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ABSTRACT 

Quantum singularities are considered in matter coupled 2+1 dimensional spacetimes 

in Einstein’s theory. The occurrence of naked singularities in the spacetimes both in 

linear and non-linear electrodynamics in Einstein-Maxwell as well as in the Einstein-

Maxwell-Dilaton gravity and pure magnetic Einstein-Power-Maxwell theory are 

considered. It is shown that the inclusion of the matter fields changes the geometry. 

The classical central singularity at     turns out to be quantum mechanically 

singular for quantum particles obeying Klein-Gordon equation but nonsingular for 

fermions obeying Dirac equation in all space times except the class of static pure 

magnetic spacetime.  

The physical properties of the 2+1 dimensional magnetically charged solutions in 

Einstein-Power-Maxwell theory with particular power   of the Maxwell field are 

investigated. The true timelike naked curvature singularity develops when     

which constitutes one of the striking effects of the power Maxwell field. For specific 

power parameter  , the occurrence of timelike naked singularity is analysed in 

quantum mechanical point of view. It is shown that the class of static pure magnetic 

spacetime in the power Maxwell theory is quantum mechanically singular when it is 

probed with fields obeying Klein-Gordon and Dirac equations in the generic case. 

Keywords: Quantum singularity, naked singularity, 2+1 dimensional spacetimes 
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ÖZ 

Einstein teorisi içinde, kuvantum tekillikleri madde eklenmiş 2+1 boyutlu uzay-

zamanlarda çalışılmıştır. Çıplak tekilliklerin oluşumu doğrusal ve doğrusal olmayan 

elektrodinamik Einstein-Maxwell, hem de Einstein-Maxwell-Dilaton ve manyetik 

Einstein-Üslü-Maxwell teorilerinde incelenmiştir. Madde alanlarının eklenmesiyle 

geometrinin değiştiği gösterilmiştir. Statik manyetik uzay-zaman haricindeki tüm 

çalışılan uzay-zamanlarda     noktasındaki klasik merkezi tekilliğin Klein-Gordon 

denklemine uyan parçacıklar için kuvantum tekil kaldığı fakat Dirac denklemine 

uyan fermionlar için bu tekilliğin ortadan kalktığı görülmüştür.  

 

Einstein-Üslü-Maxwell teorisinde 2+1 boyutlu manyetik yüklü çözümlerin fiziksel 

özellikleri özel k kuvvetiyle incelenmiştir.     değerleri için zamansal, çıplak, 

eğrilik tekilliğinin oluştuğu görülmüştür ki bu durum üslü Maxwell alanının en 

büyük etkisidir. Belli bir k değeri için kuvantum mekaniksel açıdan zamansal çıplak 

tekilliğin oluşumu incelenmiştir. Üslü Maxwell teorisindeki statik manyetik uzay-

zamanın Klein-Gordon ve Dirac alanları içerisinde incelendiğinde, kuvatum 

mekaniksel olarak tekil kaldığı gösterilmiştir. 

Anahtar Kelimeler: Kuvantum tekillik, çıplak tekillik, 2+1 boyutlu uzay-zamanlar 
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Chapter 1 

INTRODUCTION 

1.1 BTZ Black Hole 

One of the most interesting structures found in the general theory of relativity are the 

black holes. In recent years, 2+1 dimensional black holes attract more attention 

because they carry all the characteristic features of a 3+1 dimensional black hole 

such as the event horizon and Hawking radiation. They also have a simple 

mathematical structure which provides a better understanding of the general aspects 

of black hole physics [1]. 

 

The standard Einstein equations in 2+1 spacetime dimensions, with a negative 

cosmological constant, give a black hole solution. This is known as Bañados-

Teitelboim-Zanelli (BTZ) black hole which is locally anti-de Sitter space [2,3]. An 

unwanted outcome of the theory of general relativity is the occurrence of curvature 

singularities. Even in 2+1 dimension, the formation of curvature singularity is 

inevitable. A curvature singularity is found in the causal structure of the BTZ black 

hole. But, when a matter field is coupled true curvature singularity develops. In this 

thesis our main task is to analyse especially the naked singularities in the view of 

quantum mechanics. 
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Consider a spinless BTZ black hole. The three different kind of spacetimes arises 

depending on mass parameter,    [2,3]. The BTZ metric is described by the 

following metric, 

         
  

  
         

  

  
 

  

            (1) 

Case 1: Vacuum state. This represents the case when     and the horizon size 

goes to zero. 

Case 2: For    , a black hole solution is admitted with a singularity in the causal 

structure at     with an additional pathology, a Taub-NUT type singularity 

(conical). An event horizon given by        hides the singularity where    

     and   is the cosmological constant. Cosmic censorship hypothesis (CCH) is 

preserved for this spacetime. 

Case 3: As   grows negative with the constraint condition,       , the conical 

singularity possessed at     becomes a naked singularity which violates the CCH. 

When     , there is no horizon and no singularity. An anti de-Sitter space is 

allowed and it is the ground state of the theory of quantum gravity [4]. If     , 

the spacetime represents point sources with negative mass which have no physical 

meaning  at all [5]. 
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1.2 Singularities and Cosmic Censorship Hypothesis 

In general, singularities are one of the most important issues in the Einstein’s theory 

of relativity. A singular spacetime is described by geodesic incompleteness in the 

theory. If the time evolution of timelike or null geodesics is not defined after a proper 

time, the spacetime is a singular spacetime. The singularities occurring during the 

gravitational collapse of massive stars, black holes or in big-bang cosmologies are at 

   , which is a typical central singularity. 

There is/are horizon(s) around the singularity in black hole spacetimes. When there 

is/are no horizon(s) around the singularity, the singularity becomes a naked 

singularity. Naked singularities may be able to communicate with outside observers 

far away to affect the dynamics of the outside observers [6]. In 1969, Penrose [7] 

proposed the Cosmic Censorship Hypothesis (CCH) which states that the 

singularities forming in a general gravitational collapse should always be covered by 

the event horizons of gravity and remain invisible to any external observer. This 

hypothesis is not proven yet and it remains as one of the most significant unsolved 

problems in general relativity and gravitation physics [6]. 

