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”Imagination ... is more important than knowledge. Knowledge is limited. Imagination

encircles the world.”

Albert Einstein (14 March 1879 , 18 April 1955 (aged 76))
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This is my calculations of Christmas problem which is Compton scattering [1] . So far I

have calculated the diffential cross section with respect to t (square momentum-transfer

between the initial-state and final-state photons), dσ
dt for the Compton Scattering ( the

scattering of photons from charged particles ,is called after Arthur Compton who was

the first to measure photon-electron scattering in 1922) of a photon and an electron.

Then I calculated the diffential cross section with respect to scattering angle dσ
d cos θ in

the rest frame of the incident electron,by two diffent methods and verified that both

methods yield the same results.At the end I have plotted and commented the diffential

cross section dσ
dt against t and the diffential cross section dσ

d cos θ against cos θ for three

different values of the centre-of-mass energy.
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Chapter 1

CALCULATION OF THE

SQUARE MATRIX ELEMENT

1.1 Introduction

e−γ → e−γ

Another classic experiment in physics is Compton scattering which demonstrates the

particle nature of electromagnetic waves. EM waves that interact with matter decrease

in energy and cause a shift in wavelength of the incident radiation. This cannot be

explained by the classical theory of Thomson scattering and must be explained with

quantum mechanics.

Arthur H. Compton observed the scattering of x-rays from electrons in a carbon target

and found scattered x-rays with a longer wavelength than those incident upon the target.

The shift of the wavelength increased with scattering angle according to the Compton

formula:

Figure 1.1

1
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Figure 1.2

Compton explained and modeled the data by assuming a particle (photon) nature for

light and applying conservation of energy and conservation of momentum to the colli-

sion between the photon and the electron. The scattered photon has lower energy and

therefore a longer wavelength according to the Planck relationship.

At a time (early 1920’s) when the particle (photon) nature of light suggested by the

photoelectric effect was still being debated, the Compton experiment gave clear and

independent evidence of particle-like behavior. Compton was awarded the Nobel Prize

in 1927 for the ”discovery of the effect named after him”.

One of the greatest scientific revolutions in the history of mankind was the development

of Quantum Mechanics. Its birth was a very difficult process, extending from Planck‘s

paper of 1900 to the papers of Einstein, Bohr, Heisenberg, Schroedinger, Dirac and many

others. After 1925-1927, a successful theory was in place, explaining many complicated

phenomena in atomic spectra. Then attention moved to higher energy phenomena. It

was in this period, 1928- 1932, full of great new ideas and equally great confusions, that

the Klein-Nishina Formula [2] played a crucial role. It dealt with the famous classical

problem of the scattering of light waves by a charged particle. This classical problem

had been studied by J. J. Thomson.The cosmic microwave background is thought to be

linearly polarized as a result of Thomson scattering. Probes such as WMAP and the cur-

rent Planck mission attempt to measure this polarization.Furthermore,Inverse-Compton

scattering can be viewed as Thomson scattering in the rest frame of the relativistic par-

ticle.

Conceptually in classical theory, the scattered waves‘ frequency must be the same as the

incoming frequency, resulting in a total cross-section:

ρ = 8πe4

3m2c4

But in 1923 in an epoch making experiment, Compton found that the scattered waves

had a lower frequency than the incoming waves. He further showed that if one adopts
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Figure 1.3: the ratio E(E’,q)/E’ as a function of the polar scattering angle q, for spec-
ified incident photon energies E’. Scattering kinematics dictate that scattering through

large angles q can reduce large incident photon energy values dramatically.

Einstein‘s ideas about the light quanta, then conservation laws of energy and of mo-

menta in fact led quantitatively to the lower frequency of the scattered waves.

Compton also tried to guesstimate the scattering cross-section, using a half-baked clas-

sical picture with ad hoc ideas about the frequency change, obtaining:

ρ = 8πe4

3m2c4
1

1+2(hν/mc2)

Now, when hν is very small compared to mc2, this formula reduces to Thomson‘s.This

Compton theory was one of those magic guess works so typical of the 1920‘s, He knew

his theory cannot be entirely correct, so he made the best guess possible.

