31f for %ld reply messages\n",
// average_hop_cnt_org, OrgMsg.Replies.Received);

fprintf(fout, “Average hop count =%.31f for %ld reply messages\n\n",
average_hop_cnt_org, OrgMsg.Replies.Received);

// printf('Duplicate Ratio (of received replies) =%.31f \n",
// (double)OrgDup.Replies/OrgMsg.Replies.Received);

fprintf(fout, “Duplicate ratio (of received replies) =%.31f \n\n",
(double)OrgDup.Replies/OrgMsg.Replies.Received);

/* Create combined array */
for(i=0,j=0; i<msgnum; i++)

{
if(RplyMsgs[i]-msg_id!=0)
{
CombinedOrg[i]=AllIRplySwindow[j].msg_id;
J++s
3
b
/* fprintf(fout, '"\nCombined array content at originator:\n\n");
for(i=0; i<msgnum; i++)
{
fprintf(fout, "%51d ', CombinedOrg[i]);
if ((i+1) % 10 == 0)
fprintf(fout, " \n");
b

*/
/* Find number of out of order receiving messages */
for(i=0; i<msgnum; i++)
if((CombinedOrg[i]!= 0) && (CombinedOrg[i] != i+1)) /* Do not count lost msgs */
Org_out_of_order_cnt++;
fprintf(fout, '"\nNumber of out of order reply msgs = %d\n", Org_out_of_order_cnt);

fprintf(fout, "Reply array content at originator:\n");
Ffor(i=0; i<msgnum; i++)

{
fprintf(fout, "%50d ', RplyMsgs[i]-msg_id);
if ((i+1) % 10 == 0)
fprintf(fout, " \n");
b

fprintf(fout, '\nRound trip times for each messages at originator:\n");
for(i=0; i<msgnum; i++)

{
fprintf(fout, "%51d ", OrgRtt[i].rtttime);
it ((i+1) % 10 ==
fprintf(fout,""\n");
3
/>
fprintf(fout, '"\nAll Reply Sliding window array content at originator:\n");
Ffor(i=0; i<msgnum; i++)
{
fprintf(fout, "%51d ', AlIRplySwindow[i].msg_id);
if ((i+1) % 10 == 0)
fprintf(fout, " \n");
3
*/
3
else
{

fprintf(fout, " \n\n\nDestination Node Results: \n\n");

fprintf(fout, "Total number of request messages at destination: %d\n",
DestMsg.Requests.Received);

fprintf(fout, "Total number of sent reply messages from destination: %d\n",
DestMsg.Replies.Sent);

fprintf(fout, "Total number of duplicated request messages at destination: %d\n",
DestDup.Requests);

fprintf(fout, "Total number of duplicated reply msgs at destination: %d\n",
DestDup.Replies);

fprintf(fout, "Total number of lost request msgs at dest: %d\n\n", DestLost.Requests);

fprintf(fout, "Delivery ratio (requests): %.31F\n\n",
(double) DestMsg.Requests.Received/(DestMsg.Requests.Received+DestLost.Requests));

/* Calculate average number of hops for request messages */

average_hop_cnt_dest = (double)sum_hop_cnt_dest/DestMsg.Requests.Received;

118

// printf("'Average hop count =%.31f for %ld request messages\n",
// average_hop_cnt_dest, DestMsg.Requests.Received);

fprintf(fout, "Sum of hop cnt=%ld for %ld messages\n\n",
sum_hop_cnt_dest, DestMsg.Requests.Received);

fprintf(fout, "Average hop count =%.31f \n\n", average_hop_cnt_dest);
// modified part 5 out of 5

for(i=0; i<MAX_NO_OF_NODES; i++)
{
if(find_message_sender[i]-received_message_ip!=0)

if(find_message_sender[i].received_message_ip==originator_IP)
{
fprintf(fout, "Node with IP: %d (originator) sent %d messages to
the destination\n",
find_message_sender[i].-received_message_ip,
find_message_sender[i].received_message_counter);

else
{
fprintf(fout, "Node with IP: %d sent %d messages to the
destination\n',
find_message_sender[i].received_message_ip,
find_message_sender[i].received_message_counter);

¥

// modified part 5 finished

/* Create combined array */
for(i=0,j=0; i<msg_num; i++)

if(RcvdMsgs[i]-msg_id!=0)
{

CombinedDest[i]=AllRcvdSwindow[j]-msg_id;

J++;
3
3
/>
fprintf(fout, '"\nCombined array content at destination:\n\n");
Ffor(i=0; i<msg_num; i++)
{
fprintf(fout, "%51d ', CombinedDest[i]);
if ((i+1) % 10 == 0)
fprintf(fout, " \n");
b
*/

/* Find number of out of order receiving messages */
for(i=0; i<msg_num; i++)
if((CombinedDest[i]!= 0) && (CombinedDest[i] != i+1)) /* Do not count lost msgs */
Dest_out_of_order_cnt++;
fprintf(fout, '"\nNumber of out of order request msgs = %d\n", Dest_out_of_order_cnt);

fprintf(fout, '"\nRequest array content at destination:\n\n");
Ffor(i=0; i<msg_num; i++)

{
fprintf(fout, "%50d ", RcvdMsgs[i]-msg_id);
if ((i+1) % 10 == 0)
fprintf(fout, " \n");
3
/* fprintf(fout, '\nAll Request Sliding window array content at destination:\n");
for(i=0; i<msg_num; i++)
{
fprintf(fout, "%51d ', AlIRcvdSwindow[i]-msg_id);
it ((i+1) % 10 ==
fprintf(fout, " \n");
3
*/
fprintf(fout, " \n\nintermediate Node Results: \n\n");
/* Calculate average round trip time at intermediate */
average_rtt_inter = (double) sum_rtt_inter/request_reply_inter;
// printf(*'Average round trip time=%If for %ld messages\n', average_rtt_inter,

request_reply_inter);