Naked singularities violate CCH. Joshi states that occurrence of a naked singularity 

would imply a catastrophic breakdown of predictability (causality) in physics 

because arbitrary bursts of radiation or matter could be radiated in external universe 

by a naked singularity [6]. 
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1.3 New Solutions and Studies 

The stars which undergo a continual gravitational collapse to a spacetime singularity 

of infinite curvature and density, quantum gravity effects will become important in 

the very advance stages of the collapse at the scales of Planck length            

[6]. Horowitz and Myers [4] states that the true physics of curvature singularities will 

not be revealed until one has fully quantized gravity and these singularities will be 

“smoothed out” or “resolved” in the correct theory of quantum gravity. Therefore, 

the resolution of these singularities stands as an extremely important problem to be 

solved. Since naked singularity occurs at very small scale it is expected that quantum 

theory of gravity replaces classical general relativity. Therefore, it is worth to 

investigate the nature of this singularity with quantum test fields. 

Horowitz and Marolf [8] have developed the idea of Wald [9], to probe the 

singularities using quantum test fields instead of classical point particles. These wave 

probes obey the Klein-Gordon equation for static spacetimes having timelike 

singularities. The propagation of the wave through the singularity may be in a 

definite and unique way. When you consider the hydrogen atom as an example, the 

wave function is finite at its origin, which is a classical singularity [10]. 

In this thesis, the criterion of Horowitz and Marolf [8] is used to probe the naked 

singularities that form in 2+1 dimensional matter coupled spacetimes. Our 

motivation here is to investigate the effects of matter fields on the quantum 

singularity structure of the BTZ spacetime. The surface at     for the BTZ black 

hole is not a curvature singularity. The curvature singularity is found in the causal 

structure of the BTZ black hole. But, when a matter field is coupled true curvature 
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singularity develops. The effect of the matter fields, both in nonlinear and linear 

electrodynamics, as well as in the presence of dilaton field and magnetic charge, 

changes this picture completely and creates the true curvature singularity at    . 

Furthermore, the spacetime geometry near the origin is not conic anymore. In view 

of these important physical effects of matter fields the singularity structure will be 

analysed in quantum mechanical point of view. 
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Chapter 2 

DEFINITION AND CLASSIFICATION OF 

SINGULARITIES 

2.1 Classical Singularities 

In classical general relativity, a spacetime is assumed to be smooth without irregular 

points. A singularity can be thought to be as the boundary or the edge of the 

spacetime. A classical singularity in a maximal spacetime (i.e. given   , Hausdorff 

manifold M together with Lorentzian metric    ;      ) is indicated by incomplete 

geodesics and/or incomplete curves of bounded acceleration [11, 12]. Ellis and 

Schmidt [13] classified the classical singularities depending on the differentiability 

assumed. In their assumption, the Hausdorff manifold M is    (which means that 

infinite times continuously differentiable) and that:  

(i) the metric components     are continuous with locally bounded weak derivatives 

(ii) the curvature tensor components     
  are    (or    ) functions which means 

curvature tensor is k times continuously differentiable. 

Then they call       a    (or    ) spacetime      . Here,           means 

that the      th
 derivatives obeying Lipschitz conditions. A    or     function 

corresponds to continuous or locally bounded Riemann tensors. The classification 

uses a bundle (b)-boundary construction [14] to show the boundary-singularity 

relation. The brief review is as follows. 
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A set of boundary points,   , is attached to  .    is at a finite distance from points 

   . The b-boundary of       is constructed by using the bundle      of 

orthonormal frames over M. Each curve      in M that is incomplete when   is a 

generalized affine parameter. Each curve, at least one, ends at a point     . In the 

work of Ellis and Schmidt [13], they let    to denote the family of incomplete curves 

in M ending at q. Then for each     ,    is a nonempty set. In this case, they 

suggest two possibilities: 

1-The point      is a    regular boundary point         if there is an extension 

of the spacetime       into a larger spacetime         such that the Riemann tensor 

of       is   and q is an interior point of   . Therefore, the spacetime is extendible 

and the singularity is removable. 

2-The point      is a    singular boundary point         if it is not a    

regular boundary point. In this case, it is impossible to extend       through   in a 

   way. 

Then, the singular boundary point q can be classified as: 

i. Quasiregular Singularity 

ii. Curvature Singularity: Scalar or Nonscalar 

In their study, they give detailed information about the singular points and 

singularities which are summarized in the next sub-sections below. 

2.1.1 Quasiregular Singularity 

A singular boundary point      is a            quasiregular singularity       

if it is not a            curvature singularity. The curvature tensor components 

           
    measured in an orthonormal parallelly propagated frame behave in a 

            (bounded) way on all curves      terminating at q. Near q the space 

geometry is locally well behaved. Although the singularity, q, cannot be removed the 
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spacetime can be extended locally [13]. Quasiregular singularities are the weakest 

classical singularities. An observer never sees physical quantities to diverge. There is 

no curvature or tidal infinity at all. The ending of a classical particle path is 

associated with a topological obstruction to spacetime construction. These 

singularities can be observed along an idealized cosmic string and in TAUB-NUT 

spacetime [15, 16]. 

2.1.2 Curvature Singularity 

Ellis and Schmidt [13] define a singular boundary point      is a            

curvature singularity       where at least one curvature tensor component 

           
    does not behave in a             (not bounded) way when an 

orthonormal tetrad parallel along a curve      is used as a basis. As one come near 

to q, the space geometry is not locally well behaved. In curvature singularities, 

making an extension is prevented by the curvature of the spacetime. 

2.1.2.1 Scalar Curvature Singularity 

A point      is a            scalar singularity       where some scalars 

from the tensors    ,                  
 do not behave in a             way (not 

bounded). Near q, physical quantities such as energy density and tidal forces diverge 

for all observers. This singularity is the strongest of the classical singularities. It is 

associated with infinite curvature scalar such as the centre of a black hole or the 

beginning of a Big Bang cosmology [13, 17]. 

2.1.2.2 Nonscalar Curvature Singularity 

A curvature singularity      is a            nonscalar singularity       if it 

is not a            scalar singularity. All scalars from tensors    , 

                 
 behave in a             way (or are bounded). An observer 

experiences infinite tidal forces at q. Whimper cosmologies or Bell-Szekeres solution 
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which describes the non-linear interaction of two oppositely moving electromagnetic 

shock waves are examples of this type of singularities [13, 16]. 

 

In general, singularities are one of the most important issues in the Einstein’s theory 

of relativity. There is an extensive effort to remove these singularities. As we 

mentioned before the scales where the singularities occur in black hole spacetimes or 

in big-bang cosmologies are smaller than the Planck scales. Therefore, the methods 

of classical general relativity are not applicable. In order to solve this important 

problem at these small scales we need to replace classical methods by the quantum 

theory of gravity which is still under consideration. 
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Fig. 1. The different types of finite boundary points and singularities for a spacetime 

      for classical point of view [13]. 
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2.2 Quantum Singularities 

Horowitz and Marolf [8] proposed that a spacetime is quantum mechanically singular 

if the evolution of a test wave packet is not uniquely determined by the initial data. 

