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Abstract

In this paper, we consider the relativistic Hamilton-Jacobi (HJ) equation and study the Hawking

radiation (HR) of scalar particles from uncharged Grumiller black hole (GBH) which is affordable

for testing in astrophysics. GBH is also known as Rindler modified Schwarzschild BH. Our aim is

not only to investigate the effect of the Rindler parameter a on the Hawking temperature (TH),

but to examine whether there is any discrepancy between the computed horizon temperature and

the standard TH as well. For this purpose, in addition to its naive coordinate system, we study

on the three regular coordinate systems which are Painlevé-Gullstrand (PG), ingoing Eddington-

Finkelstein (IEF) and Kruskal-Szekeres (KS) coordinates. In all coordinate systems, we calculate

the tunneling probabilities of incoming and outgoing scalar particles from the event horizon by

using the HJ equation. It has been shown in detail that the considered HJ method is concluded

with the conventional TH in all these coordinate systems without giving rise to the famous factor-

2 problem. Furthermore, in the PG coordinates Parikh-Wilczek’s tunneling (PWT) method is

employed in order to show how one can integrate the quantum gravity (QG) corrections to the

semiclassical tunneling rate by including the effects of self-gravitation and back reaction. We then

show how these corrections yield a modification in the TH .
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I. INTRODUCTION

Rindler acceleration [1], which acts on an observer accelerated in a flat spacetime has

recently become rage anew. This is due to its similarity with the mysterious acceleration

that revealed after the long period observations on the Pioneer spacecraft – Pioneer 10 and

Pioneer 11 – after they covered a distance about 3× 109km on their paths out of the Solar

System [2]. Contrary to the expectations, that mysterious acceleration is attractive i.e.,

directed toward the Sun and this phenomenon is known as the Pioneer anomaly. Firstly,

Grumiller [3] (and later together with his collaborators [4, 5]) showed the correlation between

the a and the Pioneer anomaly. On the other hand, Turyshev et al. [6] have recently made

an alternative study to the Grumiller’s ones in which the Pioneer anomaly is explained by

thermal heat loss of the satellites.

Another intriguing feature of the a is that it may play the role of dark matter in galaxies

[3, 4]. Namely, the incorporation of the Newton’s theory with the a might serve to explain

rotation curves of spiral galaxies without the presence of a dark matter halo (a reader may

refer to the study of Lin et al. [7]). For the galaxy-Sun pair, the a with the order∼ 10−11m/s2

in physical units is a very close value to MOND’s acceleration which successfully describes

rotation curves without a dark matter halo (see [8] and references therein). However, very

recently the studies [7, 8] have been retested and criticized by Cervantes-Cota and Gómez-

2



López [9].

As stated in [3, 4], the main function of the a is to constitute a crude model which

casts doubts on the description of rotation curves with a linear growing of the velocity with

the radius. By virtue of this, in the novel study of [3] it was suggested that the effective

potential of a point mass M should include r−dependent acceleration term. Moreover, in

the studies of [3, 4] it is explicitly shown that dilatonic field source in general relativity (GR)

is required for deriving a spacetime with the a. However, in performing this process one

should be cautious about the physical energy conditions. It has been recently revived by [10]

that the GBH spacetime [4] does not satisfy the all essential energy conditions of the GR.

Very recently, Mazharimousavi and Halilsoy (MH) [11] have shown that the GBH metric

becomes physically acceptable in the f(ℜ) gravity. In other words, in the f(ℜ) gravity

the problematic energy conditions are all fixed. The physical source that has been used in

[11] possesses a perfect fluid-type energy momentum tensor, and the pressure of the fluid

becomes negative with a particular choice. So, one can infer that the a plays the role of the

dark matter. From now on, we designate the metric of [11] as Grumiller-Mazharimousavi-

Halilsoy BH and abbreviate it as GMHBH. Meanwhile, very recently detailed analysis of the

geodesics of this BH has been made by [12].

