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Abstract

We study quasinormal modes (QNMs) of uncharged Grumiller black hole (GBH). This massive

BH has a Rindler acceleration $a$, and hence it is also called Rindler modified Schwarzschild BH.

After reducing the radial equation of the massless Klein-Gordon equation to the Zerilli equation,

we compute the complex frequencies of the QNMs of the GBH. To this end, an approximation

method which considers small perturbation around its horizon is used. Considering the highly

damped QNMs in the process proposed by Maggiore, the quantum entropy and area spectra of

these BHs are found. Although the QNM frequencies are tuned by the Rindler term, we show in

detail that the spacing does not depend on it. Here, dimensionless constant ǫ of the area spectrum

is found to be double of its Schwarzschild value. The latter result is also discussed.
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I. INTRODUCTION

One of the trend subjects in the thermodynamics of BHs is the quantization of the

BH horizon area and entropy. The pioneer works in this regard dates back to 1970s, in

which Bekenstein showed that BH entropy is proportional to the area of the BH horizon

[1, 2]. Furthermore, Bekenstein [3–5] conjectured that if the BH horizon area is an adiabatic

invariant, according to Ehrenfest’s principle it has a discrete and equally spaced spectrum

as the following

An = ǫnl2p, (n = 0, 1, 2.......), (1)

where ǫ is a dimensionless constant and lp is the Planck length. An denotes the area

spectrum of the BH horizon and n is the quantum number. One can easily see that when

the BH absorbs a test particle the minimum increase of the horizon area is ∆Amin = ǫl2p. In

units with c = G = 1 and l2p = ~, the undetermined dimensionless constant ǫ is considered

as the order of unity. Bekenstein purported that the BH horizon is formed by patches of

equal area ǫ~ with ǫ = 8π. After that, many studies have been done in order to obtain such

equally spaced area spectrum, whereas the spacing could be different than ǫ = 8π (a reader

may refer to [6] and references therein).

Since a BH is characterized by mass, charge and angular momentum, it can be treated

as an elementary particle. Since each object made by the elementary particles has its own

characteristic vibrations known as the QNM frequencies, QNMs should reveal some infor-

mation about the BH. Specially they are important for observational aspect of gravitational
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waves phenomena. In the same conceptual framework, Hod [7, 8] suggested that ǫ can be

obtained by using the QNM of a BH. Based on Bohr’s correspondence principle [9], Hod

theorized that the real part of the asymptotic QNM frequency (ωR) of a highly damped

BH is associated with the quantum transition energy between two quantum levels of the

BH. This transition frequency allows a change in the BH mass as ∆M = ~ωR. For the

Schwarzschild BH, Hod calculated the value of the dimensionless constant as ǫ = 4 ln 3.

Thereafter, Kunstatter [10] considered the natural adiabatic invariant Iadb for system with

energy E and vibrational frequency ∆ω (for a BH, E is identified with the mass M ) which

is given by

Iadb =

∫
dE

∆ω
. (2)

At large quantum numbers, the adiabatic invariant is quantized via the Bohr-Sommerfeld

quantization; Iadb ≃ n~. Thus, Hod’ result (ǫ = 4 ln 3) is also derived by Kunstatter.

Later on, Maggiore [11] set up another method in which the QNM of a perturbed BH is

considered as a damped harmonic oscillator. This approach was plausible since the QNM

has an imaginary part. In other words, Maggiore considered the proper physical frequency

of the harmonic oscillator with a damping term in the form of ω = (ω2
R + ω2

I )
1

2 , where ωR

and ωI are the real and imaginary parts of the frequency of the QNM, respectively. In the

n ≫ 1 limit which is equal to the case of highly excited mode, ωI ≫ ωR. Therefore, one

infers that ωI should be used rather than ωR in the adiabatic quantity. As a result, it was

found that ǫ = 8π, which corresponds to the same area spectrum of Bekenstein’s original

result of the Schwarzschild BH [12, 13]. By this time, we can see numerous studies in the

literature in which Maggiore’s method (MM) was employed (see for instance [14–20]).

