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Abstract

By gauging an Abelian electromagnetic (em) solution through a non-Abelian transformation

and in accordance with a theorem proved long time ago, we construct a simple class of colliding

Einstein-Yang-Mills (EYM) plane waves. The solution is isometric to the Wu-Yang charged Kerr-

Newman (KN) black hole and shares much of the properties satisfied by colliding Einstein-Maxwell

(EM) plane waves. In the linear polarization limit with unit degenerate charge it reduces to the

Bell-Szekeres (BS) solution for colliding em shock waves.

∗Electronic address: ozay.gurtug@emu.edu.tr
†Electronic address: mustafa.halilsoy@emu.edu.tr

1

http://arxiv.org/abs/0802.3797v2
mailto:ozay.gurtug@emu.edu.tr
mailto:mustafa.halilsoy@emu.edu.tr


I. INTRODUCTION

Starting with 1970s, through 80s, were the years in which the subject of colliding waves

in general relativity attracted much interest. All known results were compiled later into a

cataloque of solutions[1]. In later decades the interest in the subject continued with less mo-

mentum, concentrating more on the sophisticated fields such as dilaton, axion and torsion

coupled to gravity and electromagnetic (em) fields. Formation of Cauchy horizon / singu-

larity, and under what conditions the horizon remains stable dominated most discussions to

date. To our knowledge the discussion has not been conclusive to the satisfaction of all yet.

Our aim in this paper is not to contribute in this particular direction, but rather to point

out a restricted class of colliding Yang-Mills (YM) waves which behaves almost em-like.

The motivating factor to consider such a problem anew relies on the recent attempts of

Large Hadron Collisions (LHC) at TeV scale that maintain the prime agenda at CERN.

As the protons (anti-protons) are boosted to almost the speed of light they behave more

wave-like than particle-like whose collisions are reminiscent of waves colliding in general

relativity. Since the inner/color structure of hadrons have constituent YM fields, collision

of such waves deserves further investigation.

Within this context although there is a large collection of Einstein-Maxwell (EM) solu-

tions available in the literature [1][2], extension of the problem to the Einstein-Yang-Mills

(EYM) remained ever open. We aim to contribute in this regard, at least partly, for the

gauge group SO(3) and pave the way for further solutions underlying various gauge groups.

Our starting point is a Theorem proved long time ago by P. Yasskin [3] in connection with

Yang-Mills (YM) fields in a curved spacetime. The method in Yasskin’s Theorem is to start

from an Abelian U(1) em solution and map it through a non-Abelian transformation to the

YM problem. In this process, naturally, the degenerate YM charges are defined from the

original em charge. By employing the Wu-Yang ansatz [4] for the YM fields in the trapped

region of the Kerr-Newman (KN) black hole we construct solution that describes colliding

EYM plane waves. In this process, rotation of the black hole transforms into the cross

polarization of the colliding waves. In the linear polarization limit we recover the colliding

em wave solution due to Bell and Szekeres (BS)[5]. More generally, any colliding EM met-

ric/field can be shown to represent at the same time colliding EYM waves, in a restricted

sense provided the YM field is defined according to the Yasskin’s Theorem. This guaran-
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tees that the incoming YM fields are em-like plane waves so that they do not create extra

currents. It can be anticipated that non-planar waves will induce their own sources through

self-interaction which is the case that we avoid in the present study. Although YM fields is

known to be a subject in the realm of quantum (chromodynamics), our treatment is entirely

classical here. Stated otherwise, we adopt the viewpoint that anything that interacts with

the classical gravity must itself behave classical.

Organization of the paper is as follows. In section II, we introduce YM fields in a KN black

hole geometry. Colliding EYM plane waves follows in section III. Section IV, concentrates

on the linear polarization of the waves. We complete the paper with conclusion in section

V.

