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Modified by a logarithmic term, the non-linear electrodynamics (NED) model of the Born–Infeld (BI)
action is reconsidered. Unlike the standard BI action, this choice provides interesting integrals of the
Einstein-NED equations. It is found that the spherical matching process for a regular black hole entails
indispensable surface stresses that vanish only for a specific value of the BI parameter. This solution
represents a classical model of an elementary particle whose radius coincides with the horizon. In flat
spacetime, a charged particle becomes a conducting shell with a radius proportional to the BI parameter.

© 2009 Elsevier B.V. Open access under CC BY license. 
1. Introduction

Non-linear Born–Infeld (BI) theory was introduced to resolve
the Coulomb divergences of classical electrodynamics [1]. With the
advent of quantum electrodynamics, it was all but forgotten until
its reemergence within the context of string theory. However, the
original BI theory was later extended to cover more general non-
linear electrodynamics (NED) theories [2]. The NED action, with its
square root term restricted to real values, provides a natural way
to avoid the Coulomb field’s singularity. This is reminiscent of the
relativistic particle Lagrangian that restricts the speed of a particle
to less than the speed of light.

It was expected that the therapeutic effect of the BI action
played a non-trivial role when coupled with other fields. Gravity is
no exception, and a search for regular black hole solutions of the
full theory attracted much interest [3]. Specifically, the existence
of regular, purely electrically-charged black holes continued to be
a source of discussion [4]. Within the context of the full Einstein–
Yang–Mills–Born–Infeld theory it was shown that regular magnetic
black holes are a reality, while the pure electrical ones remained
on questionable footing [5]. Our present results use a new method
that suggests the latter class, although not generic, are quite real as
well. Past efforts to study NED introduced a dual structure, through
a Legendre transformation, in which the NED solutions were read-
ily available.
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In this Letter, without invoking any dual structures, we extend
the BI action by a novel non-polynomial term that admits regu-
lar black holes. In the absence of gravity, it is clear that our NED
model describes a charged elementary particle of finite field en-
ergy with a natural cut-off, which turns out to be the radius of the
particle. This corresponds to the classical glue-balls of Yang–Mills
(YM) theory [5] with the important difference that the non-linear
YM field is replaced here by the NED [6]. We concern ourselves
entirely with spherically symmetric NED. We glue two spacetimes
together in such a manner that continuity of metric and certain
first derivatives are satisfied. As could be expected, this imposes
severe restrictions on the component metrics and the BI electric
field. It is possible, however, with the choice of a Bertotti–Robinson
(BR) type (B̃R) metric for interior and a Reissner–Nordstrom (RN)
type (R̃N) metric for the exterior [7,8]. With a particular choice
of the BI parameter, it is shown both from the time-like and the
null-shell formalisms that the surface stress–energy tensor, i.e., the
Lanczos tensor, Sμ

ν = 0. Intriguingly, this corresponds to a case
where the matching surface coincides with the double horizon of
a regular black hole.

We organize the Letter as follows. In Section 2, we consider
NED in a flat spacetime. Section 3 covers the gluing BR type and
RN type spacetimes, resulting in a regular solution. We conclude
with a discussion of interpretation in Section 4.

2. NED in flat spacetime

With unit conventions assumed such that (c = � = kB = 8πG =
1 = 1) our action S and line element are
4πε◦
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S = −1

2

∫
d4x

√−gL(F , � F ), (1)

ds2 = −dt2 + dr2 + r2 dΩ2, (2)

where

dΩ2 = dθ2 + sin2 θ dϕ2, (3)

and

L = − 2

b2

{
1 −

√
1 + 2b2 F − b4(� F )2

+ ln

[
1

2

(
1 +

√
1 + 2b2 F − b4(� F )2

)]}
(4)

in which b is the BI parameter, F = Fμν F μν , � F = Fμν
� F μν and

� stands for duality. Since we shall confine ourselves entirely to
the electrostatic problem the Fμν

� F μν term under the square root
vanishes and will be ignored in the subsequent sections. The pa-
rameter b is such that

lim
b→0

L = Fμν F μν (Maxwell case), (5)

lim
b→∞

L = 0 (zero action). (6)