// fprintf(fout, “Sum of Round trip time=%ld for %ld messages\n", sum_rtt_inter,
request_reply_inter);

fprintf(fout, '"\nAverage Round Trip time at intermediate= %.31Ff milliseconds\n\n",
average_rtt_inter);

fprintf(fout, "Total Number of request/reply transmissions at intermediate: %d\n",
request_reply_inter);

fprintf(fout, "Total number of request msgs at intermediate: %d\n",
InterMsg.Requests.Received);

fprintf(fout, "Total number of sent request msgs at intermediate: %d\n",
InterMsg.Requests.Sent);

119

fprintf(fout, "Total number of reply msgs at intermediate: %d\n",
InterMsg.Replies.Received);

fprintf(fout, "Total number of sent reply msgs at intermediate: %d\n",
InterMsg.Replies.Sent);

fprintf(fout, "Total number of duplicated reply msgs at intermediate: %d\n",
InterDup.Replies);

fprintf(fout, "Total number of duplicated request msgs at intermediate: %d\n",
InterDup.Requests);

fprintf(fout, "Total Number of lost request msgs at interm: %d\n", InterLost.Requests);

fprintf(fout, "Total Number of lost reply msgs at interm: %d\n", InterLost.Replies);

/* fprintf(fout, '"\n\nRequest lost message array content at intermediate:\n");
Ffor(i=0; i<msg_num; i++)
{

fprintf(fout, "%51d ", RelyLostMsgs[il]);
if ((i+1) % 10 == 0)
fprintf(fout,""\n");
3

fprintf(fout, '"\nReply lost message array content at intermediate:\n");
for(i= i<msg_num; i++)

{

fprintf(fout, "%51d ", RplyLostMsgs[i]);
if ((i+1) % 10 == 0)
fprintf(fout, " \n");

b
*/
fprintf(fout, '"\nRequest array content at intermediate:\n");
for(i=0; i<msg_num; i++)
{
fprintf(fout, "%51d ", RcvdMsgsinter[i].msg_id);
if ((i+1) % 10 == 0)
fprintf(fout, " \n");
3
fprintf(fout, '\nReply array content at intermediate:\n");
Ffor(i=0; i<msg_num; i++)
{
fprintf(fout, "%51d ', RplyMsgsinter[i]-msg_id);
if ((i+1) % 10 == 0)
fprintf(fout,""\n");
3
fprintf(fout, '"\nRound trip times for each messages at intermediate\n');
Ffor(i=0; i<msg_num; i++)
{
fprintf(fout, "%51d **, InterRtt[i].rtttime);
if ((i+1) % 10 == 0)
fprintf(fout, " \n");
b
3
CloseHandle(hRcvThread);
fclose(fout);
WSACleanup(Q); /* Matching cleanup for startup */
return O;

120

Appendix B: Raw Results of the Experiments

Results of experiments with 10 nodes (10 laptops) varying message size without

mobility
Time: 10:00 Date: 21/03/2010
Number of sent requests = 2000 Inter packet time (delay) = 100 ms
Sizeof data= 100 bytes Distance = mobility
Performance Metric Data size Trials
(bytes) 1st 2nd 3rd
Average Round Trip Time (ms) 15.55 16.98 16.2
Total number of reply messages at 1640 1424 1468
originator
Total number of duplicated request 7773 7716 7963
messages at originator
Total number of duplicated reply 4718 4059 3997
messages at originator
Total number of lost reply 360 576 532
messages at originator
Total number of lost messages at 360 576 532
originator (request + replies)
Delivery ratio (replies) 0.82 0.71 0.73
Delivery ratio (RTT) 0.82 0.71 0.73
Average hop count 2.359 2.171 2.270
Duplicate ratio (replies) 2.877 2.850 2.723
Number of out of order reply msgs 15 16 20

121

Data size Trials
Performance Metric bytes
(by 1st 2nd 3rd
Destination Results
Total number of request messages 1908 1931 1905
at destination
Total number of sent reply 1908 1931 1905
messages from destination
Total number of duplicated request 4406 3650 4207
messages at destination
Total number of lost request 92 69 95
messages at destination
De|ivery ratio 0.954 0.9655 0.9525
Average hop count 2.137 2.264 2.366
Number of received msgs from
originator
Number of out of order request 4 15 19
messages
Intermediate 3 Results
Average Round Trip (ms) 3.812539 | 15.90809 | 15.4911
6 28
Total number of request/reply 1595 1371 1409
transmissions at intermediate
Total number of received request 1934 1930 1918
messages at intermediate
Total number of received reply messages 1598 1375 1414
at intermediate
Total number of duplicated reply 4491 3248 3619
messages at intermediate
Total number of duplicated request 6515 6073 6637
messages at intermediate
Total number of lost request messages at 402 625 586
intermediate
Total number of lost reply messages at 66 70 82
intermediate
Intermediate 4 Results
Average Round Trip (ms) 14111817 | 14.37600 | 14.0246
6 65
Total number of request/reply 1574 1367 1419
transmissions at intermediate
Total number of received request 1921 1921 1922
messages at intermediate
Total number of received reply messages 1577 1372 1426
at intermediate
Total number of duplicated reply 3639 3279 3757
messages at intermediate
Total number of duplicated request 5338 4445 4907
messages at intermediate
Total number of lost request messages at 79 79 78
intermediate
Total number of lost reply messages at 473 628 574