More than forty years ago, Bekenstein unraveled that the entropy of a BH is proportional

to its surface area [13–15]. Afterwards Hawking studied the particle creation around the

event horizon of a BH to ascertain that the BH possesses a black body type thermal radia-

tion with the temperature subject to its surface gravity [16, 17]. After these novel studies of

Hawking, up to date there is a rapidly growing literature on the thermodynamics of various

kinds of BHs. Moreover, deriving alternative methods to the HR which divulges the under-

lying BH spacetime has always remained on the agenda. For the topical review of the HR

together with its available methods, a reader may consult to [18]. Among those alternative

methods for the HR, utilization of the relativistic HJ equation is one of the runproof meth-

ods. This method is developed by [19] that basically employs the complex path analysis

of Padmanabhan et al. [20–22]. The associated method involves the WKB approximation

and calculates the imaginary part of the action of the tunneling particles. In performing

this process one should ignore the self-gravitational effects of the tunneling particle and the

energy conservation. In general, the relativistic HJ equation can be solved by substituting a

suitable ansatz. For the separability of the equation the chosen ansatz should take account

3



of the Killing vectors of the spacetime. Thus we obtain an integral equation which yields the

classically forbidden trajectory that starts from inside of the BH and finishes at the outside

observer. On the other hand, the integral under question has always a pole located at the

event horizon of the BH. We recall that such integrals are evaluated by applying the method

of complex path analysis in order to circumvent the pole. Result of the integral leads us to

get the tunneling rate for the GMHBH which renders possible to read the TH . On the other

hand, PWT method [23–25] uses the null geodesics to derive the TH as a quantum tunneling

process. In this method, self-gravitational interaction of the radiation and energy conserva-

tion are taken into account. As a result, the HR spectrum can not be strictly thermal for

many well-known BHs, like Schwarzschild, Reissner-Nordström etc. [25, 26].

Here we plan to investigate the HR of a static and spherically symmetric GMHBH via

the well-known HJ and PWT methods. We restate that, in this paper, we shall make only

an application of the associated methods to the GMHBH. By doing this, we aim not only to

make an analysis about the influences of the a on the HR, but to test whether the associated

methods employing for the GMHBH with different coordinates yield the true TH without

admitting the factor-2 problem or not. For the review of the factor-2 problem arising in the

HR, a reader may refer to [27–33].

First of all, we shall review the GMHBH which has a fluid source in the context of

f(ℜ) gravity [11]. Then we use the HJ method in order to calculate the imaginary part

of the classical action for outgoing trajectories crossing the horizon. In addition to the

naive coordinates, three more coordinate systems (all regular) which are PG, IEF and KS,

respectively, are considered. Slightly different from the other coordinate systems, during

the application of the HJ method in the KS coordinates, we will first reduce the GMHBH

spacetime to a Minkowski type space with a conformal factor, and then show in detail how

one recovers the TH . Furthermore, in the PG coordinate system we shall study the PWT

method in order to give a QG correction to the tunneling probability by considering the

back reaction effect. To this end, the log-area correction to the Bekenstein-Hawking entropy

will be taken into account. Finally, the modified TH due to the back reaction effect will be

computed.

The paper uses the signature (−,+,+,+) and the geometrical units c = G = ~ = kB = 1.

The paper is organized as follows. In Sec. II, we review some of the geometrical and

thermodynamical features of the GMHBH. We also show how the HJ equation is separated
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by a suitable ansatz within the naive coordinates. The calculations of the tunneling rate

and henceforth the TH via the HJ method are also represented. In Sec. III the HR of the

GMHBH in the PG coordinates is analyzed in the frameworks of the HJ and PWT methods.

The back reaction effect on the TH is also examined. Sec. IV and V are devoted to the

application of the HJ method in the IEF and KS coordinate systems, respectively. Finally,

the conclusion and future directions are given in Sec. VI.

II. GMHBH AND HJ METHOD

In this section we will first present the geometry and some thermodynamical properties

of the GMHBH. Then, with aid of a suitable ansatz we will get the radial equation for the

relativistic HJ equation in the background of the GMHBH. Finally, we represent how the

HJ method culminates in the TH .