The electric field 2-form with the radial electric field E(r) is
chosen as

F = E(r)dt ∧ dr, (7)

which leads to F = Fμν F μν = −2E(r)2. This must satisfy the NED
equation

d(L F
�F) = 0, (8)

where �F = E(r)r2 sin θ dθ ∧ dϕ . Integrating the latter equation and
considering the line element (2) one finds

√−2F

1 + √
1 + 2b2 F

= C

r2
, (9)

where C ∈ R
+ is a constant of integration. It is not difficult to show

that this equation gives a non-trivial solution

F = −2C2r4

(C2b2 + r4)2
, (10)

which upon substitution into Eq. (9) implies

2Cr2

(C2b2 + r4) + |C2b2 − r4| = C

r2
, (11)

which is valid only for r >
√

Cb if C 	= 0. This solution corresponds
to the electric field

E(r) = Cr2

(C2b2 + r4)
, (12)

which after using the Maxwell limit

lim
b→0

E = C

r2
(13)

suggests identifying the constant C as the charge of the particle,
i.e., C = q. To find the charge distribution one may look at the re-
gion r < r◦ (r◦ = √

qb ), where the only possible solution of (8) un-
der the spherically symmetric flat spacetime and spherically sym-
metric electric field corresponds to C = 0, or equivalently, a zero
electric field. Note that the existence of the absolute value in (11),
which arises from the square root term, makes this choice indis-
pensable. That is, |C2b2 −r4| = C2b2 −r4 for r4 < C2b2 (= r4 −C2b2

for r4 > C2b2). When this is employed in (11), for the consistency
of the solution, we must choose C = 0, leading automatically to
E(r) = 0 for r4 < C2b2. Whenever C 	= 0, on the other hand, (12)
becomes the only acceptable solution for r4 > C2b2. These results
lead to a surface charge distribution of the particle of ρ = qδ(r−r◦)

4πr2◦
in which δ(r − r◦) denotes the Dirac delta function. Consequently,
one can easily show that the electric potential of the particle is a
constant value inside (r < r◦) and

φ(r) =
√

2q

4r◦

[
tanh−1

( √
2rr◦

r2 + r2◦

)
+ tan−1

( √
2rr◦

r2 − r2◦

)]
(14)

for the outside (r > r◦) region. For b → 0, we recover the Coulomb
field for a charge located at r = 0, and r = r◦ 	= 0 provides a nat-
ural cut-off for the particle. The total energy density is u = 1

2 E . D

(D = εE, with ε = ∂L
∂ F = 1 + ( r◦

r )4) with total energy

U = 4π

∞∫
r◦

u(r)r2 dr = 5.45
q2

r◦
. (15)

This amounts to a hard-core particle with charge density ρ . Iden-
tifying U = M , r◦ is determined from the energy of the particle.

If q2

2M is identified as the classical electromagnetic radius, re , then
r◦ = 10.90re .

3. Regular electric black holes in Einstein-NED theory

In this section, a composite spacetime will be established con-
sisting of a region (r � r◦) of uniform electric field glued at r = r◦
to an outside region (r > r◦). The proper junction condition will
dictate that r◦ must coincide with the horizon of the entire space-
time. For this purpose, we choose our action as

S = 1

2

∫
d4x

√−g
[

R − L(F )
]
, (16)

in which R is the Ricci scalar, and the given Lagrangian (4) is free
of magnetic fields. The Einstein-NED equation is

Gμ
ν = Tμ

ν = −1

2

[
L(F )δμ

ν − 4L F (F )Fμλ F νλ
]

(17)

in which the electromagnetic field 2-form (7) satisfies the NED
equation (8). The static, spherically symmetric spacetimes satisfy-
ing the foregoing equations and being glued at r = r◦ are

ds2 = − f̃ (r)dt2 + dr2

f̃ (r)
+ r2◦ dΩ2 (r � r◦), (18)

ds2 = − f (r)dt2 + dr2

f (r)
+ r2 dΩ2 (r > r◦). (19)

The choice of these metrics can be traced back to the form of the
stress–energy tensor (17), which satisfies T 0

0 − T 1
1 = 0 and con-

sequently G0
0 − G1

1 = 0, whose explicit form, on integration, gives
|g00 g11| = C = constant. We need only choose the time scale at
infinity to make this constant equal to unity.

