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p16 is recognised as a tumor suppressor gene due to the prevalence of its genetic in-

activation in all types of human cancers. Additionally, p16 gene plays a critical role
in controlling aging, regulating cellular senescence, detection and maintenance of DNA
damage. The molecular mechanism behind these events involves p16-mediated signalling

pathway (or p16-Rb pathway), the focus of our study. Understanding functional depen-
dence between dynamic behavior of biological components involved in the p16-mediated
pathway and aforesaid molecular-level events might suggest possible implications in the
diagnosis, prognosis and treatment of human cancer.

In the present work we employ reverse-engineering approach to construct the most
detailed computational model of p16-mediated pathway in higher eukaryotes. We im-
plement experimental data from the literature to validate the model, and under various
assumptions predict the dynamic behavior of p16 and other biological components by

interpreting the simulation results. The quantitative model of p16-mediated pathway is
created in a systematic manner in terms of Petri net technologies.

Keywords: Signalling pathway; hybrid functional Petri net; quantitative modelling.

1. Introduction

Achievements in molecular biology and genetics over the past few decades have

created a tremendous gap between accumulated biological data and their inter-

pretation. Bringing together a posteriori knowledge with mathematical formalism
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and tools of computer science provides an essential vehicle to close the existing

gap. Computational modelling and simulation is a well-known approach to explore

biological systems. The main idea behind this approach is to create the closest ap-

proximation of a biological system based on wet lab results, and predict its dynamic

behavior through measuring the amounts of biological components. The success of

this approach depends on success in all of its phases, which are the selection of

appropriate modelling tool, gradual model development and its careful adjustment,

model validation and prediction of dynamic behavior through simulation and anal-

ysis of simulation results. Researchers have come to realise that an appropriate

modelling tool not only has to reproduce the biological system to desired outcome

but also allow us to predict its behavior by interpreting the simulation results in

a meaningful way. Nowadays, there exists a consensus among researchers that a

quantitative description of dynamic behavior is all what we need to fully under-

stand biological systems with complex interacting components.

In 2003, scientists with The Human Genome Project announced that they have

identified approximately 20,000-25,000 genes on the human genome. These genes

are spread out over 23 pair chromosomes. What we do know is that not all genes are

equally important for survival of living organisms. Some genes are of critical impor-

tance, while others are of much less importance. The present research is focused on

p16, a gene playing prominent role in controlling DNA damage, tumor suppression,

replicative senescence and aging. p16 plays an important role in cell cycle regu-

lation, particularly performing its functions by regulating p16-mediated signalling

pathway. Inactivation of p16 leads to disruption of p16-mediated signalling path-

way, a key cause of cancer in humans. This is the strongest argument to motivate

further research in this area.

In the present research, we exploit hybrid functional Petri net (HFPN) as com-

putational platform to create quantitative explanatory model of p16-mediated path-

way describing the processes of the cell cycle regulation at G1 phase. We perform a

series of simulations to validate the model for wild type p16 and its mutated form.

Simulation results facilitate understanding the dynamic behavior of p16 in a normal

functioning cell as opposed to a dysfunctional cell when DNA-damage or replicative

senescence occurs.

The paper is organised as follows: we start with introducing the biological con-

tent to make it easy for the readers to understand the present research. Then the

current related work in this field is reviewed. Next, we succinctly describe Petri

nets, from its simplest form to HFPN. After that, we present our HFPN model of

p16-mediated pathway, and draw a connection between model components and bio-

logical content. Following this, we discuss the simulation results, and we summarise

our findings.
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2. Biological context

A cell is perhaps the smallest functional unit that exhibits all the characteristics of

life. The cell cycle is an ordered and irreversible sequence of events that leads to cell

division. The cell cycle events are classified into discrete periods or phases. These

phases are aligned respectively in the order of G1 (gap period 1); S (synthesis); G2

(gap period 2); and M (mitosis). During G1 phase, based on information received

from extracellular environment, cells decide whether to proliferate or not. It is in this

phase cells start growing. DNA integrity is always under attack of environmental

factors such as UV radiation and tabacco smoke. Damaged DNA is potential source

for mutations and can lead to unregulated cell proliferation, a key cause of cancer.

Intact or repaired DNA permits DNA replication which occurs in the S phase. G2

phase separates end of DNA synthesis from initiation of mitosis. Finally, M phase

results in the production of two identical daughter cells from a single parent cell.

