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Abstract

The Cauchy horizon forming colliding wave solution due to Chandrasekhar and Xanthopoulos

(CX) has been generalized by inclusion of the NUT ( Newman - Unti - Tamburino) parameter.

This is done by transforming the part of the inner horizon region of a Kerr-Newman-NUT black

hole into the space of colliding waves. By taking appropriate combination of Killing vectors and

analytically extending beyond the Cauchy horizon the time-like hyperbolic sigularities are resolved

as well. This provides another example of its kind among the type - D metrics with special emphasis

on the role of the NUT parameter. Finally, it is shown that horizons of colliding higher dimensional

plane waves obtained from the black p-branes undergoes a similar procedure of analytic extension.
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I. INTRODUCTION

Black holes (BHs) and gravitational waves (GWs) are the most important predictions

of the Einstein’s theory of general relativity. In the history of these subjects; the discov-

ery of Schwarzchild BH is followed by the extension to the electrically charged version,

Reissner-Nordström BH. This is followed by the discovery of rotating versions, Kerr and

Kerr-Newman BHs respectively. On the other side, the topic of GW is developed and its

characteristic properties are studied extensively. One of the research branch of GWs is to

consider their nonlinear interactions which is known in the literature as colliding gravita-

tional waves (CGWs). This subject was popular in 1980’s and its peculiar features are very

well investigated and catalogued in [1]. The most common feature is the occurence of cur-

vature singularities; when two plane GW collide they focus each other in a way that after a

finite time from the instant of the collision, a spacetime singularity develops. In contrast to

this, exceptional solutions were found which do not exhibit curvature singularities, instead

they develop Killing - Cauchy horizons [2]. Under what conditions the collision of waves

produce a space-time curvature singularity or a Killing - Cauchy horizon ?. To the best

of our knowledge this important question remains still open. The formation of horizons

is a common feature for BHs and CGWs. Although they differ in global structure, they

display some similarities against perturbations, for details see [4] and references contained

therein. Yurtsever [3] argued that all Killing - Cauchy horizons that develop in the collision

of gravitational waves are unstable against plane symmetric perturbations. However, it is

still early to generalize the Yurtsever’s results whether all horizons formed in CGW are

unstable against arbitrary perturbations.

Plane waves in general relativity are obtained by an infinite boost, i.e. as the parti-

cle speed reaches the speed of light. Collision of plane waves therefore, carries imprints

from the high energy particle collisions; a popular subject nowadays in connection with the

Large Hadron Collision experiments to be conducted at CERN. Since the Hawking’s sem-

inal contribution, quantum mechanical treatment of space time is believed to create mini

BHs. Apart from the quantal feats, by geometric construction, classical collision of high

energetic particles/wave packets do create also BHs. This amounts all to the formation of a

stable horizon capable to hide highly concentrated matter inside against instability, which

is followed by an immediate decay. By taking the idea of particle collisions to very extreme
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it can be argued that upon mutual focussing strong, finely tuned non-vacuum plane waves

can produce BHs at a classical level as well. This, however, must be valid for the class of

collisions in which a stable Cauchy horizon forms.

These two topics, BHs and CGWs have developed along their own track. However, an

interesting duality relation between them was observed by Chandrasekhar and Xanthopoulos

(CX) [2] ( hereafter this will be referred as Paper I ). The remarkable aspect of Paper I is

that, the two seemingly unrelated topics BHs and CGWs is shown to be locally isometric.

The solution in Paper I describes the collision of impulsive gravitational waves accompanied

with shock gravitational waves which is locally isometric to the part of the region in between

the inner (Cauchy) and outer (event) horizons of the Kerr black hole. Later on, the Einstein

- Maxwell extension of Paper I is given by CX[7] ( hereafter this will be referred as, Paper

II ). This latter solution is locally isometric to the part of the trapped region of the Kerr -

Newman (KN) black hole. The physical properties of Paper I and II are analysed in detail

by CX. One of the property is the analytic extension of the space-time beyond the horizon

for both Papers I and II. Such extensions of space-times beyond the horizon are known to

be non-unique and in the extended domain two - dimensional time-like singularities along

hyperbolic arcs are displayed. Another BH related CGW solution is obtained by Yurtsever

[5] for parallel polarization ( or independently by Ferrari - Ibanez[6]) which is known to be

isometric to the part of interior region of the Schwarzchild BH.

The reserch in the BH area has extended by adding different kind of sources like cosmo-

logical constant, a NUT and an acceleration parameters. BH solutions with these extensions

are of type -D class. The general class of type - D metrics presented long ago by Plebanski

and Demianski (PD) [8] that contain all these parameters. Recently, higher dimensional

generalisations of Kerr - NUT -(anti)deSitter spacetime is presented in [9, 10]. However,

the physical interpretation of these parameters especially the NUT parameter has not been

clarified. In general, the NUT parameter is associated with the gravomagnetic monopole

parameter of the central mass, but the common consensus on its exact physical meaning has

not been attained yet. The physical significance of the NUT parameter in the Kerr - NUT

-(anti)deSitter spacetimes is investigated for the basic four dimensional case in [11]. In this

article, it is clarified that the dominance of the NUT parameter over the rotation parameter

leaves the spacetime free of curvature singularities and the corresponding solution is named

as NUT-like solution. But if the rotation parameter dominates the NUT parameter, the
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solution is Kerr-like and a ring curvature singularity arise. Note that, this kind of behaviour

on the singularity structure is independent of the presence of the cosmological constant. In

another study [12], the NUT parameter is interpreted physically as the twist of the universe.

