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We investigate the dynamics of a n-dimensional domain wall in a nþ 1-dimensional Einstein-Gauss-

Bonnet bulk. Exact effective potential induced by the Gauss-Bonnet (GB) term on the wall is derived. In

the absence of the GB term we recover the familiar gravitational and antiharmonic oscillator potentials.

Inclusion of the GB correction gives rise to a minimum radius of bounce for the Friedmann-Robertson-

Walker universe expanding with a negative pressure on the domain wall.
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We consider a n-dimensional domain wall (DW) � in a
nþ 1-dimensional bulk M. This DW splits the back-
ground bulk into two nþ 1-dimensional spacetimes which
will be referred to asM�. Here� is assumed with respect
to the DW. Our action of Gauss-Bonnet (GB) extended
gravity is chosen as
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in whichLDW ¼ �� ¼ constant is the Nambu-Goto form
of the DW Lagrangian, and K is the extrinsic curvature of
DW with h ¼ jgijj. (Latin indices run over the DW coor-

dinates while Greek indices refer to the bulk’s coordi-
nates). The GB Lagrangian LGB is given by

L GB ¼ R����R
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with the GB parameter �. A variation of the action
with respect to the space-time metric g�� yields the field
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Our bulk metric is a nþ 1-dimensional static, spherically
symmetric space-time,

ds2b ¼ �fðrÞdt2 þ 1

fðrÞdr
2 þ r2d�2

n�1; (5)

in which fðrÞ is the only metric function to be determined
and d�2

n�1 is the line element of Sn�1. Upon imposing the
constraint
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with the DW position at r ¼ að�Þ, the DW’s line element
takes the form

ds2dw ¼ �d�2 þ að�Þ2d�2
n�1: (7)

This is the standard Friedmann-Robertson-Walker metric
and its only degree of freedom is að�Þ in which � is the
proper time measured by the observer on the DW. Now,
we wish to consider the rules satisfied by the DW as
the boundary of M�. These boundary conditions are the
generalized Israel conditions which correspond to the
Einstein equations on the wall. [1]
The generalized Darmois-Israel junction conditions on

� apt for the GB extension is [2]
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where the surface energy-momentum tensor Sij is given

by [3]

Sij ¼ 1ffiffiffiffiffiffiffi�h
p 2�
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The form of the stress-energy tensor can be written as

Sji ¼ ���j
i (10)

in which � ¼ constant, stands for the wall tension (or
energy density of the wall �). Considering the energy-

momentum tensor in the form Sji ¼ diagð�	; p; p; . . .Þ,
we observe that � ¼ 	 ¼ �p, and satisfies the weak en-
ergy condition. Here in (8) a bracket implies a jump across
�. The divergence-free part of the Riemann tensor Pabcd

and the tensor Jab (with trace J ¼ Jaa) are given by [2]
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þ 1
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By employing these expressions through (8) and (10) we
find the energy density and surface pressures for a generic
metric function fðrÞ, with r ¼ að�Þ. The results are given
by [4]
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fðaÞ ¼ f�ðrÞjr¼a: (15)

Note that a dot ‘‘�’’ implies derivative with respect to the
proper time.

We differentiate (13) to get (with €a ¼ ‘� f0ðaÞ=2)
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which, after substitution into (14) we recover (13). In other
words, Eqs. (13) and (14) are not independent, the solution
of one satisfies also the other. Now, we analyze the first
equation (13) of the junction conditions. By some manipu-
lation, � above can be expressed in the form
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In the sequel we consider the wall to be a classical one-
dimensional particle which moves with zero total energy
under the effective potential VðaÞ. It is clear from (20) that
only VðaÞ< 0 has a physical meaning. By plotting VðaÞ in
terms of a we investigate the possible types of motion for
the wall.