2.1. Cyclins, cyclin dependent kinesis and inhibitors

Advances in understanding of the cell cycle in the last two decades are tightly related

with the discovery of cyclins and cyclin dependent kinesis (CDKs). CDKs as cell cy-

cle regulators are not capable to perform their tasks alone. CDKs bind to associated

cyclins to achieve their mission by promoting positive events and ensuring successful

passage through the cell cycle transitions. Four classes of cyclins have been observed

in a human cell, each centered around one Cyc/CDK complex. The CycD/CDK4-6

complex is responsible for progression in G1 phase, CycE/CDK2 complex regulates

passage through G1/S transition, CycA/CDK2 complex promotes the progression

in S phase, and CycB/CDK1 complex activity drives the G2/M transition.

Though Cyc/CDK complexes play a critical role in cell cycle regulation, there

is another class of proteins that regulate these regulators; in human cells these are

CDK inhibitors or CKIs, for short. Under certain circumstances CKIs bind to and

inhibit the corresponding CDKs activity, preventing replication of DNA. Damaged

DNA, cell cycle abnormality and environmental stresses are among circumstances

that force CKIs to inhibit CDKs activity. CKIs are classified into two major families,

INK4 and Cip/Kip. Four INK4 family proteins are p15, p16, p18 and p19. In con-

trast to INK4 proteins, Cip/Kip family proteins are more broadly acting inhibitors,

whose actions affect the activities of cyclin D-, E-, and A-dependent kinases. The

Cip/Kip family includes p21, p27 and p57. All of aforesaid inhibitors play funda-

mental role in tumor suppression. Inactivation of CKIs’ tumor suppressing functions

by gene mutations is one of the most frequent alterations found in human cancers.

2.2. Cell cycle checkpoints and replicative senescence

Failures in the DNA replication and environmental stresses such as UV radiation

and tobacco smoke might cause DNA damage. Damaged DNA can result in loss

of genetic information and mutations, destroying the control of cell proliferation.
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Cells use complex signaling pathways called the checkpoints to control the accuracy

and consistency of cell division, detect and maintain DNA damage, and alleviate

stresses on genomes.1 The checkpoints halt progression into the next phase of the

cell cycle until damaged DNA has been precisely repaired. The most studied cell

cycle checkpoints are transitions from G1 to S (G1/S checkpoint) and from G2 to

M (G2/M checkpoint).

Human cells are not immortal as they undergo a finite number of cumulative

population doublings, then enter a state termed replicative senescence. It was ob-

served that normal human cells permanently can divide 50 ± 10 times (Hayflick

limit) before they succumb to replicative senescence.3 In human cells, replicative

senescence is a powerful tumour suppressive mechanism, which also contributes to

ageing.
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Fig. 1. Schematic illustration of p16- and p21-mediated control mechanism regulating DNA damage
and replicative senescence.

2.3. The p16-mediated and p21-Rb signalling pathways

The tumor suppressor genes p16 and p21 play a key role in detection and repair of

DNA damage and keeping track of replicative senescence. The p16 and p21 utilize

their functions in G1 phase and G1/S checkpoint, respectively. Fig. 1 is a schematic

illustration of p16- and p21-mediated control mechanism occurring in human cells.

In wild-type human cells, CDK4 binds to CDK6, which in turn activates cyclin

D, and further inactivates Rb by phosphorylating it. Phosphorylation of Rb by

CDK4/6 leads to activation of cyclin E, which in turn forms a complex with CDK2.

A complex CycE/CDK2 further phosphorylates pRb. Phosphorylation of pRb by

CycE/CDK2 inactivates it and allows cells to enter S phase, resulting in the initia-

tion of DNA replication.4,5 When number of accumulated cell doublings reaches the
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Hayflick limit3 p16 receives a signal on replicative senescence. As a result p16 binds

to CDK4/6 inhibiting its activity thereby preventing Rb phosphorylation.6,7 This

leads to irreversible arrest in G1 phase of cell cycle. When DNA damage is detected,

the action of p16 again targets CDK4/6 and results in arrest in G1 phase until DNA

damage is repaired. Inactivation of tumor suppressor gene p16 occurs through its

mutation. Mutated p16 gene looses its gatekeeper role at G1 phase which might

cause uncontrolled cell division leading to cancer.8 When p16 is mutated, p21 takes

responsibility for controlling its functions in G1/S checkpoint.