intermediate

122

Intermediate 5 Results

Average Round Trip (ms) 16,876894 | 11,18529 | 14,0254
4 60
Total number of request/reply 1584 1360 1414
transmissions at intermediate
Total number of received request 1933 1923 1916
messages at intermediate
Total number of received reply messages 1587 1363 1417
at intermediate
Total number of duplicated reply 3431 2580 3017
messages at intermediate
Total number of duplicated request 6106 5530 6293
messages at intermediate
Total number of lost request messages at 67 77 84
intermediate
Total number of lost reply messages at 413 637 583
intermediate
Intermediate 6 Results
Average Round Trip (ms) 16.155473 | 15.75251 | 14.1614
1 69
Total number of request/reply 1608 1394 1443
transmissions at intermediate
Total number of received request 1976 1977 1960
messages at intermediate
Total number of received reply messages 1618 1406 1454
at intermediate
Total number of duplicated reply 1618 2318 2926
messages at intermediate
Total number of duplicated request 5592 4618 5723
messages at intermediate
Total number of lost request messages at 24 23 40
intermediate
Total number of lost reply messages at 382 594 546
intermediate
Intermediate 7 Results
Average Round Trip (ms) 3.318874 | 8.386555 | 4.811573
Total number of request/reply 1314 1309 1348
transmissions at intermediate
Total number of received request 1763 1890 1927
messages at intermediate
Total number of received reply messages 1522 1424 1464
at intermediate
Total number of duplicated reply 3693 3081 3500
messages at intermediate
Total number of duplicated request 2236 2788 2827
messages at intermediate
Total number of lost request messages at 74 110 73
intermediate
Total number of lost reply messages at 315 576 536
intermediate
Intermediate 9 Results
Average Round Trip (ms) 7.537927 | 4.984074 | 5.04827
6

123

Total number of request/reply 1582 1193 1160
transmissions at intermediate
Total number of received request 1953 1738 1629
messages at intermediate
Total number of received reply messages 1608 1288 1238
at intermediate
Total number of duplicated reply 2691 1772 1883
messages at intermediate
Total number of duplicated request 3145 1776 1827
messages at intermediate
Total number of lost request messages at 47 114 110
intermediate
Total number of lost reply messages at 392 564 501
intermediate
Intermediate 11 Results
Average Round Trip (ms) 7.860299 | 9.932318 | 11.1138
39
Total number of request/reply 1539 1182 1344
transmissions at intermediate
Total number of received request 1950 1822 1935
messages at intermediate
Total number of received reply messages 1643 1360 1462
at intermediate
Total number of duplicated reply 3259 1733 2279
messages at intermediate
Total number of duplicated request 2354 1441 2328
messages at intermediate
Total number of lost request messages at 50 178 65
intermediate
Total number of lost reply messages at 357 640 538
intermediate
Intermediate 12 Results
Average Round Trip (ms) 14.055625 | 16.63815 | 16.9731
8 64
Total number of request/reply 1600 1368 1416
transmissions at intermediate
Total number of received request 1935 1933 1922
messages at intermediate
Total number of received reply messages 1600 1370 1418
at intermediate
Total number of duplicated reply 3673 1925 2328
messages at intermediate
Total number of duplicated request 6441 4396 5295
messages at intermediate
Total number of lost request messages at 65 67 78
intermediate
Total number of lost reply messages at 400 630 582
intermediate

Results of experiments with 10 nodes (10 laptops) varying message size without

mobility
Time: 10:00

Number of sent requests = 2000

124

Date: 21/03/2010

Inter packet time (delay) =

100 ms

Size of data= 400 Dbytes Distance = mobility
Originator Results
Performance Metric Data size Trials
(bytes) 1st 2nd 3rd
Average Round Trip Time (ms) 28.98 33.74 33.74
Total number of reply messages at 1272 1265 1405
originator
Total number of duplicated request 6616 6695 7018
messages at originator
Total number of duplicated reply 3531 2866 3510
messages at originator
Total number of lost reply 725 734 595
messages at originator
Total number of lost messages at 725 734 595
originator (request + replies)
Delivery ratio (replies) 0.636 0.632 | 0.702
Delivery ratio (RTT) 0.637 0.633 | 0.703
Average hop count 2.298 2.274 2.243
Duplicate ratio (replies) 2.776 2.266 2.498
Number of out of order reply msgs 6 8 6
Data size Trials
Performance Metric (bytes Tst nd 3rd
Destination Results
Total number of request messages 1861 1880 1861
at destination
Total number of sent reply 1861 1880 1861
messages from destination
Total number of duplicated request 2412 2945 2998
messages at destination
Total number of lost request 139 119 139
messages at destination
Delivery ratio 0.9305 0.94047 0.9305
Average hop count 2.171 2.346 2.339
Number of received msgs from
originator
Number of out of order request 6 14 6
messages

Intermediate 3 Results

125

Average Round Trip (ms) 20.549035 | 28.65734 | 32.1428
8 57
Total number of request/reply 1244 1252 1379
transmissions at intermediate
Total number of received request 1941 1919 1914
messages at intermediate
Total number of received reply messages 1250 1254 1389
at intermediate
Total number of duplicated reply 2861 2508 2823
messages at intermediate
Total number of duplicated request 4257 4903 4532
messages at intermediate
Total number of lost request messages at 59 81 86
intermediate
Total number of lost reply messages at 747 732 611
intermediate
Intermediate 4 Results
Average Round Trip (ms) 27.003265 | 22.59509
7
Total number of request/reply 1225 1183
transmissions at intermediate
Total number of received request 1923 1851
messages at intermediate
Total number of received reply messages 1236 1244
at intermediate
Total number of duplicated reply 2336 2151
messages at intermediate
Total number of duplicated request 3439 2554
messages at intermediate
Total number of lost request messages at 77 149
intermediate
Total number of lost reply messages at 761 755
intermediate
Intermediate 5 Results
Average Round Trip (ms) 32.526837 | 26.00408 | 29.9111
5 9
Total number of request/reply 1211 1224 1340
transmissions at intermediate
Total number of received request 1933 1931 1907
messages at intermediate
Total number of received reply messages 1218 1231 1346
at intermediate
Total number of duplicated reply 2230 1821 2115
messages at intermediate
Total number of duplicated request 4147 4111 4387
messages at intermediate
Total number of lost request messages at 67 69 03
intermediate
Total number of lost reply messages at 779 768 654
intermediate
Intermediate 6 Results
Average Round Trip (ms) 28.359098 | 28.01680 | 24.4415
0 31
Total number of request/reply 1242 1250 1411