They found the criteria to test the classical singularities with quantum test particles 

that obey the Klein-Gordon equation for static spacetime having timelike 

singularities. According to this criterion, the singular character of the spacetime is 

defined as the ambiguity in the evolution of the wave functions. That is the singular 

character is determined by attempting to find self-adjoint extension of the operator to 

the entire space. If the extension is unique, then the space is accepted quantum 

mechanically nonsingular. 

 An operator, A, is called self-adjoint if 

(1)      

(2)                      

where    is the adjoint of A. An operator is essentially self-adjoint if  

(1) is met and,  

(2) can be met by expanding the domain of the operator or its adjoint so that it is true 

[18,19].  

Horowitz and Marolf [8] considered a static spacetime         with a timelike 

Killing vector field    . Let t denotes the Killing parameter and Σ denote a static 

slice. The Klein-Gordon equation on this space is 

                     (2) 

This equation can be written in the form of 
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                         (3) 

in which        and    is the spatial covariant derivative on Σ. The Hilbert space 

        is the space of square integrable functions on Σ. The domain of the operator 

A,           is taken in such a way that it does not include the spacetime 

singularities. An appropriate set is   
    , the set of smooth functions with compact 

support on Σ. The self-adjoint extensions of operator A always exist since it is real, 

positive and symmetric. A is called essentially self-adjoint, if it has a unique 

extension AE  [18, 19, 20]. The Klein-Gordon equation for a free particle satisfies 

      
  

  
          (4) 

with the solution 

                             (5) 

If A is not essentially self-adjoint, the future time evolution of the wave function 

(equation (5)) is ambiguous. Horowitz and Marolf [8] define such a spacetime as 

quantum mechanically singular. However, if there is only one self-adjoint extension, 

the operator A is said to be essentially self-adjoint and the quantum evolution 

described by equation (5) is uniquely determined by the initial conditions. This 

spacetime is said to be quantum mechanically regular (nonsingular).  

 

In order to determine the number of self-adjoint extensions, the concept of deficiency 

indices is used. The deficiency subspaces N± are defined by (see [10] for a detailed 

mathematical background), 
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                                                 with dimension    (6) 

                                                 with dimension    (7) 

The dimensions         are the deficiency indices of the operator A. The indices 

       are completely independent of the choice of        depending only on 

whether Z lies in the upper (lower) half complex plane. Generally one takes       

and       , where λ is an arbitrary positive constant necessary for dimensional 

reasons. The determination of deficiency indices then reduces to counting the 

number of solutions of       ; (for    ), 

       ±           (8) 

that belong to the Hilbert space ℋ. If there is no square integrable solutions (i.e. 

       ), the operator A is essentially self-adjoint as it possesses a unique self-

adjoint extension. As a result, a sufficient condition for the operator A to be 

essentially self-adjoint is to investigate the solutions satisfying equation (8) that do 

not belong to the Hilbert space. 

 

In general, for an      -dimensional static spacetime is defined by the metric 

                                    (9) 

A function space is chosen on each t=constant hypersurface   as the usual Hilbert 

space described by  

    ℋ                       (10) 

with the following norm 
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           (11) 

where    is a positive constant, and            is the natural volume element on 

 . 

Another approach to remove the quantum singularity is to choose the function space 

to be the Sobolev space  ℋ  . This function space is used to study quantum 

singularities first time by Ishibashi and Hosoya [10]. Here, the norm defined in as, 

      
  

 
   
 

       
 

 
   
 

       
       (12) 

in which    is the covariant derivative with respect to the induced metric     on  . 

The square of the norm (12) involves both the wave function and its derivative to be 

square integrable. The failure in the square integrability indicates that the operator A 

is essentially self-adjoint and thus, the spacetime is "wave regular". It should be 

noted that the Sobolev space is not the natural quantum mechanical Hilbert space. 

 

In the study of Horowitz and Marolf [8] they analysed the four dimensional negative 

mass Schwarzschild solution whose singularity is at    . They found that the 

solution remains singular when probed with quantum test particles that obey the 

Klein-Gordon equation. In a similar study of Ishibashi and Hosoya [10], they found 

the solution to be regular if the function space is chosen to be the Sobolev space.  

There are many studies that analyse singularities in quantum mechanical point of 

view by using the criterion of Horowitz and Marolf [8]. For example, there are 

studies about the singularities in quasi-regular spacetimes [15, 16]. In one of these 

studies four dimensional Gal’tsov-Letelier-Todd spacetime is analysed [15]. The 

quasi-regular singularity of this spacetime is probed with the Klein-Gordon-Maxwell 
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and Dirac fields. The spacetime is found to be quantum mechanically singular 

independent of the type of field used to probe. 

 

Pitelli and Letelier [5] analysed the singularity in the BTZ black hole without matter 

fields coupled. The BTZ black hole possesses a naked singularity when the mass 

parameter is bounded to       . The Klein-Gordon and Dirac fields are used 

to probe the naked singularity. It is shown that the singularity remains quantum 

singular when tested by Klein-Gordon field and the singularity is healed when tested 

by fermions. 

 

Pitelli and Letelier [21, 22] also studied the singularity of the global monopole. There 

is a scalar curvature singularity in the spacetime around a global monopole. This 

spacetime represents a symmetric cloud of cosmic strings, where strings intersect at a 

single point    . The singularity is probed with Klein-Gordon field. It is found that 

the singularity remains singular quantum mechanically.  

 

There are other similar studies that apply the criterion of Horowitz and Marolf [8]. 

For example, there are singularity analyses of bubbles and cylindrical shells [23] and 

of four dimensional static spherically symmetric Einstein-Maxwell-Dilaton black 

holes [24a]. Quantum singularities are also considered in Lovelock gravity [24b]. 
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Chapter 3 

REVIEW OF MATTER COUPLED 2+1 

DIMENSIONAL SOLUTIONS AND SPACETIME 

STRUCTURES IN EINSTEIN’S THEORY 

In this section 2+1 dimensional matter coupled solutions in Einstein-Maxwell, 

Einstein-Maxwell-Dilaton and Einstein-Power-Maxwell theories will be reviewed. 

