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Abstract

In this study, we explore a particular type Hawking radiation which ends with zero temperature

and entropy. The appropriate black holes for this purpose are the linear dilaton black holes. In

addition to the black hole choice, a recent formalism in which the Parikh-Wilczek’s tunneling

formalism amalgamated with quantum corrections to all orders in ~ is considered. The adjustment

of the coefficients of the quantum corrections plays a crucial role on this particular Hawking

radiation. The obtained tunneling rate indicates that the radiation is not pure thermal anymore,

and hence correlations of outgoing quanta are capable of carrying away information encoded within

them. Finally, we show in detail that when the linear dilaton black hole completely evaporates

through such a particular radiation, entropy of the radiation becomes identical with the entropy

of the black hole, which corresponds to ”no information loss”.
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I. INTRODUCTION

Hawking [12–14] and [6] showed in their seminal works that a black hole (BH) should

slowly radiate away energy with its characteristic temperature and entropy. But the semi-

classical picture of the Hawking radiation has a thermal nature, which poses a fundamental

physical problem. Because, when the material entering the BH is a pure quantum state,

the transformation of that state into the mixed state of Hawking radiation would destroy

information about the original quantum state. However, this violates quantum mechanical

unitarity and presents a physical paradox – so called the information loss paradox. For

review of the topic and references on the BH information loss problem the reader may refer

to [19, 22, 23]. There are various ideas about how the paradox could be solved. Among them,

may be the most elegant and comprehensible one is the Parikh and Wilczek (PW)’s quantum

tunneling formalism [20]. Their tunneling formalism is based on the null geodesics together

with the WKB method. They showed explicitly how the inclusion of back-reaction effects,

which guarantees the conservation of energy during a particle tunneling the horizon, yields

a non-thermal correction to the BH radiation spectrum. For a recent review of “tunneling

methods and Hawking radiation” one may consult [29]. On the other hand, the form of

their non-thermal correction had a shortcoming since they did not consider the Planck-scale

(~) quantum corrections, which elicit correlations between quanta emitted with different

energies. The first attempt to fix this shortcoming came from [3], who proposed a modified

version of the tunneling picture in which a leading order Planck-scale quantum correction

was introduced. In addition to this, [4] have recently provided a general framework for

studying quantum corrections to all orders in ~ to the entropy of a BH. When the effects

of the quantum corrections are neglected, one recovers the PW’s results of the BH [20].

Although there are supportive studies, see for instance[2, 5, 15, 18, 25, 32], to [4], in recent

times their work has been under criticism by [34], who claimed that Banerjee and Majhi’s

result assumes an incorrect definition of energy. Putting aside these discussions, here we

concentrate on the study which has recently been published by Singleton, Vagenas, Zhu and

Ren (SVZR) [26]. They have attempted to show that the quantum corrections to all orders in

~ can be adjusted finely so much so that both entropy and temperature of the Schwarzschild

BH go to zero as the mass of the BH is radiated away, i.e. S, T (M → 0) → 0. But,

immediately after it is understood that such a scenario is not possible for the Schwarzschild
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BH [27]. In fact, the key idea of the present study is to examine whether the quantum

corrected Hawking radiation with S, T (M → 0) → 0 is possible for other types of BHs or

not. In this article, we consider a general class of 4-dimensional (4D) metric which belongs

to static, spherically symmetric linear dilaton black holes (LDBHs) [10, 11] that constitute

solutions to Einstein-Maxwell-Dilaton (EMD), Einstein-Yang-Mills-Dilaton (EYMD) and