II. KN BLACK HOLE AND YM FIELDS.

The KN black hole solution is given by the line element

ds2 =
U2

ρ2

(
dt − a sin2 θdϕ

)2 − sin2 θ

ρ2
[Fdϕ − adt]2 − ρ2

U2
dr2 − ρ2dθ2, (1)

where

U2 = r2 − 2mr + a2 + Q2, ρ2 = r2 + a2 cos2 θ, F = r2 + a2, (2)

in which a is the parameter of rotation and Q is the em charge. By invoking Yasskin’s

Theorem [3] we extend this solution to represent a particular YM field as follows. A suitable

YM gauge potential 1-form Ai = Ai
µdxµ, (i = 1, 2, 3) is chosen as

Ai =
1

ρ2
Qi cos θ

[(
r2 + a2

)
dϕ − adt

]
. (3)

Here the gauge charge Qi satisfies the constraint

γijQ
iQj = Q2, (4)

with the invariant group metric γij = δij and Q is the charge of the KN black hole. The

YM field 2-form is defined by F i = 1

2
F i

µνdxµ ∧ dxν , where ∧ stands for the wedge product

and
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F i
µν = ∂µAi

ν − ∂νA
i
µ +

1

2Q
ǫi
jkA

j
µA

k
ν , (5)

in which ǫi
jk is the structure constant for the group. In the SO(3) basis, T i (i = 1, 2, 3) are

given by

T 1 =




0 0 0

0 0 −1

0 1 0


 , T 2 =




0 0 1

0 0 0

−1 0 0


 , T 3 =




0 −1 0

1 0 0

0 0 0


 , (6)

and the YM potential 1-form has the representation

A = Ai
µT

idxµ. (7)

For the particular choice (Q3 = Q 6= 0 = Q1 = Q2) we have

A3

ϕ =
Q cos θ

ρ2

(
r2 + a2

)
, (8)

A3

t = −aQ cos θ

ρ2
,

which has both electric and magnetic components. If a = 0, i.e. for the Reissner-Nordstrom

black hole, we have a pure magnetic field. Now we apply a gauge transformation on Aµ

through

Aµ → Ãµ = GAµG
−1 − Q (∂µG) G−1, (9)

where the gauge transformation matrix G is

G =




sin ϕ cos ϕ cos θ cos ϕ sin θ

− cos ϕ sin ϕ cos θ sin ϕ sin θ

0 − sin θ cos θ


 . (10)

We obtain the components of the new gauge potential 1-forms (after suppressing the tilde

over Aµ ) as
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A1 =
Q

2ρ2
sin 2θ cos ϕ

[(
r2 + a2

)
dϕ − adt

]
+ Q sin ϕdθ, (11)

A2 =
Q

2ρ2
sin 2θ sin ϕ

[(
r2 + a2

)
dϕ − adt

]
− Q cos ϕdθ,

A3 = −Q

ρ2
(r2 sin2 θdϕ + a cos2 θdt).

In the next section we shall transform these potentials and metric (1) into the colliding wave

spacetime and interpret it as a solution to the colliding EYM problem.

III. COLLIDING EYM PLANE WAVES.

The metric function U2 = r2 − 2mr + a2 + Q2 = 0, in Eq.(2) has two roots, r = r+ (the

outer horizon) and , r = r− (the inner horizon). By the particular choice of parameters it is

possible to make r+ = r− , which is called the extremal case, however, we shall consider here

only the case r+ > r− 6= 0. It can easily be seen that for r− < r < r+, U2 < 0, which makes

the spacetime to admit two spacelike Killing vectors apt for colliding waves. For simplicity

we choose the mass, m = 1 and apply the following transformation

r = 1 + ατ, σ = cos θ, t = αx, y = ϕ, (12)(
α =

√
1 − a2 − Q2 =

1

p

)

to the line element (1). After an overall scaling of the metric we obtain

ds2 = X

(
dτ 2

∆
− dσ2

δ

)
− X−1

(
Rdx2 + Edy2 − 2Gdxdy

)
, (13)

where

X = (p + τ)2 + a2

0σ
2, R = ∆ + a2

0δ, (14)

