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‘Square root’ of the Maxwell Lagrangian versus confinement in general relativity

S. Habib Mazharimousavi ∗, M. Halilsoy

Department of Physics, Eastern Mediterranean University, G. Magusa, North Cyprus, Mersin 10, Turkey

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 January 2012
Received in revised form 7 March 2012
Accepted 12 March 2012
Available online 16 March 2012
Editor: M. Cvetič
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We employ the ‘square root’ of the Maxwell Lagrangian (i.e.
√

Fμν F μν ), coupled with gravity to search
for the possible linear potentials which are believed to play role in confinement. It is found that in the
presence of magnetic charge no confining potential exists in such a model. Confining field solutions are
found for radial geodesics in pure electrically charged Nariai–Bertotti–Robinson (NBR)-type spacetime
with constant scalar curvature. Recently, Guendelman, Kaganovich, Nissimov and Pacheva (2011) [7]
have shown that superposed square root with standard Maxwell Lagrangian yields confining potentials
in spherically symmetric spacetimes with new generalized Reissner–Nordström–de Sitter/anti-de Sitter
black hole solutions. In NBR spacetimes we show that confining potentials exist even when the standard
Maxwell Lagrangian is relaxed.

© 2012 Elsevier B.V. All rights reserved.
A power-law extension of the Maxwell action coupled with
gravity was considered by [1–3]

I = 1

2

∫
dx4√−g

(
R − 2Λ − αF s), (1)

in which s and α are real constants, F = Fμν F μν is the Maxwell
invariant with Fμν = ∂μ Aν − ∂ν Aμ and Λ stands for the cos-
mological constant. The first study with this form of nonlinear
electrodynamic (NED) was made in spherical symmetry and ever
since many authors have considered different aspects/applications
of this action [2]. Although the original paper [3] considered a
conformally invariant action (i.e. s = d/4) this requirement was
subsequently relaxed. It was shown that s = 1/2 raised problems
in connection with the energy conditions [4] and for this rea-
son it was abandoned. Nielsen and Olesen [5] proposed such a
magnetic ‘square root’ Lagrangian (i.e.

√
Fμν F μν ) in string theory

while ’t Hooft [6] highlighted a linear potential term to be effective
toward confinement. More recently Guendelman et al. [7] investi-
gated confining electric potentials in black hole spacetimes in the
presence of the standard Maxwell Lagrangian.

In this Letter we suppress the standard Maxwell Lagrangian,
keeping only the ‘square root’ of the Maxwell Lagrangian, to search
for confining potentials. It is known that under the scale trans-
formation, i.e. xμ → λxμ , Aμ → 1

λ
Aμ (λ = const.) in d = 4 the

latter doesn’t remain invariant. Even in this reduced form we prove
the existence of such potentials in some spacetimes identified as
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the Nariai–Bertotti–Robinson (NBR)-type spacetime. Due to the ab-
sence of Maxwell Lagrangian ∼ Fμν F μν , however, the Coulomb
potential will be missing in our formalism. We choose the case
s = 1/2 in d = 4 with a general line element

ds2 = − f (r)dt2 + dr2

f (r)N(r)2
+ R(r)2(dθ2 + sin2 θ dϕ2), (2)

where f (r), N(r) and R(r) are three unknown functions of r. Our
choice of Maxwell 2-form is

F = E(r)dt ∧ dr + P sin(θ)dθ ∧ dϕ (3)

in which P stands for the magnetic charge constant and E(r) is
to be determined. From the variational principle the nonlinear
Maxwell equation reads

d

(
	F√
F

)
= 0, (4)

in which 	F is dual of F. Using the line element one finds

	F = E N R2 sin θ dθ ∧ dϕ − P

N R2
dt ∧ dr, (5)

and

F = −2E2N2 + 2P 2

R4
. (6)

The nonlinear Maxwell equation yields

E N R2√
−2E2N2 + 2P 2

4

= β√
2

(7)
R
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where β is an integration constant. This equation admits a solution
for the electric field as

E = Pβ

N R2
√

R4 + β2
, (8)

and therefore

F = 2P 2

R4 + β2
. (9)

We note here that F is positive which is needed for our choice of
square root expression. Variation of the action with respect to gμν

gives Einstein–Maxwell equations

Gν
μ + Λgν

μ = T ν
μ (10)

in which

T μ
ν = −α

2

(
δ
μ
ν

√
F − 2(Fνλ F μλ)√

F

)
. (11)