3.1 BTZ Black hole Coupled with Nonlinear Electrodynamics 

The action describing (2+1) - dimensional Einstein theory coupled with non-linear 

electrodynamics is given by Cataldo [25] as, 

        
 

   
                  (13) 

The Einstein-Maxwell field equations via variational principle read as, 

                      (14) 

                     
        (15) 

                     (16) 

in which     stands for the derivative of      with respect to   
 

 
      . 

The non-linear field is chosen to make the energy momentum tensor (15) having a 

vanishing trace. The trace of the tensor gives, 

                          (17) 

Hence, to have a vanishing trace, the electromagnetic Lagrangian is obtained as 

           
 

     (18) 
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where c is an integration constant. With reference to the paper [25], the complete 

solution to the above action is given by the metric, 

                                 (19) 

where the metric function      is given by, 

           
  

  
 

   

  
    (20) 

Here     is the mass, q is the electric charge and         the case   

       , that corresponds with an asymptotically de-Sitter (anti de-Sitter) 

spacetime. This metric represents the BTZ spacetime in non-linear electrodynamics. 

If    , we have an asymptotically flat solution coupled with Coulomb-like field  

         
   

  
         

   

  
 

  

            (21) 

 The Kretschmann scalar which indicates the occurrence of curvature 

singularity is given by, 

      
  

  
 

   

       (22) 

in which   
   

 
. It is clear that     is a typical central curvature singularity. 

According to the values of  , m and q, this singularity may be clothed by a single or 

double horizons (see the paper [25] for details). 

To find the condition for naked singularities the metric function (20) is written in the 

following form, 

         
 

 
        

    

 
     (23) 

where    
 

 
 and     

  

 
. Since the range of coordinate r varies from 0 to infinity, 

the negative root will indicate the condition for a naked singularity. In order to find 

the roots, we set        which yields  

       
 

  
 

    

   
  .    (24) 
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To solve the equation, we introduce a new variable defined by 

        
 

   
     (25) 

that transforms the equation to 

                           (26) 

The solution of the equation is 

       
 

   
 

    
 

  
    (27) 

in which   
       ±                

     , with a constraint condition                 .  

The equation (27) can be easily written as 

      
 

     ±
 

 
 

 
  

    
 

 
 

 
  

    (28) 

where   
    

   
 and   

               

    . It can be verified easily that the expression 

inside the curly bracket in equation (28) is always positive. Hence, the only 

possibility for a negative root is    . This implies     . Therefore, the condition 

            is imposed from the constraint condition. As a result, for a naked 

singularity,     
 

      or    
  

     should be satisfied. 

In the next chapter, we investigate the quantum singularity structure of the naked 

singularity that may arise if the constant coefficients satisfy    
  

    . 

3.2 BTZ Black hole Coupled with Linear Electrodynamics 

The metric for the charged BTZ spacetime in linear electrodynamics is given by 

Martinez [26], 

                                 (29) 

with the metric function 
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    (30) 

where     is the mass, q is the electric charge and         . The Kretschmann 

scalar is given by, 

     
  

  
 

   

    
 

   

       (31) 

which displays a power-law central curvature singularity at    . According to the 

values of m, l and q, this central singularity is clothed by horizons or it remains 

naked. We investigate the quantum mechanical behaviour of the naked singularity. In 

order to find the condition for naked singularity, we set         and the solution 

for     is 

         
 

    
 

 
          

 

   
 

 

       (32) 

in which LambertW represents the Lambert function [27]. Figure 1 displays 

(unmarked region) the possible values of m and q that result in naked singularity. 

 

 

Figure 2. Graph of mass (m) versus electric charge (q) when    . 
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3.3 (2+1) Dimensional Einstein-Maxwell-Dilaton Theory 

We consider 3D black holes described by the Einstein-Maxwell-Dilaton action, 

              
 

 
                

            (33) 

where   is the dilaton field, R is the Ricci scalar,     is the Maxwell field and  , a, b, 

and B are arbitrary couplings. The general solution to this action is given by Chann 

and Mann [28], 

               
  

 
 
 

   
   

   
 
     

          (34) 

where 

          
 

 
     

    

       
   

   

      
     (35) 

Here, A is an integration constant which is proportional to the quasilocal mass 

   
   

 
 , γ is a constant of integration and Q is the electric charge. The dilaton 

field is given by 

     
  

 
   

 

    
      (36) 

in which      is a γ related constant parameter. Note that, the above solution for 

    contains both the vacuum BTZ metric if one takes       (where 

     
  

  
  with   

  

  
) and the BTZ black hole [2] below if        .  

          
  

  
         

  

  
 

  

           (37) 

where    . 

 

However, if the constant parameters are chosen appropriately, the resulting metric 

represents black hole solutions with prescribed properties. For example, when   
 

 
, 

   
  

 
, the metric function given in equation (35) becomes 
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     (38) 

and therefore the corresponding metric is 

                
  

 
    

    
          (39) 

where   
  

  
  
 

 is a constant parameter. 

The Kretschmann scalar for this solution is given by 

  
        

 
           

 
         

 
            

 
         

      
    (40) 

which indicates a central curvature singularity at     that is clothed by the event 

horizon. To find the location of horizons,     is set to zero and we have 

       
  

  
 

 

  
   

 
       (41) 

 

There are three possible cases to be considered. 

    Case 1: If 
  

 
  

  

   
 

 

 
, the equation admits two positive roots indicating inner and 

outer horizons of the black hole. 

    Case 2: If 
  

 
  

  

   
 

 

 
, this is an extreme case and the equation (41) has one real 

positive root. This means that there is only one horizon. 

    Case 3: If 
  

 
  

  

   
 

 

 
, there is no real positive root and the solution does not 

admit black hole so that the singularity at      is naked. With reference to the 

detailed analysis given in the paper [28], the Penrose diagram of the solution 

illustrates the timelike character of the singularity at    . Our aim in the next 

chapter is to investigate the behaviour of this naked singularity when probed with 

Klein-Gordon and Dirac fields in the framework of quantum mechanics. 
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3.4 (2+1) Dimensional Magnetically Charged Solutions in Einstein-

Power-Maxwell Theory 

The 3-dimensional action in Einstein-power-Maxwell theory of gravity with a 

cosmological constant           is given in our work [29] as  

  
 

 
           

 

 
           (42) 

in which   is the magnetic Maxwell invariant 

               (43) 

and the field 2-form 

           .     (44) 

where      stands for the magnetic field to be determined. 

The metric anzats for 3-dimensions, is chosen as 

              
   

     
             (45) 

in which       are some unknown functions to be found. The parameter   in the 

action is a real constant which is restricted by the energy conditions (see the 

Appendix A). Note that     is a linear Maxwell limit and in our treatments we 

consider the case    , so that our treatment do not cover the linear Maxwell limit. 

