
2þ1 dimensional magnetically charged solutions in Einstein-power-Maxwell theory

S. Habib Mazharimousavi,* O. Gurtug,† M. Halilsoy,‡ and O. Unver§

Department of Physics, Eastern Mediterranean University, G. Magusa, North Cyprus, Mersin 10 - Turkey
(Received 7 April 2011; published 9 December 2011)

We obtain a class of magnetically charged solutions in 2þ 1 dimensional Einstein-Power-Maxwell

theory. In the linear Maxwell limit, such horizonless solutions are known to exist. We show that in 3D

geometry, black hole solutions with magnetic charge do not exist even if it is sourced by the power-

Maxwell field. Physical properties of the solution with particular power k of the Maxwell field is

investigated. The true timelike naked curvature singularity develops when k > 1 which constitutes one

of the striking effects of the power-Maxwell field. For specific power parameter k, the occurrence of a

timelike naked singularity is analyzed in the quantum mechanical point of view. Quantum test fields

obeying the Klein-Gordon and the Dirac equations are used to probe the singularity. It is shown that the

class of static pure magnetic spacetime in the power-Maxwell theory is quantum-mechanically singular

when it is probed with fields obeying Klein-Gordon and Dirac equations in the generic case.
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I. INTRODUCTION

Unlike the case of four-dimensional spacetime, gravita-
tional and electromagnetic fields in 2þ 1 -dimensions
(3D) show significant differences. The absence of a free
gravitational field (orWeyl curvature) in 3D for instance, is
one such noteworthy property as far as gravity is con-
cerned. The addition of extra sources beside the cosmo-
logical constant, therefore, becomes indispensable to turn
this reduced dimension into an attractive arena for doing
physics. We recall the Reissner-Nordström (RN) example
in which there is a symmetric duality between the electric
and magnetic fields. That is, dual of Maxwell field 2-form
in four dimensions is still a 2-form. In 3D, on the other
hand, duality maps a 2-form into 1-form and vice versa.
Besides, the interpretation of the sources of the electric
fields in 3D is not ambiguous, however, considering the
magnetic sources the interpretation is not much clear. Yet,
for a number of reasons, which can be summarized as—
contributing to our understanding of their four-dimensional
counterparts—the 3D solutions persist to be a center of
attraction in general relativity. The prototype example of
such 3D black hole solutions is known to be the Banados-
Teitelboim-Zanelli (BTZ) [1]. This black hole was sourced
by a mass, a static electric field, and a negative cosmologi-
cal constant. The existence of magnetically charged 3D
solutions was also addressed shortly after BTZ [2–5]. Dias
and Lemos have studied magnetic solutions in 3D Einstein
theory including the rotating version [6] of the works cited
in [2–5] and also the magnetic point sources in Brans-
Dicke theories [7]. The common result verified, among
found solutions, the absence of such magnetic black holes.

In other words, 3D Einstein-Maxwell (EM) equations do
not admit a solution that can be interpreted as a black hole
with pure magnetic fields. Furthermore, these solutions are
free of curvature singularities. The nonsingular magnetic
Melvin universe [8] in four dimensions is well known to
provide information about the existence of such solutions
in different dimensions as well. As a matter of fact, a
magnetic solution has physically radical differences in
comparison with its electric counterpart which are related
by a duality transformation [5,9,10]. Although pure mag-
netic black holes in 3D are yet to be found, we may
anticipate that they are crucial in understanding the global
entropic flow and storage / loss of information in such
lower dimensions.
In this paper, we wish to go beyond linear Maxwell

electromagnetism and to consider the recently-fashionable
nonlinear electrodynamics (NED) coupled with gravity in
the presence of a negative cosmological constant. This
formalism has already found applications [11–16], but to
the best of our knowledge in 3D pure magnetic version of
the power-law nonlinearity remained untouched. From the
outset, let us remark that the power (i.e., k) in the power-
law Maxwell theory cannot be arbitrary but has to satisfy
(at least) some of the energy conditions which are dis-
cussed in the Appendix. It is demonstrated that pure mag-
netically charged black holes do not exist even in this
formalism. It is known that the interest in NED aroused
long ago during 1930s with the hopes to eliminate diver-
gences due to point charges. However, it is proved in this
paper that according to the value of the power-Maxwell
parameter in connection with energy conditions, the solu-
tions admit regular and naked singular characteristics.
Occurrence of naked singularities is known to violate the
cosmic censorship hypothesis. Understanding and the reso-
lution of naked singularities in general relativity remain
one of the most challenging problems to be solved. It is
widely believed that the scales where this singularity