The 4D action obtained from f(ℜ) gravity is given by

S =
1

2λ

∫ √
−gf(ℜ)d4x+ SM , (1)

where λ = 8πG = 1, ℜ is the curvature scalar and f(ℜ) = ℜ − 12aξ ln |ℜ| in which a

and ξ are positive constants. SM denotes the physical source for a perfect fluid-type energy

momentum tensor

T υ
µ = diag.[−ρ, p, q, q], (2)

with the thermodynamic pressure p being a function of the rest mass density of the matter

(for short: matter density) ρ only, so that p = −ρ. Meanwhile, q is also a state function

which is to be determined. Recently, MH has obtained the GMHBH solution to the above

action in their landmark paper [11]. Their solution is described by the following 4D static

and spherically symmetric line element

ds2 = −Hdt2 +
dr2

H
+ r2dΩ2, (3)

where dΩ2 is the standard metric on 2−sphere and the metric function H(r) is computed

as

H = 1− 2M

r
+ 2ar =

2a

r
(r − rh)(r − r0), (4)
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which is nothing but the metric function of the GBH without the cosmological constant

[3]. Here, M represents the constant mass and

r0 = −
√
1 + 16aM + 1

4a
, (5)

which cannot be horizon due to its negative signature. Therefore, the GMHBH possesses

only one horizon (event horizon, rh) which is given by

rh =

√
1 + 16aM − 1

4a
, (6)

Further, it is found that the energy-momentum components are

p = −ρ =
[6aξ − f(ℜ)] r2 + 4(ξ − a)r − 6Mξ

2r2
, (7)

q = −f(ℜ)r − 2ξ + 8a

2r
, (8)

where

f(ℜ) = −
[
12a

r
+ 12aξ ln

(
12a

r

)]
, (9)

One can easily observe from the last three equations that the a is decisive for the fluid

source. This can be best seen by simply taking the limit of a → 0 which corresponds to the

vanishing fluid and Ricci scalar, and so forth ξ → 0. In short, f(ℜ) gravity reduces to the

usual ℜ-gravity. In short, while a → 0 the GMHBH reduces to the well-known Schwarzschild

BH.

Surface gravity [34] of the GMHBH can simply be calculated through the following ex-

pression

κ(M) =
H ′

2

∣∣∣∣
r=rh

=
a (rh − r0)

rh
, (10)

where a prime ”′” denotes differentiation with respect to r. From here on in, one obtains

the Hawking temperature of the GMHBH as

TH =
κ(M)

2π
=

a (rh − r0)

2πrh
,

=
a
√
1 + 16aM

π
(√

1 + 16aM − 1
) , (11)
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From the above expression, it is seen that while the GMHBH losing its M by virtue of

the HR, TH increases (i.e., TH → ∞) with M → 0 in such a way that its divergence speed is

tuned by a. Meanwhile, one can check that lima→0 TH = 1
8πM

which is well-known Hawking

temperature computed for the Schwarzschild BH. The Bekenstein-Hawking entropy is given

by

SBH =
Ah

4
= πr2h, (12)

Its differential form is written as

dSBH =
4π√

1 + 16aM
rhdM, (13)

By using the above equation, the validity of the first law of thermodynamics for the

GMHBH can be approved via

THdSBH = dM. (14)

Here, we consider the problem of a scalar particle (spin-0) which crosses the event horizon

from inside to outside while there is no back-reaction effect and self-gravitational interac-

tion. Within the semi-classical framework, the classical action I of the particle satisfies the

relativistic HJ equation [19] is given by

gµν∂µI∂νI +m2 = 0, (15)

in which m is the mass of the scalar particle, and gµν represents the invert metric tensors

derived from the metric (3). By considering Eqs. (3), (4) and (15), we get

−1

H
(∂tI)

2 +H(∂rI)
2 +

1

r2
(∂θI)

2 +
1

r2 sin2 θ
(∂ϕI)

2 +m2 = 0, (16)

For the HJ equation it is general to use the separation of variables method for the action

I = I(t, r, θ, ϕ) as follows

I = −Et +W (r) + J(xi), (17)

where
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∂tI = −E, ∂rI = ∂rW (r), ∂iI = Ji, (18)

and Ji’s are constants in which i = 1, 2 identifies angular coordinates θ and ϕ, respectively.

