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We study the stability of thin-shell wormholes in Einstein–Maxwell–Gauss-Bonnet gravity. The

equation of state of the thin-shell wormhole is considered first to obey a generalized Chaplygin gas,

and then we generalize it to an arbitrary state function that covers all known cases studied so far. In

particular, we study the modified Chaplygin gas and give an assessment for a general parotropic fluid. Our

study is in d dimensions, and with numerical analysis in d ¼ 5, we show the effect of the Gauss-Bonnet

parameter in the stability of thin-shell wormholes against the radial perturbations.
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I. INTRODUCTION

In an attempt to minimize the exotic matter of a travers-
able wormhole, Matt Visser introduced the concept of a
thin-shell wormhole (TSW) [1]. More precisely, in
Ref. [2], two copies of the Schwarzschild spacetimes are
cut and glued to make the TSW. On the other hand, Brady,
Louko, and Poisson studied the stability of a thin shell
around a black hole in Ref. [3]. In that work, using the
Israel’s junction conditions [4], the mechanical stability of
a static, spherically symmetric massive thin shell was
investigated. Following this work, Poisson and Visser in
Ref. [5] considered the stability of the TSW against line-
arized perturbations around some static spherically sym-
metric solutions of the Einstein equations. In that paper, in
particular, the form of equation of state of the matter that
supports the TSW was chosen to be p ¼ pð�Þ, and follow-
ing the calculation, a parameter �2ð�Þ � @p

@� that plays an

important role for having a stable TSW was defined.

Irrespective of the form of pð�Þ; it was shown that @p
@� at

the static configuration, which occurs at a ¼ a0, the equi-
librium radius of the throat of the TSW, appears in the final
condition. The idea of a TSW and its stability have been
developed and generalized in many directions. Ishak and
Lake, in their work [6], continued along the previous line
by adding the cosmological constant into the solution of
the bulk spacetime. Eiroa and Simeone [7] developed the
cylindrical TSW, and Lobo studied the phantom worm-
holes and their stability in Ref. [8], while a TSW in dilaton
gravity was introduced in Ref. [9]. A generic, dynamic
spherically symmetric thin shell and its corresponding
stability was discussed in Ref. [10]. Chaplygin gas travers-
able wormholes and a generalized Chaplygin gas sup-
ported spherically symmetric TSW were discussed in
Ref. [11], while a higher-dimensional static spherically
symmetric TSW in the Einstein–Maxwell theory was
studied by Rahaman, Kalam, and Chakraborty in

Ref. [12]. Vacuum thin-shell solutions in five-dimensional
Lovelock gravity were studied in Ref. [13]. Extension
toward the Einstein–Maxwell–Gauss-Bonnet (EMGB)
gravity was investigated in Ref. [14], and its stability and
existence of a TSW supported by normal matter was
discussed in Ref. [15] .The nonasymptotically flat TSW
in the higher-dimensional spherically symmetric Einstein–
Yang–Mills theory was considered in Ref. [16] and its
extension to Einstein–Yang-Mills–Gauss-Bonnet was
given in Ref. [17]. A TSW in Hořava–Lifshitz gravity
was introduced in Ref. [18], and a TSW in the Lovelock
modified theory of gravity was given in Ref. [19]. In
Ref. [20], a rotating TSW in Kerr spacetime was found,
and a TSW in Brans–Dicke theory and its stability were
investigated in Ref. [21]. Furthermore, a TSW in the Dvali,
Gabadadze, and Porrati theory was determined in
Ref. [22], while a TSW in the Einstein-nonlinear
Maxwell theory was found in Ref. [23].
The above list is not complete, and there are some other

works that in some senses generalized the idea of the TSW
introduced in Refs. [1,2]. Another form of generalization
also is going on parallel to the concept of the TSW, which
is the Israel junction conditions [4]. In Ref. [24], the
generalized Darmois–Israel boundary conditions were
worked out, and using it, generalized junction conditions
in Einstein–Gauss-Bonnet (EGB) gravity and in third-
order Lovelock gravity were found in Refs. [17,19]. For
the whole set of Lovelock theories, the Israel junction
conditions were generalized by Gravanisa and Willison
in Ref. [25].
Among other aspects, the foremost challenging prob-