Our interest in this paper relies completely on the isometric equivalence of the extended

- BH solutions with CGW metrics. For example, cosmological term in BH solution is equiv-

alent to couple matter fields in the corresponding isometric CGW problem. In other words,

null-shells must be added to the colliding waves to obtain a cosmological constant. How-

ever, the inclusion of null-shells transform the Cauchy horizon into a curvature singularity.

Therefore, it is of interest to address various subclasses of PD - family of solutions that

admit Cauchy horizons in the isometric CGW problems and investigate further through an

analytic continuation beyond the Cauchy horizon. One such case was identified before by

Papacostas and Xanthopoulos (PX) [13] who showed that the metric can be extended to full

regularity. Our main purpose in this paper is to identify another case which incorporates

the NUT parameter and to investigate its physical effect in the space of colliding waves. Our

starting point is the Kerr-Newman-NUT (KNN) black hole with its transform to the CGW.

This will provide a NUT extension of the CX metrics ( both for Paper I and II) which was

not identified explicitly in Ref. [13]. We shall verify that our metric is distinct from the

one studied by PX, although both are naturally within the transforms of PD family.

Although isometry between black holes and CGW hardly finds application beyond 5-

dimensional black holes, black p-branes of arbitrary dimensions come to our rescue. In this

regard we consider colliding higher dimensional forms obtained from the black p-branes.

Recently, we have obtained such regular solutions [15] and in this paper, we show how their

analytic extension works in analogy with the lower dimensions. We show that the passive

role of the higher dimensions does not effect the analytic extension which is already known

to be non-unique.

The paper is organized as follows. In section II, we review the solution and the analytic

extension as explained in paper I. In section III, we present the NUT extension of paper

II and compare it with the PX solution. Section IV, is devoted for the analytic extension

of the metric obtained in section III. Colliding waves in higher dimensions is considered in

section V. The paper ends with the conclusion in section VII.
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II. A BRIEF REVIEW OF THE CX SOLUTION.

A. The Solution.

CX found a colliding wave solution in the vacuum Einstein theory which is locally iso-

metric to the part of the region in between the inner and outer horizons of the Kerr black

hole. The metric is given by

ds2 =
4Xdudv√

1 − u2
√

1 − v2
− ∆δ

X

Y
(dx2)2 − Y

X
(dx1 − q2dx2)2, (1)

in which we define coordinates (τ , σ) (in place of η, µ coordinates of CX) in terms of the

null coordinates (u, v) by

τ = u
√

1 − v2 + v
√

1 − u2, (2)

σ = u
√

1 − v2 − v
√

1 − u2,

and ∆ = 1 − τ 2, δ = 1 − σ2. The metric functions are

X = (1 − pτ )2 + q2σ2, (3)

Y = 1 − p2τ 2 − q2σ2 = p2∆ + q2δ,

q2 =
2q

p(1 + p)
− 2qδ(1 − pτ )

pY
,

in which the constants p and q must satisfy p2 + q2 = 1. We note that the freedom of

overall scaling by a constant is employed throughout the paper whenever appropriate.The

remarkable property of the metric (1) is that in contrast to other solutions the Killing -

Cauchy horizon develops in the region of interaction.

The metric (1) transforms into the Boyer - Lindquist form of the Kerr black hole, if the

following transformation is used:

t = m(x1 − 2q

p(1 + p)
x2), φ =

m√
m2 − a2

x2, τ = ∓ (m − r)√
m2 − a2

, σ = cos θ, (4)
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with

p = ∓
√

m2 − a2

m
, q = ± a

m
, (m2 > a2).

We have the correspondence,

1 − pτ =
r

m
and 1 − τ 2 = − ∆̃

m2 − a2
,

where ∆̃ now stands for the “horizon function”

∆̃ = r2 − 2mr + a2 = (r − r−)(r − r+).

With these substitutions the line element (1) is expressed in the form

m2ds2 =

(
∆̃ − a2δ

ρ2

)[
dt +

2amr sin2 θ

∆̃ − a2δ
dφ

]2

− ρ2

∆̃

[
dr2 + ∆̃dθ2

]
−
[

∆̃ρ2 sin2 θ

∆̃ − a2δ

]
dφ2 (5)

where ρ2 = r2 + a2 cos2 θ, and the constants a and m stand for the parameters of rotation

and mass respectively. The roots of ∆̃, namely, r+ and r− are known as the event (outer)

and Cauchy (inner) horizons, respectively. Therefore, the colliding wave solution is locally

isometric to the part of the Kerr metric in between the two horizons.

B. Analytic Extension Across the Killing - Cauchy Horizon.

This is done by first observing that the Killing vector ∂
∂x2 and its scalar product with the

other Killing vector ∂
∂x1 vanishes on the Killing - Cauchy horizon at u2 + v2 = 1 (or τ = 1).

Therefore, the Killing vector ∂
∂x2 becomes null when u2 + v2 = 1 (or τ = 1).

The non-unique extension of the resulting space-time in the region of interaction is ob-

tained by the following trasformation.

ξ = se
x
2

q , ζ = se
−x

2

q

such that ξζ = s2 = (1 − u2 − v2)2 = ∆δ.