3. Related work

This section is a brief review of the mathematical and computational models of the

cell cycle or its fragment based on the type of a cell being studied, and the method

or tool being used to study.

Biologists distinguish between eukaryotic and prokaryotic cells. Eukaryotic cells

contain a nuclei and organelles enclosed within membranes, while prokaryotic cells

do not contain any nuclei. Nowadays, it is broadly-known that interactions between

the key cell-cycle regulators are universal among eukaryotes.9 Modelling studies

of Caulobacter crescentus bacterium, a single-celled prokaryote, have demonstrated

that prokaryotic and eukaryotic cells follow the same outline though major com-

ponents in eukaryotes are different from those in prokaryotes.10,11 In 1993, it was

predicted that CDK control system in eggs of the frog Xenopus laevis, which is a eu-

karyote, is bistable, meaning that the system is able to exist in two steady states.12

A decade later this prediction was proved experimentally.13,15 Many researchers

have extensively modelled cell cycle of budding yeast Saccharomyces cerevisiae, a

single-celled eukaryote, focusing on different aspects of cell cycle machinery.16–22

Some of their predictions regarding budding yeast were tested and proved exper-

imentally.23 There exist models describing DNA replication,24,25 cell division,26

behavior of some mutants,27,28 and various aspects of cell regulatory systems29 for

the fission yeast Schizosaccharomyces pombe, another single-celled eukaryote, as well

as embryonic cell cycle of Drosophila melanogaster,30 and sea urchin.31 Interactions

between complexes CycB-CDK1, Cdh1-APC, and monomers Cdc14 and Cdc20 ex-

pand macro-level understanding of cell cycle control.32 For detailed information the

readers are referred to comprehensive reviews of existing models.33,34

The physiological variations among different types of eukaryotic cells make it

challenging to model cell cycle of higher eukaryotes, though a number of attempts

have been made to study cell cycle in higher eukaryotes. Modelling studies of basic

proteins and their complexes in mammalian cell cycle have shown that in the pres-

ence of sufficient amount of growth factors, the system passes from stable steady

state to sustained oscillations of cyclin/CDK complexes.35 Based on bifurcation

analysis of mammalian cell cycle with feedback connections, some predictions have

been made regarding bistability of G1/S transition.36 The relationship between

phosphorylation and stability (or instability) of G1/S transition in mammalian cell
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cycle has also been analyzed.37 However, a model of cell cycle regulation in higher

eukaryotes has not been constructed yet though there exist a number of case stud-

ies.19,33

Modelling of cell cycle or particular signalling pathway is usually performed

by means of differential equations38 or in terms of continuous Petri nets.39

Both approaches are well-defined and have straightforward biological interpre-

tation. As a major advantage, a Petri net-based approach is supported by a

plenty of computational tools enabling visualization of models and simulation re-

sults. There exist many cell cycle models built in terms of ordinary differential

equations,10–12,17,18,21,24–26,30,35,36 stochastic differential equations,28,40 stochas-

tic Petri nets19 and HFPN.29,32

HFPNs have been extensively exploited for quantitative modelling and simula-

tion of biological phenomena including switching mechanism of λ phage,41 circadian

rhythms of Drosophila,41 apoptosis signalling pathway,41 glycolytic pathway con-

trolled by the lac operon gene,42 validation of transcriptional activity of the p53,43

antifolate inhibition of folate metabolism,44 cell fate specification during Caenorhab-

ditis elegans vulval development,40 lac operon gene regulatory mechanism in the

glycolytic pathway of Escherichia coli,45 and molecular interactions in the flower

developmental network of Arabidopsis thaliana.46

3.1. Contributions

There exists a dozen of quantitative models describing various aspects of cell cycle

regulation. However, the details of the inhibitory role of p16 in replicative senes-

cence and DNA-damage, as well as the relationship between the p16 mutations and

their interaction with protein complexes remain largely unanswered. The present

research, to the best of authors’ knowledge, describes the most detailed quantita-

tive model of p16-mediated pathway in higher eukaryotes, incorporating the latest

experimental observations. We study the quantitative changes in dynamical behav-

ior of the major proteins and protein complexes in response to the mutations of

p16 and G1-dysfunction. In this respect, it is noteworthy that our model gives in-

sight into key role of p16 in regulation of replicative senescence and DNA-damage.