*Electronic address: habib.mazharimousavi@emu.edu.tr
†ozay.gurtug@emu.edu.tr
‡mustafa.halilsoy@emu.edu.tr
§ozlem.unver@emu.edu.tr

PHYSICAL REVIEW D 84, 124021 (2011)

1550-7998=2011=84(12)=124021(7) 124021-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.84.124021


forms, classical attempts toward the resolution should be
replaced by the quantum theory of gravity. This motivates
us to investigate the formation and stability of naked
singularities within the framework of quantum mechanics.
Our analysis will be based on the criterion of Horowitz and
Marolf [17] (HM) in which quantum test particles obey the
Klein-Gordon and the Dirac equations are used to probe a
naked singularity. The criterion of HM has been used in
different spacetimes to investigate such classically naked
singular spacetimes, i.e. whether they remain singular or
not within the context of quantum mechanics [18–24].

Meanwhile, it must be admitted that the physical inter-
pretation of the magnetic solution, whether it is due to a
magnetic monopole or a vortex, remains unclear. Naturally,
such interpretations become less clear in the power-
Maxwell case as opposed to the case of standard linear
Maxwell theory.

The plan of the paper is as follows. In Sec. II, the action of
the Einstein-power-Maxwell formalism, solutions to the
field equations are given. In Sec. III, the occurrence of naked
singularity is analyzed within the framework of quantum
mechanics. First, the definition of quantum singularities for
general static spacetimes is reviewed and then the Klein-
Gordon and the Dirac fields are used to test the quantum
singularity. The paper ends with Conclusion in Sec. IV.

II. THE SOLUTION AND SPACETIME
STRUCTURE

We start with the three-dimensional action in Einstein-
power-Maxwell theory of gravity with a cosmological
constant � (8�G ¼ 1)

I ¼ 1

2

Z
dx3

ffiffiffiffiffiffiffi�g
p �

R� 2

3
��F k

�
; (1)

in which F is the magnetic Maxwell invariant defined by

F ¼ F��F
��:

The field 2-form is given by

F ¼ BðrÞdr ^ d�; (2)

where BðrÞ stands for the magnetic field to be determined.
Our metric ansatz for three dimensions is chosen as

ds2 ¼ �f1ðrÞdt2 þ dr2

f2ðrÞ þ f3ðrÞd�2; (3)

in which fiðrÞ are some unknown functions to be found.
The parameter k in the action is a real constant which is
restricted by the energy conditions (see the Appendix).
Note that k ¼ 1 is a linear Maxwell limit and in our treat-
ments we consider the case k � 1, so that our treatment
does not cover the linear Maxwell limit. The variation with
respect to the gauge potential yields the Maxwell equation

d ð?FF k�1Þ ¼ 0; (4)

where ? means duality and dð:Þ stands for the exterior
derivative. Remaining field equations are

G�
� þ 1

3
���

� ¼ T�
�; (5)

in which

T�
� ¼ � 1

2
ð��

�F k � 4kðF��F
��ÞF k�1Þ (6)

is the energy-momentum tensor due to the NED. It is
readily seen that for k ¼ 1 all the foregoing expressions
reduce to those of the standard linear Maxwell theory.
Nonlinear Maxwell Eq. (4) determines the unknown mag-
netic field in the form

B2 ¼ f3ðrÞ
f2ðrÞ

P2

f1ðrÞ1=2k�1
; (7)

in which P is interpreted as the magnetic charge. Imposing
this into the energy-momentum tensor (6) results in

T
�
� ¼ 1

2
F kdiagð�1; 2k� 1; 2k� 1Þ; (8)

and the explicit form of F is given by

F ¼ 2
P2

f1ðrÞ1=2k�1
: (9)