Rindler acceleration ”a” [21] has recently become popular anew. This is because of

Grumiller’s BH (GBH) having a static and spherically symmetric metric [22, 23] which

attempts to describe the gravity of a central mass at large distances. In [22], it was suggested

that the effective potential of a central gravitating mass M should include r−dependent

acceleration term. Therefore the problem effectively degrades to a 2D system where the

Newton’s gravitational force modifies into FG = −m(M
r2

+ a) in which m is the mass of a

test particle. For a < 0, the two forces represent repulsive property however while a > 0

gives an inward attractive force. Here, unless stated otherwise, throughout the paper we

shall use a > 0. Firstly, this attractive acceleration was hypothesized to decipher the
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inexplicable acceleration that revealed after the long period observations on the Pioneer

spacecrafts – Pioneer 10 and Pioneer 11 – after they covered a distance about 3 × 109km

on their trajectories out of the Solar System [24]. The associated acceleration is unlikely

attractive i.e., directed toward the Sun, and this phenomenon is known as the Pioneer

anomaly. However, the newest and widely acclaimed study [25] on this subject has shown

that the Pioneer anomaly could be explained by thermal heat loss of the sattelite. Besides

these, it is also speculated that the Rindler acceleration may play the role of dark matter in

galaxies [22, 23]. So, the integration of the Newton’s theory with the Rindler acceleration

could explain rotation curves of spiral galaxies without the presence of a dark matter halo.

In brief, the main role of a is to constitute a rough model involving rotation curves with a

linear growing of the velocity with the radius. Up to the present, the main studies on the

GBH are [26, 27] in which light bending, gravitational redshift and perihelion shifts were

computed for the planets in our solar system. For the most recent work on the GBH, which

is about its geodesics a reader may consult [28]. As a last remark, when the Rindler term

in the GBH metric is terminated (a = 0), all results reduce to those of Schwrazschild BH as

it must.

In this paper, our main motivation is to examine how the influence of the Rindler ac-

celeration effects the GBH spectroscopy.We shall first compute the QNMs of the GBH and

subsequently use them in the MM. For this purpose, we organize the the paper as follows. In

the next section, we describe the GBH metric and its basic thermodynamical features. We

also represent that how the massless Klein Gordon equation reduces to the one dimensional

Schrödinger-type wave equation which is the so-called the Zerilli equation [29] in the GBH

geometry. Sect. 3 is devoted to the calculation of the QNMs of the GBH by considering

the small perturbations around the horizon. After that, we employ the MM for the GBH in

order to compute its entropy and area spectra. Finally the conclusion is given in Sect. 4.

II. GBH AND ITS ZERILLI EQUATION

In this section, we represent the geometry and some thermodynamical properties of the

GBH. We explicitly show how one gets the radial equation for a massless scalar field in the

background of the GBH. Then, we give the one-dimensional Schrödinger wave equation form

(the so-called Zerilli equation [29]) of the GBH.
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GBH’s line element [22] without cosmological constant is given by

ds2 = −H(r)dt2 +
dr2

H(r)
+ r2dΩ2, (3)

where dΩ2 is the standard metric on 2−sphere and the metric function H(r) is computed

as

H(r) = 1− 2M

r
+ 2ar,

=
2a

r
(r − rh)(r − r0), (4)

where M is the mass of the BH and a is a positive real constant, which corresponds to the

Rindler acceleration parameter. One can easily see that when a = 0, spacetime (1) reduces

to the well-known Schwarzschild BH. On the other hand, herein r0 is found to be

r0 = −
√
1 + 16aM + 1

4a
, (5)

which cannot be horizon due to its negative signature. Therefore, the GBH possesses

only one horizon (event horizon, rh) which is given by

rh =

√
1 + 16aM − 1

4a
, (6)

such that while a → 0 we get rh = 2M , as it is expected. After computing the scalars of

the metric, we obtain

K = RαβµνR
αβµν = 32

a2

r2
+ 48

M2

r6
,

R = −12
a

r
, (7)

RαβR
αβ = 40

a2

r2
.

which obviously show that central curvature singularity is at r = 0.