Throughout our modelling system, we compare the behavior of the major proteins

with experimental data, to validate our model and assess in what measure the model

reproduce the dynamics of p16-mediated pathway.

4. Petri nets

A concept of Petri nets was introduced by Dr. Carl Adam Petri in 1962. An original

Petri net sometimes referred to as P/T-net, is suitable for modelling discrete dy-

namic systems in which both system’s states and transitions between the states are

represented in terms of integers. In order to add more modelling power and match

modelling tool to system’s characteristics, P/T-net is sometimes expanded with
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time, color, hierarchy, stochasticity, fuzzibility, and other extensions. In a P/T-net

with extension, a state is basically composed of discrete and boolean components.

Nevertheless, a P/T-net with extension is not suitable for modeling the dynamic

systems with continuously changing state parameters. Continuous Petri nets were

introduced to overcome this drawback.47 In a continuous Petri net, real numbers are

used to represent continuous change of state parameters. Many dynamic systems

are however naturally hybrid employing different structured processes. A state in

hybrid systems is a collection of integers, real numbers, boolean values, etc. Hybrid

Petri nets are specifically developed to comprise different structured data types,

and express explicitly the relationship between continuous and discrete values.48

Modelling of biological systems requires often interaction between different struc-

tured processes. Biological reactions are natural continuous processes. Reaction rate

or reaction speed at which a biological reaction takes place is usually expressed in

terms of real numbers. On the other hand, checking for presence/absence of bio-

logical phenomenon is a boolean process, while counter-like mechanism is a typical

discrete process. In biological reactions, concentration of output component depends

on concentrations of input components and the reaction rate. Reaction rates are de-

termined in accordance with the functions that are assigned to biological processes.

HFPN40–43 is inherited from hybrid Petri net in which a function is associated with

each continuous process.

5. Model construction

When modelling biological systems the researchers use terms that are meaningful

in biological context. We use terminology adopted in many articles,41–43,49,50 and

rename place, transition, arc and token respectively as entity, process, connector

and quantity in compliance with the biological content. Our model is centered upon

gatekeeper role of p16 in regulating p16-mediated pathway. Cascade of biological

events induced by each of four possible scenarios regarding p16 mutation and G1-

dysfunction are described in Fig. 2.

HFPN model of p16-mediated pathway is composed of 28 continuous entities

representing mRNAs, proteins, protein complexes, ubiquitin, phosphate, ubiqui-

tinated proteins and phosphorylated proteins; 2 generic entities indicating pres-

ence/absence of p16 mutation and G1-dysfunction; 44 continuous processes standing

for transcription, translation, nuclear transport, binding, phosphorylation, ubiqui-

tination, mRNA degradation, natural degradation and mutation; 74 process and

associate connectors. The model comprises 30 variables m1 to m30, two of which

are introduced to indicate presence/absence status of mutation of p16 (m4) and

G1-dysfunction (m6), and remaining 28 variables are defined to measure the con-

centrations of biological components. The types and identifiers used in the present

model are specified in Fig. 3 We create HFPN model of p16-mediated pathway

from biological content information that is briefly discussed in Section 2.1–9,51–58 In

this model, it is assumed that cyclin D, p16, CDK4 and CDK6 are synthesised in
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Fig. 2. Classification of biological events with respect to p16 mutation and G1-dysfunction.

accordance with the central dogma of molecular biology: mRNA transcribed from

DNA is then translated into protein. To keep the concentration of related mRNAs

at specified level we use associate connectors between mRNA entries and related

transcription processes. The abundance of mRNA that no longer used for protein

production is destroyed by mRNA degradation. All unnecessary proteins and pro-

tein complexes are also discarded by protein degradation. In addition, cyclin D is

subject to proteasome-mediated degredation.

Relationship between entities and biological components is illustrated in Table 1.

Likewise, correspondence between processes and biological phenomena is detailed in

Table 2 and Table 3. Information on connectors including firing styles, firing scripts,

and connector types are described in Table 4. Biological phenomenon depends on

many parameters including type of substrates, type of culture, environmental fac-

tors, etc. It is hard, if not impossible, to determine exact rates based on data coming

from biological laboratory experiments. It is uncommon that two identical exper-
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Table 1. Correspondence between biological components and HFPN entities.