Einstein-Yang-Mills-Born-Infeld-Dilaton (EYMBID) theories [16]. The LDBHs are known

to be a special class of non-asymptotically flat (NAF) spacetimes. The reason why we focus

on the LDBHs is that by using merely the PW’s quantum tunneling formalism one can

not modify their thermal character of the Hawking radiation [21]. This means that the

original PW’s tunnelingformalism fails to answer the information loss paradox appearing in

the LDBHs. Because of this, in addition to the back reaction effects we need to take into

account the quantum corrections to obtain a radiation other than pure thermal [24]. As

an extension of the study [24], here we consider the general form of the quantum corrected

temperature given by SVZR, and apply it to the LDBHs in order to derive specific entropy

and temperature, both of which go to zero with S, T (M → 0) → 0. Detailed calculations of

these processes are given in the next sections, and as a result we obtain the above-mentioned

radiation, and it is not pure thermal. The behaviors of both the entropy and temperature

of the LDBH with the quantum correction parameters coming from String Theory (ST)

and Loop Quantum Gravity (LQG) are examined. We find that the results which have

no any physical ambiguity are possible only in the LQG case. Moreover, it is highlighted

that higher order quantum corrections which are in conform with the back reaction effects

provide the correlations between the emitted quanta. Finally, we show that the LDBHs

are able to evaporate away completely with the entropy conservation (initial BH entropy is

equal to the entropy of the radiation), which leads to the fact that information is not lost.

Organization of the paper is as follows. In Sect. 2, we derive the entropy and temperature

providing S, T (M → 0) → 0 in quantum corrected LDBHs. Sect. 3 is devoted to the entropy

conservation argument and Sect. 4 completes the paper with discussion and conclusion.

Throughout the paper, the units G = c = kB = 1 and L2
p = ~ are used.
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II. QUANTUM CORRECTED ENTROPY AND TEMPERATURE EXPRES-

SIONS FOR 4D-LDBHS

As it was shown in [16], 4D-LDBHs in EMD, EYMD and EYMBID theories are described

by the metric

ds2 = −fdt2 +
dr2

f
+R2dΩ2

2, (1)

with the metric functions

f = Σ̃(r − r+), R = A
√
r, (2)

It is obvious that metric (1) represents a static, non-rotating BH with a horizon at r+. The

dimensional constants Σ̃ and A in the metric functions (2) take different values according

to the concerned theory (EMD, EYMD or EYMBID) [16]. For r+ 6= 0, the horizon hides

the naked singularity at r = 0. However, in the extreme case of r+ = 0, the central null

singularity at r = 0 is marginally trapped in which it does not allow outgoing signals to

reach external observers. Namely, even in the extreme case of r+ = 0, metric (1) maintains

its BH property.

By using the definition of quasi-local mass M [7] for the NAF metric (1), one finds a

relation between the horizon r+ and the mass M as

r+ =
4M

Σ̃A2
. (3)

After some elementary dimensional analysis, one can see that the units of M and A2 are

Lp, while Σ̃ has the unit of L−1
p so that r+ has the unit of Lp.

Recently, it has been shown that the temperature for a general class of static, spherically

symmetric BH with quantum corrections to all orders in ~ [26] is given by

T =
~κ

2π

(

1 +

∞
∑

j=1

αj~
j

r2j+

)−1

, (4)

where κ is the surface gravity of the BH such that it becomes κ = Σ̃
2
for the LDBHs, and

αj ’s – dimensionless constants – stand for the quantum correction terms. In this expression

~κ
2π

is nothing but the well-known Hawking temperature TH . Here, we wish to highlight

one of the important features of the LDBHs that the Hawking temperature of the LDBH,
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TH = ~Σ̃
4π
, is independent of their quasi-local mass M , and which is therefore a constant

throughout the evaporation process i.e. an isothermal process.

In general, the first law of thermodynamics is about an expression for the entropy (S) as

S =

∫

dM

T
, (5)

where M is the total energy (mass) of the BH. As we adopt the temperature with generic

quantum corrections from (4), the entropy to all orders in ~ can be found by substituting

(4) into (5), and by evaluating the integral. Thus, for the LDBHs one obtains the following

modified entropy as a function of M

S(M) =
M

TH

(

1−
∞
∑

j=1

αj

2j − 1
xj

)

. (6)

where x = ~Σ̃2A4

16M2 is a dimensionless quantity.