E = ∆A2 + δB2, G = ∆A + a0δB,

A = a0δ, B = (p + τ )2 + a2

0,

∆ = 1 − τ 2, δ = 1 − σ2,

in which
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τ = sin (auθ (u) + bvθ (v)) , σ = sin (auθ (u) − bvθ (v)) , (15)

are the new coordinates in terms of the null coordinates (u, v) and (a, b) are arbitrary

constants. We note also that a0 = ap. By introducing another constant q = Qp, we can

check that the constraint condition

p2 − a2

0 − q2 = 1, (16)

holds. The YM potential 1-forms are now

A1 =
Qσ

√
δ

X
cos y (Bdy − a0dx) − Q sin y

dσ√
δ
, (17)

A2 =
Qσ

√
δ

X
sin y (Bdy − a0dx) + Q cos y

dσ√
δ
,

A3 =
Qσ2

X
(Bdy − a0dx) − dy.

We note that in the null coordinates (u, v) we have

dσ = −
√

δ (aθ (u) du − bθ (v) dv) , (18)

dτ =
√

∆ (aθ (u) du + bθ (v) dv) ,

in which θ (u) and θ (v) are the unit step functions introduced as the requirement of the

collision problem. Let us note that insertion of the step functions must be checked critically

to ensure the absence of any redundant current sheets. In most cases such an insertion fails

to work but here, due to its em analogy it does work. The YM field 2-form F i are given by.

F i = Q
√

δ

(
cos y, sin y,

σ√
δ

)
F,

where the 2-form F is

F =
1

X2

[(
(p + τ)2 − a2

0σ
2
)
dσ − 2σ (p + τ) dτ

]
∧ (Bdy − a0dx) , (19)

while its dual takes the form

∗F =
1

X2

[(
(p + τ)2 − a2

0σ
2
)
dτ ∧ (dx − a0δdy) − 2a0σ (p + τ) dσ ∧ (Bdy − a0dx)

]
. (20)
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Without much difficulty, which is more transparent in the (τ , σ, x, y), compared with the

(u, v, x, y) coordinates, one can show that the integrability equations

dF + A ∧ F = 0, (21)

and the YM equations

d∗F + A ∧∗ F = 0, (22)

are all satisfied. This solves the problem of colliding EYM plane waves where the YM field

is obtained from the theorem of Yasskin while the metric is the inner horizon region of the

KN geometry explored first within the context of EM by Chandrasekhar and Xanthopoulos

[6]. For a detailed analysis of this spacetime we refer to [6].

IV. THE LINEAR POLARIZATION LIMIT.

In this section we consider the metric obtained in the previous section and set a0 = 0

to make waves linearly polarized. In the null coordinates after an overall scaling the line

element takes the form

ds2 = Σ2
(
2dudv − δdy2

)
− ∆

Σ2
dx2, (23)

where

Σ = 1 + ατ, ∆ = 1 − τ 2, δ = 1 − σ2, α =
√

1 − Q2, (24)

while the SO(3) valued gauge potential 1-forms are

A1 = Q
[(

σ
√

δ cos y
)

dy − (sin y) (aθ (u) du − bθ (v) dv)
]
, (25)

A2 = Q
[(

σ
√

δ sin y
)

dy + (cos y) (aθ (u) du − bθ (v) dv)
]
,

A3 = −Qδdy.

