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A large family of new black hole solutions in 2þ 1-dimensional Einstein-power-Maxwell gravity with

prescribed physical properties is derived. We show with particular examples that according to the power

parameter k of the Maxwell field, the obtained solutions may be asymptotically flat for 1=2< k< 1 or

nonflat for k > 1 in the vanishing cosmological constant limit. We study the thermodynamic properties of

the solution with two different models, and it is shown that thermodynamic quantities satisfy the first law.

The behavior of the heat capacity indicates that by employing the 1þ 1-dimensional dilaton analogy the

local thermodynamic stability is satisfied.
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I. INTRODUCTION

It is well known that the main motivation to study non-
linear electrodynamics (NED) was to overcome some of
the difficulties that occur in the standard linear Maxwell
theory. Divergence in self-energy due to point charges was
one such difficulty that kept physics community busy for
decades. The Born-Infeld NED model was developed with
the hope of removing these divergences; see e.g. [1–6], and
by a similar trend NED was employed to eliminate black
hole singularities in general theory of relativity. A striking
example of regular black hole solutions in (3þ 1) dimen-
sions was given in [7] that considers Einstein field equa-
tions coupled with NED which satisfies the weak energy
condition and recovers the Maxwell theory in the weak
field limit. The use of NED for eliminating singularities
was also proved successful in (2þ 1) dimensions [8].

During the last decade, (2þ 1)-dimensional spacetimes
admitting black hole solutions have attracted much atten-
tion. As a matter of fact, the d ¼ 3 case singles out among
other (d � 4) spacetimes with special mass and charge
dependence. The first example in this regard is the
Banados-Teitelboim-Zanelli (BTZ) black hole [9]. Later
on, Einstein-Maxwell [10] and Einstein-Maxwell-dilaton
[11] extensions were also found. The black hole solutions
found in this context include all typical characteristics that
can be found in (3þ 1) or higher dimensional black holes
such as horizon(s), black hole thermodynamics and
Hawking radiation. The black hole solution derived in
[12] is another example for (2þ 1) dimensions within
the context of a restricted class of NED in which the

Maxwell scalar has a power in the form of ðF��F
��Þ3=4.

This particular power results from imposing traceless con-
dition on the energy-momentum tensor.

The main objective of the present study is twofold. First,
we construct a large class of black hole solutions sourced

by the power Maxwell field in which the Maxwell scalar
has the form ðF��F

��Þk. Here, the power k is a real rational
number which will be restricted to some intervals as a
requirement of the energy conditions. In general, for
d-dimensional spacetimes, the specific choice of k ¼ d

4

yields a traceless Maxwell’s energy-momentum tensor
[13], which is known to satisfy the conformal invariance
condition. In recent years, the use of power Maxwell fields
has attracted considerable interest. It has been used for
obtaining solutions in d-spacetime dimensions [14], Ricci
flat rotating black branes with a conformally Maxwell
source [15], Lovelock black holes [16], Gauss-Bonnet
gravity [17], and the effect of power Maxwell field on
the magnetic solutions in Gausss-Bonnet gravity [18].
Therefore in [12], the power 3=4 of the Maxwell scalar
in (2þ 1) dimensions is the unique case that results from
this traceless condition. Our first motivation in this study is
to find the most general solution in (2þ 1)-dimensional
Einstein-power-Maxwell (EPM) spacetime without impos-
ing the traceless condition. Stated otherwise, choosing a
traceful energy-momentum tensor amounts to treating k as
a new parameter and we wish to investigate this freedom as
much as we can. However, our analysis on the obtained
solutions has revealed that the power parameter k can not
be arbitrary. For a physically acceptable solution it must be
a rational number. Hence, our general solution overlaps
with the solution presented in [12], if one takes the power
parameter k ¼ 3