Nevertheless, for a spherically symmetric charge in EM the-
ory the external solution is known uniquely to be the RN metric.
Therefore, to recover the RN metric in the Maxwell limit (b → 0),
we must consider an RN type metric ansatz for r > r◦ . Further,
since the outer RN metric was glued consistently with the inner
BR metric [7], it is natural to seek a similar ansatz in the present
problem as well. On the hypersurface r = r◦ , the continuity of met-
rics is assumed, whereas some metric derivatives are allowed to be
discontinuous to allow for physical sources.

The field equations combined with the junction conditions will
determine the metric functions f (r), f̃ (r) and the electric field
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E(r). We note from NED equation (8) that the electric field is
uniform in the region r < r◦ . Our solution can be summarized as
follows

E(r) =
⎧⎨⎩

q
2r2◦

, r � r◦,
qr2

r4+r4◦
, r > r◦,

(20)

f (r) = 1 − 2M

r
+ q2

3r4◦
r2 ln

(
r4

r4 + r4◦

)
+ q2

√
2

3rr◦
tan−1

( √
2rr◦

r2 − r2◦

)
− q2

√
2

6rr◦
ln

[
r2 + r2◦ − √

2rr◦
r2 + r2◦ + √

2rr◦

]
, r > r◦, (21)

f̃ (r) = C0r2 + C1r + C2, r � r◦, (22)

where

C0 = q2

r4◦
(1 − ln 2),

C1 = 2M

r2◦
+ q2

6r3◦

(
8 ln 2 − 12 − √

2
(
π − ln(3 − 2

√
2 )

))
,

C2 = 1 − 4M

r◦
− q2

3r2◦

(
2 ln 2 − 3 − √

2
(
π − ln(3 − 2

√
2 )

))
, (23)

in which M is a mass related constant, q = charge and r◦ = √
bq.

Furthermore, as a result of satisfying the field equations, r◦ and q
are constrained by the condition

r◦ = q
√

ln 2. (24)

At this stage it is important to state that the metric function f (r)
and f̃ (r) satisfy

f (r◦) = f̃ (r◦) = 0. (25)

These conditions eliminate the possibility of quasi-black holes
(QBH), which are defined as objects on the verge of being extremal
black holes. In order to create such QBH, we would have to con-
sider matching conditions f (r◦) = f̃ (r◦) 	= 0. These will not be our
concern here. The conditions (25) dictate that

M

r◦
= 1

2
+ 1

12 ln 2

[√
2
(
π − ln(3 − 2

√
2 )

) − 2 ln 2
]
,

C1 = 2

r◦

(
1 − 1

ln 2

)
,

C2 = 1

ln 2
− 1, (26)

which casts f̃ (r) into

f̃ (r) = (r − r◦)2 (27)

for the specific choice

r2◦ = 1

ln 2
− 1. (28)

Let us add that a combination of (24), (28) and r◦ = √
bq deter-

mines the value of the BI parameter as b = 0.55. The finite scalar
invariants, such as the Ricci and Kretschmann of the line element
(18), for r < r◦ are given respectively by

R = 2

r2◦

(
1 + r2◦

)
, K = 4

r4◦

(
1 + r4◦

)
. (29)

Letting now

r◦ − r = 1
, t = t̄, (30)
r̄

transforms the metric into

ds2 = −dt̄2 + dr̄2

r̄2
+ r2◦ dΩ2 (r � r◦). (31)

This is a Bertotti–Robinson (BR) [9,10] type metric with a specific
radius that will be referred to here as the B̃R spacetime. Simi-
larly we label the metric (19) for r > r◦ , as the R̃N. It is well
known that the BR metric is not a black hole solution. However,
our present B̃R is a part of a composite system of spacetimes, with
an event horizon at r◦ , where it corresponds to an accelerated
frame in a conformally flat background with a unit acceleration
in the present context [11]. Let us note that our result of B̃R for
(r < r◦) is not contradicted by a theorem proved long ago by Bron-
nikov and Shikin [12]. This theorem proved the non-existence of a
regular center, which is still satisfied in the case of our B̃R space-
time in the Einstein-NED theory.

