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Maggiore’s method (MM), which evaluates the transition frequency that appears in the adiabatic invariant from the highly damped
quasinormalmode (QNM) frequencies, is used to investigate the entropy/area spectra of theGarfinkle–Horowitz–Strominger black
hole (GHSBH). Instead of the ordinaryQNMs,we compute the boxedQNMs (BQNMs) that are the characteristic resonance spectra
of the confined scalar fields in the GHSBH geometry. For this purpose, we assume that the GHSBH has a confining cavity (mirror)
placed in the vicinity of the event horizon.We then show how the complex resonant frequencies of the caged GHSBH are computed
using the Bessel differential equation that arises when the scalar perturbations around the event horizon are considered. Although
the entropy/area is characterized by the GHSBH parameters, their quantization is shown to be independent of those parameters.
However, both spectra are equally spaced.

1. Introduction

Currently, one of the greatest projects in theoretical physics
is to unify general relativity (GR) with quantum mechanics
(QM). Such a new unified theory is known as the quantum
gravity theory (QGT) [1]. Recent developments in physics
show that our universe has a more complex structure than
that predicted by the standard model [2]. The QGT is
considered to be an important tool that can tackle this
problem. However, current QGT still requires further exten-
sive development to reach completion. The development
of the QGT began in the seventies when Hawking [3, 4]
and Bekenstein [5–9] considered the black hole (BH) as a
quantum mechanical system rather than a classical one. In
particular, Bekenstein showed that the area of the BH should
have a discrete and equally spaced spectrum

A
𝑛
= 𝜖𝑛ℎ = 8𝜋𝜉𝑛ℎ, (𝑛 = 0, 1, 2, . . .) , (1)

where 𝜖 is the undetermined dimensionless constant and 𝜉 is
of the order of unity. The above expression also shows that
the minimum increase in the horizon area is ΔAmin = 𝜖ℎ.
Bekenstein [7, 8] also conjectured that for the Schwarzschild
BH (also for the Kerr-Newman BH) the value of 𝜖 is 8𝜋 (or

𝜉 = 1). Following the seminal work of Bekenstein, various
methods have been suggested to compute the area spectrum
of the BHs. Some methods used for obtaining the spectrum
can admit that the value of 𝜖 is different than that obtained
by Bekenstein; this has led to the discussion of this subject in
the literature (for a review of this topic, see [10] and references
therein). Among those methods, theMM’s results [11] show a
perfect agreement with Bekenstein’s result by modifying the
Kunstatter’s [12] formula as

𝐼adb = ∫
𝑑𝑀

Δ𝜔

, (2)

where 𝐼adb denotes the adiabatic invariant quantity and Δ𝜔 =
𝜔
𝑛−1

− 𝜔
𝑛
represents the transition frequency between the

subsequent levels of an uncharged and static BH with the
total energy (or mass) 𝑀. However, the researchers [13–15]
working on this issue later realized that the above definition
is not suitable for the charged rotating (hairy) BHs that the
generalized form of the definition should be given by

𝐼adb = ∫
𝑇𝑑𝑆

Δ𝜔

, (3)
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where 𝑇 and 𝑆 denote the temperature and the entropy
of the BH, respectively. Thus, using the first law of BH
thermodynamics, (3) can be modified for the considered BH.
According to the Bohr-Sommerfeld quantization rule, 𝐼adb
behaves as a quantized quantity (𝐼adb≃ 𝑛ℎ)while the quantum
number 𝑛 tends to infinity. To determine Δ𝜔, Maggiore
considered the BH as a damped harmonic oscillator that has
a proper physical frequency in the form of 𝜔 = (𝜔2

𝑅
+ 𝜔

2

𝐼
)

1/2,
where 𝜔

𝑅
and 𝜔

𝐼
are the real and imaginary parts of the

frequency, respectively. For the highly excited modes (𝑛 →

∞), 𝜔
𝐼
≫ 𝜔
𝑅
and therefore Δ𝜔 ≃ Δ𝜔

𝐼
. Hod [16, 17] was the

first to argue that the QNMs can be used in the identification
of the quantum transitions for the 𝐼adb. Subsequently, there
have been other published papers that use theMM to achieve
similar results (see, for instance, [18–25]).