Explicitly we find

T t
t = T r

r = − α√
2

(
P
√

R4 + β2

R4

)
, (12)

and

T θ
θ = T φ

φ = α√
2

Pβ2

R4
√

R4 + β2
. (13)

Having T t
t = T r

r means that Gt
t = Gr

r which leads to N(r) = C and
R(r) = r. Note that C is an integration constant which is set for
convenience to C = 1. The Einstein equations admit a black hole
solution for the metric function given by

f (r) = 1 − 2m

r
− Λ

3
r2 − Pα√

2r

∫ √
1 + β2

r4
dr. (14)

Here by using the expansion
√

1 + t = 1 + 1
2 t − 1

8 t2 + O(t3) for

|t| < 1 one finds for large r (i.e. r4

β2 > 1)

f (rlarge) = 1 − Pα√
2

− 2m

r
− Λ

3
r2 + Pαβ2

√
2

12r4
+O

(
1

r8

)
, (15)

and for small r (i.e. r4

β2 < 1) we rewrite
∫ √

1 + β2

r4 dr = ∫ β

r2 ×√
1 + r4

β2 dr which implies

f (rsmall) = 1 − 2m

r
+ Pαβ√

2r2
−

(
Λ

3
+ Pα

√
2

12β

)
r2 + Pα

√
2

112β3
r6

+O
(
r10), (16)

where m is an integration constant related to mass. The Ricci scalar
of the spacetime is given by

R = 2 + 4m

r3
− 2

√
2αP

√
r4 + β2

r4
+

√
2Pα√

r4 + β2

−
√

2Pα

r3

∫ √
1 + β2

r4
dr, (17)

which at infinity is convergent while at r = 0 is singular. For a mo-
ment in order to see the structure of the electromagnetic field (3)
we resort to the flat spacetime given by the line element

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θ dϕ2). (18)
The electric field reads as

E = P

r2
√

1 + r4

β2

(19)

which results in the potential

V = −P

∫
dr

r2
√

1 + r4

β2

. (20)

Here also we use the expansion 1√
1+t

= 1 − 1
2 t + 3

8 t2 + O(t3) for

|t| < 1 to obtain

V (rsmall) = −P

∫
dr

r2

(
1 + r4

β2

)− 1
2

= P

r
+ Pr3

6β2
− 3Pr7

56β4
+O

(
r11), (21)

for small r and

V (rlarge) = −Pβ

∫
dr

r4

(
1 + β2

r4

)− 1
2

= Pβ

3r3
− Pβ3

14r7
+ 3Pβ5

88r11
+O

(
1

r15

)
, (22)

for large r. It is readily seen that the magnetic charge P is indis-
pensable for an electric solution to exist in the flat spacetime.

Now, going back to the curved space metric ansatz

ds2 = − f (r)dt2 + dr2

f (r)
+ r2(dθ2 + sin2 θ dϕ2) (23)

one obtains, for β = 0, the exact solution from (14) as

f (r) = 1 − 2m

r
− Λ

3
r2 − Pα√

2
, (24)

with E(r) = 0. Such a metric represents a global monopole [8] with
a deficit angle which is valid only for P �= 0. We note that this
represents a non-asymptotically flat black hole with mass, cosmo-
logical constant and global monopole charge.

For the case of pure electric field let us consider now in (3)
P = 0 and due to the sign problem we revise our square root
term as

√−Fμν F μν in the action. Further, to remove the ambi-
guity in arbitrariness of E(r) from the Maxwell equation (4) we
require that the spacetime has constant scalar curvature. This re-
stricts our E(r) only to be a constant. This yields with reference
to the metric ansatz (2), as a result of the Maxwell equation, for
the choice N(r) = 1 that one obtains R(r) = r0 = constant and
E(r) = E0 = constant.

The tt and rr components of the Einstein equations yield

Λ = 1

r2
0

, (25)

so that the solution for f (r) takes the form

f = −
(

Λ + αE0√
2

)
r2 + C1r + C2 (26)

where C1 and C2 are constants of integration. With this f (r) the
line element reads

ds2 = − f (r)dt2 + dr2

f (r)
+ r2

0

(
dθ2 + sin2 θ dϕ2) (27)

in which the electric field (E0) and cosmological constant (Λ = 1
r2

0
)

are both essential parameters. By setting E0 = 0 = C1, it reduces
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to the Nariai [9] line element. For this reason (27) is known for
E0 �= 0 to be the Nariai–Bertotti–Robinson (NBR)-type [9] line el-
ement. Let us add that since our case is an NED, rather than the
linear Maxwell theory our solution shows minor digression from
the standard NBR spacetime [9]. Due to this fact we prefer to label
it simply as NBR-type. In the sequel we consider radial geodesics
for both P �= 0 and P = 0.