With this transformation it was shown by CX that the analytic extension of the space-time

across the Killing - Cauchy horizon reveals the occurence of time-like curvature singularities

along the two dimensional hyperbolic arcs as shown in Fig.1.
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Another interesting colliding wave solution of CX is the one obtained in the Einstein -

Maxwell theory (Paper II). Impulsive gravitational waves and accompanying gravitational

and electromagnetic shock waves are the waves that takes part in the latter collision and

as a result, a non-singular Killing - Cauchy horizon develops. It was shown also that the

interaction region is locally isometric to the part of the region in between the inner (Cauchy)

and outer (event) horizons of the KN black hole. The same methodology has also been

applied to extend the resulting metric across this horizon. Their analyses proved that the

time-like singularities along hyperbolic arcs developed in the extended domain in analogy

with the singularity obtained in Paper I.

III. A NEW EXTENSION OF THE CX COLLIDING WAVE SOLUTION.

In the previous section an isometry has been established between the two horizons of a

Kerr black hole and CGW. The horizon function ∆̃ admitted two roots: The outer horizon r+

and the inner horizon r−. For r− < r < r+ we have a case in which the time-like coordinate

becomes space-like ( and vice versa ) and the geometry admits two space-like Killing vectors

instead of one time-like and one space-like. This particular region can suitably be mapped

into the interaction region of CGW. More generally ∆̃ can be a higher order polynomial

admitting more than two roots. No multi-horizon case, however, guarantees a priori any

association with CGW. Each one of such cases should be checked whether this is possible

or not. Another particular case where we have still a quadratic ∆̃, which we shall elaborate

on, is the KNN black hole [14]. The metric describing the KNN black hole is given by,

ds2 =
U2

ρ2
(dt − Pdφ)2 − sin2 θ

ρ2

[(
F + l2

)
dφ − adt

]2 − ρ2

U2
dr2 − ρ2dθ2 (6)

where

F = r2 + a2, U2 = r2 − 2mr + a2 + Q2 − l2, ρ2 = r2 + λ2,

P = a sin2 θ − 2l cos θ, λ = l + a cos θ,

in which the constants a, Q and l stand for the rotation, electric charge and NUT param-

eters, respectively. It describes a stationary axially symmetric body with gravitomagnetic
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monopole and dipole moments associated with nonzero values of the NUT (l) and Kerr (a)

parameters. It can also be interpreted as the gravitational dyon solution that represents

the gravitational field of a rotating body having both gravitational electric and magnetic

charges. The KNN solution belongs to the Petrov type-D solutions of the Einstein-Maxwell

equations for which the space-time admits separable Hamilton-Jacobi, Klein-Gordon and

Dirac equations, [16],[17]. One remarkable property satisfied by the Kerr - NUT metric ( i.e.

for Q = 0 ) is the duality invariance which is defined by r ↔ iλ and m ↔ il [17]. Is there

a similar duality invariance associated with the CGW metric ?. The mixing of radial and

angular coordinates has already been imposed by the isometry transformation ( see Eq.(7)

below) and any further symmetry is prohibited by the symmetry of the CGW. As a matter

of fact the transformation is itself a duality, i.e. the “CX - duality” between black holes and

CGWs. Once we are in the space of CGW the invariance is restricted to u ↔ v in the null

plane and to x ↔ y in the orthogonal space. Any further mixing of these two sectors does

not work.

Having in mind all these features, it would be interesting to find the corresponding iso-

metric geometry in the space of CGW and explore its physical properties. The corresponding

CGW metric can be determined by using the transformation

r = m +
√

m2 + l2 − a2 − Q2τ , σ = cos θ, t = x, φ = y, (7)

and after setting the mass parameter m = 1, the CGW metric can be cast in the form

ds2 = X

(
dτ 2

∆
− dσ2

δ

)
− X−1

(
Rdx2 + Edy2 − 2Gdxdy

)
. (8)

Our notation and abbreviations in this metric are as follow

X = (p + τ )2 + (l0 + a0σ)2 = B − a0A, (9)

R = ∆ + a2
0δ, E = ∆A2 + δB2, G = ∆A + a0δB,

A = a0δ − 2l0σ, B = (p + τ)2 + a2
0 + l20,

8



where

∆ = 1 − τ 2, δ = 1 − σ2, (10)

τ = sin
(
ãu + b̃v

)
, σ = sin

(
ãu − b̃v

)
, and ã, b̃ = constant,

l0 = pl, a0 = ap, q = Qp,

in which p = 1√
1+l2−a2−Q2

so that p2 + l20 − a2
0 − q2 = 1. Obviously it is clear from the square

root expression that the NUT parameter l is constrained by 1+ l2 > a2+Q2. This constraint

condition is crucial for having a non-singular CGW space-time. In order to interpret the

foregoing metric as CGW the null coordinates must be multiplied everywhere by the unit

step functions, i.e. u → uθ (u) and v → vθ (v). For the sake of simplicity in the rest of

the paper we shall set ã = b̃ = 1. Let us note also that the (η, µ) coordinates of CX are

equivalent to our (τ , σ) by the additional transformations u → sin u and v → sin v. Although

this rescaling of coordinates is not imperative it has the advantage that the guv component

of the metric can be expressed in the simplest possible form, namely guv = X ( after an

overall scaling by a factor 2 ). Note that for Q = 0, the metric in Eq.(8) overlaps with the

one obtained long ago by Wang [18] which is the NUT extension of Paper I. However, the

physical significance of the NUT parameter was not the scope of that paper.