As mentioned before, our ultimate aim is to find a specific condition by which it leads

to a complete radiation of the LDBH with S, T (M → 0) → 0. This requirement implies

conditions on the αj ’s. It is remarkable to see that the only possibility which satisfies

S, T (M → 0) → 0 is,

αj =
(−1)j+1(2j − 1)

j
α1, (7)

Inserting this into the sum of (6), we find the modified LDBH entropy as

S(M) =
M

TH

[

1 + α1 ln(
16M2

16M2 + ~Σ̃2A4
)

]

, (8)

Now, it can be easily checked that S(M → 0) → 0 and S(M → ∞) → ∞. Although the

result of the sum in (8) stipulates that M >
√
~Σ̃A2

4
, by making an analytical extension of the

zeta function [1, 26], one can redefine the sum via α1 ln(
16M2

16M2+~Σ̃2A4
) such that it becomes

valid also for M <
√
~Σ̃A2

4
. We plot S(M) (8) versus M for the cases of semi-classical and

quantum corrections to all orders in ~, and display all graphs in Fig. 1. In all figures, we have

used two different α1 values such that α1 = −1
2
is taken as the representative of the LQG

[17], while the choice α1 =
1
2
stands for the ST [28, 33]. Here, physically inadmissible case

belongs to the ST’s one in which the behavior of the entropy is not well-defined. Because,
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as seen in Fig. 1(b), just before the complete evaporation of the LDBH, the entropy first

decreases to a negative value and then increases from below to become zero with M = 0.

Furthermore, if we impose the same condition (7) in equation (4), a straightforward

calculation of the sum shows that the temperature is,

T (M) =
TH

1 + α1

[

2~Σ̃2A4

16M2+~Σ̃2A4
+ ln( 16M2

16M2+~Σ̃2A4
)
] . (9)

It is obvious that removing the quantum corrections i.e., α1 = 0, leads T to the semi-

classical result, TH . Significantly, one can easily verify that T (M → 0) → 0 and T (M →
∞) → TH . As it can be seen in Fig. 2(a), when α1 < 0 (the LQG case), the temperature

does not take negative value, rather it remains always positive and goes to zero with M → 0.

On the other hand, for α1 > 0 (the ST case, see Fig. 2(b)), the temperature does not exhibit

well-behaved behavior as obtained in the LQG case. Because it first diverges for some finite

value of M , then becomes negative and approaches zero from below.

As a final remark for this section, our results suggest that the quantum corrected Hawking

radiation of the LDBH should be considered with the LQG term α1 < 0 in order to avoid

from any unphysical thermodynamical behavior. Because in the LQG case, both plots of

S(M) and T (M) have physically acceptable thermodynamical behaviors and represent the

deserved final; S, T (M → 0) → 0.

III. ENTROPY CONSERVATION OF LDBHS IN QUANTUM CORRECTED

HAWKING RADIATION

In the WKB approximation, the tunneling rate for an outgoing positive energy particle

with a field quantum of energy ω, which crosses the horizon from rin(M) to rout(M − ω), is

related to the imaginary part of the particle’s action Im(I) in accordance with

Γ ∼ e−2 Im(I). (10)

Here Im(I) is equivalent to
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Im(I) = −1

2
[S(M − ω)− S(M)] ,

= −1

2
∆S, (11)

which was uncovered in [20]. Let us remark that ∆S is the change in entropy of a BH.

Hence, the relationship between the tunneling rate and the entropy change satisfies

Γ ∼ e∆S, (12)

By using (8), ∆S becomes

∆S =
1

TH







−ω + 2α1 ln





(

M − ω

Ŷ (ω)

)M−ω(

M

Ŷ (0)

)−M










, (13)

where

Ŷ (ω) =

√

(M − ω)2 +
~Σ̃2A4

16
, (14)

After substituting (13) into (12), the tunneling rate with quantum corrections to all orders

in ~ is found as

Γ(M ;ω) = exp

(

− ω

TH

)





(

M − ω

Ŷ (ω)

)M−ω(

M

Ŷ (0)

)−M




2α1

TH

, (15)