The YM field 2-form F i and ∗F ican be expressed as
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F i = Qδ

(
cos y, sin y,

σ√
δ

)
[aθ (u) du − bθ (v) dv] ∧ dy, (26)

∗F i =
Q
√

∆δ

(Σ)2

(
cos y, sin y,

σ√
δ

)
[aθ (u) du + bθ (v) dv] ∧ dx

In the null tetrad basis 1-forms (l, n, m, m) of Newman and Penrose

l = Σdu, (27)

n = Σdv,

m + m =
√

2Σ
√

δdy,

m − m =
√

2i

√
∆

Σ
dx,

the energy-momentum tensor Tµν becomes,

4πTµν =
Q2

Σ4

[
a2θ (u) lµlν + b2θ (v)nµnν + abθ (u) θ (v) (mµmν + mµmν)

]
. (28)

Prior to the collision the incoming, coupled EYM plane waves are obtained by setting v < 0

(u < 0) in Eq.(24). For u < 0 and v < 0 we have a flat space in which the YM field vanishes.

For u > 0 and v > 0 , the Weyl scalars Ψ2, Ψ0 and Ψ4 are all regular as can be checked from

Ψ2 =
α (α + τ )

Σ4
abθ (u) θ (v) , (29)

Ψ4 = − aδ (u) [α + sin (bvθ (v))]

cos (bvθ (v)) [1 + α sin (bvθ (v))]
+ 3a2θ (u)

α (α + τ )

Σ4
,

Ψ0 = − bδ (v) [α + sin (auθ (u))]

cos (auθ (u)) [1 + α sin (auθ (u))]
+ 3b2θ (v)

α (α + τ)

Σ4
,

satisfying the type-D condition Ψ0Ψ4 = 9Ψ2
2. The invariants I = 2 (Ψ0Ψ4 + 3Ψ2

2) and J =

6Ψ2 (Ψ0Ψ4 − Ψ2
2) are both regular as they should be in the inside of the collision region. On

the boudaries u = 0, bv = π/2 (v = 0, au = π/2), however, there are null singularities which

are also present in the problem of colliding em shock waves[5]. The pathology involved ( if

any) on the hypersurfaces τ = 1 and σ = ±1 has been discussed extensively in the literature

of colliding waves ( see Ref.[1] and references therein). An analytic extension beyond the

horizon (τ = 1), albeit it is a non - unique process, reveals the geodesics completeness and

other issues [7].
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The metric (23) has well known limits. For Q = 0 (α = 1) the YM field vanishes and one

recovers the colliding gravitational waves locally isometric to the Schwarzschild interior[1].

For Q = 1 (α = 0) we have the case of colliding em waves [5]. This implies that the Bell-

Szekeres metric can be interpreted at the same time to represent colliding YM plane waves

for a unit charge Q = 1.

The Wu-Yang ansatz solution[4] for the static YM fields has the gauge potential

Ai = −Q

r2
ǫi
jkx

kdxj (30)

where xi stands for the Cartesian coordinates and Q = Q3 6= 0, is the only non-zero gauge

charge. By the substitution, x1 = r sin θ cos ϕ, x2 = r sin θ sin ϕ and x3 = r cos θ, followed by

cos θ = sin (auθ (u) − bvθ (v)) and y = ϕ, one obtains potential 1-forms ( Eq.(25)). The YM

potentials in Eq.(25) just corresponds to the curved space generalization of the Wu-Yang

ansatz solution[4].

V. CONCLUSION.

Customarily YM fields arise as part of a quantum theory inside nuclei. It carries its own

gauge charge and self-interacts with itself. These properties are fundamentally different from

em waves which correspond to the classical equivalence of photons. In this paper we treat

YM waves along with gravitational waves as classical and consider their collision problem

in a restricted form. This is not to be compared with a Feynman diagram of quantum

chromodynamics. The highly non-linear YM waves acts in this simple picture parallel to

gravitational waves to distort spacetime upon interaction. The example which we present

here is a case that forms Cauchy horizon ( of Reissner-Nordstrom and KN types) instead

of a singularity. Yasskin’s theorem and the Wu-Yang ansatz aided in obtaining this simple

class. Different combinations/collisions which employ the full non-linearity and non-Abelian

character may change this picture completely. This, however, remains as challenging as ever.
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