The non zero Ricci components due to the em field in the Newman - Penrose formalism

are given, after tedious calculation by

Φ22 = θ(u)q2X−1, (11)

Φ00 = θ(v)q2X−1,

Φ02 = θ(u)θ(v)q2X−1 (ER)−1/2
[√

∆δ (B + a0A) + i (∆A − a0δB)
]
.

We recall that exact determination of the phases (f, g) of the Maxwell spinors Φ2 = qX−1/2eif

and Φ0 = qX−1/2eig is possible through the tedious integration of the Maxwell equations.
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Fourtunately this is not necessary in the present study and for this reason we shall ignore

it.

A. Initial Data and The Boundary Conditions.

In order that the metric (8) can be interpreted as a CGW metric it has to satisfy certain

boundary conditions. To determine the initial data we extrapolate the interaction region

back a′la CX to find the incoming regions. The initial data associated with Region II

(u ≥ 0, v < 0) is obtained by dropping the v in the metric. This amounts to the substitution

τ = σ = sin(uθ (u)), so that the metric functions take the form

R(u) =
(
1 + a2

0

)
cos2 u, (12)

X(u) = (p + sin u)2 + (l0 + a0 sin u)2 ,

E(u) = cos2 u
[(

a0 cos2 u − 2l0 sin u
)2

+
(
(p + sin u)2 + a2

0 + l20
)2]

,

G(u) = cos2 u
[
a0 cos2 u − 2l0 sin u + a0

(
(p + sin u)2 + a2

0 + l20
)]

,

in which u is implied with the unit step function. The only non zero Ricci component in

this region is given by

Φ22(u) = θ(u)q2X−1(u), (13)

while the gravitational wave component Ψ4 (u) has the form

Ψ4 (u) = (constant) δ (u) + θ (u)L (u) , (14)

in which δ (u) stands for the Dirac delta function and L (u) is a well defined function. An

impulsive gravitational wave superposed with a shock gravitational wave constitutes the

general feature of these waves. Similar data is obtained for region III (u < 0, v ≥ 0) by the

substitution τ = −σ = sin(vθ (v)), which will not be given. Obviously region III has the

corresponding non-vanishing Ricci and Weyl components
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Φ00(v) = θ(v)q2X−1(v), (15)

Ψ0 (v) = (constant) δ (v) + θ (v)K (v) ,

where the function K(v) similar to L (u) above is a well defined function whose exact

form is not of much interest here and we shall not give them explicitly. Expectedly all these

components are much more involved relative to the ones considered by CX.

Further extrapolation, by letting u < 0 and v < 0 in (8) reduces our metric into

ds2 = 4
(
p2 + l20

)
dudv − (dx − a0dy)2 − (cdy − a0dx)2 , (16)

where

c = p2 + a2
0 + l20,

which is manifestly flat in a rescaled coordinate system. It is evident from the data (Eq. 13

and 14 ) for region II ( and similar expression for region III ) that both of the parameters a0

and l0 corresponding to the angular momentum and NUT parameters of the original black

hole solution transform under the isometry (7) into the parameter of cross ( or second )

polarization of the waves. Linear polarization limit corresponds to the case l0 = 0 = a0, as

can easily be checked from the metric component gxy.

In the presence of electromagnetic waves it had been shown that the appropriate boundary

conditions are those of O’Brien and Synge [19]. We adopt here the same boundary conditions,

provided we verify the absence of any current sources on the null boundaries. These can

be summarized by the continuity requirements of gµν , gijgij,0 , where (i, j = 1, 2, 3) and x0

refers to the null coordinates with the condition that g00 = 0. For more detail on the choice

of the boundary conditions we refer to Ref. [1] and references cited therein. While the other

conditions are self evident the critical condition to be checked is the continuity of

gijgij,u, on u = 0

and
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gijgij,v, on v = 0.

When worked out in detail these reduce to the requirements that (ln∆δ),u and (ln ∆δ),v

are both continuous across u = 0 and v = 0, respectively. In summary, these are both

continuous, the O’Brien - Synge conditions are satisfied and no extra sources are created in

the collision process derived from the isometry with the KNN black hole.

B. The Weyl and Ricci Scalars.

Our interaction region (u > 0, v > 0) , metric (8) is equivalent (isometric) to the KNN

metric (6), in fact it is obtained from the latter by a coordinate transformation. In this

section we wish to make use of this advantage to find a proper tetrad that gives Ψ2 and Φ11

as the only nonvanishing Weyl and Ricci scalars.

Our choice of the proper tetrad is,

lµ =

(
k, 0,−D

∆
,− a

∆

)
, (17)

2nµ =
1

k2Z
(k∆, 0, D, a) ,

√
2mµ =

1√
δ (l + aσ − i(1 + kτ ))

(0, iδ, aδ − 2lσ, 1) ,

where

Z = (1 + kτ)2 + (l + aσ)2 ,

D = (1 + kτ)2 + l2 + a2,

k2 = 1 − a2 + l2 − Q2,

in which the parameter k is related to our previous parameter p through

12



p =
1

k
.