lems related to the TSW [1–23] are, i) positivity of energy
density and ii) stability against symmetry-preserving per-
turbations. To overcome these problems, recently there
have been various attempts in EGB gravity with Maxwell
and Yang–Mills sources. Specifically, with the negative
Gauss-Bonnet (GB) parameter (�< 0), we obtained a
stable TSW, obeying a linear equation of state, against
radial perturbations [15]. By linear equation of state, it is
meant that the energy density � and surface pressure p
satisfy a linear relation. To respond to the other challenge,
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however, i.e., the positivity of the energy density (�> 0),
we maintain still a cautious optimism. To be realistic, only
in the case of Einstein–Yang-Mills–Gauss-Bonnet theory
and in a finely tuned narrow band of parameters were we
able to beat both of the above-stated challenges [15]. Our
stability analysis with the negative energy density was
extended further to cover nonasymptotically flat (NAF)
dilatonic solutions [16].

In this paper, we show that stability analysis of a TSW
extends to the case of a generalized Chaplygin gas (GCG),
which has already been considered within the context of
Einstein–Maxwell TSWs [4]. Because of the accelerated
expansion of our Universe, a repulsive effect of a
Chaplygin gas (CG) has been considered widely in recent
times. By the same token, therefore, it would be interesting
to see how a GCG supports a TSWagainst radial perturba-
tions in GB gravity. For this purpose, we perturb the TSW
radially and reduce the equation into a particle in a poten-
tial well problem with zero total energy. The stability
amounts to the determination of the positive domain for
the second derivative of the potential. We obtain plots that
provide us such physical regions indicating stable worm-
holes. Beside the example of a GCG, we consider an
equation of state with its general form. Namely, the relation
between the pressure p and the energy density � is given
by the parotropic form p ¼ c ð�Þ, for an arbitrary function
c ð�Þ. The stability criteria for such a wormhole have been
derived as well.

The organization of the paper is as follows. In Sec. II, we
introduce our formalism of the TSW in EMGB theory. The
stability problem of the obtained TSW supported by GCG
is considered in Sec. III. In Sec. IV, we generalize our
equation of state further and consider cases other than the
GCG. The paper ends with our conclusion in Sec. V.

II. TSW IN EMGB GRAVITY

The d-dimensional EMGB action without cosmological
constant

S ¼ 1

16�G

Z ffiffiffiffiffiffi
jgj

q
ddx

�
Rþ �LGB � 1

4
F
�
; (1)

where G is the d-dimensional Newton constant, F ¼
F��F

�� is the Maxwell invariant, and � is the GB parame-

ter with Lagrangian

LGB ¼ R2 � 4R��R
�� þ R����R

����: (2)

The variation of S with respect to g�� yields the EMGB

field equations,

G�� þ 2�H�� ¼ T��; (3)

in which H�� and T�� are given by

H�� ¼ 2ð�R�
��	R���	 � 2R����R

��

� 2R��R
�
� þ RR��Þ � 1

2
g��LGB; (4)

T�� ¼ F��F�
� � 1

4
g��F��F

��: (5)

Our static spherically symmetric metric ansatz will be

ds2 ¼ �fðrÞdt2 þ dr2

fðrÞ þ r2d�2
d�2; (6)

in which

d�2
d�2¼d
21þ

Xd�2

i¼2

Yi�1

j¼1

sin2
jd

2
i

0�
d�2�2�;0�
i��;1� i�d�3

(7)

and fðrÞ is to be found.
Construction of the thin-shell wormhole in the static

spherically symmetric spacetime follows the standard
procedure used before [1–3]. In this method, we consider
two copies M1;2 of the spacetime

M1;2 ¼ fðt; r; 
1; . . . ; 
d�2Þjr � a; a > rhg; (8)

which are geodesically incomplete manifolds for which
the boundaries are given by the following timelike
hypersurface:

�1;2 ¼ fðt; r; 
1; . . . ; 
d�2ÞjFðrÞ ¼ r� a ¼ 0; a > rhg:
(9)

By identifying the above hypersurfaces on r ¼ a, one gets
a geodesically complete manifold M ¼ M1 [M2.
We introduce the induced coordinates on the wormhole