The exact solution comes after solving the Einstein
Eqs. (5), which is expressed by the metric functions

f1ðrÞ � AðrÞ ¼ �Mþ j�j
3

r2 ¼ j�j
3

ðr2 � r2þÞ; (10)

f2ðrÞ ¼ 1

r2

�
r2 þ 9 ~P2ð2k� 1Þ2

ðk� 1Þ�2
AðrÞk�1=2k�1

�
AðrÞ; (11)

f3ðrÞ ¼ r2

AðrÞ f2ðrÞ; k � 1; (12)

where M may be interpreted as the mass and ~P2 ¼
2k�1P2k. We note that r2þ ¼ j 3M� j, and it should not be

taken as a horizon radius since our solution does not
represent a black hole. One finds the Ricci and
Kretschmann scalars as

R ¼ �2j�j � 8 ~P2

�
k� 3

4

�
A�ðk=2k�1Þ; (13)

K ¼ 4

3
�2 þ 32

3
~P2

�
k� 3

4

�
j�jA�ðk=2k�1Þ

þ 4ð8kðk� 1Þ þ 3Þ ~P4A�ð2k=2k�1Þ: (14)

As one observes, depending on k, one can put the solution
into three general categories. In the first category, 14�k< 1

2 ,

and therefore R and K are regular as the WEC and SEC
(see Appendix) are both satisfied. Since we may have
f3ðr�Þ ¼ 0 for some r�, it suggests that our coordinate
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patch is not complete and needs to be revised. In such case,
we set

x2 ¼ r2 � r2�; (15)

which leads to the line element

ds2 ¼ �g1ðxÞdt2 þ dx2

g2ðxÞ þ g3ðxÞd�2 (16)

with the metric functions

g1ðxÞ ¼ j�j
3

ðx2 þ r2� � r2þÞ; (17)

g2ðxÞ¼
�
x2þr2��9 ~P2ð2k�1Þ2

jk�1j�2
g1ðxÞk�1=2k�1

�
g1ðxÞ
x2

; (18)

g3ðxÞ¼
�
x2þr2��9 ~P2ð2k�1Þ2

jk�1j�2
g1ðxÞk�1=2ðk�1Þ

�
; k�1:

(19)

Here, one can show that for x 2 ½0;1Þ then g3ðxÞ< 0,
which implies a nonphysical solution and hence the power
in this interval 1

4 � k < 1
2 should be excluded. The second

category of solutions can be found by setting 1
2 < k< 1 in

which g3ðxÞ> 0 possessing a nonsingular solution. It
should be noted that the case for k ¼ 1 is already consid-
ered in [2–5] and the resulting spacetime has no curvature
singularity. The third category of solutions is when k > 1
which results in a curvature singularity. Therefore, by
shifting the coordinate in accordance with y2 ¼ r2 � r2þ
we relocate the singularity to the point y ¼ 0 which will be
a naked singularity and our interest in this paper will be
confined entirely to this third category of solutions. In this
new coordinate, the line element reads as

ds2 ¼ �h1ðyÞdt2 þ dy2

h2ðyÞ þ h3ðyÞd�2; (20)

h1ðyÞ ¼ 1

3
j�jy2; (21)

h2ðyÞ¼
�
y2þr2þþ9 ~P2ð2k�1Þ2

ðk�1Þ�2

�
1

3
j�jy2

�
k�1=2ðk�1Þ��j�j

3

�
;

(22)

h3ðyÞ ¼ 3

j�jh2ðyÞ; k � 1 (23)

with the scalars

R ¼ �2j�j � 8 ~P2

�
k� 3

4

��
1

3
j�jy2

��ðk=2ðk�1ÞÞ
; (24)

K ¼ 4

3
�2 þ 32

3
~P2

�
k� 3

4

�
j�j

�
1

3
j�jy2

��ðk=2k�1Þ

þ 4ð8kðk� 1Þ þ 3Þ ~P4

�
1

3
j�jy2

��ð2k=2k�1Þ
: (25)

It can be seen that for k > 1, both R and K are singular
at y ¼ 0, and this singularity can easily be shown to be
timelike.
Finally, we add here that in the same frame but with an

electric field matter there exists a black hole solution
whose physical properties is considered in a separate study
[25].