In this paper, we focus on the investigation of the GHSBH
[26, 27] spectra. The GHSBH is a member of a family of
solutions for the low-energy limit of the string theory. This
spacetime is obtained when the field content of the Einstein–
Maxwell theory is enlarged to cover a dilaton field, which
couples to the metric and the gauge field nontrivially. This
causes the charged stringy BHs to differ significantly from
the Reissner–Nordström (RN) BH. To employ the MM, the
QNMs (a set of complex frequencies arising from the per-
turbed BH) of the GHSBH should be computed. To achieve
this, we first consider the KGE for a massless scalar field in
the background of the GHSBH. After separating the angular
and the radial equations, we obtain a Schrödinger-like wave
equation, which is the so-called Zerilli equation [28].

In fact, the spectroscopy of the GHSBH was previously
studied by Wei et al. [29]. They used the QNMs of Chen
and Jing [30] who studied the monodromy method [31] and
obtained an equal spacing of GHSBH spectra at the high
frequency modes. There are several methods to calculate
the QNMs, such as the WKB method, the phase integral
method, continued fractions, and direct integrations of the
wave equation in the frequency domain [32]. Our main
goal in this study is to consider a recent analytical method,
which is invented by Hod [33] for obtaining the GHSBH’s
resonance spectra or the BQNMs [34–37] and is different
from the monodromy method. Thus, we seek to support the
study of Wei et al. [29] because we believe that the studies
that obtain the same conclusion using different methods are
more reliable. For this purpose, we consider the GHSBH as
a caged BH, which describes a BH confined within a finite-
volume cavity. Hod’s idea is indeed based on the recent study
[38], which provides compelling evidence that spherically
symmetric confined scalar fields in a cavity of Einstein-Klein-
Gordon system generically collapse to form caged BHs. To
this end, we consider amirror (confining cavity) surrounding
the GHSBH that is placed at a constant radial coordinate
with a radius 𝑟

𝑚
. The scalar field Φ is imposed to terminate

at the mirror’s location, which requires to use the Dirichlet
boundary condition (DBC) (Φ(𝑟)|

𝑟=𝑟
𝑚

= 0) and Neumann
boundary condition (NBC) ((𝑑Φ(𝑟)/𝑑𝑟)|

𝑟=𝑟
𝑚

= 0). In the
framework of this scenario, we focus our analysis of the radial
wave equation on the near-horizon (NH) region [33]. We
then derive the BQNMs of the GHSBH based on the fact that,
for theQNMs to exist, the outgoingwavesmust be terminated

at the event horizon. The NH form of the Zerilli equation is
reduced to a Bessel differential equation [39]. After choosing
the expedient solution, we impose the Dirichlet and Neu-
mann boundary conditions. Then, we consider some of the
transformed features of the Bessel functions for finding the
resonance conditions. Next, we use an iteration scheme to
define the BQNMs of the GHSBH. Once the BQNMs are
obtained, we use the transition frequency Δ𝜔

𝐼
in (3) and

obtain the GHSBH area/entropy spectra.
The remainder of this paper is arranged as follows.

Section 2 introduces the GHSBH metric and analyzes the
KGE for a massless scalar field in this geometry. Using the
separation of variables technique, we then reduce the physical
problem to the Zerilli equation. In Section 3, we show that the
Zerilli equation reduces to a Bessel differential equation in
the vicinity of the event horizon.TheDirichlet andNeumann
boundary conditions at the surface 𝑟 = 𝑟

𝑚
of the confining

cavity single out two discrete sets of complex BQNMs of
the caged GHSBH. Finally, we apply the MM to obtain
the quantum spectra of the entropy/area of the GHSBH.
Conclusions are presented in Section 4. (Throughout the
paper, we set 𝑐 = 𝐺 = 𝑘

𝐵
= 1).

2. GHSBH and the Separation of
the Massless KGE on It

In this section, we represent the geometry and some of
the thermodynamical properties of the GHSBH [26, 27].
We also derive the Zerilli equation and its corresponding
effective potential for a massless scalar field propagating in
the GHSBH background.