4 . Depending on the value of k, however,

the resulting metric displays different characteristics near
r ¼ 0 which makes the present study more interesting.
With the freedom of k we explore a rich possibility in the
structure of singularities. For values 1=2< k < 1, for in-
stance, the resulting spacetime becomes asymptotically flat
in the vanishing cosmological constant (� ¼ 0), and for
�> 0, it is the asymptotically de Sitter spacetime. For
k > 1 the resulting spacetime is nonasymptotically flat.
Furthermore, the resulting metric depends not only on
the parameter k but also on the mass M, the charge Q,
and the cosmological constant �. When �> 0, the solu-
tion describes a charged de Sitter black hole spacetime
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with inner and outer horizons for 1=2< k< 1, and a
cosmological horizon for k > 1. For specific values of
these parameters the resulting spacetime singularity at r ¼
0 is naked whose strength becomes k dependent. When the
cosmological constant �< 0, the resulting spacetime cor-
responds to charged anti de Sitter with a cosmological
horizon in the range of the power 1=2< k< 1. For k >
1, the resulting charged de Sitter spacetime becomes naked
singular at r ¼ 0.

Another important issue in black hole physics is the
concept and analysis of thermodynamic properties. This
issue has gained a significant momentum not just in the
linear Maxwell theory but also in the NED. As an example,
in [19], higher dimensional gravity coupled to NED
sourced by power Maxwell field has been analyzed ther-
modynamically for d > 3. The local and global thermody-
namic stability is investigated by calculating the Euclidean
action with the appropriate boundary term in the grand
canonical ensemble. Our second objective in this study is
to investigate the local thermodynamic stability of the
resulting black holes. This is achieved by employing the
method presented in [20], in which the local Hawking
temperature is found from the Unruh effect. We calculate
the heat capacities and show that our solution conditionally
displays local thermodynamic stability. For specific values
of the parameters, the calculated specific heat capacity at
constant charge and electric potential both change sign at
particular points. This behavior indicates that there may
be a possible phase change in the black hole state.
Alternatively, for a thorough thermodynamical analysis
we appeal to the dilatonic analogy established in 1þ 1
dimensions [21–23].

The organization of the paper is as follows. Section II,
introduces the theory of EPM with solution and spacetime
structure. The thermodynamic properties of the solution
are considered in Sec. III. We complete the paper with a
conclusion in Sec. IV.

II. EINSTEIN- POWER-MAXWELL SOLUTIONS
AND SPACETIME STRUCTURE

The three-dimensional action for EPM theory with cos-
mological constant � is given by (c ¼ kB ¼ " ¼ 8G ¼ 1)

I ¼ R
dx3

ffiffiffiffiffiffiffi�g
p �

1
2�

�
R� 2

3 �
�
� LðF Þ

�
; (1)

in which LðF Þ ¼ jF jk and F is the Maxwell invariant

F ¼ F��F
��;

while the parameter k is arbitrary for the time being.
Variation with respect to the gauge potential A yields the
Maxwell equations

dð?FLF Þ ¼ 0 ! dð?FjF jk�1Þ ¼ 0; (2)

where ? denotes duality. Variation of the action with re-
spect to the spacetime metric g�� yields the field equations

G�
� þ 1

3���
� ¼ �T�

�; (3)

where

T�
� ¼ 1

2ð4ðF��F
��ÞLF � ��

�LÞ; (4)

is the energy-momentum tensor of the power Maxwell field
and explicitly reads

T�
� ¼ jF jk

2

�
4kðF��F

��Þ
F

� ��
�

�
: (5)

Our metric ansatz for (2þ 1) dimensions, is chosen as

ds2 ¼ �fðrÞdt2 þ dr2

fðrÞ þ r2d�2: (6)

Static, electrically charged potential ansatz is given by

A ¼ AðrÞdt;
which leads to

F ¼ dA ¼ EðrÞdr ^ dt; (7)

with its dual

?F ¼ EðrÞrd� (8)

and

F ¼ F��F
�� ¼ �2EðrÞ2: (9)

Accordingly, the Maxwell equation reads now

dðEðrÞrd�½2EðrÞ2�k�1Þ ¼ 0; (10)

which leads to the solution as

rEðrÞ2k�1 ¼ constant; (11)

or equivalently

EðrÞ ¼ constant

rð1=2k�1Þ : (12)

By using the latter result in (7) and choosing the integration
constant proportional to the electric charge Q, one obtains
the potential

AðrÞ ¼
8<
:Q lnr k ¼ 1

Qð2k�1Þ
2ðk�1Þ r

ð2ðk�1Þ=ð2k�1ÞÞ k � 1; 12
: (13)