III. SINGULARITYANALYSIS

It has been emphasized in Sec. II that the solution admits
classical naked singularity if the parameter k > 1. This
property is in fact one of the most important consequences
of the power-Maxwell field, because the previously ob-
tained magnetically charged solution in 2þ 1 dimensional
geometry with k ¼ 1 is regular [2–5]. Naked singularities
are one of the ‘‘unlikable’’ predictions of the classical
general relativity. The reason is the cosmic censorship
conjecture which forbids the formation of classical naked
singularities. Therefore, the resolution of these singular-
ities stand as an extremely important problem to be solved.
Since naked singularity occurs at very small scales where
classical general relativity is expected to be replaced by
quantum theory of gravity, it is worth it to investigate the
nature of this singularity with quantum test fields. In
probing the singularity, quantum test particles/fields obey-
ing the Klein-Gordon and Dirac equations are used. Our
analysis will be based on the pioneering work ofWald [26],
which was further developed by Horowitz and Marolf
(HM) to probe the classical singularities with quantum
test particles obeying the Klein-Gordon equation in static
spacetimes having timelike singularities. According to
HM, the singular character of the spacetime is defined as
the ambiguity in the evolution of the wave functions. That
is to say, the singular character is determined in terms of
the ambiguity when attempting to find self-adjoint exten-
sion of the operator to the entire Hilbert space. If the
extension is unique, it is said that the space is quantum
mechanically regular. The brief review is as follows:

A. Quantum Singularities

Consider a static spacetime ðM;g��Þ with a timelike

Killing vector field ��. Let t denote the Killing parameter
and � denote a static slice. The Klein-Gordon equation in
this space is

ðr�r� �M2Þc ¼ 0: (26)

This equation can be written in the form

@2c

@t2
¼ ffiffiffi

f
p

Dið ffiffiffi
f

p
Dic Þ � fM2c ¼ �Ac ; (27)
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in which f ¼ ����� and Di is the spatial covariant

derivative on�. The Hilbert spaceH , ðL2ð�ÞÞ is the space
of square integrable functions on �. The domain of the
operator A DðAÞ is taken in such a way that it does not
enclose the spacetime singularities. An appropriate set is
C1
0 ð�Þ, the set of smooth functions with compact support

on �. Operator A is real, positive and symmetric therefore
its self-adjoint extensions always exist. If it has a unique
extension AE, then A is called essentially self-adjoint
[27–29]. Accordingly, the Klein-Gordon equation for a
free particle satisfies

i
dc

dt
¼ ffiffiffiffiffiffi

AE

p
c ; (28)

with the solution

c ðtÞ ¼ exp½�it
ffiffiffiffiffiffi
AE

p �c ð0Þ: (29)

If A is not essentially self-adjoint, the future time evolution
of the wave function (29) is ambiguous. Then, HM crite-
rion defines the spacetime quantum mechanically singular.
However, if there is only a single self-adjoint extension, the
operator A is said to be essentially self-adjoint and the
quantum evolution described by Eq. (29) is uniquely de-
termined by the initial conditions. According to the HM
criterion, this spacetime is said to be quantum mechani-
cally nonsingular. In order to determine the number of self-
adjoint extensions, the concept of deficiency indices is
used. The deficiency subspaces N� are defined by (see
Ref. [30] for a detailed mathematical background),

Nþ ¼ fc 2 DðA�Þ; A�c ¼ Zþc ;

ImZþ > 0g with dimensionnþ

N� ¼ fc 2 DðA�Þ; A�c ¼ Z�c ;

ImZ� < 0g with dimensionn�:

(30)

The dimensions ðnþ; n�Þ are the deficiency indices of the
operator A. The indices nþðn�Þ are completely indepen-
dent of the choice of ZþðZ�Þ depending only on whether Z
lies in the upper (lower) half complex plane. Generally, one
takes Zþ ¼ i� and Z� ¼ �i� , where � is an arbitrary
positive constant necessary for dimensional reasons. The
determination of deficiency indices then reduces to count-
ing the number of solutions of A�c ¼ Zc ; (for � ¼ 1),

A�c � ic ¼ 0 (31)

that belong to the Hilbert space H . If there is no square
integrable solutions (i.e., nþ ¼ n� ¼ 0), the operator A
possesses a unique self-adjoint extension and it is essen-
tially self-adjoint. Consequently, a sufficient condition for
the operator A to be essentially self-adjoint is to investigate
the solutions satisfying Eq. (31) that do not belong to the
Hilbert space.