1.2 Feynman Diagrams

Feynman diagrams are pictorial representations of AMPLITUDES of particle reactions,

i.e scatterings or decays. Use of Feynman diagrams can greatly reduce the amount of

computation involved in calculating a rate or cross section of a physical process.Like

electrical circuit diagrams, every line in the diagram has a strict mathematical interpre-

tation.

Each Feynman diagram represents an AMPLITUDE (M). Quantities such as cross sec-

tions and decay rates (lifetimes) are proportional to M2. In lowest order perturbation

theory M is the fourier transform of the potential Born Approximation. The transition
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rate for a process can be calculated using time dependent perturbation theory using

Fermis Golden Rule: [3]

transition rate= 2π
~ (M2)× (phasespace)

The differential cross section in the CM frame is:

dσ
dΩ = 1

64π2(E1+E2)2
p2
p1(Πl2ml)M

2 = dσ
2πdcosθ where dσ

dcosθ = 2p1.k1dσdt [4] , [5]

In most cases M2 cannot be calculated exactly.Often M is expanded in a power series.

Feynman diagrams represent terms in the series expansion of M

QED Rules:

• Solid lines are charged fermions electrons or positrons (spinor wavefunctions).

• Wavy (or dashed) lines are photons.

• Arrow on solid line signifies e- or e+, - arrow in same direction as time, + arrow

opposite direction as time.

• At each vertex there is a coupling constant,
√
α, α = 1/137 = fine structure

constant.

• Quantum numbers are conserved at a vertex, e.g. electric charge, lepton number.

• Virtual Particles do not conserve E, p , virtual particles are internal to diagram(s)

, for γs: E2 − p2 6= 0 (off mass shell) in all calculations we integrate over the

virtual particles 4-momentum (4d integral) .

• Photons couple to electric charge , no photons only vertices.

We classify diagrams by the order of the coupling constant. Since αQED = 1/137 higher

order diagrams should be corrections to lower order diagrams.This is just perturbation

Theory!! This expansion in the coupling constant works for QED since αQED = 1/137

Does not work well for QCD where αQCD → 1

The name Compton scattering refers to the scattering of photons by free electrons. In

the language of quantumelectrodynamics an incoming photon with fourmomentum k1

and polarization vector εµ is absorbed by an electron (or another charged particle) and

a second photon with fourmomentum k2 and polarization vector ε∗ν is emitted.The lines

marked p1 and p2 represent incoming and outgoing electrons (e−) with momenta p1

and p2, The corresponding Feynman diagrams are shown in the figure.
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Figure 1.4

For the first diagram we have :

Right-hand vertex : (-ieγµ)

Left-hand vertex : (-ieγν)

Internal Propagator :
−i( /p1+ /k1+m)
(p1+k1)2−m2

For the second diagram we have :

Above-hand vertex : (-ieγν)

Below-hand vertex : (-ieγµ)

Internal Propagator :
−i( /p1− /k2+m)
(p1−k2)2−m2

The Feynman rules tell us exactly how to write down an expression for M (Matrix ele-

ment).

Here I have introduced the Compton Matrix element :

Ma = ε∗µ(k2)εν(k1)ū(p2)(ieγµ)
−i( /p1+ /k1+m)
(p1+k1)2−m2 (ieγν)u(p1)

Mb = εν(k1)ε∗µ(k2)ū(p2)(ieγν)
−i( /p1− /k2+m)
(p1−k2)2−m2 (ieγµ)u(p1)

In terms of Mandelstam variables I have : (p1+k1)2 = s, (p1− k2)2 = u
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To simplify the numerators,I used a bit of Dirac algeabra:

( /p1 +m)γνu(p1) = (2p1ν − γν /p1 + γνm)u(p1)

=2p1νu(p1)− γν( /p1−m)u(p1)

=2p1νu(p1)