In this proper tetrad the type-D character of our space-time becomes manifest with the

Ψ2 and Φ11 as follows

Ψ2 = − 1 − il

[1 + kτ − i (l + aσ)]3
, (18)

Φ11 =
Q2

2
[
(l + aσ)2 + (1 + kτ)2]2 . (19)

Here although Q is the electric charge of the original black hole, under the isometric trans-

formation (7) it transforms together with the other parameters of the black hole, into q of

the CGW metric. It is clear to observe that when Q = 0, the solution reduces to Kerr -

NUT, which is the NUT extension of the paper I. When Q = l = 0, our solution reduces to

the vacuum ( i.e. Kerr ) Einstein solution which corresponds to the paper I. If we further

choose a = 0 but Q 6= 0 and l 6= 0, the resulting metric corresponds to the charged - NUT

metric which has not been considered by CX. In general, the term l + aσ in the Weyl scalar

Ψ2 represent the twist parameter of the gravitational wave. Hence, the NUT parameter l

has the tendency to increase the existing twist in the Paper I and II.

Investigation of Ψ2 and Φ11 reveals also that the NUT extension of paper II is another new

non-singular solution. In the limit τ → 1, both remain finite, implying that the hypersurface

τ = 1 (or sin2 u + sin2 v = 1) is a Cauchy-horizon instead of a singular hypersurface.

C. Comparison with the PX metric.

The PX metric obtained from a member of PD family is expressed, after minor rear-

rangements by

ds2 =
(
t2 + z2

)(dτ 2

∆
− dσ2

δ

)
− 1

(t2 + z2)

[
β2∆

(
dy − z2dx

)2
+ α2δ

(
dy + t2dx

)2]
. (20)

The crucial parameters α > 0 and β > 0 are constants while t = t(τ ) and z = z(σ) are

both linear functions of their arguments inherited from the PD family of solutions without

the cosmological constant. We wish to compare this metric with our metric (8) which was
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obtained directly from the KNN black hole. In order to establish a connection ( if any)

between (8) and (20) it is suggestive to identify

t = p + τ , (21)

z = l0 + a0σ,

and compare the (x, y) components of both metrics. By choosing β = 1 and α = a0 > 0, R

of (8) equals gyy of (20). Next, by rescaling x in accordance with x = − 1
a0

x (and removing

the bar over x afterwards) we expect that (E, G) functions will also match with gxx and gxy

of (20). It turns out that such an identification fails except at the singular hypersurfaces

characterized by τ = 1 and σ = ±1. This verifies that the metrics (8) and (20) are different

limiting cases of the original PD familiy members. In the proper tetrad and in terms of the

functions (t, z) our Weyl and Ricci components ( i.e. (18) and (19) ) take the compact forms

Ψ2 = −p2 (p − il0)

(t − iz)3 , (22)

Φ11 =
p4Q2

2 (t2 + z2)2 .

For the metric (20), on the other hand, the choice of the proper null tetrad one-forms

√
2l =

A√
∆

dτ −
√

∆

A

(
dy − z2dx

)
, (23)

√
2n =

A√
∆

dτ +

√
∆

A

(
dy − z2dx

)
,

√
2m = − A√

δ
dσ + ia0

√
δ

A

(
dy + t2dx

)
,

A2 = t2 + z2,

yields

Ψ2 =
p2Q2

(t2 + z2) (t − iz)2 − p − il0

(t − iz)3 , (24)

Φ11 =
p2Q2

2 (t2 + z2)2 .
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It is observed that the non-vanishing tetrad scalars of the two metrics are not identical.

This originates from the fact that in the original PD metrics further identification and linear

transformation should be applied before arriving at the KNN metric. Since this has not been

done the NUT parameter remained unidentified and (8) remained distinct from (20). We

observe after setting β = 1 and α = a0 that, the PX metric does not possess the limit

a0 = 0, whereas (8) remains meaningful. The Ψ2 in (8) reveals that all limiting cases are

well defined; l0 = 0, a0 6= 0; l0 6= 0 , a0 = 0; or l0 = 0 = a0. Obviously the charged -

NUT case corresponds to a0 = 0 , l0 6= 0 and Q 6= 0, and is a new case not included in

the analysis of CX ( or PX). In the special case Q = 0, p = 1 (or l = a), however the two

metrics become identical. One more distinction arises when we consider an unbounded NUT

parameter (l → ∞). Evidently the metric (8) has Ψ2 = 0 = Φ11, while for the metric (20)

we obtain Ψ2 6= 0 = Φ11.

IV. ANALYTIC EXTENSION OF THE SPACE-TIME ACROSS THE HORIZON.

The line element (8) describes the NUT extension of the colliding wave solution due to

the CX in the Einstein - Maxwell theory. The determinant of the metric in the u, v, x, y

coordinates is given by,

| g |= X2∆δ. (25)

It is obvious that as τ → 1, the determinant vanishes on the surface τ = 1 which is

equivalent to u + v = π/2. We have seen in the previous section that the Weyl and Ricci

scalars remain finite on this surface, indicating no scalar curvature singularity. Therefore

the vanishing of determinant would only has meant that there exists a coordinate singularity

and it can be removed by an appropriate transformation.

In order to perform the analytic extension, we shall adopt the method given by CX in

Paper I. As a requirement of the method, at least one of the Killing vector fields should

become null on the horizon. This is provided by calculating the norm of the Killing vectors

on the horizon surface. The norm of the Killing vectors are
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| ∂x |2= gxx = −X−1R, (26)

| ∂y |2= gyy = −X−1E.

We observe that none of the norms of the Killing vectors vanish on the horizon surface

( as τ → 1 ). In other words the Killing vectors ∂x and ∂y are both space-like. As it was

stated in Paper I, the Killing vectors ∂x or ∂y can be made null if the integration constant

for the metric function q2 is chosen properly. In order to assign the same role on these Killing

vectors we take their linear combination. As we shall explore in the following section this

choice plays a crucial role as far as the singularity structure is concerned in the extended

domain.