B. Klein-Gordon Fields

It was previously stated that the obtained solution is
naked singular for k > 1. Quantum singularity analysis is
almost hopeless for technical reasons if the analysis is for
any k > 1. Therefore, we restrict our analysis to a specific
parameter k ¼ 2. This specific choice simplifies the metric
which is given by

ds2 ¼ �h1ðyÞdt2 þ dy2

~h2ðyÞ
þ ~h3ðyÞd�2; (32)

h1ðyÞ ¼ 1

3
j�jy2; (33)

~h 2ðyÞ ¼ ðy2 þ r2þ þ �y2=3Þ j�j
3

; (34)

~h 3ðyÞ ¼ 3

j�j
~h2ðyÞ; (35)

where � ¼ 81 ~P2ffiffi
½

p
3�3j�j5=3 > 0 is a constant. The Kretschmann

scalar for this particular, k ¼ 2, is given by

K ¼ 4

3
�2 � 40 ~P2j�j1=3ffiffi½p 3�3y4=3

þ ð76 ~P4Þ34=3
j�j4=3y8=3 : (36)

Clearly, y ¼ 0 is a true curvature singularity. Upon sepa-
ration of variables, c ¼ FðyÞein�, we obtain the radial
portion of Eq. (31) as

d2FðyÞ
dy2

þ1

y

�
1þ y

~h2ðyÞ
dð~h2ðyÞÞ

dy

�
dFðyÞ
dy

þ 1
~h2ðyÞ

�
c

~h3ðyÞ
�M� i

h1ðyÞ
�
FðyÞ¼0; (37)

where c 2 R is a separation constant. Since the singularity
is at y ¼ 0, for small values of y each term in the above
equation simplifies for massless (M ¼ 0) case to

d2FðyÞ
dy2

þ 1

y

dFðyÞ
dy

� �2

y2
iFðyÞ ¼ 0; (38)

where �2 ¼ 9
j�j2r2þ > 0, whose solution is

FðyÞ ¼ C1�y
ffiffiffiffiffi�i

p
� þ C2�y

� ffiffiffiffiffi�i
p

�; (39)

in which C1� and C2� are arbitrary constants. In order to
check the square integrability, we define the function space
on each t ¼ constant hypersurface� asH ¼fF j kFk<1g
with the following norm given for the metric (32) as

kFk2¼q2

2

Z constant

0

1ffiffiffiffiffiffiffiffiffiffiffi
h1ðyÞ

p
ffiffiffiffiffiffiffiffiffiffiffi
~h3ðyÞ
~h2ðyÞ

vuut jFj2dy�
Z constant

0

jFj2
y

dy;

(40)
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where q is a constant parameter. The above solution is
checked for the square integrability near y ¼ 0, for each
sign of the solution found in Eq. (39). The solution is square
integrable if and only if the constant parameter C2n ¼ 0,
such that for each sign of Eq. (39) we have

kFk2 �
Z constant

0
y
ffiffi
2

p
��1dy ¼ y

ffiffi
2

p
�ffiffiffi

2
p

�

��������constant

0
<1: (41)

Therefore,the operatorA has deficiency indices nþ ¼ n� ¼
1, and is not essentially self-adjoint, so that the spacetime is
quantum-mechanically singular.