1. Absence of linear potential for P �= 0, β �= 0

We study the radial geodesics of a charged particle with elec-
tric charge q0 and unit mass (m = 1) for simplicity in the space-
time (2) (for N(r) = 1 and R(r) = r). For the radial geodesics we
set θ = θ0 = constant and ϕ = ϕ0 = constant, so that the particle
Lagrangian is given by (a ‘dot’ in the sequel stands for derivative
with respect to the proper distance s)

L = 1

2

(
− f ṫ2 + 1

f
ṙ2

)
+ q0 Pṫ

∫
P

r2
√

1 + r4

β2

dy. (28)

Herein a constant of motion is given by

∂L

∂ ṫ
= −E (29)

where E represents the energy of the particle. The geodesic equa-
tion reads

f ṫ = q0 P

∫
P

r2
√

1 + r4

β2

− E (30)

with geodesic condition

ṙ2 + f = ( f ṫ)2. (31)

A substitution yields the equation of motion for the particle

ṙ2 + V eff = E2 (32)

where

V eff = 1 − 2m

r
− Λ

3
r2 − Pα√

2r

∫ √
1 + β2

r4
dr

− (q0 P )2
(∫

dr

r2
√

1 + r4

β2

)2

+ 2Eq0 P

∫
dr

r2
√

1 + r4

β2

. (33)

Once more we expand this potential to get for small r

V eff (rsmall) = 1 − 2m + 2Eq0 P

r
+ Pαβ

√
2 − 2q2

0 P 2

2r2

−
(

Pα
√

2

12β
+ Λ

3
+ q2

0 P 2

3β2

)
r2 − Eq0 P

3β2
r3

+O
(
r6), (34)

and for large r

V eff (rlarge) = 1 − 1

2
Pα

√
2 − 2m

r
− Λ

3
r2 − 2Eq0 Pβ

3r3

+ Pα
√

2β2

12r4
+O

(
1

r6

)
, (35)

where both manifestly show the absence of a linear (∼ r) term in
the effective potential V eff . Our expansions, however, cover only
the asymptotic regions for small/large r values. For a general proof
arbitrary r should be accounted which can be expressed in terms
of elliptic functions.

2. Linear potential for P = 0 and E = E0 = constant

With the constant electric field E0 now we have V (r) = −E0r,
up to a disposable constant. The Lagrangian of a charged particle
in the spacetime (27) (with charge q0 and unit mass) is given by

L = 1

2

(
− f ṫ2 + 1

f
ṙ2

)
+ q0 E0rṫ. (36)

For simplicity we set r0 = q0 = 1 and α = 2
√

2 so that the geodesic
motion takes the form(

dr

ds

)2

= E2 + Ar2 + Br − C2. (37)

Here E > 0 is the conserved energy and the constants A and B are
abbreviated as

A = (1 + E0)
2, B = −C1 + 2E0E . (38)

We set now A = 0 = C1, C2 = −1, so that (37) integrates with the
effective linear potential V eff = 2Er to yield√
E2 − 2Er + 1 = ±E(s0 − s) (39)

in which s0 is an integration constant. Clearly the potential is con-
fined by 0 < r < E2+1

2E and the underlying geometry is an NBR
spacetime transformable (for r = coshχ ) to the line element

ds2 = − sinh2 χdt2 + dχ2 + dθ2 + sin2 θ dϕ2 (40)

with electric field E0 = −1 and cosmological constant Λ = 1.
In conclusion, the square root Lagrangian

√
Fμν F μν (or√−Fμν F μν for the pure electric case) with a cosmological con-

stant in the absence of the standard Lagrangian Fμν F μν admits
solution with a uniform electric field (and zero magnetic charge)
which provides a linear potential believed to be effective in con-
finement [6]. The Coulomb part of the ‘Cornell potential’ [10] will
naturally be absent in our formalism. We have shown also that
magnetic charge (P �= 0) acts against confinement. The spacetime
in which the square root Maxwell Lagrangian yields confinement
happens to be the constant curvature NBR spacetime even in this
form of the square root NED. In such a spacetime we have both
electric field, cosmological constant and the freedom of choice of
one in terms of the other renders a linear potential in the effective
potential V eff possible.
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