Surface gravity [30] of the GBH can simply be calculated through the following expression

κ =
H ′(r)

2

∣∣∣∣
r=rh

=
a (rh − r0)

rh
, (8)
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where a prime ”′” denotes differentiation with respect to r. From here on in, one obtains

the Hawking temperature TH of the GBH as

TH =
~κ

2π
,

=
a (rh − r0) ~

2πrh
, (9)

From the above expression, it is seen that while the GBH losing its M by virtue of

the Hawking radiation, TH increases (i.e., TH → ∞) with M → 0 in such a way that its

divergence speed is tuned by a. Meanwhile, one can check that lima→0 TH = 1
8πM

which

is well-known Hawking temperature computed for the Schwarzschild BH. The Bekenstein-

Hawking entropy is given by

SBH =
Ah

4~
,

=
πr2h
~

, (10)

Its differential form is written as

dSBH =
4π√

1 + 16aM~
rhdM, (11)

By using the above equation, the validity of the first law of thermodynamics for the GBH

can be approved via

THdSBH = dM. (12)

In order to find the entropy spectrum by using the MM, here we shall firstly consider

the massless scalar wave equation on the geometry of the GBH. The general equation of

massless scalar field in a curved spacetime is written as

�Ψ = 0, (13)

where � denotes the Laplace-Beltrami operator. Thus, the above equation is equal to

1√−g
∂i(

√
−g∂iΨ), i = 0...3, (14)
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Using the following ansatz for the scalar field Ψ in the above equation

Ψ =
R(r)

r
eiωtY m

L (θ, ϕ), Re(ω) > 0, (15)

in which Y m
L (θ, ϕ) is the well-known spheroidal harmonics which admits the eigenvalue

−L(L+ 1) [31], one obtains the following Zerilli equation [29] as

[
− d2

dr∗2
+ V (r)

]
R(r) = ω2R(r), (16)

where the effective potential is computed as

V (r) = H(r)

[
L(L+ 1)

r2
+

2M

r3
+

a

r

]
, (17)

The tortoise coordinate r∗ is defined as,

r∗ =

∫
dr

H(r)
, (18)

which yields

r∗ =
1

2a(rh − r0)
ln

[
( r
rh

− 1)rh

(r − r
0
)r0

]
, (19)

Finally, one can easily check the asymptotic limits of r∗ as follows

lim
r→rh

r∗ = −∞ and lim
r→∞

r∗ = ∞. (20)

III. QNMS AND ENTROPY/AREA SPECTRA OF GBH

In this section, we intend to derive the entropy and area spectra of the GBH by using the

MM. Gaining inspiration from the studies [32–34], here we use an approximation method in

order to define the QNMs. According to this method, to obtain QNM it is sufficient to use

one of the two definitions of the QNMs; only ingoing waves should exist near the horizon.

Namely,

R(r)|QNM ∼ eiωr
∗

at r∗ → −∞, (21)
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Now we can proceed to solve Eq. (16) in the near horizon limit and then impose the

above boundary condition to find the frequency of QNM i.e., ω. Expansion of the metric

function H(r) around the event horizon is given by

H(r) = H ′(rh)(r − rh) + a(r − rh)
2,

≃ 2κ(r − rh), (22)

where κ is the surface gravity, which is nothing but 1
2
H ′(rh). From Eq. (18) we now

obtain

r∗ ≃ 1

2κ
ln(r − rh), (23)

Furthermore, after setting y = r − rh and inserting Eq. (22) into Eq. (17) together with

performing Taylor expansion around r = rh, we find the near horizon form of the effective

potential as

V (y) ≃ 2κy

[
L(L+ 1)

r2h
(1− 2y

rh
) +

2κ

rh
(1− y

rh
)

]
. (24)

After substituting Eq. (24) into the Zerilli equation (16), one gets

− 4κ2y2
d2R(y)

dy2
− 4κ2y

dR(y)

dy
+ V (y)R(y) = ω2R(y), (25)