In order to determine if our matching of inner B̃R to outer R̃N
is smooth, we compute the surface stress tensor Sν

μ on r = r◦ . This
can be expressed in terms of the extrinsic curvature tensor in ac-
cordance with

8π Sν
μ = [

K ν
μ

] − δν
μ[K ], (32)

where [.] = (.)+ − (.)− , with K = K μ
μ and μ,ν = {t, θ,ϕ}. Here (.)+

and (.)− refer to the outer (r > r◦) and the inner (r < r◦) metrics,
respectively. The components of Sν

μ are given by [7]

8π S0
0 = 2

r

[
(r+)′ − (r−)′

]
, (33)

8π S2
2 = 8π S3

3 = (r
√

f (r) )′+
r
√

f (r)
− (r − r◦)′−

(r − r◦)
, (34)

where a prime ′ denotes d
d�

, defined by

d

d�
=

{
( d

d�
)− = (r − r◦) d

dr ,

( d
d�

)+ = √
f (r) d

dr .
(35)

We observe that the S0
0 component, proportional to the proper

mass, vanishes, i.e., S0
0 = 0. This can also be checked from the con-

tinuity of the general mass formula

m(r) ≡ r

2

(
1 − (∇r)2), (36)

which gives

m− = m(r◦ − 0) = m+ = m(r◦ + 0) = r◦
2

. (37)

The surface pressures on the other hand become

8π S2
2 = 8π S3

3 = 1

r◦
d

dr

(
r
√

f (r)
) − 1. (38)

In order to evaluate this expression we need to expand f (r) in
powers of (r − r◦). A detailed expansion process gives

f (r) = (r − r◦)2 − 2

3

(r − r◦)3

r◦
+ 1 − 2 ln 2

3 ln 2

(r − r◦)4

r4◦

− 1 − 10 ln 2

15 ln 2

(r − r◦)5

r5◦
+ 7 − 60 ln 2

90 ln 2

(r − r◦)6

r6◦
+ · · · .

(39)

From this expression, as the terms suggest, we can retain the
quadratic term as the leading order so that

f (r)=̃(r − r◦)2. (40)



410 S.H. Mazharimousavi, M. Halilsoy / Physics Letters B 678 (2009) 407–410
Substituting this into (38) for the surface pressures, we obtain un-
der (28) that

8π S2
2 = 8π S3

3 = 0. (41)

At this point, it is instructive to calculate the charge to mass ratio
for such a particle (i.e., a black hole). In SI units we have(

q

m

)
SI

= 4π
√

2Gε◦
(

q

m

)
geom.

= 8π

√
2Gε◦
ln 2

= 1.04 × 10−9 C

kg
, (42)

which, predictably has a huge gap from the value of an electron
(∼ 1.7 × 1011 C

kg ).
Finally, we invoke the null-shell formalism [13,14], where the

metrics are cast into Kruskal form

ds2=̃ − F (u, v)du dv + r2 dΩ2. (43)

Here F (u, v) is a bounded function on the horizon, and the null
coordinates are defined by

t − r� = u, t + r� = v (44)

for r� = ∫ dr
f (r) . By employing the expansion (39) once more and,

adopting its first term, we obtain the null coordinates. The smooth
matching on u = 0 requires that [14](

∂r

∂u

)
+

=
(

∂r

∂u

)
−

(45)

implying in our case that it is satisfied for r2◦ = 1
ln 2 − 1, which

is nothing but the condition (28) that renders smooth matching
possible.

4. Conclusion

Employing a modified version of the BI action, consisting of
non-polynomial, logarithmic parts, we obtain a class of regu-
lar, electrically-charged black holes in Einstein-NED theory, which
were previously unknown [4]. Other choices of boundary condi-
tions, which we have not taken into consideration in this Letter,
may give rise to what are called quasi-black holes (QBH). The par-
ticular choice of the action provides a particle-like structure in
flat spacetime whose electric charge resides on its surface, while
the particle radius provides a natural cut-off for the electric field.
This includes the case of a massless particle whose entire mass
derives from the electric field energy. A similar picture applies
to the curved space as well. Remarkably, we uncover a regular
class of purely electrically-charged black hole solutions where for
r < r◦ , we have a uniform electric field with Sν

μ = 0 at r = r◦ .
This class consists of the extremal black hole in which the hori-
zon, Born–Infeld parameter and charge are related. Smooth gluing
of a BR core to an outside RN was also known in the Maxwell
electrodynamics [7]. The novel feature here is that the horizon co-

incides with the specific value r◦ =
√

1
ln 2 − 1. This gives in SI units,

qSI = 1.50 × 10−18 C and mSI = 1.44 × 10−9 kg for such a black
hole.
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