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Superposed electrovac pp-waves causes chaos. To show this, we project the particle geodesics onto the
�x; y� plane and simulate the phase space’s Poincaré section numerically. Similar considerations apply,
with minor modifications, to the geodesics in a non-Abelian plane wave spacetime.
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PP-waves form the best known class of exact solutions
to Einstein’s field equations [1]. Interest in this class has
been revived due to the fact that string theory admits exact
solutions on such backgrounds. Beside the pure gravita-
tional pp-waves, it admits pure electromagnetic (em)
waves and their natural mixture which we refer to as
‘‘superposed electrovac pp-waves’’. Extension of such
plane waves to non-Abelian gauge theory is also well-
known [2,3]. We investigate the particle geodesics in
such backgrounds and verify the emergence of chaotic
behavior under certain conditions.

The line-element describing electrovac pp-waves is
given by [4–6]

 ds2 � 2dudv� 2dzd�z� jf�u; z�j2du2; (1)

where f�u; z� is an arbitrary holomorphic function ex-
pressed by a Laurent series expansion

 f�u; z� �
X1
i��1

hi�u�zi; (2)

in which hi�u� stands for an arbitrary function of u and z �
x� iy. The nonvanishing Weyl and Ricci components (in
the Newman-Penrose formalism) are

 �4 � �ffzz; �22 � jfzj2: (3)

in which a bar denotes complex conjugation and a sub-
script implies partial derivative. It is trivially seen that pure
em pp-waves correspond to the special case in which f is a
linear function of z.

Our primary interest here is to investigate whether the
superposed electrovac pp-wave spacetime exposes a cha-
otic behavior or not. A previous analysis proved that the
space of pure impulsive gravitational waves exhibits chaos
[7], and from physics standpoint this result does concern
the particle behavior in string theory.

The geodesics equation for (1) amounts to

 _u � � � const � 0;

or

 u��� � ��; (4)

(i.e. we discard an additive constant)

 �v�
�2

2
jfj2;u � �� _xjfj2;x � _yjfj2;y� � 0; (5)

 �x�
�2

4
jfj2;x � 0; (6)

 �y�
�2

4
jfj2;y � 0; (7)

in which a ‘‘dot‘‘ denotes d
d� , with � being an affine

parameter. The metric condition requires also that

 � _v �
�

_x2 � _y2 �
1

2
jfj2�2 �

�
2

�
; (8)

to replace (5), where � � 1, 0, �1 for timelike, null or
spacelike geodesics, respectively. In this report, we shall
concentrate mainly on Eqs. (6) and (7) with the choice that
f is independent of u, which represents a 2D dynamical
system, described by the Hamiltonian

 H �
1

2
�p2

x � p
2
y� � V�x; y�: (9)

The potential V�x; y� is expressed in terms of the metric
function f (with the specific parameter � �

���
2
p

) by

 V�x; y� �
1

2
jfj2: (10)

It is readily seen that the pure em pp-waves, which
correspond to a linear holomorphic function, makes trivi-
ally an integrable system. More generally, any f�z� � zk, k
being an arbitrary parameter, not necessarily an integer
(and suppressing a multiplicative constant) implies a po-
tential V � 1

2 �x
2 � y2�k, which is integrable in the electro-

vac theory as well. These forms are all axially symmetric
and integrable in the polar coordinates. Thus the electrovac
pp-waves admit a large class of regular motions for the
geodesics particles.

Next, by considering any finite sum of powers in the
holomorphic function changes the picture completely and
leads to chaotic motion. For example, the choice (let us
choose all constants to be unity for convenience)
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 f�z� � z2 � z3; (11)

leads to the potential

 V�x; y� �
1

2
�x2 � y2�2�x2 � y2 � 2x� 1�; (12)

and the equations of motion are

 

�x � ��x2 � y2��3x3 � 5x2 � 3xy2 � 2x� y2�;

�y � �y�x2 � y2��3x2 � 4x� 3y2 � 2�:
(13)

To study these geodesics initial points are chosen on the
unit circle in the �x; y� plane. We parametrize the initial
positions by an angle ���0; 2�� such that xk�0� � cos�k�18�

and yk�0� � sin�k�18� (where k � 0; 1; 2 . . . 35).
Alternatively, our dynamical system can be investigated
by the Poincaré section method which is a way of picturing
the dynamics in the phase space. We follow the computa-
tional program, called Poincaré package [8]. The chaotic
behavior is evident in Fig. 1, obtained by this method.
Expectedly, more additional terms in the holomorphic
function lead to much more tedious equations of motion,
which we shall not discuss.