The metric function fðrÞ is the solution of the Einstein
equations in the nþ 1� dimensional bulk, i.e., from
Eq. (5). In terms of the Arnowitt-Deser-Misner mass and
GB parameter ~� ¼ ðn� 2Þðn� 3Þ�, the solution for fðrÞ
is [5]
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Here, the negative branch gives the correct limit of general
relativity, i.e.,

lim
~�!0
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; (23)

lim
~�!1f�ðrÞ ¼ 1: (24)

For this reason we consider the negative branch solution,
which means that fðaÞ ¼ f�ðaÞ. Upon substitution of fðaÞ
in (21) we observe that
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~�!1VðaÞ ¼ 1; (25)

which corresponds to a nonphysical case [i.e. Eq. (20)] and
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This shows that vanishing of the GB parameter yields a
potential on the DW which contains a gravitational and
antiharmonic oscillator potentials. The exact potential
(with � � 0), however, has a rather intricate structure
which can be expanded in terms of the � as

VðaÞ ¼ V0 þ V1�þ V2�
2 þ . . . (27)

for V0 was given in Eq. (26)
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In Figs. 1–3 we display VðaÞ and fðaÞ for �2 ¼ 1,
� ¼ 1, n ¼ 4, with changing � and M. For different �
and M values we may obtain similar plots, such as for
example 2a and 3c. This implies that the effect of � may
be compensated with that of M and vice versa. Once
inside the event horizon of the black hole the DW has no
chance but crush to the central singularity as it should. This
is the ultimate fate of our DW universe if it lies inside a
large black hole. For favorable condition of the potential
[i.e. VðaÞ< 0] and in the vicinity (outside) of the horizon
the DW collapses into the black hole much like shells [6].
The overall view, however, whether we have a black hole
or not is that the potential provides a minimum bounce for
the DW which is determined by the GB parameter �.
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We should also add that in our analysis we were unable
to see a maximum bounce. This implies that the GB
extension of general relativity does not suffice to provide
a closed universe on DW.

Figure 4 plots the same quantities in n ¼ 5, for com-
parison with the previous ones in n ¼ 4. What we observe

is that going into higher dimensions does not change the
general features except that some nonblack hole cases will
turn into black holes. We should remark also that although
the coupling constant� between the bulk and DW has been
fixed as � ¼ 1, its effect can be investigated by taking
different values for �. In general, larger � results smaller
bouncing radii and vice versa.
In conclusion, if our 4-dimensional universe, assumed as

a Friedmann-Robertson-Walker universe on a DW laying
in a 5-dimensional Einstein-Gauss-Bonnet (EGB) bulk, the

FIG. 3. The minimum bounces of the DW universe in 3(a) and
3(b) occur at the horizon so that the DW collapses into the black
hole. In 3(c) we have also VðacÞ ¼ 0. For a > ac, the bounce
does not occur at ac. For a < ac the DW collapses into the black
hole while in 3(d), it has no chance to fall into the black hole.
Once inside the horizon, its fate ends at the central singularity.

FIG. 2. Beside the minimum bouncing radii in the DW the
smaller region between the horizon and allowable potential may
have a DW which has no chance other than collapsing into the
black hole. Fig. 2(a) has a critical radius ac for which VðacÞ ¼ 0.
The nature of a DW inside the black hole of course changes,
since it turns into a dynamic and collapsing object toward the
central singularity. This occurs in 2(a) and 2(b) more clearly.
Fig. 2(d) is similar to 1(b), which means that the mass difference
compensates with the difference in �.

FIG. 1. For 5-dimensional bulk, we have our DW as
4-dimensional FRW universe. With increasing � the bouncing
radius of the DWuniverse increases also. Fig. 1(a) is a black hole,
while Fig. 1(b) can be interpreted as a pointlike black hole. Figs 1
(c) and 1(d) are non-black hole cases with differing bounce radii.
The arrows show the possible motions of DW including bounces.

FIG. 4. For 6-dimensional bulk, we have DW as a
5-dimensional universe. Fig 4(a)/4(b) has a similar feature
with 3(c)/3(d). Fig 4(c) is also similar to 2(b). Fig. 4(d) repre-
sents a black hole with a very small horizon but with a very large
bouncing radius.
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GB term protects us against the big crunch. Inclusion of
physical fields such as Maxwell and Yang-Mills will
definitely enrich our world on such a DW. Abiding by a

bulk consisting of pure geometrical terms alone, however,
the hierarchy of GB, known as the Lovelock gravity must
be taken into account.
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