We choose the new Killing vector as,

ξµ
1 = αξµ

x + βξµ
y , (27)

where α and β are non-zero constants. We impose the condition that the norm of the new

Killing vector | ξµ
1 |2should vanish on the horizon surface as τ → 1.

| ξµ
1 |2= gµν

(
αξµ

x + βξµ
y

) (
αξν

x + βξν
y

)
= 0.

Hence, the new Killing vector is obtained as,

ξµ
1 = δµ

x + c1δ
µ
y , (28)

where c1 = β
α

= a0

X0
with X0 = (1 + p)2 + a2

0 + l20. Note that the major difference in our

choice is that, the new Killing vector lies in the xy - plane ( x1 = x and x2 = y), whereas,

in CX case the Killing vector was becoming null on the x2 ( = y ) axis.

At this stage we define two new coordinates as

x = x + c1y, (29)

y = y − c1x.
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In terms of the null coordinates, the metric (8) becomes

ds2 = 2Xdudv − X−1X2
0

(X2
0 + a2

0)
2{
[
X2

0R + a2
0E − 2GX0a0

]
dx2 (30)

+
[
a2

0R + X2
0E + 2GX0a0

]
dy2

− 2
[
X0a0 (R − E) +

(
X2

0 − a2
0

)
G
]
dxdy}

The norm of the new Killing vector ∂x and its scalar product with the other Killing vector

∂y are given by,

| ∂x |2= − X−1X2
0

X2
0 + a2

0

{
[X + (1 − τ) (2p + 1 + τ )]2 +

a2
0δ (1 − τ )

(1 + τ )
(2p + 1 + τ)2

}
∆ (31)

and

(∂x · ∂y) = 2
X−1X2

0

X2
0 + a2

0

{X0a0 + A
{
X0 [X + (1 − τ) (2p + 1 + τ )] − a2

0

}
(32)

+
a0δ (2p + 1 + τ )

1 + τ

{
X0B + a2

0

}
}∆.

It is clear to observe that both vanish in the limit τ → 1. We rewrite the metric (30) in

terms of the new variables l̃ and r defined by

l̃ =
√

∆δ = 1 − sin2 u − sin2 v, (33)

r = τσ = cos2 v − cos2 u.

This transforms metric (30) into
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ds2 =
X

H

(
dl̃2 − dr2

)
− X−1X2

0

(X2
0 + a2

0)
2
{
[
X2

0R + a2
0E − 2GX0a0

]
dx2 (34)

+
[
a2

0R + X2
0E + 2GX0a0

]
dy2

− 2
[
X0a0 (R − E) +

(
X2

0 − a2
0

)
G
]
dxdy},

where H = δ − ∆ = sin 2u sin 2v. It can be shown easily that the coordinate singularity at

τ = 1 is removed when we apply the following transformation,

ξ = l̃ecx and ζ = l̃e−cx, (35)

in which c = X0

X2
0
+a2

0

and in terms of the new coordinates ( ξ, ζ ), we have

τ =
1

2

{√
(1 + r)2 − ξζ +

√
(1 − r)2 − ξζ

}
, (36)

σ =
1

2

{√
(1 + r)2 − ξζ −

√
(1 − r)2 − ξζ

}
,

H =

√
(1 + ξζ − r2)2 − 4ξζ.

The exact metric (30) can be written in such a way that the absence of any singularity

when ξ = 0 and/or ζ = 0 is manifest, as follows

ds2 =
1

2HXδ

{
A
(
ζ2dξ2 + ξ2dζ2

)
+ Bdξdζ

}
+ C (ζdξ − ξdζ) dy − X

H
dr2 − Ddy2, (37)

where
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A =
1

2δ

(
X2 − Σ

(1 + τ)2

)
,

B = X2 (2δ − ∆) +
1 − τ

1 + τ
Σ,

C =
X0Σ̃

X (X2
0 + a2

0) δ
,

D =
X2

0
˜̃
Σ

X (X2
0 + a2

0)
2 ,

with

Σ = H (2p + 1 + τ) [2X(1 + τ) + (2p + 1 + τ) R] ,

Σ̃ = a0X0 + A
{
X0 [X + (1 − τ) (2p + 1 + τ )] − a2

0

}
+

a0δ (2p + 1 + τ)

1 + τ

{
X0B + a2

0

}
,

˜̃
Σ = ∆ [a0 + AX0]

2 + δ
{
a2

0 + X0B
}2

.

The determinant of the metric in the extended domain is expressed in the form,

| g |= X

4H

{
2A
(
2AD + C2

)
(ξζ)2 + B

(
C2ξζ − BD

)}
. (38)

In the limit as ξ = 0 and/or ζ = 0 (which is equivalent to τ = 1 ), the determinant

becomes:

| g |=
[
(p + 1)2 + (l0 + a0σ)2]4 X2

0δ
2.

Note that the above determinant vanishes when σ = ±1. The points σ = ±1, however

correspond to the null boundaries separating the interaction region from the incoming regions
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( see Fig. 2). Furthermore it is clear from the equation H = δ − ∆ = sin 2u sin 2v that for

u = 0, 0 ≤ v ≤ π/2 or v = 0, 0 ≤ u ≤ π/2 in either case H = 0. Therefore the extended

metric (37) in ( ξ, ζ) coordinates includes the space-time described in metric (30) exclusive

of the null boundaries at u = 0, v = 0. In other words, the metric (37) represents only the

extension of the interaction region.