Non-Abelian plane waves, likewise are represented by
the line-element

 ds2 � 2dudv� jdzj2 � Y�u; x; y�du2; (14)

whose nonzero Weyl and Ricci scalars are

 �4 � Yzz; �22 � Yz�z: (15)

The nonzero Ricci and energy-momentum tensors in the

conventional notation are

 Ruu � �Tuu � �2�22 � �
1

2
r2Y: (16)

The Yang-Mills potential 1-form with the internal gauge
index i is

 Ai � Ai�u; x; y�du: (17)

This leads to the field 2-form

 Fi � Ai;adxa ^ du; �a � x; y� (18)

and the Yang-Mills equations reduce to

 Ai;aa � 0: (19)

A readily available class of solutions is given by

 Ai�u; x; y� �
1

2
��i�u; z� � ��i�u; �z��; (20)

where �i�u; z� are non-Abelian gauge valued functions,
holomorphic in z and arbitrary in u. It should also be added
that the solution will have a full non-Abelian character
provided the gauge group is not restricted to its Abelian
subgroup. The general form of the Y�u; x; y�, which incor-
porates gravitational waves added to the non-Abelian plane
waves is given by

 Y�u; x; y� � K�u; z� � �K�u; �z� �
1

4
�i ��i; (21)

where K�u; z� is another holomorphic function in z and
arbitrary in u. The analogous geodesics equations to
Eqs. (6) and (7) are now
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FIG. 1 (color online). Poincaré sections of � _x; x� and � _y; y� with H � 0:8 (i.e. 1a, 1b) and H � 1:2 (i.e. 1c, 1d) for the potential V
(Eq. (12)). Each phase space with randomly distributed points represents a large chaotic sea. (Here, x! q1, y! q2, _x! p1 and
_y! p2).
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 �x� �2Y;x � 0; (22)

 �y� �2Y;y � 0; (23)

in which we have suppressed the u dependence of Y. This
implies a u independent K�z� and separable �i�u; z� in u
and z such that the u dependence does not arise in the
geodesics equation. This reduces the equations of geode-
sics to the familiar 2D Newtonian form. We recall that for
the pure nonhomogeneous gravitational waves (i.e. �i �
0), K�z� can be chosen such that it leads to chaotic motion
[7]. Specifically, for K � �const�z3, it leads to the Hénon-
Heiles potential [9], which forms the prototype example of
a chaotic system. When K � 0 (i.e. no independent gravity
waves) and �i � gi�u�zk, where gi�u� are gauge valued
functions with the matrix constraint gi�u� �gi�u� � const,
and the k � const, it leads to integrable geodesics. We
note that the choice of u independent gauge matrices gi

also serves our purpose. To construct cases where the non-
Abelian gauge field alone creates chaos it suffices to con-
sider additive terms in the holomorphic function as we did
in the electrovac case. For instance, the choice K � 0,
�i�u; z� � gi�u��

Pn
k�2 z

k�, for n � 3, and with the as-
sumed constraint condition on the gauge function gi�u�
yields chaotic geodesics. On the other hand, the special
choice of K � �const�z3 with �i � gi�u�z and with refer-
ence to Ref. [7] leads to a result in which the chaotic effect

of gravity dominates over the gauge field in the asymptotic
expansion.

Beside the non-Abelian gauge field other sources such as
dilaton and axion can be superimposed to modify the
energy-momenum Tuu in accordance with [10] as

 2Tuu � _�2 � _�2 � e���i;z ��i;�z (24)

Here ��u� stands for the dilaton, the axion � is defined
through e�d� � d�, and the gauge group is SU(2). Since
all these physical fields can be considered local, vanishing
asymptotically the chaos inherited from gravity renders the
whole system to be chaotic. In the absence of gravity it is
the choice of holomorphic function in the gauge function
that plays the role of chaotic agent.

In conclusion, plane wave spacetimes give rise, under
certain conditions to chaotic geodesics. This was already
known for the pure nonhomogeneous gravitational
pp-wave spacetimes. Similar properties hold true also
for electrovac, non-Abelian plane wave backgrounds
which may constitute sources such as dilaton and axion.
As expected, this result may have far reaching implications
in connection with Penrose limit [11] spacetimes and
particle motion in string theory of higher dimensions.

We thank O. Gurtug, M. Riza and M. A. Suzen for useful
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[1] Exact Solutions of Einstein’s Field Equations, edited by H.
Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, and
E. Herlt (Cambridge University Press, Cambridge,
England, 2003).

[2] S. Coleman, Phys. Lett. B 70, 59 (1977).
[3] R. Guven, Phys. Rev. D 19, 471 (1979).
[4] O. R. Baldwin and G. B. Jeffrey, Proc. R. Soc. A 111, 95

(1926).
[5] Y. Nutku, Class. Quant. Grav. 22, L43 (2005).
[6] M. Ortaggio, Class. Quant. Grav. 22, 2811 (2005).

[7] J. Podolsky and K. Vesely, Phys. Rev. D 58, 081501
(1998).

[8] E. S. Ceb-Terrab and H. P. de Oliveria, Comput. Phys.
Commun. 95, 171 (1996).
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