In the low-energy limit of the string field theory, the four-
dimensional Einstein-Maxwell-dilaton low-energy action (in
Einstein frame) describing the dilaton field 𝜙 coupled to a
𝑈(1) gauge field is given by

𝑆 = ∫𝑑

4

𝑥√−𝑔 (−𝑅 + 2 (∇𝜙)

2

+ 𝑒

−2𝜙

𝐹

2

) , (4)

with 𝐹2 = 𝐹
𝜇𝜐
𝐹

𝜇𝜐 in which 𝐹
𝜇𝜐
is theMaxwell field associated

with the 𝑈(1) subgroup of 𝐸
8
× 𝐸
8
or Spin(32)/𝑍

2
[26, 27].

After applying the variational principle to the above action,
we obtain the following field equations:

∇
𝜇
(𝑒

−2𝜙

𝐹

𝜇]
) = 0,

∇

2

𝜙 +

1

2

𝑒

−2𝜙

𝐹

2

= 0,

𝑅
𝜇] = 2∇𝜇𝜙∇]𝜙 − 𝑔𝜇] (∇𝜙)

2

+ 2𝑒

−2𝜙

𝐹
𝜇𝜌
𝐹

𝜌

] −
1

2

𝑔
𝜇]𝑒
−2𝜙

𝐹

2

.

(5)

Their solutions are expressed by the following static and
spherically symmetric metric:

𝑑𝑠

2

= −𝑓 (𝑟) 𝑑𝑡

2

+

𝑑𝑟

2

𝑓 (𝑟)

+ 𝐴 (𝑟) 𝑑Ω

2

, (6)
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where 𝑑Ω2 is the standardmetric on the 2-sphere.Themetric
functions are given by

𝑓 (𝑟) = 1 −

𝑟
+

𝑟

,

𝐴 (𝑟) = 𝑟 (𝑟 − 2𝑎) .

(7)

The physical parameter 𝑎 is defined by

𝑎 =

𝑄

2

𝑒

−2𝜙
0

2𝑀

,
(8)

where 𝑄, 𝑀, and 𝜙
0
describe the magnetic charge, mass,

and the asymptotic constant value of the dilaton, respectively.
Besides, 𝑟

+
= 2𝑀 represents the event horizon of theGHSBH.

In this spacetime, the dilaton field is governed by

𝑒

−2𝜙

= 𝑒

−2𝜙
0

(1 −

2𝑎

𝑟

) , (9)

and the Maxwell field reads

𝐹 = 𝑄 sin 𝜃𝑑𝜃 ∧ 𝑑𝜑. (10)

For the electric charge case, one can simply apply the
following duality transformations:

̃
𝐹
𝜇] =

1

2

𝑒

−2𝜙

𝜖

𝜆𝜌

𝜇]𝐹𝜆𝜌, 𝜙 → −𝜙. (11)

Since 𝑅2 part of the GHSBH metric (6) is identical to
the Schwarzschild BH, the surface gravity [40] naturally
coincides with Schwarzschild’s one:

𝜅 = lim
𝑟→𝑟
+

√
−

1

2

∇

𝜇
𝜒

]
∇
𝜇
𝜒] =

𝑓



(𝑟)

2









𝑟=𝑟
+

=

1

4𝑀

, (12)

where the timelike killing vector is 𝜒] = [1, 0, 0, 0].Therefore,
the Hawking temperature 𝑇

𝐻
of the GHSBH reads

𝑇
𝐻
=

ℎ𝜅

2𝜋

=

ℎ

8𝜋𝑀

. (13)

Thus, the Hawking temperature of the GHSBH is inde-
pendent of the amount of the charge. But, the similarity
between the GHSBH and the Schwarzschild BH is apparent
since the radial coordinate does not belong to the areal
radius. So, the entropy of the GHSBH is different than the
Schwarzschild BH’s entropy:

𝑆

BH
=

A

4ℎ

=

𝜋𝑟
+
(𝑟
+
− 2𝑎)

ℎ

.
(14)

