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Colliding wave solutions from five-dimensional black
holes and black p-branes

E. Halilsoy,a� M. Halilsoy,b� and O. Unverc�

Physics Department, Eastern Mediterranean University, G.Magosa (N. Cyprus),
Mersin 10, Turkey

�Received 22 July 2005; accepted 9 November 2005; published online 13 January 2006�

We consider both the five-dimensional Myers-Perry and Reissner-Nordstrom black
holes �BHs� and black p-branes in �4+ p�-dimensions. By employing the isometry
with the colliding plane waves �CPWs� we generate Cauchy-Horizon �CH� forming
CPW solutions. From the five-dimensional vacuum solution through the Kaluza-
Klein reduction the corresponding Einstein-Maxwell-dilaton solution is obtained.
This CH forming cross polarized solution with the dilaton turns out to be a rather
complicated nontype D metric. Since we restrict ourselves to the five-dimensional
BHs we obtain exact solutions for colliding 2- and 3-form fields in
�p+4�-dimensions for p�1. By dualizing these forms we can obtain also colliding
�p+1�- and �p+2�-forms which are important processes in the low energy limit of
the string theory. All solutions obtained are CH forming, implying that an analytic
extension beyond is possible. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2157051�

I. INTRODUCTION

Black holes �BHs� are known to have region isometric to the space of colliding plane waves
�CPW�.1,2 This may be either in between the two horizons �i.e., inner and outer� or given the case
with single horizon the inner region of the event horizon. Such an isometry renders it possible to
generate CPW solutions from known solutions of BHs. In a recent paper3 we gave a prescription
for generating CPW solutions from an Einstein-Maxwell-Dilaton-Axion �EMDA� theory. In this
theory the dilaton was linear and the BH was not asymptotically flat. In this solution the axion
arises as the cross polarizing agent for the CPWs. This means that the limit of linear polarization
removes the axion leaving behind only the Einstein-Maxwell-Dilaton �EMD� theory. Another
solution with similar features but valid only in the zero dilaton limit was obtained previously.4

Interesting physical property shared by both of these solutions is that the space-time subsequent to
the collision of waves emerges free of physical singularities. Horizon forming CPW1,2,5–7 solutions
in the EMDA theory are naturally of utmost important to the string theory. Since the idea of higher
dimensions has already gained enough momentum it is important to investigate the collision of
waves in higher dimensions.8,9 It is known already that the four-dimensional EMDA theory is
equivalent to the six-dimensional Ricci flat, vacuum solution.10,11

In this paper we restrict ourselves to the five- �and four-� dimensional space-times and their
extension through the brane world. We consider first the five-dimensional collision of gravitational
�impulse and shock� waves obtained from the isometry with the Myer-Perry black hole
�MPBH�.12,13 This particular BH contains two rotation parameters in addition to the mass. For
simplicity we make the special choice in which the two angular momenta are equal. Then we
identify the �r ,�� sector of the BH at hand with the null coordinates sector �u ,v� of the colliding
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waves and accompany this with the necessary coordinate transformation. Inclusion of the Heavi-
side step functions along with the null coordinates must guarantee that no additional current sheets
are created at the boundaries. In the standard Einstein and Einstein-Maxwell �EM� theories these
are summarized in the O’Brian-Synge14 boundary conditions, respectively. Similar arguments
rightly follow in the higher dimensional space-times as well.

The static MPBH is transferred to the linearly polarized CPWs, which turns out to be a
nonsingular type-D solution. The rotating MPBH transforms through the Kaluza-Klein �KK� re-
duction procedure to the CPW space-time with cross polarization in the four-dimensional EMD
theory. This space-time is also regular but it does not belong to the type-D class. As a matter of
fact the dilaton involved cross polarization �instead of axion, as it arises in the above-mentioned
solutions� makes the space-time structure rather involved.

As a second example we consider the Reissner-Nordstrom �RN� BH15 in five dimensions from
which we obtain CPW solution in the five-dimensional EM theory. Similar to the CPW solution
obtained from the MPBH this one also is singularity free. Our examples of five-dimensional BHs
exclude the extremal limits because in such a limit which removes the isometric region of BHs
with CPWs the equivalence fails to work. Under such circumstances an alternative transformation,
analogous to the RN-Bertotti-Robinson equivalence, must be pursed which is out of our scope in
this paper.

As a third example we consider the black-branes in the �d+ p�-dimensional brane world. We
find regular CPW solutions to colliding 3-form fields in higher dimensions. Another solution that
we obtain from the same black-brane metric is colliding �EM� �2-form� fields in higher dimen-
sions.