In this expression, the term exp
(

− ω
TH

)

arises due to the back reaction effects. The other

term to the power 2α1

TH
represents the quantum corrections to all orders in ~, and significantly

it gives cause for a degeneracy in the pure thermal radiation. In the absence of the quantum

corrections (α1 = 0: the semi-classical case) the radiation of the LDBH is pure thermal since

the rate (15) reduces to e
−ω
TH . The latter case was studied in detail by [21] in which it was

stated that the Hawking radiation of the LDBH leads to the information loss paradox. The

essential annoyance in the pure thermal radiation is that it never allows the information

transfer, which can be possible with the correlations of the outgoing radiation. So it is

prerequisite to keep the quantum corrections in the tunneling rate (15) when the agenda

is about obtaining a spectrum which is not pure thermal, and accordingly the correlations
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of the emitted quanta from the LDBH. In general, the statistical correlation between two

successive emissions is given by [9, 30]

χ(ω1 + ω2;ω1, ω2) = ln

[

Γ (M ;ω1 + ω2)

Γ (M ;ω1) Γ (M ;ω2)

]

, (16)

and from (15) and (16), one obtains the statistical correlation as

χ(ω1 + ω2;ω1, ω2) =
2α1

TH

ln







(

M−ω1−ω2

Ŷ (ω1+ω2)

)M−ω1−ω2

(

M−ω1

Ŷ (ω1)

)M−ω1
(

M−ω2

Ŷ (ω2)

)M−ω2







(

M

Ŷ (0)

)M

, (17)

This result shows that successive emissions are statistically dependent if and only if the

quantum correction parameter α1 is non-zero. Since the amount of correlation is precisely

equal to mutual information between two sequentially emitted quanta, one can deduce that

the statistical correlation enables the information leakage from the LDBH during its evap-

oration process.

Now, one can assume that the quasilocal mass of a LDBH is a combination

on of n-particles with energies (masses) ω1, ω2, ...ωn, M =

n
∑

j=1

ωj in which ωj is the energy

of the jth emitted field quanta (particle). Namely, the whole radiation process constitutes of

successively emitted quanta (ω1, ω2, ...ωn) from the BH, so that the LDBH loses its mass M

during its evaporation, and at the final state of the evaporation we find S, T (M → 0) → 0.

The probability of a radiation composed of correlated quanta is given by the following

product of the tunneling rates [30, 31]

Prad = Γ(M ;ω1)× Γ(M − ω1;ω2)× ....× Γ(M −
n−1
∑

j=1

ωj;ωn), (18)

where the probability of emission of each radiation of energy ωj is given by

Γ(M ;ω1) = exp

(

− ω1

TH

)







[

M − ω1

Y (ω1)

]M−ω1

[

M

Ŷ (0)

]−M






2α1

TH

,

Γ(M − ω1;ω2) = exp

(

− ω2

TH

)

{

[

M − ω1 − ω2

Y (ω2)

]M−ω1−ω2
[

M − ω1

Y (ω1)

]−(M−ω1)
}

2α1

TH

,

......, (19)
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Γ(M−
n−1
∑

j=1

ωj;ωn) = exp

(

− ωn

TH

)



























































M −
n
∑

j=1

ωj

Y (ωn)













M−

n
∑

j=1

ωj














M −
n−1
∑

j=1

ωj

Y (ωn−1)















−









M−

n−1
∑

j=1

ωj























































2α1

TH

,

= exp

(

− ωn

TH

)[

ωn

Y (ωn−1)

]− 2α1

TH
ωn

,

in which

Y (ωk) =

√

√

√

√

(

M −
k
∑

j=1

ωj

)2

+
~Σ̃2A4

16
, (20)

Here, Γ(M − ω1 − ω2 − ....− ωj−1;ωj) is the conditional probability of an emission with

energy ωj following the emission before the energy ω1 + ω2 + .... + ωj−1.