After using this trick on the numerator of each propagator, we obtain :

Ma = −ie2
s2−m2 ε

∗
µ(k2)εν(k1)ū(p2)(γµ /k1γν + 2γµp1νu(p1))

Mb = −ie2
u2−m2 ε

∗
µ(k2)εν(k1)ū(p2)(γν /k2γµ − 2γνp1µu(p1))

M = Ma +Mb
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The total Matrix element is :

M = −e2ε∗µ(k2)εν(k1)ū(p2)[ (γµ /k1γν+2γµp1ν

s−m2 + γν /k2γµ−2γνp1µ

u−m2 ]u(p1) [6]

Then, I calculated the square of this expression for M and sum over electron and photon

polarization states.

I used the identity of
∑
u(p1)ū(p2) = /p1 +m for summing over electron polarizations.

and I used the similar identity
∑
ε∗µ(k2)εν(k1)→ −gµν

After using those identities and average the squared amplitude over the initial electron

and photon polarizations,and sum over the final electron and photon polarizations,I have

founded ;

1/4
∑

spins |M |
2 = e4

4 gµρgνσ.T r[( /p2 +m)[ (γµ /k1γν+2γµp1ν)
s−m2 + γν /k2γµ−2γνp1µ

u−m2 ]

. ( /p1 +m)[ (γσ /k1γρ+2γρp1σ)
s−m2 + (γρ /k2γσ−2γρp1σ)

u−m2 ]]

= e4

4 [ I
(s−m2)

+ 2 II
(s−m2)(u−m2)

+ III
(U−m2)

] where

I = Tr[( /p2 +m)(γµ /k1γν + 2γµp1ν)( /p1 +m)(γν /k1γµ + 2γµp1ν)]

II= Tr[ ( /p2 +m)(γµ /k1γν + 2γµp1ν)( /p1 +m)(γµ /k2γν − 2γµp1ν)]

III= Tr[ ( /p2 +m)(γν /k2γµ − 2γνp1µ)( /p1 +m)(γµ /k2γν − 2γµp1ν)]

As you can see that I and III is same if replace k1 with -k2.So only I and II were

calculated.

For first of the traces (I) ,there are 16 terms inside the trace,but half of them vanish

because of odd number of γ matrices.

After calculating those traces by FORM [7] and using the mandelstam variables
(s−m2)

2 = p1.k1, (m2−u)
2 = p2.k1 , (2m2−t)

2 = (s+u)
2 = p1.p2 I could write that:

I = 16(2m4 +m2(s−m2)− 1
2(s−m2)(u−m2))

II=-16(4m4 +m2(s−m2) +m2(u−m2))
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III=16(2m4 +m2(u−m2)− 1
2(s−m2)(u−m2))

After putting those in our square matrix element,finally obtained the square matrix el-

ement in terms of s and u.

1
4

∑
|M |2 = 4e4[

(2m4+m2(s−m2)− 1
2 (s−m2)(u−m2))

(s−m2) − 4m4+m2(s−m2)+m2(u−m2)
(s−m2)(u−m2) +

2m4+m2(u−m2)− 1
2 (s−m2)(u−m2)

(u−m2) ]

In addition , I could calculate this square matrix element by calculating using this way:

M2 = 1
4 [(M2

1 ) + (M2
2 ) + 2<(M∗1M2)]

By using this way I also found ,

M2
1 = e4

(s−m2)2
gµρgνσTr

[
γρ( /p1 + /k1 +m)γσ × ( /p1′ +m)γν( /p1 + /k1 +m)γµ( /p2 +m)

]
.

M2
2 = e4

(u−m2)2
gµρgνσTr

[
γρ( /p1− /k2 +m)γσ × ( /p2′ +m)γν( /p1− /k2 +m)γµ( /p1 +m)

]
.

(M∗1M2) = e4

(s−m2)(u−m2)
gµρgνσ×Tr[γρ( /p1+ /k1+m)γσ( /p2′+m)γµ×( /p1− /k2

′
+m)γν( /p1+

m)]

I also calculated those traces by using the FORM [7] and reach the same result with

other way.