In fact, at extremal charge 𝑄 =
√
2𝑀𝑒

𝜙
0 , that is, 𝑎 = 𝑀,

the BH has a vanishing area and hence its entropy is zero.
The extremal GHSBH is not a BH in the ordinary sense since
its area has become degenerate and singular: it is indeed
a naked singularity. Unlike the singularity of RN, which is
timelike, this singularity is null andwhence outward-directed
radial null geodesics cannot hit it. For a detailed study of
the null geodesics of the GHSBH, one may refer to [41]. On

the other hand, one can easily prove that the first law of
thermodynamics,

𝑇
𝐻
𝑑𝑆

BH
= 𝑑𝑀 − 𝑉

𝐻
𝑑𝑄, (15)

holds for the GHSBH. In (15), the electric potential on the
horizon is 𝑉

𝐻
= 𝑎/𝑄. To obtain the GHSBH spectra via

the MM, we shall first consider the massless scalar field Ψ
satisfying the KGE:

1

√−𝑔

𝜕] (√−𝑔𝑔
𝜇]
𝜕
𝜇
Ψ) = 0. (16)

The chosen ansatz for the scalar field Ψ has the following
form:

Ψ = 𝐴 (𝑟)

−1/2

ϝ (𝑟) 𝑒

−𝑖𝜔𝑡

𝑌

𝑚

𝑙
(𝜃, 𝜑) , Re (𝜔) > 0, (17)

in which 𝜔 and 𝑌

𝑚

𝑙
(𝜃, 𝜑) represent the frequency of the

propagating scalar wave and the spheroidal harmonics with
the eigenvalue 𝐿 = −𝑙(𝑙 + 1), respectively. After some algebra,
the radial equation can be reduced to the following form:

[−

𝑑

2

𝑑𝑟

∗2
+ 𝑉 (𝑟)] ϝ (𝑟) = 𝜔

2

ϝ (𝑟) , (18)

which is nothing but the Zerilli equation [28]. Employing the
tortoise coordinate 𝑟∗ defined as

𝑟

∗

= ∫

𝑑𝑟

𝑓 (𝑟)

, (19)

we get

𝑟

∗

= 𝑟 + 𝑟
+
ln( 𝑟

𝑟
+

− 1) . (20)

Inversely, one obtains

𝑟 = 𝑟
+
[1 + 𝑊 (𝑢)] , (21)

where 𝑢 = 𝑒(𝑟
∗

/𝑟
+
−1) and𝑊(𝑢) represents the Lambert-𝑊 or

the omega function [42]. It can be checked that

lim
𝑟→𝑟
+

𝑟

∗

= −∞, lim
𝑟→∞

𝑟

∗

= ∞. (22)

The effective or the so-called Zerilli potential𝑉(𝑟) is given
by

𝑉 (𝑟) =

𝑓 (𝑟)

𝑟 (𝑟 − 2𝑎)

[𝐿 −

𝑎

2

𝑟 (𝑟 − 2𝑎)

𝑓 (𝑟) +

2𝑀 (𝑟 − 𝑎)

𝑟

2
] .

(23)

3. BQNM Frequencies and Entropy/Area
Spectra

In this section, we are interested in solutions of the Zerilli
equation (17) around the NH. In computing the BQNM
frequencies, we first impose the condition that QNMs should
be ingoing plane waves at the event horizon. Secondly, we
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borrow ideas from recent study [33] and impose the DBC
andNBC to have the resonance conditions. In computing the
BQNMs, we use an iteration scheme to resolve the resonance
conditions.

The metric function 𝑓(𝑟) can be rewritten as follows:

𝑓 (𝑟) → 𝑓 (𝑥) =

𝑥

𝑥 + 1

, (24)

where

𝑥 =

𝑟 − 𝑟
+

𝑟
+

. (25)

Thus, one finds

𝑓 (𝑥) ≅ 𝑥 + 𝑂 (𝑥

2

) , (26)

𝑟

∗

= ∫

𝑟
+
𝑑𝑥

𝑓 (𝑥)

≅ 𝑟
+
ln (𝑥) = 1

2𝜅

ln𝑥, (27)

in the NH region (𝑥 → 0). From (27), one reads

𝑥 = 𝑒

2𝑦

, (28)

where

𝑦 = 𝜅𝑟

∗

. (29)