We can now substitute (19) into (18), and calculate the total probability for the whole

radiation, which turns out to be

Prad = exp

(

−M

TH

)

(

M

Ŷ (0)

)− 2α1M

TH

, (21)

According to the statistical mechanics, we recall that all microstates are equally likely

for an isolated system. Since the radiation of a BH can be considered as an isolated system,

the number of microstates Ω in the system is 1/Prad. Thus, one calculate the entropy of the

radiation Srad from the Boltzmann’s definition as

Srad = ln (Ω) = ln (1/Prad) ,

=
M

TH

+
2α1M

TH

ln(
M

Ŷ (0)
),

=
M

TH

[

1 + α1 ln(
16M2

16M2 + ~Σ̃2A4
)

]

. (22)

Clearly, the total entropy of the radiation Srad is equal to the entropy of the initial LDBH

S(M) (8). We deduce therefore that the entropy is conserved – the entropy of the original
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LDBH (before radiation, initial state) is equal to the entropy of the radiation (after radiation,

final state). From the microscopic point of view of the entropy, this result shows that the

number of microstates of initial and after states are same. The latter remark implies also that

under specific conditions it is possible to save the information during the Hawking radiation

of the LDBHs. In this way, unitarity in quantum mechanics of the Hawking radiation is also

restored.

IV. DISCUSSION AND CONCLUSION

In this article, we have used SVZR’s analysis [26, 27] in order to obtain a specific radiation

which yields both zero temperature and entropy for the LDBH when its mass is radiated

away, i.e. S, T (M → 0) → 0. According to this analysis, the complete evaporation of a BH

is thought as a process in which both back reaction effects and quantum corrections to all

orders in ~ are taken into consideration. For this purpose, in Sect. 2 we imposed a condition

on αj’s which are the parameters of the quantum corrections to all orders in ~. Unless the

quantum corrections are ignored, the choice of αj’s works finely in the LDBHs to end up

with S, T (M → 0) → 0.

Upon using the specific form of the entropy (8), we derived the tunneling rate (15) with

quantum corrections to all orders in ~. Then, it is shown that this rate attributes to the

correlations between the emitted quanta. On the other hand, existence of the correlations of

the outgoing radiation allowed us to make calculations for the entropy conservation. Thus we

proved that after a LDBH is completely exhausted due to its Hawking radiation, the entropy

of the original LDBH is exactly equal to the entropy carried away by the outgoing radiation.

The important aspect of this conservation is that it provides a possible resolution for the

information loss paradox associated with the LDBHs. Another meaning of this conservation

is that the process of the complete evaporation of the LDBH is unitary in regard to quantum

mechanics. Because, it is precisely shown that the numbers of microstates before and after

the complete evaporation are the same.

When we analyze the Figs. (1) and (2) which are about the scenario of S, T (M → 0) → 0

in the quantum corrected Hawking radiation of the LDBH, it is seen that our specific choice

of αj’s (7) with α1 =
1
2
from ST led to unacceptable behavior for the entropy (8) in which it

gets negative values for some M values. In addition to this, the behavior of the temperature
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(9) in the ST case is not well-behaved compared to the LQG case. However, we have

no such unphysical thermodynamical behaviors in the LQG case. So, for the scenario of

S, T (M → 0) → 0, we conclude that only the quantum correction term α1 coming from the

LQG should be taken into consideration.

In conclusion, we show in detail that the scenario of S, T (M → 0) → 0 in the quan-

tum corrected Hawking radiation is possible for the LDBHs. Furthermore, the information

is conserved, and unitarity in quantum mechanics is restored in the process of complete

evaporation of the LDBHs. By employing SVZR’s analysis, we also confirm that quantum

corrections with the back reaction effects remain crucial for the information leakage. There-

fore, it should be stressed that the present study is supportive to the novel idea introduced

by SVZR [26]. Finally, we point out that since the LDBHs are conformally related to the

Brans-Dicke BHs [8], SVZR’s analysis might work for those BHs as well.
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V. FIGURE CAPTIONS

Figure 1: Entropy S(M) as a function of LDBH mass M . The relation is governed by (8).

Figs. 1(a) and 1(b) stand for α1 = −1
2
and α1 =

1
2
, respectively. The two curves correspond

to the semi-classical entropy (dotted curve) and entropy with quantum corrections to all

orders in ~ (solid curve).

Figure 2: Temperature T (M) as a function of LDBH mass M . The relation is governed

by (9). Figs. 2(a) and 2(b) stand for α1 = −1
2
and α1 = 1

2
, respectively. The two curves

correspond to the semi-classical temperature (dotted curve) and temperature with quantum
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corrections to all orders in ~ (solid curve).
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