�a ¼ ð	; 
1; 
2; . . .Þ—with 	 the proper time—in terms of
the original bulk coordinates x� ¼ ðt; r; 
1; . . . ; 
d�2Þ.
Further to the Israel junction conditions [4], the general-
ized Darmois–Israel boundary conditions [24] are chosen
for the case of EMGB modified gravity. The latter con-
ditions on � take the form

2hKab�Khabiþ4�h3Jab�Jhabþ2PacdbK
cdi¼��2Sab;

(10)

in which h:i stands for a jump across the hypersurface
� ¼ �1 ¼ �2, hab¼gab�nanb is the induced metric on
� with normal vector na, and S

b
a ¼ diagð�; p
1 ; p
2 ; . . .Þ is

the energy-momentum tensor on the thin shell. Therein, the
extrinsic curvature K�

ab (with trace K) is defined as

K�
ab ¼ �n�c

�
@2xc

@�a@�b
þ �c

mn

@xm

@�a

@xn

@�b

�
r¼a

: (11)

The divergence-free part of the Riemann tensor Pabcd and
the tensor Jab (with trace J) are given also by
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Pabcd ¼ Rabcd þ ðRbchda � RbdhcaÞ � ðRachdb � RadhcbÞ
þ 1

2
Rðhachdb � hadhcbÞ; (12)

Jab ¼ 1

3
½2KKacK

c
bþKcdK

cdKab�2KacK
cdKab�K2Kab�:

(13)

The black hole solution of the EMGB field equations
(with � ¼ 0) is given by [26]

f�ðrÞ

¼ 1þ r2

2~�

�
0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4~�

�
2M

8�rd�1
� Q2

2ðd� 2Þðd� 3Þr2ðd�2Þ

�s 1
A;

(14)

in which ~� ¼ ðd� 3Þðd� 4Þ�, M is an integration con-
stant related to the Arnowitt-Deser-Misner (ADM) mass of
the black hole, and Q is the electric charge of the black
hole. (We must comment that in the rest of the paper we
assume � � 0, and the calculations are based on the nega-
tive branch solution, i.e., fðrÞ ¼ f�ðrÞ.) The correspond-
ing electric field 2-form is given by

F ¼ Q

r2ðd�2Þ dt ^ dr: (15)

The components of the energy-momentum tensor on the
thin shell are

�¼�S		 ¼��ðd� 2Þ
8�

�
2

a
� 4~�

3a3
ð�2� 3ð1þ _a2ÞÞ

�
; (16)

p ¼ S
i
i

¼ 1

8�

�
2ðd� 3Þ�

a
þ 2‘

�
� 4~�

3a2

�
3‘�� 3‘

�
ð1þ _a2Þ

þ�3

a
ðd� 5Þ � 6�

a

�
a €aþ d� 5

2
ð1þ _a2Þ

���
; (17)

in which ‘ ¼ €aþ f0�ðaÞ=2, � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f�ðaÞ þ _a2

p
, and while

a ‘‘dot’’ implies a derivative with respect to the proper time
	, a ‘‘prime’’ denotes differentiation with respect to the
argument of the function. These expressions pertain to the
static configuration if we consider a ¼ a0 ¼ constant, and
therefore

�0 ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f�ða0Þ

p ðd� 2Þ
8�

�
�
2

a0
� 4~�

3a30
ðf�ða0Þ � 3Þ

�
; (18)

p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f�ða0Þ

p
8�

�
2ðd�3Þ

a0
þf0�ða0Þ
f�ða0Þ

� 4~�

3a20

�
3

2
f0�ða0Þ�

3f0�ða0Þ
2f�ða0Þþðd�5Þ

�
f�ða0Þ�3

a0

���
:

(19)

We add also that in the case of a dynamic throat the
conservation equation amounts to

d

d	
ð�aðd�2ÞÞ þ p

d

d	
ðaðd�2ÞÞ ¼ 0: (20)

III. STABILITY OF THE EMGB TSW
SUPPORTED BY GCG

Our aim in the following is to perturb the throat of the
thin-shell wormhole radially around the equilibrium radius
a0. To do this, we assume that the equation of state is in the
form of a GCG [11], i.e.,

p ¼
�
�0

�

�
�
p0; (21)

in which � 2 ð0; 1� is a free parameter and �0=p0 corre-
spond to �=p at the equilibrium radius a0. We plug the
latter expression into the conservation energy equation (20)
to find a closed form for the dynamic tension on the thin
shell after perturbation as follows:

�ðaÞ ¼ �0

��
a0
a

�ð1þ�Þðd�2Þ þ p0

�0

��
a0
a

�ð1þ�Þðd�2Þ � 1

�� 1
1þ�
:

(22)

Equating this with the one found in Eq. (16), one finds a
particlelike equation of motion,

_a2 þ VðaÞ ¼ 0; (23)

which describes the behavior of the throat after the pertur-
bation. The intricate potential VðaÞ satisfies

� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f�ðaÞ � VðaÞp ðd� 2Þ

8�

�
�
2

a
� 4~�

3a3
ðf�ðaÞ þ 2VðaÞ � 3Þ

�
; (24)

in which � is given by Eq. (22). At the static configuration
at which a ¼ a0, one can show that Vða0Þ ¼ 0 and
V0ða0Þ ¼ 0: This implies that Eq. (23) can be expanded
about a ¼ a0 such that

_x2 þ 1

2
V 00ða0Þx2 ¼ 0; (25)
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in which x ¼ a� a0. The derivative of the latter equation
with respect to 	 yields

€xþ 1

2
V00ða0Þx ¼ 0; (26)

which upon V 00ða0Þ � 0 admits an oscillatory motion or
stability of the thin-shell wormhole at a ¼ a0. The exact
form of V 00ða0Þ is given by

V00ða0Þ ¼ B1�þB2

2a20f0½3a20 � 2~�ð3� f0Þ�½a20 þ 2~�ð1þ f0Þ�
;

(27)

where

B1 ¼ 6

�
� 2~�ðd� 5Þf20

3

þ ½ð�f00a0 þ 2ðd� 5ÞÞ~�þ a20ðd� 3Þ�f0
þ f00a0ða20 þ 2~�Þ

2

�
� ½4f20 ~�þ ð�2~�f00a0 � 2a20 � 12~�Þf0
þ f00a0ða20 þ 2~�Þ� (28)

and

B2 ¼ �16~�2ðd� 5Þf40 þ 8~�f30½ð~�f000 � 18þ 4dÞa20 þ ~�f00ðd� 7Þa0 þ 12~�ðd� 5Þ�
þ f½ð4f020 � 32f000 Þa20 � 32ðd� 7Þf00a0 � 144ðd� 5Þ�~�2 � 16½f000a20 þ ðd� 6Þf00a0 þ 6ðd� 4Þ � 3�a20 ~�
� 12a40 ~�ðd� 3Þgf20 þ 2½3a30f000 þ 3ðd� 3Þa20f00 � 2~�ðf020 � 3f000 Þa0 þ 6~�f00ðd� 7Þ�ða20 þ 2~�Þa0f0
� 3a20f

02
0 ða20 þ 2~�Þ2: (29)

Figure 1 depicts a five-dimensional plot of the stable
region with respect to a0 and � with M ¼ 20, Q ¼ 1, and
variable ~�: The stable regions are indicated by the letter S.
As it is displayed in Fig. 1, the stability region has two parts
in each case, the area in negative � and positive �. The
former is almost for � <�1, which is not a physical state.
The latter contains partly the interval � 2 ð0; 1�, which is

in our interest. We observe that by increasing ~� this
physical stable region develops, and therefore the TSW is
more stable. In addition to the stable regions in Fig. 1,
we plot the metric function to give an estimation of the
location of the horizon for the same parameters.

IV. STABILITY OF THE EMGB TSW SUPPORTED
BYAN ARBITRARY EQUATION OF STATE

In this section, we study the stability of the EMGB TSW,
which is supported by an arbitrary gas with the barotropic
equation of state

p ¼ c ð�Þ; (30)

in which c ð�Þ is an arbitrary function of �. This covers

naturally the polytropic equation of state p� �1þ1
n with

the index 0 � n <1. As before, we consider the static
equilibrium configuration at a ¼ a0, where �0 and p0 are
given by Eqs. (18) and (19). Furthermore, the equation of
motion of the throat after the perturbation is still given by
Eq. (23), where VðaÞ satisfies the condition (24) in which�
in the left-hand side is the energy density after the pertur-
bation. The form of �, explicitly, depends on the form
of p ¼ c ð�Þ and can be found by applying the energy
conservation law (20), which is also equivalent with