The resulting energy-momentum tensor follows from (5) as

T�
� ¼ 1

2jF jkdiagð�; �;�1Þ; (14)

where � ¼ ð2k� 1Þ and the explicit form of F is given by

F ¼ � Q2

rð2=2k�1Þ ; (15)

in which we recall thatQ is a constant related to the charge
of the black hole. One can show that the weak energy
condition (WEC) and the strong energy condition (SEC)
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restrict us to the set k 2 ð12 ;1Þ (see the Appendix). The tt
component of Einstein equations (3) reads

1

2r
f0ðrÞ þ 1

3
� ¼ 4��jF jk; (16)

whose integration gives,

fðrÞ ¼ Dþ r2

l2
� �ð2k� 1Þ2

2ðk� 1Þ Q2krð2ðk�1Þ=2k�1Þ; (17)

in which D is an integration constant, � ¼ �1=l2 and k �
1. The choice k ¼ 1, which we exclude here gives the
known charged BTZ black hole solution in Einstein-

Maxwell theory [10]. We note that for k ¼ 1, F ¼ � Q2

r2

diverges at r ¼ 0 which is weaker than the cases for k < 1.
This behavior, however, turns opposite for the choice k > 1.
In order to illustrate this important effect of the power
parameter k, we calculate the Kretschmann invariant for
k ¼ 1, k < 1 and k > 1. Since the resulting expressions for
any k > 1 or k < 1 is too complicated,we prefer to calculate
the Kretschmann invariant for specific values of k;

K ¼ 12

l4
� 4Q2

r2

�
2

l2
�Q2

r2

�
for k ¼ 1;

K ¼ 12

l4
� 8Q2

r6
for k ¼ 3=4;

K ¼ 12

l4
� 2�Q4

r4=3

�
10

l2
� 19�Q4

2r4=3

�
for k ¼ 2:

(18)

It is clear from these results that the rate of divergence of
the Kretschmann invariant for k ¼ 3

4 is faster than the cases

k � 1. The casewhen the power of r, 2ðk�1Þ
2k�1 < 0, bounds the

value of k to 1
2 < k< 1 which is also consistent with the

energy conditions. Note that this case corresponds to
asymptotically flat spacetime if one takes � ¼ 0.

The integration constant D can be associated with the
mass of the black hole, i.e., D can be expressed in terms of
mass at infinity by employing the Brown-York [12,24,25]
formalism. Following the quasilocal mass formalism it is
known that, a spherically symmetric three-dimensional
metric solution as

ds2 ¼ �FðrÞ2dt2 þ 1

GðrÞ2 dr
2 þ r2d�2 (19)

admits a quasilocal mass MQL defined by

MQL ¼ lim
rb!12FðrbÞ½GrðrbÞ �GðrbÞ�: (20)

Here GrðrbÞ is an arbitrary non-negative reference func-
tion, which yields the zero of the energy for the back-
ground spacetime, and rb is the radius of the spacelike
hypersurface. According to our line element we get

FðrÞ2 ¼ GðrÞ2 ¼ Dþ r2

l2
� �ð2k� 1Þ2

2ðk� 1Þ Q2krð2ðk�1Þ=2k�1Þ;

(21)

GrðrÞ2 ¼ r2

l2
� �ð2k� 1Þ2

2ðk� 1Þ Q2krð2ðk�1Þ=2k�1Þ (22)

which yield

MQL ¼ lim
rb!12

 
r2b
l2

 
1þ l2

2r2b
D� l2arð2ðk�1Þ=2k�1Þ

b

2r2b

!

�
 
Dþ r2b

l2
� arð2ðk�1Þ=2k�1Þ

b

!!
: (23)

Here we expanded the square roots and a ¼ �ð2k�1Þ2
2ðk�1Þ Q2k.