The norm of the timelike Killing vector ∂t becomes (negative) unity at a particular location:

r ≡ Rd =
rh + r0

2
+

1 +
√

4(rh − r0)2 + 4(rh + r0)a+ 1

4a
, (19)

It means that when a detector of an observer is located at Rd which is outside the horizon,

the energy of the particle measured by the observer is E. Solving Eq. (16) for W (r) yields

W (r) = ±
∫
√

E2 − H
r2

(
J2
θ +

J2
ϕ

sin2 θ
+m2r2

)

H
dr, (20)

The quadratic form of Eq. (16) is the reason of ± signatures that popped up in the

above equation. Solution of Eq. (20) with ”+” signature corresponds to the outgoing scalar

particles and the other solution i.e., the solution with ”−” signature refers to the ingoing

particles. Evaluating the above integral around the pole at the horizon (following to the

prescription given by [35]), one reaches to

W(±) = ± iπErh
2a(rh − r0)

+ δ, (21)

where δ is a complex integration constant. Thus, we can deduce that imaginary parts of

the action arises due to the pole at the horizon and from the complex constant δ. Thence,

we can determine the probabilities of ingoing and outgoing particles while crossing rh as

Pout = e−2 Im I = exp
[
−2ImW(+)

]
, (22)

Pin = e−2 Im I = exp
[
−2ImW(−)

]
, (23)

In the classical point of view, a BH absorbs any ingoing particles passing its horizon. In

other words, there is no reflection for the ingoing waves which corresponds to Pin = 1. This

is enabled by setting Imδ = πErh
2a(rh−r0)

. This choice also implies that the imaginary part of the

action I for a tunneling particle can only come out W(+). Namely, we get

Im I = ImW(+) =
πrhE

a(rh − r0)
. (24)
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Therefore, the tunneling rate for the GMHBH can be obtained as

Γ = Pout = e
−2πErh
a(rh−r0) , (25)

and according to [25]

Γ = e−βE , (26)

in which β denotes the Boltzmann factor and T = 1
β
, one can easily read the horizon

temperature of the GMHBH as

ŤH =
a(rh − r0)

2πrh
. (27)

This nothing but the TH obtained in Eq. (11).

III. HJ AND PWT METHODS WITHIN PG COORDINATES

In the literature, PG coordinates are known as the first coordinate system which is non-

singular at the event horizon and allow us to describe timelike or null worldlines inward

crossing the horizon. In other words, we use the PG coordinates [36, 37] in order to describe

the spacetime on either side of the event horizon of a static BH. In this coordinate system,

the generic spherically metric (3) loses its diagonal or static form. Instead it allows a cross

term which makes the metric stationary and no longer symmetric, but oriented. Thus, an

observer does not consider the surface of the horizon to be in any way special. In this

section, we consider the PG coordinates of the GMHBH not only in the HJ method, but

in the PWT method as well. Then we show how both methods yield the TH . Besides, the

back reaction effect on the TH is thoroughly discussed.

We can pass to the PG coordinates by applying the following transformation [38] to the

metric (3)

dtPG = dt+

√
1−H

H
dr, (28)

where tPG is our new time coordinate (let us call it as PG time). One of the main

properties of these coordinates is that tPG concurrently corresponds to the proper time.

After substituting Eq. (28) into the metric (3), one obtains the PG line-element as follows

ds2 = −Hdt2PG + 2
√
1−HdtPGdr + dr2 + r2dΩ2, (29)
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For the metric (29), the HJ equation (15) becomes

− (∂tPG
I)2 + 2

√
1−H(∂tPG

I)(∂rI) +H(∂rI)
2 +

1

r2
(∂θI)

2 +
1

r2 sin2 θ
(∂ϕI)

2 = 0 (30)

Letting

I = −EtPG +WPG(r) + J(xi), (31)

and now by substituting for the above ansatz in Eq. (30), we obtain

WPG(r) =

∫
E
√
1−H

H

(
1±

√
1− HF

(1−H)E2

)
dr, (32)

where

F = m2 − E2 +
J2
θ

r2
+

J2
ϕ

r2 sin2 θ
, (33)

Thus one can see that near the horizon Eq. (32) reduces to

WPG(±) = E

∫
1

H
(1± 1)dr, (34)

Since WPG(−) = 0 which is a warranty condition for non-reflection of the ingoing particles,

we thus have

WPG(+) =
irhπE

a(rh − r0)
. (35)

So, we get the imaginary part of the I as

Im I = ImWPG(+) =
πrhE

a(rh − r0)
, (36)

After recalling Eqs. (25) and (26), we can readily read the horizon temperature of the

GMHBH which is expressed in the PG coordinates as

ŤH =
a(rh − r0)

2πrh
. (37)

This result is full measure of the standard value of the TH (11).