Our study may lay the foundation for promoting the string theory in approximation in low
energies from single plane wave background to the more realistic CPW background. The regular
initial data of CPWs provides a natural choice among the nonunique Penrose limits of
space-times.16–18 It is known that the incoming region of a CPW space-time admits automatically
a Penrose limit of the interaction region. The advantage is that we have the double Penrose limits
which are both well-defined initial data. Any Penrose limit does not qualify as an initial data
toward construction of the interaction region.

Finally we wish to express the view that our technique can be extrapolated to higher dimen-
sions provided some associated difficulties are overcome. The most important problem is the
analytic integration of the radial coordinate �r� of BHs in terms of the prolate-type coordinate ���
of CPWs. And as the second major difficulty we cite of the necessary proper representation of the
higher dimensional spherical line element suitable for the ideals of the geometry of CPWs.

The organization of the paper is as follows. In Sec. II we obtain CPW solutions from the
five-dimensional BHs, whose details are tabulated in Appendixes A, B, and C. Section III inves-
tigates the physical properties of the metrics obtained in Sec. II. Section IV contains solutions for
colliding 3-form fields in higher dimensions and their KK reductions. Section V focuses attention
on a class of by-product solutions of colliding EM shock waves in higher dimensions. We dualize
our 2-form fields of Sec. V in Sec. VI to obtain colliding �p+2�-form fields in �p+4�-dimensions.
Our conclusion and discussion is in Sec. VII.

II. CPW SOLUTIONS FROM FIVE-DIMENSIONAL BHs

In this section we concentrate on the two well-known types of BHs in five-dimensions. First
we consider the MPBH and then RNBH. Our analysis applies, however, to any five-dimensional
BHs that possesses two nonoverlapping horizons albeit the technical difficulties. We comment on
this point at the end of the section in concentration with the Schwarzschild-de�-anti� Sitter BH.

�A� The MPBH in five dimensions with two equal angular momenta is given

ds5
2 = g̃AB dxA dxB �A,B, . . . = 0, . . . 4� ,

012502-2 E. Halilsoy, M. Halilsoy, and O. Unver J. Math. Phys. 47, 012502 �2006�
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ds5
2 = dt2 −

�

�2�dt +
ā

2
�d� − cos � d���2

−
�4 d�2

�4 − ��2 + �ā2 − �2 d�3
2, �1�

where � and ā are, respectively, proportional to the mass and angular momentum of the BH. We
note that five-dimensional suffices are denoted by capital italic letters while four dimensional ones
by greek letters. A tilde over specifies also the five-dimensional geometrical object. For the three-
dimensional metric of S3 we choose the representation

d��3�
2 = 1

4 �d�2 + d�2 + d�2 − 2 cos � d� d�� , �2�

where 0	�	
, and the angles � and � are defined modulo 2
. The static MPBH corresponds to
a=0, while the extreme case is defined by �=4ā2. The CPW form in five dimensions is obtained
by imposing the identification of the �� ,�� sector in the above metric with the �� ,�� sector of
CPW as follows:3

� 4�2 d�2

��2 − �4 − �ā2 − d�2� = � d�2

1 − �2 −
d�2

1 − �2� . �3�

In the sequel, for simplicity we choose �=1 leading us to the solution

2�2 = 1 + 	1 − 4ā2� ,

�4�
cos � = �

implying further that we impose 
ā 
 	
1
2 . Supplementing this transformation with the identifica-

tions

t → x ,

� → y ,

�5�
� → z ,

ao
2 = 2ā2

followed by an appropriate rescaling of coordinates we obtain the five-dimensional vacuum metric
apt for CPWs:

ds5
2 = F�d�2

�
−

d�2


� −

1

F
�Zo�dy − 2� dz�dy + Z dz2 + 4ao�dy − � dz�dx − �1 − k��dx2� . �6�

Our abbreviations in this metric stand as follows:

� = 1 − �2,

 = 1 − �2,

F = 1 + k� ,

Z = F2 + 2ao
2�2,

Zo = F2 + 2ao
2,
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k = 	1 − 2ao
2,

0 	 k � 1, �7�

where the coordinates �� ,�� are related to the null coordinates �u ,v� through

� = sin�au + bv� ,

� = sin�au − bv� , �8�

�a,b:constants� .