�0 ¼ � d� 2

a
ð�þ pÞ: (31)

Further, one has

�00 ¼ � ðd� 2Þ
a

p0 þ ðd� 1Þðd� 2Þ
a2

ð�þ pÞ; (32)

FIG. 1 (color online). Stability region in terms of � and radius
of the throat a0 for d ¼ 5, M ¼ 20, Q ¼ 1 and various values of
�. The stable region is denoted by S. The metric function is also
displayed for r larger than the horizon.
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in which a prime denotes the derivative with respect to a.
Having p0 ¼ c 0ð�Þ�0, the latter equation reads

�00 ¼ ðd� 2Þð�þ pÞ
a2

½ðd� 2Þc 0ð�Þ þ ðd� 1Þ�: (33)

Nevertheless, using Eqs. (31) and (33), one can explicitly
find the form of V 0ðaÞ and V 00ðaÞ from Eq. (24) and show
that at a ¼ a0, Vða0Þ and V0ða0Þ vanish while

V00ða0Þ ¼ 2ðd� 2Þf0c 0ð�0ÞG1 þG2 ~�þ 2a20G3

2a20f0½a20 þ 2~�ð1þ f0Þ�
; (34)

in which

G1 ¼ 4~�f20 � ð2~�a0f00 þ 12~�þ 2a20Þf0 þ a0f
0
0ða20 þ 2~�Þ;

(35)

G2 ¼ 8ðd� 5Þf30 þ f20½�4a20f
00
0 � 4f00ðd� 7Þa0

� 24ðd� 5Þ� þ 4a0

��
f000 �

f020
2

�
a0 þ f00ðd� 7Þ

�
f0

� 2a20f
02
0 ; (36)

G3 ¼ a20

�
f0f

00
0 �

f020
2

�
þ ðf0f00a0 � 2f20Þðd� 3Þ: (37)

We note that c 0ð�0Þð¼ p0
0

�0
0
Þ ¼ dc

d� j�¼�0
, while the other

functions are calculated at a ¼ a0: Depending on the
form of c , we face different TSW. For instance, setting
dc
d� ¼ 0 ¼ constant reduces to a linear gas supporting

TSW with

c ¼ 0�þ C; (38)

where C is a constant. Imposing pða ¼ a0Þ ¼ p0 and
�ða ¼ a0Þ ¼ �0 leads to C ¼ p0 � 0�0 and therefore

c ¼ 0ð�� �0Þ þ p0; (39)

which is the case studied in Ref. [27]. Another interesting

case is given by dc
d� ¼ � 0

�2 , giving

c ¼ 0

�
þ C; (40)

in which C is an integration constant. Again, imposing
pða ¼ a0Þ ¼ p0 and �ða ¼ a0Þ ¼ �0 dictates that C ¼
p0 � 0

�0
and therefore

c ¼ 0

�
1

�
� 1

�0

�
þ p0: (41)

Setting p0 � 0

�0
¼ 0 or 0 ¼ p0�0 implies the well known

CG which we have studied in the previous chapter i.e.,

c ¼ p0

�0

�
: (42)

Another important state that has been considered recently
is the modified generalized Chaplygin gas (MGCG) ob-
tained by setting

dc

d�
¼ �0 þ �0

��þ1
(43)

ð�0 ¼ constantÞ (44)

which implies

c ¼ �0�� 0

�� þ C: (45)

Applying pða ¼ a0Þ ¼ p0 and �ða ¼ a0Þ ¼ �0 yields
C ¼ p0 þ 0

��
0
� �0�0 and consequently

c ¼ �0ð�� �0Þ � 0

�
1

�� �
1

��
0

�
þ p0: (46)

Setting C ¼ 0 or 0 ¼ ��
0ð�0�0 � p0Þ simplifies the latter

equation as

c ¼ �0�� 0

�� ; (47)

which has been studied in Ref. [28]. Figure 2 depicts the
effect of the GB parameter on the stability regions of the
CG model of the TSW in pure GB gravity (i.e., Q ¼ 0). It
is observed that increasing the value of the GB parameter
decreases the stability areas. Figure 3 displays stability
regions as Fig. 2 but with Q ¼ 1. Almost the same effect
of the GB parameter is seen in this case, too. We note from
the standard CG model that 0<0 while the figures are
plotted for �2<0 � 2. What we are referring to as the
stability region should be understood in this interval.
Figures 4 and 5 are plots of stability regions for TSW in