After substituting (25) into (23), the NH form of the
Zerilli potential can be approximated by

𝑉NH (𝑥) =
𝐿 + 𝛽

𝑟
+
𝛾

𝑥 + 𝑂 (𝑥

2

) , (30)

where the parameters are given by

𝛽 =

𝑟
+
− 𝑎

𝑟
+

, 𝛾 = 𝑟
+
− 2𝑎. (31)

Substituting (28)–(30) into (18), one obtains the following
NH form of the Zerilli equation:

[−

𝑑

2

𝑑𝑦

2
+

4𝑟
+
(𝐿 + 𝛽)

𝛾

𝑒

2𝑦

]ϝ (𝑦) = �̃�

2

ϝ (𝑦) . (32)

The above differential equation has two linearly indepen-
dent solutions:

ϝ (𝑦) = 𝐶
1
𝐽
−𝑖�̃�

(2𝑖
√
Δ𝑒

𝑦

) + 𝐶
2
𝑌
−𝑖�̃�

(2𝑖
√
Δ𝑒

𝑦

) , (33)

and correspondingly

ϝ (𝑥) = 𝐶
1
𝐽
−𝑖�̃�

(2𝑖
√
Δ𝑥) + 𝐶

2
𝑌
−𝑖�̃�

(2𝑖
√
Δ𝑥) , (34)

where 𝐽
𝜐
(𝑧) and 𝑌

𝜐
(𝑧) are called Bessel functions [39] of the

first and second kinds, respectively. 𝐶
1
and 𝐶

2
are constants.

The parameters of the special functions are given by

�̃� =

𝜔

𝜅

, (35)

Δ =

𝑟
+
(𝐿 + 𝛽)

𝛾

. (36)

The following limiting forms (when 𝜐 is fixed and 𝑧 → 0)
of the Bessel functions are needed for our analysis [39, 43]:

𝐽
𝜐
(𝑧) ∼

[(1/2)𝑧]

𝜐

Γ (1 + 𝜐)

, (𝜐 ̸= −1, −2, −3, . . .) ,

𝑌
𝜐
(𝑧) ∼ −

1

𝜋

Γ (𝜐) (

1

2

𝑧)

−𝜐

, (R𝜐 > 0) .

(37)

By using them, we obtain the NH (𝑒𝑦 ≪ 1) behavior of
the solution (33) as

ϝ ∼ 𝐶
1

(𝑖
√
Δ)

−𝑖�̃�

Γ (1 − 𝑖�̃�)

𝑒

−𝑖�̃�𝑦

− 𝐶
2

1

𝜋

Γ (−𝑖�̃�) (𝑖
√
Δ)

𝑖�̃�

𝑒

𝑖�̃�𝑦

= 𝐶
1

(𝑖
√
Δ)

−𝑖�̃�

Γ (1 − 𝑖�̃�)

𝑒

−𝑖𝜔𝑟
∗

− 𝐶
2

1

𝜋

Γ (−𝑖�̃�) (𝑖
√
Δ)

𝑖�̃�

𝑒

𝑖𝜔𝑟
∗

,

(38)

in which 𝐶
1
and 𝐶

2
correspond to the amplitudes of the

NH ingoing and outgoing waves, respectively. Since the
QNMs impose that the outgoing waves must spontaneously
terminate at the horizon, we deduce that 𝐶

2
= 0. Thus, the

acceptable solution of the radial equation (34) is given by

ϝ (𝑥) = 𝐶
1
𝐽
−𝑖�̃�

(2𝑖
√
Δ𝑥) . (39)

Following [33, 38], we consider the DBC at the surface
𝑥 = 𝑥

𝑚
of the confining cage:

ϝ(𝑥)




𝑥=𝑥
𝑚

= 0. (40)

Thus, we have

𝐽
−𝑖�̃�

(2𝑖√Δ𝑥
𝑚
) = 0. (41)

Using the following relation [39]