Now, the crucial point toward the interpretation of this metric as a CPW metric is by making
the substitutions

u → u��u� ,

�9�
v → v��v�

in the metric functions, where � stands for the Heaviside unit step function. This process must not
create currents �sources� on the null boundaries u=0=v. Alternatively this implies that the five-
dimensional Ricci terms all vanish globally

R̃AB = 0

�10�
�xA:u,v,x,y,z� .

The Riemann tensor components R̃ABCD, however, involve Dirac delta functions, indicative of
impulsive gravitational waves in addition to the shock waves required commonly by the step
functions. In Appendix A we tabulate all components exhaustively from which we can easily
identify the nonvanishing ones in the incoming regions. By setting v	0�u	0� we restrict our-
selves to the incoming region II �III�, comprising of five-dimensional gravitational plane waves
alone. Obviously, for both u	0 and v	0 we obtain the region I which is a five-dimensional flat
space-time given by

ds5
2 = 4ab du dv − �1 + ao

2�dy2 − dz2 − 4ao dx dy − dx2. �11�

The Kretschmann scalar in the interaction region �region IV, u�0,v�0� turns out to be

K = R̃ABCDR̃ABCD =
6

�1 + k��6 �4k2�k + ��2 − �1 + k��2� �12�

which is free of singularities.
We wish now to apply the KK reduction procedure to our five-dimensional metric �6� in order

to obtain CPWs of the EMD theory in four dimensions. We follow the KK reduction procedure
through the identification

g̃AB = �−1/3�g�� + 4�A�A� 2�A�

2�A� − �
� . �13�

This makes it possible to read both the four-dimensional metric g��, as well as the dilaton �,
and the EM potential A�. The results are as follows:

ds4
2 = �FZ�

1
2�d�2

�
−

d�2


−

1

Z
�L

F
dx2 + Zo dy2 − 4ao dx dy�� ,
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� = �Z

F
� 3

2
,

A� =
�

Z
�0,0,ao,

1

2
Zo� , �14�

where the notations are as in �7�, and in addition we have labelled L=2F−Z. The action of the
resulting four-dimensional EMD theory is

S =
1

16

� 
g


1
2 dx4�− R − �F��F�� +

����2

6�2 � �15�

so that the dilaton and Maxwell equations take the respective forms

��ln �� = − 3�F��F��, �16�

����F�
�� = 0, �17�

in which � stands for the covariant Laplacian. To complete the set of Einstein equations we need
also the Ricci tensor which is given by

R�� =
1

6

�,��,�

�2 − 2��F��F�
� −

1

4
g��F��F��� . �18�

We note that this representation of dilaton is different from the standard one expressed as an
exponential function in the action. This more familiar latter form is related to the present one by
the substitution

� = e−2a� �19�

which casts the action into

S =
1

16

� 
g


1
2 dx4�− R + 2����2 − e−2a�F��F��� , �20�

where the dilatonic parameter is 	3. The physical properties of the EMD space-time obtained
hitherto will be studied in the next section.

�B� The five-dimensional RNBH is given by

ds5
2 = �1 −

m

r2 +
q2

r4 �dt2 − �1 −
m

r2 +
q2

r4 �−1

dr2 − r2 d��3�
2 , �21�

where m and q are, respectively, related to the mass and charge of the BH. The EM vector
potential one-form is given by

A = A� dx� =
	3q

2r2 dt . �22�

Here also, similar to the MP case we choose the S3 line element as in �2�. The transition to the
CPW metric is accomplished here by the identification

4 dr2

m − r2 −
q2

r2

− d�2 =
d�2

1 − �2 −
d�2

1 − �2 . �23�

A possible integral for r��� is readily available as
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r2 =
m

2
�1 + l�� , �24�

where

l =	1 −
4q2

m2 � 0.

By choosing m=1 in addition to the identifications

� = cos � = sin�au − bv� ,

t → x,� → y,� → z ,

� = sin�au + bv� ,

�a,b = constants� �25�

we obtain the metric �after rescaling of coordinates�

ds5
2 = �1 + l���4ab du dv − dy2 − dz2 − 2 sin�au − bv�dy dz� −

�

�1 + l��2dx2. �26�

The EM vector potential one-form takes the form under the above transformation

A =
	3q

2	2l�1 + l��
dx . �27�

The interpretation of this metric as a CPW is completed by inserting the step functions into the
null coordinates u and v. This metric represents collision of EM plane waves in five dimensions.
For l=1 �or q=0� it reduces to the CPW metric of the five-dimensional pure gravity and coincides
with the ao=0 case of the metric �6�. Thus, �26� is the EM extension while �6� was the rotational
extension of the same CPW metric obtained from the five-dimensional Schwarzschild metric. The
Riemann components of the metric �26� are given in Appendix B from which we compute the
Kretschmann scalar to find �for u�0 and v�0�.