The contravariant components of the metric (37) are

gξξ =
ξ2
(
4ÃD + C2

)

(
2Ãξζ + B̃

) [(
2ÃD + C2

)
ξζ − B̃D

] , (39)

gζζ =
ζ2
(
4ÃD + C2

)

(
2Ãξζ + B̃

) [(
2ÃD + C2

)
ξζ − B̃D

] , (40)

with

Ã =
A

2HXδ
,

B̃ =
B

2HXδ
.

The nature of the surface when ξ = ζ = 0 is identified by calculating the squared norms

of the vector fields orthogonal to the surfaces ξ0 = constant and ζ0 = constant . Let the

surface S (ξ) = ξ−ξ0 be such that ξ = ξ0 is not a singular surface of the metric. The normal

vector Nµ to the surface is defined by Nµ = gµνS,ν . Similarly for a surface ζ = ζ0, the norm

squares are then obtained by

N2 = (∇S)2 = gµν∂µS∂νS = gξξ, (41)

N2 = (∇S)2 = gµν∂µS∂νS = gζζ .

It is clear to observe that the vector fields ∂µξ and ∂µζ become null on the hypersurface

ξ = 0, ζ = 0 respectively. Therefore the surface

ξζ = ∆δ = 0 (42)

consists of two null surfaces as depicted in Fig. 3. There are four distinct regions assigned

to the coordinates (ξ, ζ, r, y). These regions are ; (i) ξ > 0, ζ > 0 which is part of the
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interaction region I0; (ii) ξ < 0, ζ < 0 isometric region to I0, since the simultaneous change

in the sign of ξ and ζ leaves the metric (37) invariant; (iii) the region for ξ < 0, ζ > 0 and

(iv) for ξ > 0, ζ < 0.

From the curvature scalars as given in equations (18 and 19), the only possibility that

the curvature singularity may develop when,

l + aσ = 0 and 1 + kτ = 0 (43)

occur simultaneously. This leads to τ = − 1
k

which is physically not acceptable since the

range of τ is 0 ≤ τ ≤ 1, which is positive definite. Even if k < 0 is chosen ( i.e. negative

root from Eq.(17)) we can use the freedom of the NUT parameter l, so that, for l > a

implies l + aσ 6= 0, because the range of σ is −1 ≤ σ ≤ 1 which makes | g |6= 0. This is in

marked distinction from the case of CX for which | g |= 0, in the extended domain. Thus,

the determinant of the metric together with the curvature scalars remain bounded in the

regions when ξ < 0, ζ > 0 or ξ > 0, ζ < 0. As a result, the extended domain is free of any

kind of singularity.

The geodesic description of CGW spacetime is almost well-known by now [21, 22, 23, 24]

Any geodesic originating from the flat region fall into the singularity ( or horizon) in a finite

proper time. Some geodesics remain in the incoming regions without ever crossing into

the interaction region I0. Depending on the initial conditions a vast majority of time-like

geodesics cross into the region I0 and hit the horizon τ = 1, in our present case. In this sense

we can refer to our CGW spacetime as geodesically complete. We must admit, however, that

the status of some singularities ( i.e. fold or quasi-regular type) is still not well - understood.

There are even attempts to resolve this type of singularities by using quantum mechanics

(see for example Ref. [25] and references therein). This issue, as well as the stability of

horizons is beyond our scope and should better be addressed in a mathematical context.

The hypersurface ξ = 0 (ζ = 0) is a null surface and behaves like the event horizon of a

black hole ( one way membrane). This implies that the future directed time-like or null

trajectories originating from region I0 can enter the region ξ > 0, ζ < 0 or ξ < 0, ζ > 0 and

from these regions to the isometric region Ie and continue in replica regions.
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V. COLLIDING (P+2) - FORMS IN (P+4) DIMENSION.

The action for the (4+p) - dimensional branes is given by

S =

∫
d4+px

√−g
(
R − F 2

(2)

)
, (44)

in which F(2) represents the em 2-form. With reference to the black p-brane solution [20].

ds2
4+p = A · B

1−p

1+p dt2 − (A · B)−1dr2 − B
2

p+1

p∑

i=1

(
dyi
)2 − r2dΩ2

2, (45)

where

A = 1 − r+

r
,

B = 1 − r−
r

,

in which r+ and r− with r+ > r− > 0, are the outer and inner horizons, respectively. The

corresponding CGW solution can easily be found [15]. This is exactly the CGW solution in

the higher dimensional EM theory where the non zero component of the em 2-form is given

by

F2 = Q sin θdθ ∧ dϕ, (46)

in which Q stands for the charge. Aplying duality on the 2-form in (p+4) - dimension gives

(p+2) - forms and one can obtain the collision problem of the (p+2) - forms in (p+4) -

dimensional space-time. Our (p+2) - form field is defined in accordance with

F̃ µ1µ2...µ
p+2 =

1

2
| g4+p |−1/2 ǫµ1...µ

p+4Fµ
p+3µ

p+4
. (47)

The new action takes the form

S =

∫
d4+px

√−g

(
R − 2

(p + 2)!
F̃ 2

p+2

)
(48)

so that the field equations are

Rµν =
2

(p + 2)!

(
F̃µµ1...µ

p+1
F̃

µ1...µ
p+1

ν − (p + 1)

(p + 2)2gµνF̃µ1...µ
p+2

F̃
µ1...µ

p+2

ν

)
(49)
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∂µ

(
| g4+p |1/2 F̃ µµ1...µ

p+1

)
= 0.