transmissions at intermediate

Total number of received request 1979 1951 1950
messages at intermediate
Total number of received reply messages 1250 1265 1416
at intermediate
Total number of duplicated reply 2243 1921 3120
messages at intermediate
Total number of duplicated request 4309 3813 3987
messages at intermediate
Total number of lost request messages at 21 49 50
intermediate
Total number of lost reply messages at 747 734 584
intermediate
Intermediate 7 Results
Average Round Trip (ms) 10.635870 | 14.693817 | 14.156897
Total number of request/reply 736 1019 1160
transmissions at intermediate
Total number of received request 1455 1582 1659
messages at intermediate
Total number of received reply messages 1287 1159 1331
at intermediate
Total number of duplicated reply 1990 2395 2456
messages at intermediate
Total number of duplicated request 795 1652 1870
messages at intermediate
Total number of lost request messages at 421 144 200
intermediate
Total number of lost reply messages at 588 565 528
intermediate
Intermediate 9 Results
Average Round Trip (ms) 25.264151 | 17.23427 | 18.8393
5 54
Total number of request/reply 1166 1097 1301
transmissions at intermediate
Total number of received request 1920 1782 1826
messages at intermediate
Total number of received reply messages 1207 1250 1399
at intermediate
Total number of duplicated reply 1111 1563 1615
messages at intermediate
Total number of duplicated request 1685 1242 1162
messages at intermediate
Total number of lost request messages at 80 165 174
intermediate
Total number of lost reply messages at 790 698 601
intermediate
Intermediate 11 Results
Average Round Trip (ms) 14.300334 | 21.00000 | 16.7860
0 30
Total number of request/reply 899 1165 1131
transmissions at intermediate
Total number of received request 1600 1850 1719
messages at intermediate
Total number of received reply messages 1309 1249 1337

at intermediate

127

Total number of duplicated reply 1389 1346 1257
messages at intermediate
Total number of duplicated request 1118 1546 1105
messages at intermediate
Total number of lost request messages at 400 147 281
intermediate
Total number of lost reply messages at 688 750 663
intermediate
Intermediate 12 Results
Average Round Trip (ms) 23.601942 | 30.57154 | 36.2386
3 53
Total number of request/reply 1236 1251 1366
transmissions at intermediate
Total number of received request 1947 1930 1926
messages at intermediate
Total number of received reply messages 1241 1257 1371
at intermediate
Total number of duplicated reply 2105 1717 1755
messages at intermediate
Total number of duplicated request 4209 3785 4077
messages at intermediate
Total number of lost request messages at 53 66 74
intermediate
Total number of lost reply messages at 756 735 629
intermediate

Results of experiments with 10 nodes (10 laptops) varying message size without

mobility
Time: 10:00 Date: 21/03/2010
Number of sent requests = 2000 Inter packet time (delay) = 100 ms
Size of data= 800 bytes Distance = mobility
Originator Results
Performance Metric Data size Trials
(bytes) 1st 2nd 3rd
Average Round Trip Time (ms) 60.82 52.42 58.12
Total number of reply messages at 1269 1424 1517
originator
Total number of duplicated request 6161 5695 6362
messages at originator
Total number of duplicated reply 2835 3161 3532
messages at originator
Total number of lost reply 731 575 483

128

messages at originator

Total number of lost messages at 731 575 483
originator (request + replies)
Delivery ratio (replies) 0.634 0.712 | 0.758
Delivery ratio (RTT) 0.634 0.712 |0.758
Average hop count 2.331 2.336 2.417
Duplicate ratio (replies) 2.234 2.22 2.328
Number of out of order reply msgs 30 17 9
Data size Trials
Performance Metric bytes
(by 1st 2nd 3rd
Destination Results
Total number of request messages 1794 1834 1843
at destination
Total number of sent reply 1794 1834 1843
messages from destination
Total number of duplicated request 2205 2214 2553
messages at destination
Total number of lost request 206 165 157
messages at destination
Delivery ratio 0.897 | 0.917459 0.9215
Average hop count 2.488 2.258 2.426
Number of received msgs from
originator
Number of out of order request 37 9 7
messages
Intermediate 3 Results
Average Round Trip (ms) 43.898632 | 46.31501 | 41.3131
8 79
Total number of request/reply 1243 1365 1472
transmissions at intermediate
Total number of received request 1888 1885 1894
messages at intermediate
Total number of received reply messages 1260 1385 1489
at intermediate
Total number of duplicated reply 2536 2395 2827
messages at intermediate
Total number of duplicated request 4112 3715 3680
messages at intermediate
Total number of lost request messages at 112 115 106
intermediate
Total number of lost reply messages at 740 614 511
intermediate
Intermediate 4 Results
Average Round Trip (ms) 27.003265 | 22.59509 | 27.0032
7 65

129

Total number of request/reply 1225 1183 1225
transmissions at intermediate
Total number of received request 1923 1851 1923
messages at intermediate
Total number of received reply messages 1236 1244 1236
at intermediate
Total number of duplicated reply 2336 2151 2336
messages at intermediate
Total number of duplicated request 3439 2554 3439
messages at intermediate
Total number of lost request messages at 77 149 77
intermediate
Total number of lost reply messages at 761 755 761
intermediate
Intermediate 5 Results
Average Round Trip (ms) 62.442942 | 57.96503 | 55,6315
5 42
Total number of request/reply 1183 1144 1433
transmissions at intermediate
Total number of received request 1893 1897 1893
messages at intermediate
Total number of received reply messages 1195 1165 1446
at intermediate
Total number of duplicated reply 1564 994 1879
messages at intermediate
Total number of duplicated request 3746 3406 3732
messages at intermediate
Total number of lost request messages at 107 103 107
intermediate
Total number of lost reply messages at 805 833 554
intermediate
Intermediate 6 Results
Average Round Trip (ms) 57.157109 | 50.26163 | 41.1093
7 75
Total number of request/reply 1273 1246 1536
transmissions at intermediate
Total number of received request 1942 1943 1948
messages at intermediate
Total number of received reply messages 1284 1265 1543
at intermediate
Total number of duplicated reply 1870 1664 3328
messages at intermediate
Total number of duplicated request 4381 3558 4175
messages at intermediate
Total number of lost request messages at 58 56 52
intermediate
Total number of lost reply messages at 716 733 457
intermediate
Intermediate 7 Results
Average Round Trip (ms) 26.372851 | 20.676069 | 21.088406
Total number of request/reply 1105 1099 1380
transmissions at intermediate
Total number of received request 1749 1595 1834