Entity name Entity type Variable Initial value Value type

p16mRNA Continuous m1 0 Double

p16(C) Continuous m2 0 Double

p16(N) Continuous m3 0 Double

Mutation Generic m4 true/false Boolean

p16mutated Continuous m5 0 Double

G1-dysfunction Generic m6 true/false Boolean

p16 CDK4/6(N) Continuous m7 0 Double

p16 CDK4/6(C) Continuous m8 0 Double

CDK4mRNA Continuous m9 0 Double

CDK4(C) Continuous m10 0 Double

CDK4(N) Continuous m11 0 Double

CDK6mRNA Continuous m12 0 Double

CDK6(C) Continuous m13 0 Double

CDK6(N) Continuous m14 0 Double

CycDmRNA Continuous m15 0 Double

CycD(C) Continuous m16 0 Double

CycD(N) Continuous m17 0 Double

CDK4 CDK6 Continuous m18 0 Double

CycD CDK4-6 Continuous m19 0 Double

Phosphate Continuous m20 1 Double

RB DP E2F Continuous m21 1 Double

pRB Continuous m22 0 Double

DP E2F Continuous m23 0 Double

S phase genes Continuous m24 0 Double

pCycD(N) Continuous m25 0 Double

pCycD(C) Continuous m26 0 Double

SCF Continuous m27 1 Double

CycD SCF Continuous m28 0 Double

Ubiquitin Continuous m29 1 Double

CycD[Ub] Continuous m30 0 Double

iments lead to identical observations. The results of wetlab experiments regarding

rate measurements may sometimes be contradictory. In this work, the rates of bio-

logical phenomena are estimated according to their relative rates. We firstly preset

rate of transcription to 1, and then set the rates of remaining biological phenomena

by comparing them with the rate of transcription. The process rates adopted in the

present work are comparable to those in other works.42,43 The process rates are

presented in Table 2.
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Table 2. Correspondence between biological phenomena and HFPN processes.

Biological phenomenon Process Process type Process rate

Transcription of p16mRNA T1 Continuous 1

Translation of p16 T2 Continuous m1*0.1

Nuclear import of p16 T3 Continuous m2*0.1

Mutation of p16 T4 Continuous m2*0.1

Binding of p16(N) and CDK4 CDK6 T5 Continuous m3*m18*0.001

Nuclear export of p16 CDK4 CDK6 T6 Continuous m7*0.1

Transcription of CDK4mRNA T7 Continuous 1

Translation of CDK4 T8 Continuous m9*0.1

Nuclear import of CDK4 T9 Continuous m10*0.1

Transcription of CDK6mRNA T10 Continuous 1

Translation of CDK6 T11 Continuous m12*0.1

Nuclear import of CDK6 T12 Continuous m13*0.1

Binding of CDK4 and CDK6 T13 Continuous m11*m14*0.001

Transcription of CycDmRNA T14 Continuous 1

Translation of CylinD T15 Continuous m15*0.1

Nuclear import of CycD T16 Continuous m16*0.1

Binding of CDK4 CDK6 and CycD T17 Continuous m17*m18*0.001

Phosphorylation of RB T18 Continuous m19*m20*m21*0.1

Transcription of S phase genes T19 Continuous m23*1

Nuclear export of pCycD T20 Continuous m25*0.1

Binding of pCycD and SCF T21 Continuous m26*m27*0.001

Ubiquitination of CycD T22 Continuous m28*m29*0.01

Degradation of CycD[Ub] T23 Continuous m30*0.5

Table 3. Natural degradations in the HFPN model.

Biological phenomenon Process Process type Process rate

Degradation of mRNAs d1-d4 Continuous mi*0.05

Degradation of proteins d5-d21 Continuous mi*0.01

The elements of HFPN model are detailed in Fig. 3, while whole model is demon-

strated in Fig. 4. A screen snapshot of HFPN model is illustrated in Fig. 5. The

model allows rule-based processing of biological evens in accordance with four sce-

narios mentioned in Fig. 2. Note that T4 and m4 control the status of mutation.

Likewise, G1-dysfunction and m6 check the presence of dysfunction in G1 phase.

When p16 is mutated, the rule m4==1 enables T4. Occurrence of T4 arrests p16

in cytoplasm, indicating that p16 is no longer functional as an inhibitor. Otherwise,

T3 occurs in accordance with rule m4==0, transporting p16 from cytoplasm to
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Table 4. Connectors in the HFPN model.