We note that since 2ðk�1Þ
2k�1 < 1 for all values of 1=2< k<1,

this limit results in-D, independent of the value of k. We
would like to add that the same result may be found by
applying the method introduced in [26,27] with a proper
choice of the background metric.
Therefore the metric function, irrespective of the power

of r, for M> 0 is given by

fðrÞ ¼ �Mþ r2

l2
� �ð2k� 1Þ2

2ðk� 1Þ Q2krð2ðk�1Þ=2k�1Þ: (24)

Finally, in this section we give the Ricci scalar

R ¼ � 6

l2
þ �Q2kð4k� 3Þ

rð2k=2k�1Þ ; (25)

which indicates the occurrence of true curvature singular-
ity for any k > 1

2 . Although the particular choice k ¼ 3
4

shows R to be regular at r ¼ 0 this is not supported by the
Kretschmann scalar expression in (18). Nevertheless, the
energy conditions (i.e., at least WEC and SEC)—given in
the Appendix—always result in negative exponents in
radial coordinate r therefore r ¼ 0 is a true curvature
singularity.

III. THERMODYNAMICS

A. Analysis with finite boundary model

In this section, we study the thermodynamical properties
of the solution (24). A similar analysis for d-dimensional
charged black holes with a NED sourced by power
Maxwell fields was considered in [11], by employing
Euclidean action with a suitable boundary term in the
grand canonical ensemble. The analysis was carried out
for spacetime dimensions d > 3.
In this study, we follow an alternative method as dem-

onstrated in [19] to find the local Hawking temperature by
using the Unruh effect in curved spacetime which is
equivalent to finding the periodicity in the time coordinate
in the Euclidean version of the metric covering the outer
region of the black hole. In the Unruh effect, an observer
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outside the black hole experiences a thermal state with
local temperature defined by

THðrÞ ¼ 2f0ðrhÞ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��	�
	

p ¼ 32

�
ffiffiffiffiffiffiffiffiffi
fðrÞp �

rh
l2

� �ð2k� 1ÞQ2k

2rð1=2k�1Þ
h

�
;

(26)

where �	 is the Killing vector field generating the outer
horizon and the location of the horizons are given by the
roots of fðrhÞ ¼ 0, which implies

M ¼ r2h
l2

� �ð2k� 1Þ2
2ðk� 1Þ Q2krð2ðk�1Þ=2k�1Þ

h : (27)

It should be noted that the power parameter k in the
analysis of thermodynamic properties is assumed to satisfy
1=2< k< 1. It is remarkable to note that in the limits,
THðrÞ jr!rh! 1 and THðrÞ jr!1! 0. This is expected be-

cause the solution given in (24) is nonasymptotically flat,
hence, we have a vanishing temperature [i.e., from (26)] at
infinity. Following the same procedure as demonstrated in

[19], we define the reenergized temperature as T1 ¼
THðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��	�
	

p ¼ f0ðrhÞ
4� , which gives

T1 ¼ 4

�

�
rh
l2

� �ð2k� 1ÞQ2k

2rð1=2k�1Þ
h

�
: (28)

The internal energy of the system on a constant t hyper-
surface can be defined from the Brown-York [12,24,25]
quasilocal energy formalism as

EðrbÞ ¼ �2

� ffiffiffiffiffiffiffiffiffiffiffi
fðrbÞ

q
� rb

l

�
; (29)

where r ¼ rb is a finite boundary of the spacetime. One
may vary the internal energy EðrbÞwith respect to rh andQ
which leads to the first law of thermodynamics in the
following form:

dEðrbÞ ¼ THðrbÞdSþ�ðrbÞde; (30)

in which the entropy S, after our unit convention (c ¼
kB ¼ " ¼ 8G ¼ 1) is given by

S ¼ 4�rh; (31)

and e is the electric charge

e ¼
ffiffiffi
2

p
4

�kð2k� 1Þð2k�1=2kÞQ2k�1: (32)

Here,

THðrbÞ¼ 1

2�
ffiffiffiffiffiffiffiffiffiffiffi
fðrbÞ

p �
rh
l2
��

2
ð2k�1ÞQ2kr�ð1=2k�1Þ

h

�
(33)

is the Hawking temperature at the boundary of the black
hole spacetime and

�ðrbÞ¼2ð2k�1Þð1=2kÞ ffiffiffi
2

p
Q

ð1�kÞ ffiffiffiffiffiffiffiffiffiffiffi
fðrbÞ

p �
rð2ðk�1Þ=2k�1Þ
h �rð2ðk�1Þ=2k�1Þ

b

�

(34)

is the electric potential difference between the horizon and
boundary rb. On the other hand, the electric potential
difference between the boundary and infinity is given by