messages at intermediate

130

Total number of received reply messages 1295 1546 1574
at intermediate
Total number of duplicated reply 2148 2350 2774
messages at intermediate
Total number of duplicated request 1162 1057 1206
messages at intermediate
Total number of lost request messages at 188 404 166
intermediate
Total number of lost reply messages at 642 453 426
intermediate
Intermediate 9 Results
Average Round Trip (ms) 30.761 28.1666
67
Total number of request/reply 1000 1302
transmissions at intermediate
Total number of received request 1457 1726
messages at intermediate
Total number of received reply messages 1169 1507
at intermediate
Total number of duplicated reply 1172 1879
messages at intermediate
Total number of duplicated request 831 1083
messages at intermediate
Total number of lost request messages at 256 274
intermediate
Total number of lost reply messages at 544 493
intermediate
Intermediate 11 Results
Average Round Trip (ms) 28.021079 | 33.55831 | 30.5503
9 08
Total number of request/reply 1186 1166 1461
transmissions at intermediate
Total number of received request 1814 1687 1890
messages at intermediate
Total number of received reply messages 1322 1411 1550
at intermediate
Total number of duplicated reply 1892 1127 2744
messages at intermediate
Total number of duplicated request 1647 1196 2135
messages at intermediate
Total number of lost request messages at 186 312 110
intermediate
Total number of lost reply messages at 678 588 450
intermediate
Intermediate 12 Results
Average Round Trip (ms) 54.608273 | 51.14849 | 58.4864
4 13
Total number of request/reply 1233 1394 1472
transmissions at intermediate
Total number of received request 1896 1917 1922
messages at intermediate
Total number of received reply messages 1245 1406 1480
at intermediate
Total number of duplicated reply 1774 1476 2113

messages at intermediate

131

Total number of duplicated request 3224 3019 4208
messages at intermediate

Total number of lost request messages at 104 83 78
intermediate
Total number of lost reply messages at 755 593 520

intermediate

Results of experiments with 10 nodes (10 laptops) varying message size without
mobility

Time: 10:00 Date: 21/03/2010
Number of sent requests = 2000 Inter packet time (delay) = 100 ms
Size of data= 2000 bytes Distance = mobility

Originator Results

Performance Metric Data size Trials
(bytes) 1st 2nd 3rd
Average Round Trip Time (ms) 149.66 150.74 173.08
Total number of reply messages at 495 441 411
originator
Total number of duplicated request 3132 3321 3026
messages at originator
Total number of duplicated reply 513 439 403
messages at originator
Total number of lost reply 1505 1549 1589
messages at originator
Total number of lost messages at 1505 1549 1589
originator (request + replies)
Delivery ratio (replies) 0.247 0.221 | 0.205
Delivery ratio (RTT) 0.248 0.222 |0.205
Average hop count 2.78 2.737 3.088
Duplicate ratio (replies) 1.036 0.995 0.981
Number of out of order reply msgs 2 2 7
Data size Trials
Performance Metric (bytes 1st nd 3rd

132

Destination Results

Total number of request messages

redu 1361 1398 1158
at destination
Total number of sent reply 1361 1398 1158
messages from destination
Total number of duplicated request 865 981 680
messages at destination
Total number of lost request 639 602 842
messages at destination
Delivery ratio 0.6805 0.699 0.579
Average hop count 2.647 2.569 2.964
Number of received msgs from
originator
Number of out of order request 19 10 13
Mmessages
Intermediate 3 Results
Average Round Trip (ms) 75.079167 | 87.70388 | 91.2137
3 93
Total number of request/reply 480 412 435
transmissions at intermediate
Total number of received request 1479 1543 1397
messages at intermediate
Total number of received reply messages 519 430 444
at intermediate
Total number of duplicated reply 480 333 415
messages at intermediate
Total number of duplicated request 1533 1680 1478
messages at intermediate
Total number of lost request messages at 521 457 603
intermediate
Total number of lost reply messages at 1481 1560 1556
intermediate
Intermediate 4 Results
Average Round Trip (ms) 58.919450 | 68.70340 | 55.4667
7 90
Total number of request/reply 509 449 542
transmissions at intermediate
Total number of received request 1462 1502 1239
messages at intermediate
Total number of received reply messages 558 525 612
at intermediate
Total number of duplicated reply 505 464 502
messages at intermediate
Total number of duplicated request 1066 1301 718
messages at intermediate
Total number of lost request messages at 538 498 761
intermediate
Total number of lost reply messages at 1442 1465 1388
intermediate
Intermediate 5 Results
Average Round Trip (ms) 102.68791 | 105.8342 | 123.243
9 70 323

133

Total number of request/reply 298 356 337
transmissions at intermediate
Total number of received request 1432 1559 1353
messages at intermediate
Total number of received reply messages 345 370 354
at intermediate
Total number of duplicated reply 141 181 186
messages at intermediate
Total number of duplicated request 984 1405 1197
messages at intermediate
Total number of lost request messages at 568 441 647
intermediate
Total number of lost reply messages at 1655 1620 1646
intermediate
Intermediate 6 Results
Average Round Trip (ms) 89.350711 | 87.94594 | 96.9129
6 35
Total number of request/reply 422 370 402
transmissions at intermediate
Total number of received request 1475 1467 1361
messages at intermediate
Total number of received reply messages 484 431 431
at intermediate
Total number of duplicated reply 339 367 346
messages at intermediate
Total number of duplicated request 1507 1340 1233
messages at intermediate
Total number of lost request messages at 524 533 639
intermediate
Total number of lost reply messages at 1516 1559 1569
intermediate
Intermediate 7 Results
Average Round Trip (ms) 33.701205 | 35.932331 | 30.007449
Total number of request/reply 415 399 537
transmissions at intermediate
Total number of received request 831 1061 1083
messages at intermediate
Total number of received reply messages 716 578 709
at intermediate
Total number of duplicated reply 665 552 705
messages at intermediate
Total number of duplicated request 402 585 541
messages at intermediate
Total number of lost request messages at 917 782 917
intermediate
Total number of lost reply messages at 1028 1262 1291
intermediate
Intermediate 9 Results
Average Round Trip (ms) 63.397297 | 35.20418 | 57.5304
8 35
Total number of request/reply 370 382 230
transmissions at intermediate
Total number of received request 1210 1150 714