Connector Firing style Firing script Connector type

c1 Rule m4==1 Input association

c2 Rule m6==1 Input association

c3 Rule m4==0 Input process

c4 Rule (m4==0 && m6==0) || Input process

(m4==1 && m6==0) ||
(m4==1 && m6==1)

c5-c13 Threshold 0 Input association

c14-c49 Threshold 0 Input process

c50-c74 Threshold 0 Output process

Ub 
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Fig. 3. The elements used in HFPN model.

nucleus. When dysfunction occurs in Gl phase, in appliance with rule m6==1, p16

inhibits formation of CycD-CDK4/6 complex.
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6. Simulations and Validation

The concentrations are plotted against time units called Petri time or pt, for short.

In order to make simulation results comparable for all components, we performed the

simulations at same pt sampling interval and consequently same simulation gran-

ularity. Although asymptotic behaviors of measured concentrations were observed

within 200 pt, for clarity of observations we continued simulating until 500 pt. The

simulations were conducted in accordance with the following four cases: (a) p16

is active but G1-dysfunction does not occur; (b) p16 is active and G1-dysfunction

occurs; (c) p16 is inactivated and G1-dysfunction does not occur; and (d) p16 is

inactivated and G1-dysfunction occurs.

Some researchers report on complete disruption of cyclin D by proteasome-

mediated ubiquitination at the end of G1 phase,59 while others claim that unlike

cyclins A, B and E, whose levels oscillate during the cell cycle, cyclin D is subse-

quently expressed throughout cell cycle, and its levels are more constant.60–62 The

majority of the researchers, on the other hand, suggest that in wild-type cells the

cyclin D levels are high during G1 phase in response to growth factors to initiate

DNA synthesis, but then it is suppressed to low levels during S phase to allow for

efficient DNA synthesis, and finally it is induced again in G2 phase to support pro-

liferation.63,64 There does not exist, however, absolute consensus among researchers

regarding exact levels of cyclin D before, during and after the suppression.

Fig. 8-III shows simulation results for concentration behavior of cyclin D in

nucleus. As we observed, when p16 is inactivated by the mutations and/or dysfunc-

tion is not detected in G1 phase, the concentration of cyclin D within nucleus is

induced rapidly so that it reaches the peak level at 50 in approximately 75 pt. Then

the concentration is reduced rapidly to low levels due to the proteasome-mediated

ubiquitination. Asymptotic behavior of cyclin D is clearly observed close to the

concentration units of 175. Then cyclin D enters to the steady constant state. The

simulation results in Fig. 8-III-{a,c,d} show that the levels of cyclin D are high in

G1 phase and it is low in the S phase, as it is observed by some researchers,63,64 but

it is neither completely disrupted as it is reported by other researchers59 nor it is

subsequently expressed to keep the concentration at constant level as it is suggested

in several papers.60–62

When G1-dysfunction occurs, functional p16 inhibits binding of CDK4/6 to cy-

clin D by forming the p16 CDK4/6 complex, preventing phosphorylation of Rb and

consequently ubiquitination of cyclin D. This event might be predicted to result

in accumulation of high levels of cyclin D concentration in nucleus. Simulation re-

sults illustrated in Fig. 8-III-b are in agreement with this prediction. The cyclin D

concentration within sampling interval reaches its maximum level, which is close to

175 units. Furthermore, comparing the concentration levels of the p16 CDK4/6

in nucleus (Fig.6-III-b) with cytoplasmic one (Fig.6-IV-b) one we observe that

p16 CDK4/6 is mainly accumulated in cytoplasm rather than in nucleus. This re-

sult is rather interesting since to the best of our knowledge, this outcome has not
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been reported in the literature so far. Under assumption that p16 is functional at

the absence of G1-dysfunction, cyclin D successfully binds to CDK4/6 resulting in

accumulation of functional p16 in nucleus (Fig. 6-II-a). Comparing two cases in

Fig. 8-III-b and Fig. 6-II-a, we observe that maximum levels of cyclin D and p16

concentrations in the nucleus are the same, which is close to the level of 175 units.

Inactivation of p16 by the mutations has been reported to be a critical event

in tumor progression. Almost 50% of all human cancers show loss of p16 function.