C. Dirac Fields

The Dirac equation in 3D curved spacetime for a free
particle with mass m is given by

i	�ðxÞ½@� � ��ðxÞ��ðxÞ ¼ m�ðxÞ; (42)

where ��ðxÞ is the spinorial affine connection given by

��ðxÞ ¼ 1

4
g��½eðiÞ�;�ðxÞe�ðiÞðxÞ � ��

��ðxÞ�s��ðxÞ; (43)

s��ðxÞ ¼ 1

2
½	�ðxÞ; 	�ðxÞ�: (44)

Since the fermions have only one spin polarization in 3D

[31], the Dirac matrices 
ðjÞ can be given in terms of Pauli

spin matrices 	ðiÞ [32] so that


ðjÞ ¼ ð	ð3Þ; i	ð1Þ; i	ð2ÞÞ; (45)

where the Latin indices represent internal (local) frame. In
this way,

f
ðiÞ; 
ðjÞg ¼ 2�ðijÞI2	2; (46)

where �ðijÞ is the Minkowski metric in 3D and I2	2 is the
identity matrix. The coordinate dependent metric tensor

g��ðxÞ and matrices 	�ðxÞ are related to the triads eðiÞ� ðxÞ
by

g��ðxÞ ¼ eðiÞ� ðxÞeðjÞ� ðxÞ�ðijÞ; 	�ðxÞ ¼ e
�
ðiÞ


ðiÞ; (47)

where � and � stand for the external (global) indices. The
suitable triads for the metric (32) are given by

eðiÞ� ðt; y; �Þ ¼ diag

0
@y

ffiffiffiffiffiffiffi
j�j
3

s
;

�
3

j�jðy2 þ r2þ þ �y2=3Þ
�
1=2

;

ðy2 þ r2þ þ �y2=3Þ1=2
1
A: (48)

The coordinate dependent gamma matrices and the spi-
norial affine connection are given by

	�ðxÞ ¼
0
@
0
@ ffiffiffiffiffiffiffi

3

j�j

s 1
A	ð3Þ

y
; i

�j�jðy2 þ r2þ þ �y2=3Þ
3

�
1=2

	ð1Þ;
i	ð2Þ

ðy2 þ r2þ þ �y2=3Þ1=2
1
A;

��ðxÞ ¼
�j�jðy2 þ r2þ þ �y2=3Þ1=2	ð2Þ

6
; 0;

i
ffiffiffiffiffiffiffij�jp

6y1=3
ffiffiffi
3

p ð3y4=3 þ �Þ	ð3Þ
�
:

(49)

Now, for the spinor

� ¼ c 1

c 2

� �
; (50)

the Dirac equation can be written as

i

y

ffiffiffiffiffiffiffi
3

j�j

s
@c 1

@t
�

�j�jðy2 þ r2þ þ �y2=3Þ
3

��
1=2 @c 2

@y
þ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðy2 þ r2þ þ �y2=3Þ
q @c 2

@�

�
0
@ ffiffiffiffiffiffiffij�jp ð3y4=3 þ �Þ
6y1=3

ffiffiffi
3

p ðy2 þ r2þ þ �y2=3Þ1=2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3j�jðy2 þ r2þ þ �y2=3Þ

q
6y

1
Ac 2 �mc 1 ¼ 0; (51)

� i

y

ffiffiffiffiffiffiffi
3

j�j

s
@c 2

@t
�

�j�jðy2 þ r2þ þ �y2=3Þ
3

��
1=2 @c 1

@y
� iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðy2 þ r2þ þ �y2=3Þ
q @c 1

@�

�
0
@ ffiffiffiffiffiffiffij�jp ð3y4=3 þ �Þ
6y1=3

ffiffiffi
3

p ðy2 þ r2þ þ �y2=3Þ1=2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3j�jðy2 þ r2þ þ �y2=3Þ

q
6y

1
Ac 1 �mc 2 ¼ 0: (52)
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The following ansatz will be employed for the positive
frequency solutions:

�n;Eðt; xÞ ¼ Z1nðyÞ
Z2nðyÞei�

� �
ein�e�iEt: (53)

The radial part of the Dirac equation becomes

Z0
2nðyÞþ

8<
:

ffiffiffi
3

p ðnþ1Þffiffiffiffiffiffiffij�jp ðy2þr2þþ�y2=3Þ

þ ð3y4=3þ�Þ
6y1=3ðy2þr2þþ�y2=3Þþ

1

2y

9=
;Z2nðyÞ

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy2þr2þþ�y2=3Þ

q
8<
:m

ffiffiffiffiffiffiffi
3

j�j

s
� 3E

j�jy

9=
;Z1nðyÞe�i�¼0

(54)

