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Abstract Exact solutions of a massive complex scalar field equation in
the geometry of a Garfinkle-Horowitz-Strominger (stringy) black hole with
magnetic charge is explored. The separated radial and angular parts of the
wave equation are solved exactly in the non-extreme case. The angular part
is shown to be an ordinary spin-weighted spheroidal harmonics with a spin-
weight depending on the magnetic charge. The radial part is achieved to
reduce a confluent Heun equation with a multiplier. Finally, based on the
solutions, it is shown that Hawking temperature of the magnetically charged
stringy black hole has the same value as that of the Schwarzschild black hole.

Key words Klein-Gordon Equation, Charged String Black Hole, Conflu-
ent Heun Equation, Hawking Radiation.

1 INTRODUCTION

Exact solution to a sourceless charged massive scalar field equation in the
Kerr-Newman black hole geometry was first found by Wu and Cai [I]. Later
on, they have extended their previous study [I] to exact solution of a scalar
wave equation in a Kerr-Sen black hole geometry [2], which reduces to the
electrically charged Garfinkle-Horowitz-Strominger (GHS) geometry in the
limit of vanishing rotation parameter. However, no one has considered to
solve the problem of the massive complex scalar field equation in the mag-
netically charged GHS geometry, yet. So we think that it might be useful
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to fill this absence in the literature. The main goal of this paper is to show
that exact solutions to a massive charged scalar field equation on magnet-
ically charged GHS background is somewhat different than the electrically
charged GHS geometry [2] and investigate Hawking evaporation of scalar
particles.

Recall that according to the laws of black hole mechanics [3], Hawking
[45] proved that a stationary black hole can emit particles from its event
horizon with a constant temperature proportional to the surface gravity.
Since Hawking’s this pioneering study, many methods have been proposed
in order to calculate the Hawking radiation during the last three decades, see
for instance [6L[7}8LOLT10]. One of the commonly used methods is the method
of Damour-Ruffini-Sannan (DRS) [IT[12]. This method is applicable to any
Hawking’s problems in which asymptotic behaviors of the wave equation
are known near the event horizon.

According to the DRS method, it is plausible to investigate the exact
solutions of the scalar wave equation in order to get more accurate calcu-
lations about Hawking radiation. In general, obtaining an exact solution to
the wave equation in a given geometry is so difficult. On the other hand, the
main reason of a researcher’s motivation is indeed such difficulties. Today,
a wider perspective of the properties and physics of black holes can be ac-
quired by studying other types of black hole solutions appearing in string
theory. Of particular interest is considering GHS [I3] black hole, which is
a member of a family of solutions to low-energy limit of string theory. It is
discovered when the field content of Einstein-Maxwell theory is enlarged to
include a dilaton field ¢, which couples to the metric and the gauge field,
non-trivially. This causes the charged stringy black holes to differ signif-
icantly from the Reissner-Nordstréom (RN) black hole. Very recently, the
Hawking radiation of the GHS black hole (in the string frame) has been
studied by using the method of cancellation of anomalies at the horizon
[14).

In this paper, we shall not discuss the extreme case since it does not
have the characteristics of a black hole solution. In generally, the crucial
equation, which plays an essential role in the calculation of the Hawking
radiation is the radial equation. In the non-extreme case, it is shown that the
radial equation reduces to a confluent Heun equation. Although the Heun
differential equations are less known than the hypergeometric family in the
literature, due to the necessities of their using in various physical problems,
they have been intensively attracting much interest. One may refer to [I5]
16] in order to see the applications of the Heun equations to many modern
physical problems. Heun equations also appear in the quantum mechanical
problems of general relativity. For instance, it can be seen that more recently
Al-Badawi and Sakalli [I7] have shown that the angular part of the Dirac
equation in the rotating Bertotti-Robinson geometry is solved in terms of
the confluent Heun functions.

The paper is organized as follows: In Sec. II, a brief overview of the
GHS black hole solution is given. Next, we separate a massive magnetically
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charged scalar field equation on the GHS spacetime into the angular and
radial parts. The solutions to radial equation in non-extreme case is devoted
to Sec. III. Next, we shall employ the DRS method to discuss Hawking
radiation in Sec. IV. Finally, we draw our conclusions.

2 GHS SPACETIME AND SEPARATION OF
KLEIN-GORDON EQUATION ON IT

In the low-energy limit of string field theory, the four-dimensional action
(in Einstein frame) describing the dilaton field ¢ coupled to a U(1) gauge
field is

S= / d4xy/"G(R — 2(V)? — e 2 F?) (1)

where F),,, is the Maxwell field associated with a U(1) subgroup of Eg x
Es or Spin(32)/Z,. In the presence of a magnetic charge the dilaton cannot
be constant and the static, spherically symmetric solutions designated with
GHS black holes [13] are given by

2M dr? Q2% '
d82 = 7(1 — T)dtQ + 1_@ + T(T — T)(d92 + SIH2 9dg02), (2)
with
20—2¢q
—2¢ — _2¢0 1 _ Qef
€ c ( Mr )
Fyp = Qsin6, (3)

where ¢, is the asymptotic constant value of the dilaton and @ is the
magnetic charge. For electric charge case one can generate the solutions by
applying the duality transformations