messages at intermediate

134

intermediate

Total number of received reply messages 511 597 405
at intermediate
Total number of duplicated reply 210 346 150
messages at intermediate
Total number of duplicated request 450 280 120
messages at intermediate
Total number of lost request messages at 727 850 1180
intermediate
Total number of lost reply messages at 1423 1393 1489
intermediate
Intermediate 11 Results
Average Round Trip (ms) 60.492925 | 59.23893 | 58.4677
8 06
Total number of request/reply 424 339 449
transmissions at intermediate
Total number of received request 1013 1115 1075
messages at intermediate
Total number of received reply messages 656 492 583
at intermediate
Total number of duplicated reply 216 274 249
messages at intermediate
Total number of duplicated request 357 475 411
messages at intermediate
Total number of lost request messages at 987 885 925
intermediate
Total number of lost reply messages at 1344 1498 1417
intermediate
Intermediate 12 Results
Average Round Trip (ms) 124.08453 | 129.5906 | 134.687
6 98 192
Total number of request/reply 485 430 406
transmissions at intermediate
Total number of received request 1660 1717 1575
messages at intermediate
Total number of received reply messages 497 434 410
at intermediate
Total number of duplicated reply 261 204 240
messages at intermediate
Total number of duplicated request 2006 1861 1801
messages at intermediate
Total number of lost request messages at 340 283 425
intermediate
Total number of lost reply messages at 1503 1542 1590

Results of experiments with 10 nodes (10 laptops) varying message size without

mobility

Time: 10:00 Date: 21/03/2010
Number of sent requests = 2000 Inter packet time (delay) = 100 ms
Size of data= 4000 bytes Distance = mobility
Originator Results
Performance Metric Data size Trials
(bytes) 1st 2nd 3rd
Average Round Trip Time (ms) 314.79 330.75 396.33
Total number of reply messages at 155 76 150
originator
Total number of duplicated request 1884 1966 1766
messages at originator
Total number of duplicated reply 110 53 129
messages at originator
Total number of lost reply 1839 1843 1850
messages at originator
Total number of lost messages at 1839 1843 1850
originator (request + replies)
Delivery ratio (replies) 0.077 0.039 |0.075
Delivery ratio (RTT) 0.078 0.04 0.075
Average hop count 2.987 3.039 3.307
Duplicate ratio (replies) 0.71 0.697 0.86
Number of out of order reply msgs 0 0 0
Data size Trials
Performance Metric (bytes 1st nd 3rd
Destination Results
Total number of request messages 811 895 795
at destination
Total number of sent reply 811 895 725
messages from destination
Total number of duplicated request 353 285 409
messages at destination
Total number of lost request 1189 1105 1275
messages at destination
Delivery ratio 0.4055 0.4475 0.3625
Average hop count 3.051 2.985 3.37
Number of received msgs from
originator
Number of out of order request 8 10 6
messages

136

Intermediate 3 Results

Average Round Trip (ms) 167.76973 | 200.4054 | 187.517
7 05 045
Total number of request/reply 152 74 176
transmissions at intermediate
Total number of received request 1062 1203 886
messages at intermediate
Total number of received reply messages 166 78 190
at intermediate
Total number of duplicated reply 122 49 124
messages at intermediate
Total number of duplicated request 610 556 452
messages at intermediate
Total number of lost request messages at 938 797 1114
intermediate
Total number of lost reply messages at 1828 1841 1810
intermediate
Intermediate 4 Results
Average Round Trip (ms) 121.45029 | 111.4655 | 112.013
2 17 825
Total number of request/reply 171 116 217
transmissions at intermediate
Total number of received request 862 1034 797
messages at intermediate
Total number of received reply messages 207 134 256
at intermediate
Total number of duplicated reply 111 65 233
messages at intermediate
Total number of duplicated request 346 357 476
messages at intermediate
Total number of lost request messages at 1138 966 1203
intermediate
Total number of lost reply messages at 1787 1854 1744
intermediate
Intermediate 5 Results
Average Round Trip (ms) 234.43939 | 209.5294 | 265.890
4 12 323
Total number of request/reply 66 51 155
transmissions at intermediate
Total number of received request 878 1228 1034
messages at intermediate
Total number of received reply messages 96 66 165
at intermediate
Total number of duplicated reply 24 14 56
messages at intermediate
Total number of duplicated request 323 426 658
messages at intermediate
Total number of lost request messages at 1122 772 966
intermediate
Total number of lost reply messages at 1898 1853 1835
intermediate
Intermediate 6 Results
Average Round Trip (ms) 168.65517 | 189.1875 | 224.719
2 00 298
Total number of request/reply 116 80 171

transmissions at intermediate

137

Total number of received request 871 998 999
messages at intermediate
Total number of received reply messages 176 105 185
at intermediate
Total number of duplicated reply 92 49 115
messages at intermediate
Total number of duplicated request 444 541 620
messages at intermediate
Total number of lost request messages at 1129 1002 1001
intermediate
Total number of lost reply messages at 1818 1883 1815
intermediate
Intermediate 7 Results
Average Round Trip (ms) 45.725490 | 77.227723 | 54.315972
Total number of request/reply 204 101 288
transmissions at intermediate
Total number of received request 581 576 749
messages at intermediate
Total number of received reply messages 371 183 367
at intermediate
Total number of duplicated reply 221 101 344
messages at intermediate
Total number of duplicated request 184 225 441
messages at intermediate
Total number of lost request messages at 1242 1287 1251
intermediate
Total number of lost reply messages at 1464 1676 1633
intermediate
Intermediate 9 Results
Average Round Trip (ms) 111.58771 | 95.95348 | 156.125
9 8 828
Total number of request/reply 114 86 151
transmissions at intermediate
Total number of received request 651 796 715
messages at intermediate
Total number of received reply messages 189 133 201
at intermediate
Total number of duplicated reply 48 41 88
messages at intermediate
Total number of duplicated request 100 101 417
messages at intermediate
Total number of lost request messages at 1343 1204 1174
intermediate
Total number of lost reply messages at 1805 1864 1680
intermediate
Intermediate 11 Results
Average Round Trip (ms) 111.22613 | 126.8160 | 93.4983
1 92 71
Total number of request/reply 199 87 307
transmissions at intermediate
Total number of received request 713 637 796
messages at intermediate
Total number of received reply messages 288 156 368