By varying with respect to the gauge potentials the Maxwell equation is obtained as 

                 (46) 

where * means duality and d(.) stands for the exterior derivative. Remaining field 

equations are 

  
  

 

 
   

    
       (47) 

in which 

  
   

 

 
   

           
            (48) 
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is the energy-momentum tensor due to the non-linear electrodynamics (NED). 

Nonlinear Maxwell equation (46) determines the unknown magnetic field in the form 

   
     

     

  

     
 

    

      (49) 

in which   is interpreted as the magnetic charge. Imposing this into the energy-

momentum tensor (48) results in 

  
 

 
 

 
                        (50) 

and the explicit form of   is given by 

   
  

     
 

    

      (51) 

The exact solution comes after solving the Einstein equations (47), which is 

expressed by the metric functions 

              
   

 
   

   

 
      

      (52) 

      
 

      
           

                 (53) 

      
  

    
                    (54) 

where   may be interpreted as the mass,            . Note that   
   

  

 
  which 

shouldn’t be taken as a horizon radius since our solution doesn’t represent a black 

hole. Ricci and Kretschmann scalars are given as 

               
 

 
   

 

        (55) 

  
 

 
   

  

 
      

 

 
      

 

                      
  

      (56) 

As one observes, depending on  , one can put the solution into three general 

categories. In the first category, 
 

 
   

 

 
 and therefore   and   are regular as the 

Weak Energy Condition (WEC) and Strong Energy Condition (SEC) (see Appendix) 
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are both satisfied. Since, there may be          for some    it suggests that the 

coordinate patch is not complete and needs to be revised. In such case we set 

        
      (57) 

which leads to the line element 

              
   

     
            (58) 

with the metric functions 

      
   

 
      

    
        (59) 

            
  

           

       
     

   

     
     

  
     (60) 

            
  

           

            
   

                  (61) 

Here, one can show that for         then        , which implies a non-

physical solution and hence the power in this interval 
 

 
   

 

 
 should be excluded. 

The second category of solutions can be found by setting 
 

 
     in which 

        possessing a non-singular solution. It should be noted that the case for 

    is already considered in [30, 31, 32, 33] where the resulting spacetime has no 

curvature singularity.  

 

The third category of solutions is when     which results in a curvature 

singularity. Therefore, by shifting the coordinate in accordance with           

we relocate the singularity to the point     which will be a naked singularity. Our 

interest in this thesis will be confined entirely to this third category of solutions. In 

this new coordinate the line element reads as 
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            (62) 

       
 

 
            (63) 

             
  

           

        
 

 
      

   

    
  

   

 
   (64) 

       
 

   
                 (65) 

Ricci and Kretschmann scalars are given as 

                    
 

 
  

 

 
      

 
 

    
    (66) 

   

 
 

 
   

  

 
      

 

 
     

 

 
      

 
 

    
                 

 

 
      

 
  

    
  

                    (67) 

It can be seen that for    , both   and   are singular at    , and this singularity 

can easily be shown that it is naked timelike. 
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Chapter 4 

QUANTUM SINGULARITIES IN (2+1) 

DIMENSIONAL MATTER COUPLED SPACETIMES 

4.1 Analysis for Nonlinear Electrodynamics 

4.1.1 Klein-Gordon Fields 

The BTZ spacetime has the metric [2] 

                              .   (68) 

By using separation of variables,              the radial portion of equation (8) is 

obtained as 

     
     

  
    

  

      
  

 
  ±

 

          (69) 

where a prime denotes derivative with respect to r. 

 

i. When    : 

The Coulomb-like field in metric function (20) becomes negligibly small and hence, 

the metric function and the metric take the form 

         
  

  
       (70) 

      
  

  
      

  

  
 

  

              (71) 

respectively. 

The metric (71) shows an asymptotically anti-de Sitter spacetime. When we insert 

the metric function in the general radial equation (69), it becomes 
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  ±

   

  
        (72) 

As    , the last three terms become negligible and we get the final equation 

        
 

 
           (73) 

Its solution is  

                       (74) 

where     and     are arbitrary constants. When we check the square integrability of 

the solution  

 first part    
 

 
            (75) 

 second part    
 

     
  

        (76) 

So,      is square integrable only if      . So the asymptotic behaviour of      is 

given by  
 

  . This particular case overlaps with the results already reported in [5]. 

Hence, no new result arises for this particular case. This is expected because the 

effect of source term vanishes for large values of  . 

 

ii. When    : 

The case near origin is topologically different compared to the analysis reported in 

[5]. Here, the spacetime is not conic. The metric function (20) becomes 

        
 

 
 ,      (77) 

where   is 
   

 
.  

The approximate metric is given by, 

      
 

 
      

 

 
 

  

             (78) 

This metric can also be interpreted as the 2+1 dimensional topological 

Schwarzschild-like black hole geometry. 
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For the solution of the radial equation (69), a massless case (i.e.    ) is assumed 

since it is known that the initial value problem is well posed for    . 

     
  ±  

    

     
  

  
         (79) 

We ignore the term  
    

  
   term since it can be neglected near the origin. Then the 

final form is , 

     
   

  

  
          (80a) 

The solution is given as 

                                  (80b) 

In order to make analysis in a simpler way we prefer to write the above solution in 

terms of modified Bessel functions, 

                                  (81) 

where       and       are the first and second kind modified Bessel functions and 

   
    

 
. The modified Bessel functions for real     as     are given by; 

         
 

      
 

 

 
 

 

      (82) 

       
     

 

 
                   

    

 
 

 

 
 

 

                       
     (83) 

thus       
 

    
 

 

 
  and       

    

 
 

 

 
 . Checking for the square integrability of 

the solution (81) requires the behaviour of the integral for 

    
 

 
         

 
           (84) 

    
 

 
         

 
           (85) 

which are both convergent as    . Any linear combination is also square 

integrable. The operator A described in equation (8) is not essentially self-adjoint 
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because the solution (81) belong to the Hilbert space, ℋ. Therefore, the naked 

singularity at     is quantum mechanically singular if it is probed with quantum 

particles. 

 

According to Sobolev norm, the first integral is square integrable while the second 

integral behaves for the functions              
 

 and       integral vanishes. As 

a result, the wave functions are square integrable and thus the spacetime is quantum 

mechanically wave singular.  

4.1.2 Dirac Fields 

We apply the same methodology as in [5] for finding a solution to Dirac equation. 