�ðrbÞ ¼ 2ð2k� 1Þð1=2kÞ ffiffiffi
2

p
Q

ð1� kÞ ffiffiffiffiffiffiffiffiffiffiffi
fðrbÞ

p ðrð2ðk�1Þ=2k�1Þ
b Þ: (35)

We consider the black hole inside a box bounded by r ¼
rb and calculate the heat capacity of the black hole at
constant Q,� and�. The local thermodynamical stability
conditions are determined by the sign of the heat capacities
calculated at constant quantities in the limit of large values
of rb. which is defined by

CX � T

�
@S

@T

�
X
� 0; (36)

in which T ¼ THðrbÞ and X is the quantity to be held
constant. Note that, we consider S ¼ SðrhÞ and T ¼
Tðrh; Q2kÞ; therefore, Eq. (36) can be written as

CX � T

�
@S

@T

�
X
¼ T

�
@T

@S

��1

X

¼ T

��
@T

@rh

��
@rh
@S

�
þ
�
@T

@Q2k

��
@Q2k

@S

�
X

��1
; (37)

and with @S
@rh

¼ 4�, latter equation reduces to

CX ¼ 4�Tn�
@T
@rh

�
þ
�

@T
@Q2k

��
@Q2k

@rh

�
X

o : (38)

The heat capacities for constantQ,�, and� are calculated
by using Eq. (38). Because of the complexity of the result-
ing expressions we prefer to give only the expressions for
large values of rb; hence, the limiting heat capacities as
rb ! 1 are

CQ ¼ T

�
@S

@T

�
Q
’
4�rh

h
rð2k=2k�1Þ
h � �l2Q2kð2k�1Þ

2

i
�
rð2k=2k�1Þ
h þ �l2Q2k

2

� ;

C� ¼ T

�
@S

@T

�
�
’

4�rh
h
rð2k=2k�1Þ
h � �l2Q2kð2k�1Þ

2

i
ðrð2k=2k�1Þ

h þ �l2Q2kð2k� 1Þ2Þ ;

C� ¼ T

�
@S

@T

�
�
’
4�rh

h
rð2k=2k�1Þ
h � �l2Q2kð2k�1Þ

2

i
�
rð2k=2k�1Þ
h þ �l2Q2k

2

� :

(39)

One observes that since, from (28), f0ðrhÞ> 0, i.e.,

rð2k=2k�1Þ
h � �l2Q2kð2k� 1Þ

2
> 0; (40)

thermodynamically our solution indicates a locally stable
black hole.
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B. Analysis with 1þ 1-dimensional dilaton
gravity model

In this section, we employ the method presented in
[21–23] to study the thermodynamics of the EPM black
hole found above. In this method the solution given in
Eq. (24) will be obtained from the dilaton and its potential
of two-dimensional dilaton gravity through dimensional
reduction. Now we consider

ds2 ¼ gabdx
adxb ¼ ~g��d~x

�d~x� þ
2ð~xÞd�2; (41)

where 
 denotes the radius of the circle S1 inM3 ¼ M2 �
S1. The Greek indices represent the two-dimensional
spacetime. After the Kaluza-Klein dimensional reduction,
the action (1) reads as

S2D ¼ 2�
Z

d~x2
ffiffiffiffiffiffiffi�~g

p



� ~R� 2~�

2�
� LðF Þ

�
;

LðF Þ ¼ jF jk;
(42)

in which ~R is the Ricci scalar ofM2 and
~� ¼ �=3. Varying

the above action leads to the following field equations:

dð
LF
?FÞ ¼ 0; (43)

r2
þ 2
~� ¼ 2�
ðLðF Þ � 2FLF Þ; (44)

~R� 2~� ¼ �2�LðF Þ: (45)

Herein, the electric field 2� form is given by F ¼
Eð
Þdt ^ d
 and its dual becomes 0-form ?F ¼Eð
Þ.
Note that, 
 is effectively one of our coordinates. The
electric field invariant FabF

ab is

F ¼ �1
2Eð
Þ2; (46)

which implies from (43)