at intermediate

138

Total number of duplicated reply 82 32 303
messages at intermediate
Total number of duplicated request 243 158 438
messages at intermediate
Total number of lost request messages at 1285 1360 1204
intermediate
Total number of lost reply messages at 1706 1703 1632
intermediate
Intermediate 12 Results
Average Round Trip (ms) 268.96732 | 289.6250 | 321.515
0 00 337
Total number of request/reply 153 64 163
transmissions at intermediate
Total number of received request 1510 1603 1276
messages at intermediate
Total number of received reply messages 154 66 166
at intermediate
Total number of duplicated reply 58 18 68
messages at intermediate
Total number of duplicated request 1070 1073 1014
messages at intermediate
Total number of lost request messages at 490 397 724
intermediate
Total number of lost reply messages at 1840 1853 1834

intermediate

Average of 3 experiments with 10 nodes (10 laptops) varying message size
without mobility

Time: 10:00 Date: 21/3/2010

Number of sent requests = 2000 Inter packet time (delay) = 100 ms

Size of data = variable bytes

Performance Metric Message size (bytes)

100 | 400 | 800 | 2000 | 4000

139

Originator Results

Average Round Trip Time (ms) 16.24 32.15 57.12 157.7 347.3
Total number of reply messages 1510 1314 1403 449 127
at originator
Total number of duplicated 7817 6776 6072 3159 1872
request messages at originator
Total number of duplicated reply 4258 3302 3176 451 97.33
messages at originator
Total number of lost reply 489 684 596 1547 1844
messages at originator
Total number of lost messages at 489 684 596 1547 1844
originator (request + replies)
Delivery ratio (replies) 0.75 0.65 0.701 0.224 0.063
Delivery ratio (RTT) 0.76 0.65 0.701 0.225 0.064
Average hop count 2.266 2.271 2.361 2.868 3.111
Number of out of order reply 17 6.66 18 3.66 0
msgs
Destination Results
Total number of request 1914.6666 1823.6666 | 1305.6666 | 810.33333
messages at destination 67 | 1867.333333 67 67 33
Total number of sent reply 1914.6666 1823.6666 | 1305.6666 | 810.33333
messages from destination 67 | 1867.333333 67 67 33
Total number of duplicated 4087.6666
request messages at destination 67 2785 2324 842 349
Total number of lost request 85.333333 694.33333 | 1189.6666
messages at destination 33 | 132.3333333 176 33 67
Delivery ratio 0.9573333 0.9119863 | 0.6528333 | 0.4051666
33 | 0.933823333 33 33 67
Average hop count 2.2556666 2.3906666 | 2.7266666 | 3.1353333
67 | 2.285333333 67 67 33
Number of received msgs from
originator
Number of out of order request 12.6666 8.6666 17.6666 14 8
messages

140

Performance Metric

Message size (bytes)

100 400 800 2000 4000
Intermediate 3 Results
Average Round Trip (ms) 11.73725 43,842276 | 84,66561 | 185,2307
4333 27,1164133 33 433 29
Total number of request/reply 1458.33 1291,66 1360 442,33 134
transmissions at intermediate
Total number of received request 1927.33 1924,66 1889 1473 1050,33
messages at intermediate
Total number of received reply 1462.3 1297,66 1378 464,33 | 144,666
messages at intermediate
Total number of duplicated reply 3786 2730,66 2586 409,33 98,33
messages at intermediate
Total number of duplicated request 6408,33 4564 3835,66 1563,66 539,33
messages at intermediate
Total number of lost request messages | 537 666 75,33 111 524 997,88
at intermediate
Total number of lost reply messages at | 72,666 696,666 621,666 | 1532,33 | 1826,33
intermediate
Intermediate 4 Results
Average Round Trip (ms) 14.17082 61.02988
93 45.402339 23 114.97654
24.7991775 7 5
Total number of request/reply 1453.3 500
transmissions at intermediate 1204 058 333 168
Total number of received request 1921.3 1887 1377.6 1401 897.66
messages at intermediate
Total number of received reply 1458.3 1240 969.666 565 199
messages at intermediate
Total number of duplicated reply 3558.3 2243.5 1682.666 490.3 136.33
messages at intermediate
Total number of duplicated request 4896.6 2996.5 2489 1028.3 393
messages at intermediate
Total number of lost request messages 78.666 113 71 599 1102.33
at intermediate
Total number of lost reply messages at | 558.333 758 479 1431.66 1461.66

intermediate

141

Performance Metric

Message size (bytes)