Now, employing the tunneling method prescribed by [25] we recalculate the imaginary

part of the I for an outgoing positive energy particle which crosses the horizon outwards
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in the PG coordinates. In the metric (29), the radial null geodesics of a test particle has a

rather simple form

ṙ =
dr

dtPG

= −
√
1−H ± 1, (38)

where upper (lower) sign corresponds to outgoing (ingoing) geodesics. After expanding

the metric function H around the horizon rh, we get

H = H ′(rh)(r − rh) +O(r − rh)
2, (39)

and hence by using Eq. (10), the radial outgoing null geodesics, ṙ, can be approximately

expressed as

ṙ ∼= κ(M)(r − rh), (40)

The imaginary part of the I for an outgoing positive energy particle which crosses the

horizon from inside (rin) to outside (rout) is given by

Im I = Im

∫ rout

rin

prdr = Im

∫ rout

rin

∫ pr

0

dp̃rdr, (41)

Hamilton’s equation for the classical trajectory is given by

dpr =
dΠ

ṙ
, (42)

where pr and Π denote radial canonical momentum and Hamiltonian, respectively. So,

one obtains

Im I = Im

∫ rout

rin

∫ Π

0

dΠ̃

ṙ
dr, (43)

Now, if we consider the whole system as a spherically symmetric system of total mass

M , which is kept fixed, then this system consists of a GMHBH with varying mass M − ω,

emitting a spherical shell of mass ω such that ω ≪ M . This phenomenon is known as

self-gravitational effect [23]. After taking this effect into account, the above integration is

expressed as
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Im I = Im

∫ rout

rin

∫ M−ω

M

dΠ̃

ṙ
dr,

= − Im

∫ rout

rin

∫ ω

0

dω̃

ṙ
dr, (44)

in which the Hamiltonian Π = M − ω i.e. dΠ = −dω is used. Hence, ṙ (40) can be

reexperienced as follows

ṙ ∼= κQG(r − rh), (45)

where κQG = κ(M − ω) is the modified horizon gravity, which is the so-called quantum

gravity corrected surface gravity [39, 40]. Thus, after r integration (the integration over r

is done by deforming the contour), Eq. (44) becomes

Im I = −π

∫ ω

0

dω̃

κQG

, (46)

So, let us express the ”modified Hawking temperature” in the form of TQG =
κQG

2π
. From

here on ,we get

Im I = −1

2

∫ ω

0

dω̃

TQG

,

= −1

2

∫ SQG(M−ω)

SQG(M)

dS,

= −1

2
∆SQG, (47)

then the modified tunneling rate is computed via

ΓQG ∼ e−2 Im I = e∆SQG . (48)

In string theory and loop quantum gravity, it is introduced with a logarithmic correction

(see for instance [41, 42] and references therein)

SQG =
Ah

4
+ α lnAh +O(

1

Ah

), (49)

where α is a dimensionless constant, and it arises due to the back reaction effects. It

takes different values according to which theory is considered [41]. Thus, with the aid of

Eqs. (12) and (49) one can compute ∆SQG as follows
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∆SQG = −
π
(
8aω +

√
1 + 16a(M − ω)−

√
1 + 16aM

)

8a2
+

αln

(
1 + 8a(M − ω)−

√
1 + 16a(M − ω)

1 + 8aM −
√
1 + 16aM

)
, (50)

Now, using the second law of thermodynamics

TQGdSQG = dM, (51)

one can find the QG corrected form of the Hawking temperature TQG due to the back

reaction. After a straightforward calculation, we can derive TQG from Eq. (51) in terms of

the Hawking temperature as follows

TQG =

(
1 +

α

πr2h

)−1

TH (52)