E
ðE2Þk�1 ¼ constant: (47)

The latter equation yields the following electric field:

Eð
Þ ¼ q


ð1=2k�1Þ ; (48)

where q is an integration constant. Then, the Lagrangian
LðFÞ can be written as

LðF Þ ¼ 1

2k
q2k


ð2k=2k�1Þ ; (49)

and

LF ¼ �k

2ðk�1Þ
q2ðk�1Þ


ð2ðk�1Þ=2k�1Þ : (50)

The rest of the field equations are given by

r2
 ¼ Vð
Þ ¼ �2
~�þ 2�


�
1

2k
q2k


ð2k=2k�1Þ

�
ð1� 2kÞ

(51)

and

~R ¼ �V 0ð
Þ ¼ 2~�� 2�

�
1

2k
q2k


ð2k=2k�1Þ

�
: (52)

It is remarkable to observe that, these equations correspond
to the two-dimensional field equations of dilaton gravity
with an action

S2D ¼
Z
M2

d~xdt
ffiffiffiffiffiffiffi�~g

p ð
 ~Rþ Vð
ÞÞ (53)

and the line element

ds2 ¼ �fð~xÞdt2 þ d~x2

fð~xÞ : (54)

After manipulating Eqs. (51) and (52), one finds

r2
 ¼ f
00 þ f0
0 ¼ Vð
Þ (55)

and

~R ¼ �f00 ¼ �V 0ð
Þ; (56)

in which a prime means derivative with respect to the
argument. Our dilaton ansatz


 ¼ ~x (57)

admits

f0 ¼ Vð
Þ; (58)

such that

fð
Þ ¼ Jð
Þ � C (59)

in which

Jð
Þ ¼
Z

Vð
Þd


¼ 
2

‘2
� 2�ð1� 2kÞ2q2k

2kþ1ðk� 1Þ
�
�

1


ð2ð1�kÞ=2k�1Þ �
1


ð2ð1�kÞ=2k�1Þ
0

�
: (60)

Herein 
0 is a reference potential, ~� ¼ � 1
‘2
and C repre-

sents the Arnowitt-Deser-Misner mass of the EPM black
hole [21–23]. Also the line element (54) becomes

ds2 ¼ �fð
Þdt2 þ d
2

fð
Þ : (61)

As was introduced in [21–23], the extremal value of 
þ is
obtained from Vð
þ ¼ 
eÞ ¼ 0, which yields


ð2k=2k�1Þ
e ¼ 2�q2k‘2

2kþ1
ð2k� 1Þ: (62)
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This implies that the extremal mass [from (60)] is given by

Me ¼ Jð
eÞ; (63)

in which for M � Me the metric function admits at least
one horizon 
þ that indicates the outer horizon. The
Hawking temperature at the outer horizon, the heat ca-
pacity, and free energy are given, respectively, by

TH ¼ Vð
þÞ
4�

¼ 
þ
4�

�
2

‘2
þ 2�

�
1

2k
q2k


ð2k=2k�1Þ
þ

�
ð1� 2kÞ

�
;

(64)

Cqð
þÞ ¼ 4�

�
Vð
þÞ
V 0ð
þÞ

�

¼
4�
þð 2‘2 þ 2�ð 1

2k
q2k


ð2k=2k�1Þ
þ

Þð1� 2kÞÞ
2
‘2
þ 2�ð 1

2k
q2k


ð2k=2k�1ÞÞ
(65)

and

Fð
þÞ ¼ 
2þ
‘2

� 2�ð1� 2kÞ2q2k
2kþ1ðk� 1Þ

�
�

1


ð2ð1�kÞ=2k�1Þ
þ

� 1


ð2ð1�kÞ=2k�1Þ
0

�
� Jð
eÞ

�
2þ
�
2

‘2
þ 2�

�
1

2k
q2k


ð2k=2k�1Þ
þ

�
ð1� 2kÞ

�
: (66)

In summary, in this section the thermodynamic analysis
of the EPM black hole is investigated by two entirely
different methods. Our analysis reveals that by rescaling
the constant q we recover the results obtained in so (40)
that two different approaches for thermodynamic stability
are in agreement.