𝑌
𝜐
(𝑧) = 𝐽

𝜐
(𝑧) cot (𝜐𝜋) − 𝐽

−𝜐
(𝑧) csc (𝜐𝜋) , (42)

we can express the condition (41) as

tan (𝑖�̃�𝜋) =
𝐽
𝑖�̃�
(2𝑖√Δ𝑥

𝑚
)

𝑌
𝑖�̃�
(2𝑖√Δ𝑥

𝑚
)

, (43)

which is called the resonance condition. According to the
definition of the caged BHs, the boundary of the confining
cavity is located at the vicinity of the event horizon [33].
Namely, we have

𝑧
𝑚
≡ Δ𝑥
𝑚
≪ 1 → 𝑟

𝑚
≈ 𝑟
+
, (44)

in the NH region. Using (37), we can rewrite the resonance
condition (43) as

tan (𝑖�̃�𝜋) ∼ −
𝜋 (𝑖√𝑧𝑚

)

𝑖�̃�

Γ (𝑖�̃�) Γ (𝑖�̃� + 1) (𝑖√𝑧𝑚
)

−𝑖�̃�

= 𝑖

𝜋𝑒

−𝜋�̃�

�̃�Γ

2
(𝑖�̃�)

𝑧

𝑖�̃�

𝑚
.

(45)
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The NBC is given by [33, 38]

𝑑ϝ(𝑥)

𝑑𝑥








𝑥=𝑥
𝑚

= 0. (46)

Using the derivative features of the Bessel functions given
in [39], we obtain

𝐽
−𝑖�̃�−1

(2𝑖√𝑧
𝑚
) − 𝐽
−𝑖�̃�+1

(2𝑖√𝑧
𝑚
) = 0. (47)

Using (42), we derive the following relation:

𝑌
𝜐+1

(𝑧) − 𝑌
𝜐−1

(𝑧) = cot (𝜐𝜋) [𝐽
𝜐+1

(𝑧) − 𝐽
𝜐−1

(𝑧)]

− csc (𝜐𝜋) [𝐽
−𝜐−1

(𝑧) − 𝐽
−𝜐+1

(𝑧)] .

(48)

Combining (47) and (48), we further getNBC’s resonance
condition:

tan (𝑖�̃�𝜋)

=

𝐽
𝑖�̃�−1

(2𝑖√𝑧𝑚
)

𝑌
𝑖�̃�+1

(2𝑖√𝑧𝑚
)

[

−1 + 𝐽
𝑖�̃�+1

(2𝑖√𝑧𝑚
) /𝐽
𝑖�̃�−1

(2𝑖√𝑧𝑚
)

1 − 𝑌
𝑖�̃�−1

(2𝑖√𝑧𝑚
) /𝑌
𝑖�̃�+1

(2𝑖√𝑧𝑚
)

] .

(49)

From (37), we find

𝐽
𝑖�̃�+1

(2𝑖√𝑧𝑚
)

𝐽
𝑖�̃�−1

(2𝑖√𝑧𝑚
)

≡

𝑌
𝑖�̃�−1

(2𝑖√𝑧𝑚
)

𝑌
𝑖�̃�+1

(2𝑖√𝑧𝑚
)

∼ 𝑂 (𝑧
𝑚
) , (50)

in the NH region. Thus, the resonance condition (49)
becomes

tan (𝑖�̃�𝜋) ∼ −
𝐽
𝑖�̃�−1

(2𝑖√𝑧𝑚
)

𝑌
𝑖�̃�+1

(2𝑖√𝑧𝑚
)

= −𝑖

𝜋𝑒

−𝜋�̃�

�̃�Γ

2
(𝑖�̃�)

𝑧

𝑖�̃�

𝑚
. (51)

One can immediately realize from (44) that the resonance
conditions (49) and (51) are small quantities.We can therefore
use an iteration scheme to resolve the resonance conditions.
The 0th order resonance equation is given by [33]

tan (𝑖�̃�(0)
𝑛
𝜋) = 0, (52)

which implies that

�̃�

(0)

𝑛
= −𝑖𝑛, (𝑛 = 0, 1, 2, . . .) . (53)

The 1st order resonance condition is obtained after sub-
stituting (53) into r.h.s of (49) and (51). Hence, we have

tan (𝑖�̃�(1)
𝑛
𝜋) = ±𝑖

𝜋𝑒

𝑖𝜋𝑛

(−𝑖𝑛) Γ

2
(𝑛)

𝑧

𝑛

𝑚
, (54)

which reduces to

tan (𝑖�̃�(1)
𝑛
𝜋) = ∓𝑛

𝜋 (−𝑧
𝑚
)

𝑛

(𝑛!)