Thus, one can easily see that once we ignore the back reaction effect (i.e., α = 0) we

just produce the semiclassical Hawking temperature, TH . Meanwhile, it is also possible to

obtain TQG from Eq. (48). For this purpose, we expand ∆SQG (50) and recast terms up to

leading order in ω. So, one finds

∆SQG
∼= −

[
π

a

(√
1 + 16aM)− 1√

1 + 16aM

)
+

16aα

(1 + 16aM −
√
1 + 16aM)

]
ω +O(ω2),

= −
(

1

TH

+ α
16πTH

1 + 16aM

)
ω +O(ω2), (53)

Based on Eqs. (26) and (48), we obtain

ΓQG ∼ e∆SQG = e−
ω
T , (54)

The inverse temperature, identified with the coefficient of ω is equal to

T =

(
1

TH

+ α
16πTH

1 + 16aM

)−1

. (55)

After manipulating the above equation, one can find that T is nothing but the QG

corrected Hawking temperature (52). Namely, T = TQG.
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IV. HJ METHOD WITHIN IEF COORDINATES

IEF coordinates are another regular coordinate system at the event horizon which was

originally constructed by [43, 44]. These coordinates are aligned with radially moving pho-

tons. The generic metric (3) takes the following form in the IEF coordinates (e.g. [45])

ds2 = −Hdυ2 + 2
√
1−Hdυdr + dr2 + r2dΩ2, (56)

in which υ is a null coordinate which is the so-called advanced time. It is given by

υ = t + r∗, (57)

where r∗ is known as the tortoise coordinate. For the outer region of the GMHBH, it is

found to be

r∗ =

∫
dr

H
=

1

2a(rh − r0)
ln

[
( r
rh

− 1)rh

(r − r0)
r0

]
, (58)

Since the metric (56) has a Killing vector field of ξµ = ∂υ, in this coordinate system an

observer measures the scalar particle’s energy by E = −∂υI. In this regard, the action is

assumed to be of the form

I = −Eυ +WEF (r) + J(xi). (59)

By using the above ansatz in the Eq. (15) for the metric (56), the final expression for

WEF (r) is found as

WEF (r) =

∫
E

H

(
1±

√
1− τH

E2

)
dr, (60)

in which

τ = m2 +
J2
θ

r2
+

J2
ϕ

r2 sin2 θ
, (61)

Around the event horizon, we see that WEF (r) reduces to the following expression

WEF (±) = E

∫
1

H
(1± 1)dr, (62)
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which is nothing but the same expression obtained in Eq. (34). Hereupon, applying our

standard procedure we get

WEF (−) = 0, WEF (+) =
irhπE

a(rh − r0)
→ ImI = ImWEF (+) =

πErh
a(rh − r0)

, (63)

and likewise to Sec. IV, the horizon temperature computed for the GMHBH in the IEF

coordinates is of course that of the Hawking temperature:

ŤH =
a(rh − r0)

2πrh
= TH . (64)

V. HJ METHOD WITHIN KS COORDINATES

Another non-singular coordinate system which covers the whole spacetime manifold of the

maximally extended BH solution is known as the KS coordinates [46, 47]. These coordinates

are generally used to properly chart the spacetimes with the form of metric (3). Namely,

the KS coordinates are able to squeeze infinity into a finite distance, and thus the entire

spacetime can be visualized on a stamp-like diagram. In this section, we shall employ the

HJ equation for the KS form of the GMHBH in order to represent how one gets the TH via

the HJ method.

We can rewrite the metric (3) in the following form, as made in [48],

ds2 = −Hdudv + r2dΩ2, (65)

where

du = dt− dr∗ dv = dt+ dr∗, (66)

After defining new coordinates (U, V ) in terms of the surface gravity (10) which are given

by

U = −e−κu, V = eκv, (67)

we transform metric (65) to the KS form

ds2 =
H

κ2

dUdV

UV
+ r2dΩ2. (68)
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More explicitly, Eq. (68) becomes

ds2 = −£dUdV + r2dΩ2, (69)

where

£ =
2r3h

ar(rh − r0)2
(r − r0)

1+
r0
rh , (70)