~ 1
Fw — 5672¢€ZZFPU and ¢ — —o. (4)

Note that this transformation does not modify the geometry (2). In this
case, the solution for the dilaton and electromagnetic field are given by

2_—2¢
€2¢ = 6_2¢0(1 — 762 ;4 ’ ),
;
Fr=2, )

where @ refers now to the electric charge. Although the Einstein metric
(2) is the same for both electrically and magnetically charged black holes,
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one of the black hole solutions should be considered while separating the
Klein-Gordon equation in this geometry. This is because the electromagnetic
four-vector potentials are different for the both black holes. Here, we are
interseted in metric (2) together with fields (3), and for simplicity, we set
@9 = 0. It is easy to derive the electromagnetic four-vector potential of the
magnetically charged stringy black holes as follows

Ay = —Qcos 8ol (6)

Let us compare solution (2) to RN which represents the solution of a
charged black hole given by the following metric

2M  Q dr?
2 _ 2 2 2 202 2
ds _—(1——r +—T2)dt +717 2i”+f§ + 7°(df* + sin” 0dp*=),  (7)

One can see some important differences immediately. First of all, con-
trast to the pure Einstein-Maxwell theory there is only one horizon at
r =2M . In fact the R? part of metric (2) is identical to the Schwarzschild
black hole. This implies that also the surface gravity [I8] coincides with
Schwarzschild

1
1 y 2 1

K= TEIQHM(_thtg”gtt,igtt,j) =1 (8)

Important differences appear in the angular part. There is a curvature
singularity (spacelike), hidden inside the horizon, when the radius of two-
sphere vanishes at r = %[2 Since the DRS method concerns the asymptotic
behaviors of the scalar waves near the event horizon, this spacelike singular-
ity does not make any trouble on using of this method. Another difference
with respect to the RN solution concerns the extremal configuration. Here

it is given by |Q| = v/2M instead of the condition |Q| = M for the RN black

holes. In the extreme limit, the area of the event horizon A = 87w M (2M f?v—;)
shrinks to zero and turns out to be singular. Namely, a naked singularity
appears, so the solution is no longer a black hole.

In curved spacetime, a massive charged test scalar field @ with mass u
and charge ¢ obeys the covariant Klein-Gordon equation [I]. The massive
scalar wave function @ in metric (2) can be separated as ®?(r,t,0,p) =
R(r)G(0)e'™#=«Y " in which the angular part G(f) satisfies the following
equation

A (m+ qQ cos0)?

1" / N _
G + cot6G + | - G =0. 9)

sin? @
where A is a separation constant. (Throughout the paper, a prime de-
notes the derivative with respect to its argument.)
Letting £ = £+ = [(I+1)—p?, one can see that G(6)e"™¥ is nothing but a
spin-weighted spherical harmonics ,Y;,, (6, ). Here, it should be highlighted
that the spin-weight appears as p = ¢@ [19], which is seen as a differentness



Title Suppressed Due to Excessive Length 5

when we compare it with the electrically charged case [2]. Basically, this
result is the consequence of the four-vector potential (6) involving an angular
term. One should notice that by the modified separation constant £, the
magnetic charge is carried into the radial equation, which is going to be
discussed in the next section.

3 REDUCTION OF THE RADIAL TO A CONFLUENT HEUN
EQUATION

In this section, we shall show that the radial part of the massive complex
scalar field equation is in fact a confluent Heun equation. Using metric (2)
as being a background for the covariant Klein-Gordon equation, we see that
the separated radial part of the massive charged test scalar field @ with
mass p is governed by the following equation

(r—2M)(Q*—rM)R"+[Q* — rM — M (r — 2M)] R'+[X — i*r(Q* — rM)+

r?w?(Q? —rM)
——— | R=0 10
r—2M ’ (10)
Making the following coordinate transformation
r=2M — Dux, (11)

where D = %, letting k = y/w? — p? (assuming that w > p ) and
substituting
R(T) _ .Z'2iwze_iszH($), (12)

into differential equation (10), then we can reduce it to a confluent form
of Heun equation [20)]

H”+(O¢+E+7—H)HI+
T z—1
1 1
2z —1) {77+§+§(5+1)(7—a)+ %(ﬁ+7+2)+6} x}H:o,

(13)

which shows that it has two singular points at = 0,1 and one irregular

singular point at the infinity, 2 = oo [I516]. It yields the following specific
parameters:

v =0, a = —2ikD, B =4iwM,
§=—2DMW*+ k%) n=—(£+9), (14)
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In the literature, see for instance [21], there are special transformations,
which make possible to express the Heun functions in terms of ordinary spe-
cial functions. Today, all well-known transformations from confluent Heun
functions to other special functions are listed in the famous computer pack-
age, MAPLFE 10 and its higher versions. Adapting Maple’s notation for the
confluent Heun functions, we obtain the following canonical solutions of
equation (13)