Since the fermions have only one spin polarization in 2+1 dimensions [34] Dirac 

matrices are reduced to Pauli matrices [35] so that, 

                            (86) 

where latin indices represent internal (local) indices. Pauli matrices are given as  

      
  
  

        
   
  

        
  
   

    (87) 

The anticommutator relation is given as 

                        (88) 

where       is the Minkowski metric in 2+1 dimensions and      is the identity 

matrix. The coordinate dependent metric tensor        and matrices       are 

related to the triads    
       by 

          
         

                (89) 

           
              (90) 

where μ and ν are the external (global) indices. 
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The Dirac equation in 2+1 dimensional curved spacetime for a free particle with 

mass M becomes 

          –                       (91) 

where       is the spinorial affine connection and is given by 

       
 

 
          

           
        

               (92) 

        
 

 
                  (93) 

The causal structure of the spacetime indicates that there are two singular cases to be 

investigated. For the asymptotic case,    , the triad for the metric (71) is chosen 

as 

      
                

 

 
 
 

 
       (94) 

The spinorial affine connection and the coordinate dependent gamma matrix are 

found to be 

        
     

   
   

  

  
           (95) 

        
 

 
      

 

 
     

     

 
      (96) 

For the spinor 

      
  

  
       (97) 

the Dirac equation is written as  

  

 

   

  
 

 

 

   

  
 

 

 

   

  
 

 

 
            (98) 

 
  

 

   

  
 

 

 

   

  
 

 

 

   

  
 

 

 
            (99) 

The following anzats will be employed for the positive frequency solutions: 

           
      

                       (100) 

As    , two coupled equations are obtained: 
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             (101) 

   
  

 

 
    

  

 
             (102) 

Therefore, for both components same equation is obtained as 

  
   

 

 
  

  
 

  
                           (103) 

Neglecting the higher order terms give the equation 

     
   

 

 
  

   ,     (104) 

with the solution 

           .     (105) 

A and B are constant spinors. The condition for the Dirac operator to be quantum-

mechanically regular requires that both solutions should belong to the Hilbert space 

ℋ .The case above has already been analysed by [5]. The solution (105) is square-

integrable only if    . Then the solution is finite near infinity and there is no need 

for extra boundary conditions. 

 

The case of     is not conical so there is a topological difference in the spacetime 

near    . Hence, the suitable triads for the metric (78) are given by, 

   
                 

 

 
 

 

 
  

 

 
 

 

 
       (106) 

The spinorial affine connection and the coordinate dependent gamma matrices are 

given by 

        
      

   
   

 

 
 

 

 
 

 

 
          (107) 

         
 

 
 

 

 
       

 

 
 

 

 
     

     

 
     (108) 

Now, for the spinor given in (97) the Dirac equation can be written as 
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           (109) 

   
 

 
 

 

    

  
  

 

 
 

 

    

  
 

 

 

   

  
 

 

 
 

 

   

 

 
           (110) 

As a result, two coupled equations are obtained: 

   
   

 

  
 

   

   
        

 

 
 

  

 
             (111) 

   
   

 

  
 

 

   
        

 

 
 

  

 
             (112) 

With further analysis and simplification, the radial parts of the Dirac equation for 

investigating the behaviour as    , are 

   
   

  

  
   

  
  

               (113) 

   
   

  

  
   

  
  

    
           (114) 

where    
    

    
,    

            

     
,    

    

    
 and    

           

     
  Then, for 

the sake of making the analysis in a simpler way we prefer to express the solutions 

as, 

         
 

 
                                                       (115) 

         
  

 
                                                     (116) 

where     ,   
            

       
    

           

       
,      , and         

When we look for the square integrability of the above solutions, we obtained that 

both functions WhittakerM and WhittakerW are square integrable near     (or 

   ) for both       and        One has, 

                                              (117) 

and 

                                    (118) 
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We note that these results are verified first by expanding the Whittaker functions in 

series form up to the order of       and then by integrating term by term in the limit 

as    . 

For the spacetime (79), the set of solutions for the Dirac equation is given by 

         

  
  

 
 
                                                

  
  

 
                                                       

            

(119) 

and an arbitrary wave packet can be written as 

          
  
     

  
 

 
 
           

  
  

 
 
                 

            (120) 

where    is an arbitrary constant, and 

                                                 (121) 

                                                      . (122) 

Hence, initial condition        is sufficient to determine the future time evolution of 

the particle. The spacetime is then quantum regular when tested by fermions. 

4.2 Analysis for Linear Electrodynamics 

4.2.1 Klein-Gordon Fields 

The causal structure is similar to the case considered in the previous section. There 

are two singular cases to be investigated. The case for     is approximately the 

same case considered in [5] where the approximate metric is given as 

        
  

  
      

  

  
 

  

            (123) 
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For small         values, the approximate metric can be written in the following 

form 

                                                (124) 

in which    
 

 
   . The radial equation becomes 

  
   

 

  
   

 

    
   

  
  

         
    ,   (125) 

since 
 

 
   , we can transform the equation by writing           As     , 

     The new equation becomes 

  

   
  

 

 

 

  
  

   

  
         (126a) 

where its solution can be written in terms of zeroth order first and second kind Bessel 

functions, 

            
   

 
          

   

 
       (126b) 

As we have done before, to make analysis in a simpler way we prefer to write the 

above solution in terms of modified Bessel functions, 

            
   

 
         

   

 
      (127) 

The modified Bessel functions for      are given as 

      
  

    
      (128) 

       
 

  
        (129) 

These functions are always square integrable for    , that is 

                   
                (130) 

These results indicate that charged BTZ black hole in linear electrodynamics is 

quantum mechanically singular when probed with quantum test particles obeying 

Klein-Gordon equation. 
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If we use the Sobolev norm (12), the second integral which involves the derivative of 

the wave function       
  

    
 becomes                  . Numerical 

integration has revealed that as 

   ,                    .   (131) 

On the other hand for the wave function        
 

  
   , the second integral in the 

Sobolev norm is solved numerically as  

   ,                          (132) 

which is square integrable. As a result, charged coupled BTZ black hole in linear 

electrodynamics is quantum mechanically wave regular if and only if the arbitrary 

constant parameter is       in equation (127). 

 

Consequently, if the naked singularity both in linear and non-linear electrodynamics 

is probed with quantum test particles, the following results are obtained: 

    1) In classical point of view, the Kretschmann scalar in non-linear case diverges 

faster than in the linear case. 

    2) In quantum mechanical point of view, if the chosen function space is Sobolev 

space, spacetime remains singular for non-linear case, but the spacetime can be made 

wave regular for linear case. 