Solution of the above equation yields

R(y) ∼ y
iω

2κ

1 1F1(â, b̂; ĉ), (26)

where 1F1(â, b̂; ĉ) is the confluent hypergeometric function [35]. The parameters of the

confluent hypergeometric functions are found to be

â =
1

2
+ i(

ω

2κ
− α̂

β̂
√
κ
),

b̂ = 1 + i
ω

κ
, (27)

ĉ = i
β̂x

2rh
√
κ
,

where
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β̂ = 4
√
rh
√

L(L+ 1) + κrh,

α̂ = L(L+ 1) + 2κrh, (28)

In the limit of y ≪ 1, the solution (26) becomes

R(y) ∼ C1y
−

iω

2κ

Γ(iω
κ
)

Γ(â)
+ C2y

iω

2κ

Γ(−iω
κ
)

Γ(1 + â− b̂)
, (29)

where constants C1 and C2 represent the amplitudes of the near-horizon outgoing and

ingoing waves, respectively. Now, since there is no outgoing wave in the QNM at the horizon,

the first term of Eq. (29) should be terminated. This is possible with the poles of the Gamma

function of the denominator. Therefore, the poles of the Gamma function are the policy

makers of the frequencies of the QNMs. Thus, the frequencies of the QNM of the GBH are

read as

ωs =
2
√
κα̂

β̂
+ i

2π

~
(2s+ 1)TH , (s = 1, 2, 3, ...) (30)

where m is the overtone quantum number of the QNM. Thus, the imaginary part of the

frequency of the QNM is

ωI =
2π

~
(2s+ 1)TH , (31)

As it can be seen from above, the Rindler acceleration plays a crucial role on ωI . While

a → 0 , ωI =
(2s+1)
4M

which is consistent with the Schwarzschild BH result [36, 37]. Hence the

transition frequency between two highly damped neighboring states becomes ∆ω ≡ ∆ωI =

ωs+1 − ωs = 4πTH/~. Hence, the adiabatic invariant quantity (2) turns out to be

Iadb =
~

4π

∫
dM

TH

, (32)

According to the first law of thermodynamics (12), it reads

Iadb =
SBH

4π
~, (33)

Finally, recalling the Bohr-Sommerfeld quantization rule Iadb = ~n, one gets the spacing

of the entropy spectrum as
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Sn = 4πn, (34)

Since S = A
4~
, the area spectrum is obtained as

An = 16πn~, (35)

From the above, we can simply measure the area spacing as

∆A = 16π~. (36)

It is easily seen that unlike to ωI the spectroscopy of the GBH is completely independent of

the Rindler term a. The obtained spacings between the levels are double of the Bekenstein’s

original result which means that ǫ = 16π. The discussion on this discrepancy is made in the

conclusion part.

IV. CONCLUSION

In this paper, the BH spectroscopy of the GBH is investigated through the MM. We

applied an approximation method given in [32–34] to the Zerilli equation (16) in order to

compute the QNM of the GBH. After a straightforward calculation, the QNM frequency

of the GBH are analytically found. The obtained result shows that imaginary part of the

frequency, ωI depends on the Rindler term a. Then, with the aid of Eq. (2), we obtained the

entropy/area spectra of the GBH. Both spectra are found to be independent of the Rindler

term a, and they are equally spaced. Futhermore, we read the dimensionless constant

as ǫ = 16π which means that the equi-spacing is the double of its Schwarzschild value:

ǫ = 8π [11]. This differentness may arise due to the Schwinger mechanism [38]. Because,

in the Bekenstein’s original work [2], one gets the entropy spectrum by combining both

the Schwinger mechanism and the Heisenberg quantum uncertainty principle. However,

the method that we applied here considers only the uncertainty principle via the Bohr-

Sommerfeld quantization. Therefore, as stated in [8], the spacings between two neighboring

levels may become different depending on the which method is preferred. Thus, finding

ǫ = 16π rather than its known value ǫ = 8π is not an unexpected result. As a last remark,

evenly spaced structure of the entropy and area spectra of the GBH is also in agreement
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with the Wei et al.’s conjecture [16], which proposes that static BHs of Einstein’s gravity

theory has equidistant quantum spectra of both entropy and area .
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