H(Z') = ClHGUTLC(O[, ﬂv Vs 57 Uk ZL') + ngfﬁHeunC’(a, 7/85 s 57 Ul SC) (15)

The convergent Taylor series expansion of the confluent Heun functions
with respect to the independent variable x around regular singular point
x = 0 (i.e. around event horizon r = 2M) is obtained using the known
three-terms recurrence relation [I5}[I6] and initial conditions:

HeunC(a, ,7,6,1;0) = 1, (16)

and

1+8)(y—a)+B+2n

HeunC/(Oé,57775a77;$)|z:O = 2(1 +6)

(17)

4 HAWKING RADIATION OF SCALAR PARTICLES

It is easy to see from equations (11) and (15) that the radial solutions (12)
near to the horizon behave asymptotically as

R(r) ~ Cy(r — 2M)**M 4 Cy(r — 2M)~2M (18)

Therefore, just outside the horizon (r > 2M) two linearly independent
solutions exist:
1- The outgoing wave solution

U — Cy(r — 2M )Mt 0Y1,,.(0, ). (19)

2- The ingoing wave solution

@in — C2 (7“ - 2M)72ineiiwt qQlem(ea (p)a (20)

in which w is assumed to be a positive. As r — oo the outgoing wave has
an infinite number of oscillations and therefore cannot be straightforwardly
extended to the interior region of the black hole in contrast with the ingoing
wave. On the other hand, the outgoing wave can be analytically extended
from outside into the interior of the black hole by the lower half complex
r-plane

(r—2M) — (2M —r)e™ ™. (21)
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According to the DRS method [ITl[12], a correct wave describing a par-
ticle flying off of the black hole is

® =N, [O(r — 2M)D7%y 0 + e'™Meo(2M — PP ] (22)

where O is the conventional Heaviside function and N, is a normalization
factor. Since @°% differs from & as a factor (r — 2M)~4“M the above
complexified analytical treatment (21) requires to put a difference factor
of ™% into equation (22). Thus we can derive the relative scattering
probability of the scalar wave at the event horizon

2
— e—871']\/1(.u (23)

)

out
R _ ’¢T>21\/[

t

Prom

and the resulting radiation spectrum of scalar particles are obtained as
follows

f -
1-R

Using the formal definition of the radiation spectrum [I8], one can easily
read the Hawking temperature as

— (6871‘1\/10.) _ 1)71. (24)

|Nes

1 K

Ty = — =2
H=8rM ~ or

(25)

This result shows that the statistical Hawking temperatures of the Schwarzschild
black hole and the GHS black hole (independent of its charge type) are the
same.

5 CONCLUSION

In this paper, our target was to investigate exact solutions of a massive
complex scalar field equation in the magnetically charged string black hole
background, which is referred to as the GHS black hole. After getting the
exact solution, we have applied the method of DRS to derive the Hawking
radiation of the magnetically charged GHS black holes. On the other hand,
we should state that the present calculation of the Hawking temperature
reproduces the result expected from more general analyses, which has been
recently made in [22] due to the inspection of the form of the metric in
Eq.(2).

The separated angular part is obtained in terms of the spin-weighted
spheroidal harmonics with a spin-weight, which peculiarly depends on the
product of the charges, ¢@Q. On the other hand, the separated radial part is
successfully reduced to a confluent form of the Heun equation. After using
the initial conditions of the confluent Heun functions, which are obtained
by the virtue of the Taylor series expansion around the event horizon, the
asymptotic behaviors of the ingoing and outgoing scalar waves are defined
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near to the horizon. Here, after using the DRS method, we have shown
that the thermal property of the magnetically charged stringy black holes
closely resemble to the electrically charged stringy black holes. Namely, a
charged stringy black hole shares similar quantum thermal effect as the
Schwarzschild spacetime exhibits. Nevertheless, there might be a way to re-
veal differences between these black hole radiations. To the end this, one may
consider the classical approximation [9] to compute the Hawking Radiation.
This is an equivalent procedure to calculating the Bogoliubov coefficients
relating two vacua: The vacuum for a quantum field near the horizon is
not same to the observer’s vacuum at infinity. Briefly, it is a procedure to
compute the reflection and absorption coefficients of a wave by the black
hole. However, the coefficient for reflection by the black hole can be best
calculated whether one may find a relevant transformation between the con-
fluent Heun functions HeunC(«, 8,7, d,n;x) and HeunC(w, 8,7,0,m;1/x)
such as in the hypergeometric functions [9]. But, a transformation from x
to 1/x of the argument of the confluent Heun functions does not exist in the
literature. The main difficulty in making such a transformation arises due
to the fact that the point x = 0 is a regular singular point in contrast to the
point x = oo, which is an irregular singular point. In summary, nowadays
useful asymptotic expansions of the confluent Heun functions are still open
questions.

Finally, it should be emphasized that to properly study Hawking radi-
ation in a selected geometry, the backreaction of the quantum effects must
be taken into account. However, such an attempt resorts to the complete
theory of quantum.
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