From these results we may conclude that the structure of the naked singularity in the 

non-linear electrodynamics is deeper rooted than the singularity in the linear case. 
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4.2.2 Dirac Fields 

The effect of the charge when     does not contribute as much as the term that 

contains the cosmological constant. Therefore, we ignore the mass and the charged 

terms in the metric function (30). This particular case has already been analysed in 

section 4.1.2.(i) and in the paper [5].  

 

The contribution of the charge is dominant when    . The Dirac equation for the 

metric (124) is solved by using the same method demonstrated in the previous 

section. The chosen triad is 

   
                       

 

  
 

       
 
 

       (133) 

where         The spinorial affine connection and the coordinate dependent 

gamma matrices are given by 

        
      

  
   

        

 

 

 
         (134) 

        
 

       
 
 

             
 

      
     

 
     (135) 

All these findings are inserted into Dirac equation (91) and for the anzats (100), two 

coupled equations are obtained: 

   
   

 

  
 

 

        
 
 

 
   

        
 
 

      
 

       
 
 

 
 

      
           (136) 

   
   

 

  
 

 

        
 
 

 
 

        
 
 

      
 

       
 
 

 
 

      
           (137) 

The radial equations are simplified to one single equation in the limit     as 

  
   

 

 
  

  
  

                              (138) 

whose solution is given by 
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      (139) 

where     and     are arbitrary constants. The solution given in equation (139) is 

square integrable for both parts 

 
  

    
          (140) 

 
 

    
           (141) 

The arbitrary wave packet can be written as, 

          
  
     

   
 

  

    
 

  
    

            (142) 

Thus, the spacetime is quantum mechanically regular when probed with fermions. 

4.3 Analysis for Einstein-Maxwell-Dilaton Theory 

4.3.1 Klein-Gordon Fields 

We get the same results as in 4.1.1.(i) for very large values of   (   ). So we 

obtain the radial equation for the metric (39) and consider the massless case       

as, 

  
   

   
 
  

 

  
 
 

  
  

   

  
 
 

  ±
   

 
 

  
    .   (143) 

where       
 

 
  

 

  
  

 
    

  

 
  . 

The behaviour of the radial equation as     is 

  
   

 

  
  

  
  

 
 
 

          (144) 

where   
    

    
.  The solution is given by 

              
  

 
 

 

            
  

 
 

 

    (145) 
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Both solutions are square integrable in Hilbert space, that is,              . 

Therefore, the spacetime is quantum mechanically singular when probed with 

quantum particles that obey Klein-Gordon equation. 

 

If we use the Sobolev norm, 

                      
   

  

  
       (146) 

although the first integral of the solution is square integrable, the second integral for 

      fails to be square integrable and the spacetime is quantum mechanically 

wave regular. 

4.3.2 Dirac Fields 

To solve the Dirac equation, we set the triad as 

  
               

 

    
   

 
  

 
 

  
  

 

 .  (147) 

The spinorial affine connection and the coordinate dependent matrix are found to be 

        
          

 
      

     
     

                

    
 
 

 

 

 
      (148) 

       

 

     

  
 

   

   
 
  

 
 

     
     

 

 

      (149) 

Then, the Dirac equation can be written as, 

 

  
     

  

   
 
 

     
 

 
      

          
 
  

      
 

  

    
 
 

           (150) 

 
  

  
      

  

   
 
 

     
 

 
      

          
 
  

      
 

  

    
 
 

                  (151) 
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By using the same anzats as in (100), two coupled equations are obtained, 

   
   

 

  
 

          
 
  

   
 
  

 
       

 
 
   

        
 

  
 

  
 

 

 
                 (152) 

   
   

 

  
 

          
 
  

   
 
  

 
   

 
 
   

        
 

  
 

  
 

 

 
           (153) 

The radial part of the Dirac equation reduces to one single equation as 

  
   

 

  
  

   
 

                            (154) 

which has a solution 

          
 

  
   

  
.     (155) 

Both parts of the solution are square integrable. 

  
 

  
 

 
         (156) 

  
 

 
 

 
         (157) 

This is verified first by expanding the functions in series and then by integrating term 

by term in the limit as    . Consequently, the spacetime is quantum mechanically 

regular when probed with Dirac fields. An arbitrary wave packet can be written as 

          
  
     

 
 

  
 

  

  
 

  
 

  
    

             (158) 

4.4 Analysis for Einstein-Power-Maxwell Theory 

4.4.1 Klein-Gordon Fields 

We simplify the metric (62) by restricting our analysis to a specific parameter     

and the new metric is given as  

              
   

      
             (159) 
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     ,     (160) 

              
    

 

  
   

 
,    (161) 

        
 

   
      ,     (162) 

where   
     

  
    

 
 

   is a constant. The Kretschmann scalar for this particular 

parameter is given by 

  
 

 
   

        
 
 

  
 

 
 
 

 
        

 
 

   
 
  

 
 

     (163) 

Clearly     is a true curvature singularity. Applying separation of variables, 

          , we obtain the radial portion of equation (8) as 

      

   
 

 

 
   

 

      

         

  
 

     

  
 

 

      
 

 

      
  ±

 

     
     (164) 

where     is a separation constant. Since the singularity is at    , for small 

values of   each term in the above equation simplifies for massless       case to 

   

    
 

 

     

  
±

  

               (165) 

where    
 

      
   . The solution of the above equation is 

          ±         ±       (166) 

in which     and     are arbitrary constants. In order to check the square 

integrability, the function space is defined on each            hypersurface   as 

ℋ            with the following norm given for the metric (159) as, 

     
  

 
 

 

      
  

      

      
 

        

 
        

    

  

        

 
     (167) 

where   is a constant parameter. The above solution is checked for the square 

integrability near    , for each sign of the found in equation (166). It is found that 
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the solution becomes square integrable if and only if the constant parameter        

For each sign of the equation (166), we have 

              
        

 
 

    

   
  
              (168) 

Therefore the operator A has deficiency indices        , which shows that A is 

not essentially self-adjoint and the spacetime is quantum-mechanically singular. 