There is evidence that some neoplasms exhibit remarkable amount of p16 concen-

tration in cytoplasm. Study of cytoplasmic accumulation of p16 is indeed a recent

event. The mechanisms behind p16 arrest in cytoplasm have not been clarified yet,

though there are few hypotheses to explain the accumulation of p16 in cytoplasm.

The consequences triggered by the loss of p16 function are discussed in Fig. 2. In the

light of previous experimental observations, inactivation of p16 by the mutations,

arrests p16 in cytoplasm and that it cannot be transported to the nucleus. Sim-

ulation results in Fig. 6-I-{c,d} reveal that inactivation of p16 is characterized by

monotonic stable steady-state of p16 cytoplasmic concentration with approximately

linear rate of growth. Close to the end of sampling time mutated p16 in cytoplasm

reaches its peak level at 750. We know that p16 mutations usually arise in the form

of promoter methylation, homozygotic deletion and loss of heterozygosity. Impact

of mutation types to concentration behavior of p16 needs to be further investigated.

Simulation results for CDK4 and CDK6 in Fig. 7 reveal that levels of CDK

proteins in cells vary little throughout the cell cycle, which is in agreement with

wet lab results.54 The fact that equal amounts of cyclin D (Fig. 8-III-b) and p16

(Fig. 6-II-a) concentrations are available for binding with CDK4/6 coupled with a

constant rate of binding reaction might be predicted to result in equal amount of

CDK4/6 concentrations left after forming resulting complexes. However, simulation

results for CDK4/6 in Fig. 8-I is somewhat surprising - the amount of CDK4/6 con-

centration remained is as high as 125 in cases (a), (c) and (d), and it is as low as 20

in case (b). The following could be a reasonable explanation for this observation.

When DNA-damage or replicative senescence occurs p16 binds to CDK4/6 prevent-

ing Rb phosphorylation. This event consequently arrests cell cycle until damaged

DNA is maintained or it remains so continuously if replicative senescence occurs.

Dynamic behavior of CDK4/6 for case Fig.8-I-b thus supports this idea as low lev-

els of CDK4/6 concentration remained after forming p16 CDK4/6 is insufficient to

initiate Rb phosphorylation.

7. Concluding remarks and further work

This paper describes detailed quantitative model of p16-mediated pathway in higher

eukaryotes. Components of this pathway are frequently found to be inactivated,

downregulated or overexpressed in human cancer. We perform simulations under

assumptions regarding p16 inactivation by the mutations, DNA-damage and replica-

tive senescence. Simulation results show that our model is consistent with most of
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the available experimental observations about p16-mediated pathway. We are able

to interpret the simulation results in a meaningful way whenever we fail to find an

experimental observation to compare these results with.

The main findings of the present work are summarized below:

(a) In wild-type cells, the cyclin D levels are high during G1 phase to initiate

DNA synthesis, but then it is suppressed to low levels during S phase to

enable DNA synthesis (Fig. 8-II-a);

(b) Inactivation of p16 by the mutations, a critical event in tumor progression,

results in an increase in its cytoplasmic concentration (Fig. 6-I-{c,d});
(c) When p16 is functional and there exists dysfunctionality in G1 phase, then

p16 CDK4/6 is mainly accumulated in cytoplasm rather than in nucleus

(Fig. 6-III-b, Fig. 6-IV-b);

(d) In wild-type cells, high levels of functional p16 is accumulated in the nucleus

(Fig. 6-II-a);

(e) High levels of cyclin D are accumulated in nucleus when p16 is functional

and DNA is damaged or replicative senescence occurs (Fig. 8-III-b);

(f) Simulation results for CDK4 and CDK6 reveal that levels of CDK proteins

in cells vary little throughout the cell cycle (Fig. 7);

(g) CDK4/6 level is high in all cases (Fig. 8-I-{a,c,d}) except when p16 is func-

tional and DNA-damage or replicative senescence occurs (Fig. 8-I-b). In the

latter case CDK4/6 concentration is reduced to low levels, because func-

tional p16 binds to CDK4/6, causing nuclear export of resulting complex.

In concert with experimental approaches, the next phase of our research will

focus on developing analogously detailed model for p21-mediated pathway, G1-to-

S and G2-to-M checkpoints. All these models can then be coupled to complete

big picture of cell cycle in higher eukaryotes as a modular signalling network. The

underlying dynamical behavior of these models might have implications in diagnosis,

prognosis and treatment of human cancers.
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