EGB (Q ¼ 0) and EMGB (Q ¼ 1) supported by MGCG
(�0 � 0, 0 � 0, � ¼ 1). Figure 4 should be compared
with Fig. 2, and Fig. 5 should be compared with Fig. 3 to
see the change of the stability of the TSW in the EGB and
EMGB bulk due to MGCG instead of CG. We observe that
effects of MGCG become more significant for the regions
of stability r < rh and for the cases that admit no horizon.

EFFECT OF THE GAUSS-BONNET PARAMETER IN THE . . . PHYSICAL REVIEW D 88, 124023 (2013)

124023-5



FIG. 5 (color online). Stability region in terms of 0 and the
radius of the throat a0 for MGCG (� ¼ 1, �0¼1), d ¼ 5, M ¼
20, Q ¼ 1, and various values of �. The stable region is denoted
by S. The metric function is also displayed in terms of r. The
shaded region is for r < rh in which rh is the event horizon.

FIG. 4 (color online). Stability region in terms of 0 and the
radius of the throat a0 for MGCG (� ¼ 1, �0¼1), d¼ 5, M ¼
20, Q ¼ 0, and various values of �. The stable region is denoted
by S. The metric function is also displayed in terms of r. The
shaded region is for r < rh in which rh is the event horizon.

FIG. 3 (color online). Stability region in terms of 0 and the
radius of the throat a0 for CG (� ¼ 1, �0 ¼ 0), d ¼ 5, M ¼ 20,
Q ¼ 1, and various values of �. The stable region is denoted by
S. The metric function is also displayed in terms of r. The shaded
region is for r < rh in which rh is the event horizon.

FIG. 2 (color online). Stability region in terms of 0 and the
radius of the throat a0 for CG (� ¼ 1, �0 ¼ 0), d ¼ 5, M ¼ 20,
Q ¼ 0, and various values of �. The stable region is denoted by
S, which is identified by V00ða0Þ> 0, from Eqs. (27)–(29). The
metric function is also displayed in terms of r. The shaded region
is for r < rh in which rh is the event horizon.
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A. Logarithmic model of gas supporting
the TSW in EMGB gravity

As one can see from Eq. (34), in V 00ða0Þ, only c 0ð�0Þ
appears. In the case of GCG, i.e., c ¼ � 0

�� with 0<0

and 0< � � 1, c 0ð�Þ ¼ �0

��þ1 . We note that the case � ¼ 0

is excluded; for this reason, separately we consider the case
� ¼ 0 briefly here. When � ¼ 0, c 0ð�Þ ¼ 0

� , which

implies c ¼ 0 ln j�j þ C. In Figs. 6 and 7, we plot the
stability regions of the TSW supported by the logarithmic
state equation in EGB and EMGB bulk metrics,
respectively.

V. CONCLUSION

In conclusion, for a GCG obeying the equation of state
p ¼ ð�0

� Þ�p0, we have found stable regions within a physi-

cally acceptable range of parameters in EMGB gravity.
The role of GB parameter � in the formation of stable

TSW is investigated. It is found that formation of stable
regions is highly dependent on the value of� as depicted in
our numerical plots. The energy density, however, turns out
to be negative to suppress such a TSW as a prominent
candidate. Besides, a general equation of state is consid-
ered in the form p ¼ c ð�Þ, which reproduces all known
particular cases. It is found that depending on the tuning of
the parameters stable regions expand/shrink accordingly.
Unfortunately, in all cases tested, one had to be satisfied
with a negative energy density as the supporting agent for
the TSW in EMGB theory. Finally, we wish to comment
that in addition to the classical role played by wormholes
their possible quantum roles within the context of the
‘‘firewalls paradox’’ has recently been highlighted [29]. It
is speculated that the emitted Hawking particles are en-
tangled through wormholes to the innerhorizon particles of
a black hole [30]. Once justified, the subject of wormholes
will turn into a hot topic to transcend classical boundaries
to occupy a significant role even in quantum gravity.
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