The solution can be expressed by

ds2
4+p = (k + τ)2 (2dudv − δdz2

)
−
(

1 + τ

k + τ

) 2

p+1
p∑

i=1

(
dyi
)2−

(
1 − τ

k + τ

)(
1 + τ

k + τ

) 1−p

1+p

dx2 (50)

where

k =
r+ + r−
r+ − r−

> 1.

The em 2-form field is

F = Q
√

δ [−aθ (u) du + bθ (v) dv] ∧ dz (51)

while its dual is obtained in accordance with (47). We observe now that

det | g4+p |= ∆δ
(k + τ)5

1 + τ
(52)

which indicates a coordinate singularity at τ = 1. We introduce new coordinates l̃, r, and

x as we have done in the previous chapters,

l̃ =
√

∆δ (53)

r = sin2 u − sin2 v

ξ = l̃ecx

ζ = l̃e−cx

where c2 = 2
1−p

1+p (k + 1)−2( p+2

p+1) .

Our new metric takes the form,

ds2
4+p =

(k + τ)2

8Hl̃2

{
(ζdξ + ξdζ)2 − 2H (1 − τ)

c2 (k + τ )3 l̃2

(
1 + τ

k + τ

) 1−p

1+p

(ζdξ − ξdζ)2

}
(54)

−(k + τ )2

2H
dr2 − δ (k + τ )2 dz2 −

(
1 + τ

k + τ

) 2

1+p
p∑

i=1

(
dyi
)2
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The determinant of the new metric expressed in the coordinates (ξ, ζ, r, z, yi) is found to

be

| g |1/2=
(k + τ )2

4cH
(55)

which is free of the coordinate singularity. It is observed that the analytic extension does

not effect the higher dimensional coordinates (yi) .

VI. CONCLUSION.

The physical significance of the NUT parameter in the theory of relativity has been one of

the discussion subject that its exact physical interpretation is not clarified yet. In this paper,

we have analysed the effect of the NUT parameter in the context of CGW spacetimes. In our

analysis we considered the NUT extension of Paper II which is locally isometric to the part

of a region in between the inner and outer horizons of KNN BH. Our main concern in this

article is not only to provide a new CGW geometry but also to explore the physical effect of

the NUT parameter. We have shown that the NUT parameter provides an additional twist

to gravitational waves. As a result, the waves that participate in the collision is modified

with respect to the cases in Paper I and II. The overall effect of this modification becomes

more clear when a non-unique extension beyond the Cauchy horizon is obtained. The initial

data of CX (in Paper I and II) , however, was able to transform the coordinate singularity

into a harmless time-like singularity in the extended domain. In our case, we have shown

that the modification in the initial data as a result of the inclusion of the NUT parameter

removes the time-like singularities as well and leaves the extended spacetime singularity

free. We prove also that our metric and the one considered previously by PX are distinct

transforms obtained from the most general PD family of solutions. Similar results to ours

were obtained by PX without identifying the role of the NUT parameter. Similar technique

applies also to the Cauchy-horizon forming higher dimensional spaces.

To conclude the paper we wish to express the view that the CX duality is more than a

mathematical equivalence: It must address deeper implications concerning BHs and colliding
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waves that awaits yet to be explored.
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Figure Captions

Figure 1: The manifold that represents analytically extended domain in the (ξ, ζ, r, x1)

coordinates can be projected in the ( ξ, ζ ) coordinates as above. There are four distinct

regions. These regions are: i) ξ > 0, ζ > 0 which is part of the interaction region I0; ii)

ξ < 0, ζ < 0 isometric region Ie to I0, since the simultaneous change in the sign of ξ and

ζ leaves the extended metric invariant; iii) the region when ξ > 0, ζ < 0, and iv) and the

region ξ < 0, ζ > 0 are the regions that contain time-like singularities along hyperbolic arcs

shown with dashed lines.

Figure 2: The space-time diagram describes the collision of Einstein - Maxwell fields.

Region II and III are the regions that contain the incoming waves which are composed of

plane impulsive gravitational wave accompanied with shock gravitational and electromag-

netic waves. Region IV is the flat region before the arrival of the waves. The collision occur

at point C. Region I0 is part of the interaction region. The arc AB is a null hypersurface

which is called Killing-Cauchy horizon that occurs at τ = 1 in which the analytic extension

is performed. Ie is the mirror image of the region I0. In the problem considered, the struc-

ture of the extended domain is similar except the absence of time-like singularities along

hyperbolic arcs. The maximal analytic extension can be obtained similar to paper I by

tilling the entire region by panels which are replicas of the panel CA’C’B’.

Figure 3: The space-time manifold in the ( ξ, ζ, r, y) coordinates can be projected in the

( ξ, ζ) coordinates as above. The hypersurface ξ = ζ = 0 are the null surfaces. By choosing

a variety of initial data and manipulating the symmetry ( i.e. taking the combination of

Killing vectors), the time-like singularities along hyperbolic arcs can be eliminated and leaves

the regions ξ > 0, ζ < 0 and ξ < 0, ζ > 0 singularity free. The regions I0 and Ie correspond

to part of the interaction and the extended mirror image regions when ξ > 0, ζ > 0 and

ξ < 0, ζ < 0 respectively. The curves of constant l̃ are hyperbolae as in the case of paper I.
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