M2 = 2e4

[
m4

(
1

p1·k2 −
1

p1·k1

)2

− 2m2

(
1

p1·k2 −
1

p1·k1

)
+ p1·k2

p1·k1 + p1·k1
p1·k1

]
and then

M2 = 1
4

8e4

(s−m2)2
[m2(3s+ u+m2)− su] + 8e4

(u−m2)2
[m2(s+ 3u+m2)− su] + 16m2e4

(s−m2)(u−m2)
(s+ u+ 2m2).

I checked them and found they are almost equal.

Now, I also calculated traces by using Maple Package [8] :
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Chapter 2

DIFFERENTIAL CROSS

SECTION FOR COMPTON

SCATTERING

2.1 DCS with respect to t,dσdt

Now I calculated the differential cross section with respect to t(dσdt ) for the Compton

Scattering by using the total cross section for a scattering event equation:

σ =
∫ d3p2

(2π)32Ep2
d3k2

(2π)32Ek2
(2π)4δ(4)(p1 + k1− p2− k2) M2

2(s−m2)
(2.1)

After write k2 integral in a Lorentz invariant form ,taking this integral , using polar

coordinates for p2 and lastly differentiate wrt t as similar way in our lecture notes.I

have:

dσ
dt = 1

2(s−m2)

∫ dEp2
8πp1 δ[(p1 + k1− p2)2]M2 [5]

Then calculating the delta function integral gives the below equation:

dσ
dt = |M |2

2(s−m2)
× 1

16πp1
√
s

where F = 2(s−m2)

Before writing the result of this equation , I defined the ~p = s−m2

2
√
s

.Then the final result

in the center of mass frame is:

dσ
dt = 1

64π(s−m2)2
×[ 8e4

(s−m2)2
[m2(3s+ u+m2)− su] + 8e4

(u−m2)2
[m2(s+ 3u+m2)− su] + 16m2e4(s+u+2m2)

(s−m2)(u−m2)
]

14
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2.2 DCS with respect to θ, dσ
d cos θ

As we know that in the real life ,compton scattering most probably occurs with some

angle.So it is better to define our differential scattering cross section with respect to θ

instead of t. There are two ways for doing this.

1. By direct conversion of dt into d cos θ by using the chain rule

2. By returning to the phase-space integral and computing in the lab frame.

2.2.1 By direct conversion of dt into d cos θ

In this direct coversion, I used the chain rule :

dσ
d cos θ = dt

d cos θ ·
dσ
dt

As I know that from Modern Physics course, the compton scattering formula without

some factors is:

1
Ek2
− 1

Ek1
= 1

m(1− cosθ)

then derive the Ek2 :

Ek2 = m.Ek1
Ek1(1−cosθ)+m)

Then using in the Mandelstam variable t,

t = (k1− k2)2 = −2Ek1Ek2(1− cosθ)

I rewrote t in terms of cosθ :

t =
−2mE2

k1(1−cosθ)
Ek1(1−cosθ)+m)

after that :

dt
dcosθ = 2 s−m

2

2m [5]

and after changing M2 in terms of ω by using those identities p1.k1 = m.Ek1 p1.k2 =

m.Ek2

ω = Ek2
Ek1 :
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Finally I reached the solution :

dσ
dcosθ = π(αω)2

m2 (ω + 1
ω − sin2 θ) where M2 = 2e4(ω + 1

ω − sin2 θ) This is Klein-Nishina

Formula

Before I plot the graph, I change my mass variable into compton wavelength

m2 = ~
λ×c

2.2.2 By returning to the phase-space integral in Lab Frame

Compton scattering is mostly calculated in the lab frame,in which the electron is initially

at rest

• FourMomentum of initially Photon is k1(Ek1,k1)

• FourMomentum of initially Electron is p1(m, 0)

• FourMomentum of final Photon is k2(Ek2, Ek2sinθ, 0, Ek2cosθ)