2
, (55)

whereminus (plus) stands for theDBC (NBC). For having the
general characteristic resonance spectra of the cagedGHSBH,
we use the fact that

tan (𝑥 + 𝑛𝜋) = tan (𝑥) ≈ 𝑥, (56)

in the 𝑥 ≪ regime. Namely, we obtain

𝑖�̃�
𝑛
𝜋 = 𝑛𝜋 ∓ 𝑛

𝜋 (−𝑧
𝑚
)

𝑛

(𝑛!)

2
. (57)

Therefore, one finds

�̃�
𝑛
= −𝑖𝑛 [1 ∓

(−𝑧
𝑚
)

𝑛

(𝑛!)

2
] . (58)

From (35), we read the BQNMs as

𝜔
𝑛
= −𝑖𝜅𝑛 [1 ∓

(−𝑧
𝑚
)

𝑛

(𝑛!)

2
] , (𝑛 = 0, 1, 2, . . .) . (59)

Here, 𝑛 is called the overtone quantum number or the so-
called resonance parameter [44]. For the highly excited states
(𝑛 → ∞), (59) behaves as

𝜔
𝑛
≈ −𝑖𝜅𝑛, (𝑛 → ∞) . (60)

The above result is in accordance with the results of [33,
45–48]. Hence, the transition frequency becomes

Δ𝜔
𝐼
= 𝜅 =

2𝜋𝑇
𝐻

ℎ

. (61)

Substituting (61) into (3), we obtain

𝐼adb =
𝑆

BH

2𝜋

ℎ.
(62)

Acting upon the Bohr-Sommerfeld quantization rule
(𝐼adb = ℎ𝑛), we find the entropy spectrum as

𝑆

BH
𝑛
= 2𝜋𝑛. (63)

Furthermore, since 𝑆BH = A/4ℎ, we can also read the area
spectrum:

A
𝑛
= 8𝜋ℎ𝑛. (64)

Thus, the minimum area spacing becomes

ΔAmin = 8𝜋ℎ, (65)

which represents that the entropy/area spectra of the GHSBH
are evenly spaced. It is obvious that the spectra of the
GHSBH are clearly independent of the dilaton parameter 𝑎.
Furthermore, the spectral-spacing coefficient becomes 𝜖 =

8𝜋, which is in agreement with the Bekenstein’s original result
[7–9]. In short, our result (65) supports the study ofWei et al.
[29].

4. Conclusion

In this paper, the quantum entropy/area spectra of the
GHSBH are investigated via the MM that is based on the adi-
abatic invariant formulation (3) of the BHs. For this purpose,
we have considered caged GHSBH whose confining cage
(mirror) is placed in the NH region 𝑟

𝑚
≈ 𝑟
+
[33]. We have
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therefore attempted to find the BQNMs (resonance spectra)
of the GHSBH. The massless KGE for the GHSBH geometry
has been separated into the angular and the radial parts. In
particular, the Zerilli equation (18) with its effective potential
(23) of the associated radial equation has been obtained. The
NH form of the Zerilli equation is well approximated by
a Bessel differential equation. After imposing the boundary
conditions appropriate for purely ingoing waves at the event
horizon with the DBC and NBC, we have obtained the
resonant frequencies of the caged GHSBH. We have then
applied the MM to the highly damped BQNMs to derive the
entropy/area spectra of the GHSBH. The obtained spectra
are equally spaced and are independent of the physical
parameters of the GHSBH as concluded in the study of Wei
et al. [29]. Moreover, our results support the Kothawala et al.’s
conjecture [18], which states that the BHs in Einstein’s gravity
theory have equispaced area spectrum.
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