IV. CONCLUSION

In this study, the most general solution in (2þ 1)-
dimensional spacetime in EPM theory, without imposing
the traceless condition on the energy-momentum tensor is
derived. The obtained solutions describe black holes
sourced by the power Maxwell fields. From a physics
standpoint and in analogy with the self-interacting scalar
fields, k can be interpreted as the measure of self-
interaction that electromagnetic field undergoes. As such,
it alters much of physics and, in particular, the black hole/
singularity formations. We have shown with particular
examples that the power parameter k has a significant
effect on the physical interpretation of the obtained solu-
tions. For specific values of parameter k, it is possible to
obtain asymptotically flat (with � ¼ 0) or nonasymptoti-
cally flat solutions. As it has been shown in the Appendix,
for the choice 2

3 < k< 1, all energy conditions (WEC, SEC

and DEC [dominant energy condition]) are satisfied, as
well as the causality condition. The character of the singu-

larity at r ¼ 0 is timelike, since a new coordinate defined
by r� ¼

R
dr
f is finite as r ! 0. In solutions admitting black

holes, this timelike singularity is covered by horizon(s).
But, in some cases it remains naked and violates the cosmic
censorship hypothesis. It becomes worthful therefore to
investigate the structure of this singularity in quantum

mechanical point of view. For 2ðk�1Þ
2k�1 > 0 the resulting

spacetime geometry is very similar to the BTZ black
hole whose quantum singularity structure is investigated
in [28] by quantum test particles obeying the Klein-Gordon
and Dirac equations. The results reported in [28] are; for
massive scalar fields the spacetime is quantum singular but
for massless scalar bosons and for fermions, the spacetime
is quantum regular. On the other hand, naked singularity

that occurs for 2ðk�1Þ
2k�1 < 0 is structurally similar to the

solution given in [12]. The quantum nature of this singu-
larity is recently investigated in [29] with the test particles
obeying the Klein-Gordon and Dirac equations. It was
shown that the spacetime is quantum singular for massless
scalar particles obeying Klein-Gordon equation but
quantum regular for fermions obeying Dirac equation.
Therefore, these results are also applicable to the solutions
presented in this study. Thermodynamic quantities such as
Hawking temperature, entropy and specific heat capacity
are also calculated by two different methods in which we
obtain the same result for stability. Magnetically charged
nonblack hole EPM solutions are considered in a recent
study [30] in which singularities, both classically and
quantum mechanically are investigated thoroughly. The
fact that by employing NED in 2þ 1 dimensions one can
construct regular black holes through cutting and pasting
method has also been shown in a separate study [31].
Finally, we note that by choosing k � 1 in the flat space-
time electrodynamics, we avoid the logarithmic potential,
once and for all.
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APPENDIX: ENERGY CONDITIONS

When a matter field couples to any system, energy
conditions must be satisfied for physically acceptable so-
lutions. This is achieved by following the steps as given in
[32,33].T

�
� ¼ 1

2 jF jkdiagð�; �;�1Þ.

1. Weak energy condition

The energy-momentum tensor given in Eq. (14) implies

� ¼ �Tt
t ¼ 1

2jF jk�; pr ¼ Tr
r ¼ 1

2jF jk�;
p� ¼ �1

2jF jk;
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in which � is the energy density and pi are the principal
pressures.

The WEC states that

� � 0 and �þ pi � 0 ði ¼ 1; 2Þ; (A1)

which imposes k > 1
2 .

2. Strong energy condition

This condition states that

�þX2
i¼1

pi � 0 and �þ pi � 0; (A2)

which yields k � 0. The SEC together with the WEC
constraint the parameter k to k > 1

2 .

3. Dominant energy condition

DEC states that peff � 0, in which

peff ¼ 1

2

X2
i¼1

Ti
i ; (A3)

and this gives the constraint k � 1. One can show that
DEC, together with SEC and WEC, imposes 1

2 < k � 1.

4. Causality condition

Beside the energy conditions, one can impose the cau-
sality condition

0 � peff

�
< 1; (A4)

which implies 2
3 < k � 1. Therefore if the causality

condition is imposed, naturally all other conditions are
satisfied.
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