Z0
1nðyÞþ

8<
:�

ffiffiffi
3

p
nffiffiffiffiffiffiffij�jp ðy2þr2þþ�y2=3Þ

þ ð3y4=3þ�Þ
6y1=3ðy2þr2þþ�y2=3Þþ

1

2y

9=
;Z1nðyÞ

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy2þr2þþ�y2=3Þ

q
8<
:m

ffiffiffiffiffiffiffi
3

j�j

s
þ 3E

j�jy

9=
;Z2nðyÞei�¼0:

(55)

The behavior of the Dirac equation near y ¼ 0 reduces
to

Z00
j ðyÞ þ

2

y
Z0
jðyÞ þ

�2

y2
ZjðyÞ ¼ 0; j ¼ 1; 2 (56)

where �2 ¼ 1
4 þ ð 3E

j�jrþÞ2. The solution is given by

ZjðyÞ ¼ C1jy

1 þ C2jy


2 ; (57)

where C1j and C2j are arbitrary constants and exponents

are given by


1 ¼ � 1

2
þ i

3jEj
j�jrþ ; 
2 ¼ � 1

2
� i

3jEj
j�jrþ :

The condition for the Dirac operator to be quantum me-
chanically regular requires that both solutions should be-
long to the Hilbert space H . The squared norm for this
solution

�
Z constant

0

jZjðyÞj2
y

dy�
Z constant

0
y�2dy�1

y
jconstant0 !1;

(58)

diverges. This implies that solution does not belong to the
Hilbert space. Consequently, if the classical singularity at

y ¼ 0 is probed with fermions the spacetime behaves
quantum mechanically singular.

IV. CONCLUSION

In this paper, a new class of magnetically charged solu-
tions in 3D Einstein-Power-Maxwell theory has been pre-
sented. As in the linear Maxwell case, our solutions do not
admit black holes but apart from the linear Maxwell case
the power-lawMaxwell theory admits singular solutions as
well. The main contribution of the nonlinear Maxwell field
in our solutions is to create timelike naked singularities for
specific values of parameter k > 1 which is nonexistent in
the linear theory. This singularity has been analyzed from
the quantum mechanical point of view. Quantum test par-
ticles obeying the Klein-Gordon and the Dirac equations
are used to probe the singularity.
The analysis of the naked singularity from quantum

mechanical point of view has revealed that the considered
spacetime is generically quantum singular when it is
probed with fields obeying Klein-Gordon and Dirac equa-
tions. It is interesting to note that, in contrast to the con-
sidered spacetime, the probe of naked singularity with
Dirac fields in other 3D metrics, namely, BTZ [20] and
matter coupled BTZ [23] spacetimes was shown to be
quantum mechanically regular. It is also shown in this
study that for general modes of spin zero Klein-Gordon
fields, the spacetime is still singular.
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APPENDIX: ENERGY CONDITIONS

When a matter field couples to any system, energy
conditions must be satisfied for physically acceptable so-
lutions. We follow the steps as given in [33,34] to find the
bounds of the power parameter k of the Maxwell field.

1. Weak Energy Condition (WEC)

The WEC states that

 
 0 and þ pi 
 0 ði ¼ 1; 2Þ (A1)

in which  is the energy density and pi are the principal
pressures given by

¼�Tt
t ¼1

2
F k; pi¼Ti

i ¼
2k�1

2
F k ðno sumÞ: (A2)

This condition imposes that k > 0.
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2. Strong Energy Condition (SEC)

This condition states that

þX2
i¼1

pi 
 0 and þ pi 
 0; (A3)

which amounts, together with the WEC, to constrain the
parameter k 
 1

4 .

3. Dominant Energy Condition (DEC)

In accordance with DEC, the effective pressure peff

should not be negative, i.e. peff 
 0 where

peff ¼ 1

2

X2
i¼1

Ti
i : (A4)

One can show that DEC, together with SEC and WEC,
impose the following condition on the parameter k as

k >
1

2
: (A5)

4. Causality Condition (CC)

In addition to the energy conditions, one may impose the
causality condition (CC)

0 � peff


< 1; (A6)

which implies that

1

2
� k < 1: (A7)

The CC is clearly violated in our solutions since we abide
by the parameter k > 1 throughout the paper.
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