100 | 400 800 2000 4000
Intermediate 5 Results
Average Round Trip (ms) 110,58850 | 236,61971
14,02922 29,480705 40,163011 4 0
Total number of request/reply 1452,667 | 1258,333 1253,333 | 330,3333 | 90,66667
transmissions at intermediate
Total number of received request 1924 1923,667 1894,333 1448 1046,667
messages at intermediate
Total number of received reply 1455,667 1265 1268,667 | 356,3333 109
messages at intermediate
Total number of duplicated reply 3009,333 2055,333 1479 169,3333 | 31,33333
messages at intermediate
Total number of duplicated request 5976,333 4215 3628 1195,333 469
messages at intermediate
Total number of lost request messages 76 76,33333 105,6667 552 953,3333
at intermediate
Total number of lost reply messages at | 5443333 | 733,6667 730,6667 | 1640,333 1862
intermediate
Performance Metric Message size (bytes)
100 400 800 2000 4000
Intermediate 6 Results
Average Round Trip (ms) 15.356484 49.,509373 | 191.40319 | 194.18732
33 26.939143 67 733 33
Total number of request/reply 1481.6666 1351.6666
transmissions at intermediate 67 1301 667 398 122.33333
Total number of received request 1944.3333
messages at intermediate 1971 1960 33 14343333 | 956
Total number of received reply 1492.6666 448.66666 | 155.33333
messages at intermediate 67 1310.333333 1364 67 33
Total number of duplicated reply 2287.3333 2287.3333 | 350.66666 | 85.333333
messages at intermediate 33 2428 333 7 33
Total number of duplicated request 5311 4036.333333 4038 1360 535
messages at intermediate
Total number of lost request messages 29 40 55.33333 | 565.33333 1044
at intermediate
Total number of lost reply messages at 688.3333333 | 635.3333 1548
intermediate 507.33333 1838.6666

142

3 667
Performance Metric Message size (bytes)
100 400 800 2000 4000
Intermediate 7 Results
Average Round Trip (ms) 5.5056673 | 13.162195 | 22.712442 | 33.213662 | 59.089728
Total number of request/reply 1323.6667 | 971.66667 | 1194.6667 | 450.33333 | 197.66667
transmissions at intermediate
Total number of received request 1860 1565.3333 1726 991.66667 | 635.33333
messages at intermediate
Total number of received reply 1470 1259 1471.6667 | 667.66667 307
messages at intermediate
Total number of duplicated reply 3424.6667 | 2280.3333 2424 640.66667 222
messages at intermediate
Total number of duplicated request 2617 1439 1141.6667 | 509.33333 | 283.33333
messages at intermediate
Total number of lost request messages | 85 666667 255 252.66667 872 1260
at intermediate
Total number of lost reply messages at | 475.66667 | 560.33333 507 1193.6667 1591
intermediate
Performance Metric Message size (bytes)
100 400 800 2000 4000
Intermediate 9 Results
Average Round Trip (ms) 5.856759 | 20.445926 | 29.463833 | 52.043973 | 121.2223
Total number of request/reply 3935 1188 1151 327.3333 117
transmissions at intermediate
Total number of received request | 17733333 | 1842.6666 1591.5 | 1024.6667 | 720.6667
messages at intermediate
Total number of received reply 1378 1285.3333 1338 504.3333 | 174.3333
messages at intermediate
Total number of duplicated reply 2115.3333 | 1429.6667 1525.5 235.3333 59
messages at intermediate
Total number of duplicated request | 2249.3333 1363 957 283.3333 206
messages at intermediate
Total number of lost request messages | 90.33333 139.6667 265 919 1240.3333
at intermediate
Total number of lost reply messages at | 485.66667 | 696.3333 518.5 1435 1783
intermediate
Performance Metric Message size (bytes)
100 400 800 2000 4000

143

Intermediate 11 Results

Average Round Trip (ms) 9.6354853 59.399856 | 110.51351
33 17.36212133 | 30.709902 33 3
Total number of request/reply 1355 1068 1271 404 197.66
transmissions at intermediate
Total number of received request 1902.33 1723 1797 1067.66 715.33
messages at intermediate
Total number of received reply 1488.33 1298.33 1427.66 577 270.66
messages at intermediate
Total number of duplicated reply 2423.66 1330.66 1921 246.33 139
messages at intermediate
Total number of duplicated request 2041 1256.33 1659.33 414.33 279.66
messages at intermediate
Total number of lost request messages 97.66 276 202.66 932.33 1283
at intermediate
Total number of lost reply messages at 511.66 700.33 575 1419.66 1680.33
intermediate
Performance Metric Message size (bytes)
100 400 800 2000 4000

Intermediate 12 Results

Average Round Trip (ms) 15.888982 | 30.13737933 | 54.747726 | 12945414 | 293.36921
3 33 6 2 9
Total number of request/reply 1416.3333 | 1284.333333 | 1366.3333 | 470.33333 | 126.66666
transmissions at intermediate 3 3 3333333 333 6667
Total number of received request 1934.333333 | 1911.6666 | 1650.6666
messages at intermediate 1298.3 3 6667 66667 1463
Total number of received reply 1462.6666 | 1289.666666 128.66666
messages at intermediate 667 667 1377 447 6667
Total number of duplicated reply 1787.6666
messages at intermediate 2642 1859 6667 235 48
Total number of duplicated request 3768.333333 | 3483.6666 | 1889.3333 | 1152.3333
messages at intermediate 5377.3 3 6667 3333 3333
Total number of lost request messages 88.333333 | 349.33333
at intermediate 70 64.3 3333 3333 537
Total number of lost reply messages at 622.66666 1842.3333
intermediate 537.3 706.6 6667 1545 3333

144

	ABSTRACT
	ÖZ
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	SURVEY OF ROUTING PROTOCOLS
	Unicast Routing Protocols
	Multicast Routing Protocols
	Anycast Routing Protocols

	SURVEY OF EXISTING EXPERIMENTAL STUDIES
	Main Direction to Investigate Wireless Mobile Ad Hoc Networks
	Experimental Study in Wireless Ad Hoc Networks
	Challenges in Real-World Experimental Studies

	TEST-BED PROGRAM
	Purpose of the Program
	The Structure of the Program
	Collected Information

	ORGANIZATION OF EXPERIMENTS
	Experiments with Two Nodes
	Experiments with more than Two Nodes
	Experiments with One Source Node and Three Destination Nodes

	EXPERIMENTAL RESULTS AND THEIR ANALYSIS
	Performance Metrics
	Results of Experiments
	Discussion of the Experimental Results
	Average Values and Confidence Intervals of the Investigated Performance Metrics

	CONCLUSION
	REFERENCES
	APPENDICES
	Appendix A: The Source Text of the Application-Layer Program
	Appendix B: Raw Results of the Experiments