4.4.2 Dirac Fields 

The suitable triads for the metric (159) are given by, 

  
               

 

   
 

   
  

 

           
    

 
  

 

 

 

       
    

 

  

 

 

 

      (169) 

The spinorial affine connection and coordinate dependent gamma matrices are given 

by 

      

 

 
         

    
 
  

 
 
    

 
   

     

  
 
   

   
 

        

 

    (170) 

      

 

 
 

  
 

   
 

    

 
   

         
    

 
  

 
 

 

 

     
     

      
    

 
  

 
 

 

 
 

  (171) 

Now, for the spinor (97), the Dirac equation can be written as 

 

 
 

 

   

   

  
  

         
    

 
  

 
 

 
 

   

  
 

 

       
    

 
  

   

  
  

 

 
        

 
    

  
 
         

    
 
  

 
 

 

           
    

 
  

  

 

 
 

           (172) 
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           (173) 

The following anzats will be employed for the positive frequency solutions: 

           
      

                       (174) 

The radial part of the Dirac equation becomes, 

   
      

       

          
    

 
  

 
   

 
    

  
 
       

    
 
  

 
 

  
         

 

       
    

 
  

   
 

   
 

  

    
                 (175) 

   
       

   

          
    

 
  

 
   

 
    

  
 
       

    
 
  

 
 

  
         

 

       
    

 
  

   
 

   
 

  

    
                (176) 

The behaviour of the Dirac equation near     reduces to, 

  
      

 

 
  

     
  

                                        (177) 

where    
 

 
  

  

     
 

 

. The solution is given by 

          
       

        (178) 

where     and      are arbitrary constants. The exponents are given by  

    
 

 
  

    

     
               

 

 
  

    

     
     (179) 
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The condition for the Dirac operator to be quantum-mechanically regular requires 

that both solutions should belong to the Hilbert space ℋ. Squared norm of this 

solution 

       
 

  
       

 

 

        

 
               

 
   

 

 
  
               (180) 

diverges. This implies that the solution do not belong to the Hilbert space. 

Consequently, if the classical singularity at     is probed with fermions the 

spacetime behaves quantum mechanically singular. 
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Chapter 5 

CONCLUSION 

In this thesis, the formation of naked singularities in the matter coupled 2+1 

dimensional spacetimes in Einstein’s theory is analysed in quantum mechanical point 

of view. In the analysis, naked singularity at     is probed with quantum fields that 

obey the Klein-Gordon and Dirac equations. Einstein-Maxwell extension of the BTZ 

black hole both in linear and nonlinear electrodynamics is considered. The condition 

for a naked singularity is explicitly displayed. A similar analysis is also considered in 

Einstein-Maxwell-Dilaton theory. As a final example the occurrence of naked 

singularities in Einstein-Power-Maxwell theory with magnetic charge is considered. 

 

The analysis performed in this thesis has revealed that for the matter coupled 2+1 

dimensional black hole spacetimes in Einstein-Maxwell theory with linear and 

nonlinear electrodynamics and Einstein-Maxwell-Dilaton theory are shown to share 

similar quantum mechanical singularity structure as in the case of pure BTZ black 

hole. The inclusion of matter fields changes the topology and creates true curvature 

singularity at    . The effect of the matter fields allows only specific frequency 

modes in the solution of Klein-Gordon and Dirac fields. If the quantum singularity 

analysis is based on the natural Hilbert space of quantum mechanics which is the 

linear function space with square integrability   , the singularity at     turns out to 

be quantum mechanically singular for particles obeying the Klein- Gordon equation 

and regular for fermions obeying the Dirac equation. We have proved that the 
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quantum singularity structure of 2+1 dimensional black hole spacetimes are generic 

for Dirac particles and the character of the singularity in quantum mechanical point 

of view is irrespective whether the matter field is coupled or not. This result suggests 

that the Dirac fields preserve the cosmic censorship hypothesis in the considered 

spacetimes that exhibit timelike naked singularities. The repulsive barrier is replaced 

against the propagation of Dirac fields instead of horizons (that covers the singularity 

in the black hole cases). However, for particles obeying Klein - Gordon fields, the 

singularity becomes worse when a matter field is coupled. 

 

However, we have also shown that in the charged BTZ (in linear electrodynamics) 

and dilaton coupled black hole spacetimes specific choice of waves exhibit quantum 

mechanical wave regularity when probed with waves obeying Klein-Gordon 

equation, if the function space is Sobolev with the norm defined in (12). The 

singularity at     is stronger in the non-linear electrodynamics case. It should be 

reminded that, one may not feel comfortable to use Sobolev norm in place of natural 

linear function space of quantum mechanics. 

 

However, when we consider the solution in 3D Einstein-Power-Maxwell with 

magnetic charge it does not admit black hole solution. Similar studies in the linear 

Maxwell theory       have revealed a regular solution. The main contribution of 

the nonlinear Maxwell field in our solutions is to create timelike naked singularities 

for specific values of parameter     which is non-existent in the linear theory. 

This singularity has been analysed from the quantum mechanical point of view. The 

singularity is probed with quantum test particles obeying the Klein-Gordon and the 

Dirac equation. 
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The analysis of the naked singularity from quantum mechanical point of view has 

revealed that the considered spacetime is generically quantum singular when it is 

probed with fields obeying Klein-Gordon and Dirac equations. It is interesting to 

note that, in contrast to the considered spacetime, the probe of naked singularity with 

Dirac fields in other 3D metrics, namely BTZ [5] and matter coupled BTZ [1] 

spacetimes was shown to be quantum mechanically regular. It is also shown in this 

study that for general modes of spin zero Klein-Gordon fields, the spacetime is still 

singular. From these results we conclude that the occurrence of naked singularity in 

Einstein-Power-Maxwell theory with magnetic charge is stronger than the other 

considered spacetimes. 
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Appendix A: Energy Conditions 

Coupling of a matter field to any system requires energy conditions to be satisfied for 

physically acceptable solutions. The steps are followed as given in [36] and [24] to 

find the bounds of the power parameter   of the Maxwell field. 

Weak Energy Condition (WEC) 

The WEC states that, 

                and                                

in which    are the principal pressures and   is the energy density given by 

      
  

 

 
                 

  
    

 
        (no sum).    

This condition imposes that    . 

Strong Energy Condition (SEC) 

This condition states that; 

      
 
            and             ,   

which amounts, together with the WEC to constrain the parameter    
 

 
  

Dominant Energy Condition (DEC) 

In accordance with DEC, the effective pressure      should not be negative i.e.      

where 

        
 

 
   

  
    

Together with SEC and WEC, DEC impose the following condition on the parameter 

  as 
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Causality Condition (CC) 

In addition to the energy conditions, the causality condition (CC) is imposed 

    
    

 
   

which implies that 

  
 

 
    . 

The CC is clearly violated in our solutions since we abide by the parameter k>1, 

throughout the paper. 

 

 

 

 

 

 