This metric is regular everywhere except at the physical singularity r = 0. Alternatively,

the metric (69) can be transformed into

ds2 = −£(dℑ2 − dR2) + r2dΩ2, (71)

which can be made by the following transformations

ℑ =
1

2
(V + U) =

( r
rh

− 1)
1
2

(r − r0)
r0
2rh

sinh(κt), (72)

R =
1

2
(V − U) =

( r
rh

− 1)
1
2

(r − r0)
r0
2rh

cosh(κt), (73)

From these foregoing equations, we immediately observe that

R2 − ℑ2 =
( r
rh

− 1)

(r − r0)
r0
rh

, (74)

which means that R = ±ℑ corresponds to the future and past horizons. In other respects,

here ∂ℑ is not a timelike Killing vector for the metric (71). So, it is profitable to consider

the timelike Killing vector of the metric in the following form

∂T̂ = N(R∂ℑ + T∂R), (75)

where N denotes the normalization constant. It admits a specific value that the norm

of the Killing vector becomes negative unity at Rd (19) which is the outer region of the

GMHBH. Therefore, at that specific location the normalization constant is found to be

N =
rh − r0

rh

√
ar

2(r − rh)(r − r0)

∣∣∣∣
r=Rd

=
a(rh − r0)

rh
, (76)
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Without loss of generality, we may only consider the (1+1) dimensional form of the KS

metric (71) which is

ds2 = −£(dT 2 − dR2), (77)

The calculation of the HJ method is more straightforward in this case. The HJ equation

(15) for the above metric reads

− £−1
[
− (∂ℑI)

2 + (∂RI)
2]+m2 = 0, (78)

This equation implies that the ansatz for the I could be written as

I = ρ(R −ℑ) + J(xi), (79)

For simplicity, we may further set J(xi) = 0 and m = 0. Now, the energy can be defined

as

E = −∂T̂ I, (80)

which is equivalent to

E = −a(rh − r0)

rh
(R∂ℑI + T∂RI), (81)

Using the above equation with ansatz (79), one derives the following expression.

ρ(y) =

∫
Erh

a(rh − r0)y
dy, (82)

where y = R − ℑ. The above expression has a divergence at the horizon y = 0, namely

R = ℑ. Thus, it leads to a pole at the horizon which could be overcome by doing a semi-

circular contour of integration in the complex plane. The result is found to be

ImI =
πrhE

a(rh − r0)
. (83)

which means that the Hawking temperature, TH = a(rh−r0)
2πrh

, is impeccably recovered in

the background of the KS metric of the GMHBH.

17



VI. CONCLUSION

In this paper, by using the relativistic HJ equation we have studied the HR in the GMHBH

background engendered by the theory of f(ℜ) gravity. Today, the GMHBH has become

prominent since it is considered as one of the significant theoretical astrophysical models

in which the dark matter halo and the flat galactic rotation curves are taken into account.

In addition to its naive coordinates, three different regular coordinate systems which are

PG, IEF and KS have been employed throughout the present study. It has been shown in

detail that the computed horizon temperatures via the HJ method exactly matches with the

standard Hawking temperature. Among the ansätze that we have used for the HJ equation

(15) in the former sections, the one belonging to the KS coordinates is different than others.

Because in the KS coordinates the time coordinate is not in a simplex form. To this end,

we have first found a proper timelike Killing vector having a normalization constant N (76)

such that the norm of this Killing vector becomes negative unity at Rd (19). Subsequently,

with aid of this Killing vector we have managed to identify an ansatz I which results in TH

within the process of HJ method. During this computation, without loss of generality, we

have discarded the mass of the scalar particle and neglected the angular dependence of the

HJ equation.

In the PG coordinates, we have also considered the back reaction effects in the PWT

method for the HR of the GMHBH. The modified tunneling rate (48) has been computed

via the log-area correction to the Bekenstein-Hawking entropy (49). From this, QG corrected

Hawking temperature (i.e., TQG) have also been found.

Finally, it is of interest to extend our analysis to yet another particle other than spin-

0, which could be photon and fermion. In other words, it will be interesting to examine

whether Maxwell and Dirac equations [49] on the GMHBH geometry within the HJ and

PWT methods yield the TH or not. This is going to be our next work in the near future.
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