• FourMomentum of final Electron is p2(Ep2,p2)

Express the cross section in terms of Ek1, Ek2θ

m2 = (p2)2 = (p1 + k1− k2)2 = p12 + 2p.(k1− k2)− 2k1.k2

=m2 + 2m(Ek1 − Ek2)− 2Ek1Ek2(1− cosθ) [6]

found similarly :

1
Ek2
− 1

Ek1
= 1

m(1− cosθ)

then derived the Ek2 :

Ek2 = m.Ek1
Ek1(1−cosθ)+m)

and used in the total cross section integral (2.1) and evaluated to find result.

σ = 1
F

∫
d3k2

(2π)32Ek2

d3p2
(2π)32Ep2

(2π)3δ(3)(k1− k2− p2)× (2π)δ(m+ Ek1 − Ep2 − E2)M2

= 1
(2π)2·4F

∫ E2
k2dEk2d(cos θ)dφ

Ek1Ek2
δ(m+ Ek1 − (m2 + E2

k1 + E2
k2 − 2Ek1Ek2 cos θ − Ek2)

1
2 )M2

then differentiate with respect to cos(θ) :

In the lab frame, F = 4mEk1,

so dσ
d cos θ = ω2M2

32πm2
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In the limit w → 1 the cross section becomes :

dσ
dcos(θ) = πα2

m2 (1 + cos2(θ)) ;σ = 8πα2/3m2

This is Thomson cross section for scattering of classical electromagnetic radiation by a

free electron.
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GRAPHICS AND COMMENTS

Differential cross section wrt t plotted against t and differential cross section wrt cos θ

plotted against cos θ (has exactly shape Compton observed in his experiment) using

various limiting values of
√
s for s = 1.0000099m2 , s = 2m2 and s = 99999m2

Hence, If the particles are scattered without any angle θ = 0 ,differential cross section

takes the minimum value so dispersion is small.

In addition,as we know that energy is inversely proportional to wavelength, those graphs

is looking similar with CMBR spectrum.It says that there is a minimun point for cross

section at a special energy of photon .Note the low-energy limit of Thomson scattering(

the elastic scattering of electromagnetic radiation by a free charged particle, as described

by classical electromagnetism.The particle kinetic energy and photon frequency are the

same before and after the scattering).If the particles have high energy ,they behave under

quantum laws ,however if they have low-energy,they behave classically.

dσ
dcosθ = π(α)2

m2 (Ek2Ek1
)2(Ek2Ek1

+ Ek1
Ek2
− sin2 θ) where M2 = 2e4(ω + 1

ω − sin2 θ) and ω = Ek2
Ek1

This is Klein-Nishina Formula

where: m2 = ~
λ×c

When Ek2 << m one obtains the well-known Thomson formula :

dσ
dcos(θ) = πα2

m2 (1 + cos2(θ))

It is clear that the differential scattering cross section for Thomson Scattering is inde-

pendent of the frequency of the incident wave whereas Compton is dependent of the

frequency of the incident wave, and is also symmetric with respect to forward and back-

ward scattering.

18
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Figure 3.1: DCS with respect to cos(θ)

The classical scattering cross section is modified by quantum effects when the energy

of the incident photons, ~ω , becomes comparable with the rest mass of the scattering

particle, mc2 . The scattering of a photon by a charged particle is called Compton

scattering, and the quantum mechanical version of the Compton scattering cross section

is known as the Klein-Nishina formula. As the photon energy increases, and eventually

becomes comparable with the rest mass energy of the particle, the Klein-Nishina formula

predicts that forward scattering of photons becomes increasingly favored with respect

to backward scattering. The Klein-Nishina cross section does, in general, depend on the

frequency of the incident photons. Furthermore, energy and momentum conservation

demand a shift in the frequency of scattered photons with respect to that of the incident

photons.
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Figure 3.2: DCS with respect to tmax

Figure 3.3: [DCS with respect to tmin
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Figure 3.4: DCS with respect to tmid
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