K =
127l4 + 180l3� − 2l2 − 72�l2 + 19 − 36l�

4�1 + l��4 �28�

which is also regular to the future of the collision point u=0=v.
Finally we wish to comment on other BHs and corresponding CPW solutions in five dimen-

sions. Although our method applies to any such BH that admits inner and outer horizons such that
the region in between possesses two spacelike Killing vectors technically some cases are not
tractable. As an example we cite the Schwarzschild-de�-anti� Sitter BH given by the line element

ds5
2 = h�r�dt2 − h�r�−1 dr2 − r2 d��3�

2 , �29�

where h�r�=k− �m /r2�± �r2 / l2�, in which k= ±1, m is related to mass and l to the cosmological
constant. To obtain the associated CPW solution we demand now that
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� d�

	�	m − k� ±
�2

l2

= ± sin−1 � , �30�

where we have used �=r2. The inversion of such an elliptical integral seems to be beyond
analytical calculation which must therefore be handled within the scope of numerical analysis.

III. PROPERTIES OF THE COLLIDING EMD SPACE-TIME

The linearly polarized CPW metric �14� is rather transparent so we restrict ourselves to the
case ao=0, first. Upon rescaling of x and y we have the metric

ds2 = �1 + ��
3
2�2 du dv −

1 − �

�1 + ��2dx2 −  dy2� �31�

in which � and � are implied with the step functions. By the choice of Newman-Penrose �NP�
null-tetrad basis one-forms,

l = �1 + ��
3
4 du ,

n = �1 + ��
3
4 dv ,

	2m = �1 − ��
1
2 �1 + ��−1/4 dx + i	�1 + ��

3
4 dy , �32�

we obtain all Ricci and Weyl components as tabulated in the Appendix C. It is observed by
studying the Weyl scalars �o, �2, and �4 that the space-time is regular everywhere for �u
�0,v�0�. On the boundaries, however, both �o and �4 suffer from singularities at �u=0,bv
=
 /2� and �v=0,au=
 /2�, respectively. These are the typical null singularities inherited from the
problem of colliding EM shock waves, therefore such singularities in the present problem is not
unexpected at all. From the metric �31� we observe that �=1 and �=1 are spurious, removable
coordinate singularities since they do not show up in the Weyl scalars. In particular, �=1 is the
location of the horizon in the interaction region beyond which the metric can be extended ana-
lytically. The other coordinate singularity �=1 is out of question since it does not belong to the
interaction region. The incoming EMD waves prior to the collision can also be easily identified
from Appendix C. In the region II we have

�2 = −
3

8
a2��u�

�5 + sin�au��

�1 + sin�au��
5
2

,

�33�

�22 =
1

16
a2��u�

�7 + sin�au��

�1 + sin�au��
5
2

,

while in the region III we must replace au↔bv to obtain �o and �oo. The incoming waves that
comprise Ricci components �22��oo� is obviously constructed from both the EM and the dilaton
parts. Inside the collision region we observe also that the condition

9�2
2 = �0�4 �34�

holds among the Weyl scalars, showing its type-D character. Direct choice of a Kinnersley type
tetrad eliminates both �o and �4 components of the Weyl scalars.19 Such a tetrad is given by the
basis one-forms
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l =
	1 + �

1 − �
d� − dx ,

2n = d� +
1 − �

	1 + �
dx ,

	2m = �1 + ��
3
4� d�

	�
− i	 dy� . �35�

This choice gives now the only nonzero component

�2 = −
1

8

�5 + ��

�1 + ��
5
2

�36�

verifying its manifestly type-D character.
Now returning to the general CPW metric �14� with ao�0, we can discuss again the interac-

tion region alone. For this reason we omit all step functions and consider an NP tetrad basis
one-form

	2l = �FZ�
1
4� d�

	�
+

d�

	
� ,

	2n = �FZ�
1
4� d�

	�
−

d�

	
� ,

	2m =
	L

�FZ�
1
4

�dx + �aoF

L
+ i	FZo

L
�dy� . �37�

The results are rather tedious so we shall refrain from tabulating the Ricci and Weyl compo-
nents. Instead, relying on a numerical computation we have verified that the condition �34� fails to
hold in the present case. Thus, we have seen numerically at least that our space-time is not type-
D. By the same numerical analysis we conclude that our space-time is not singular. Another
approach to study this space-time is to search for a possible Kinnersley tetrad that serves to
generalize �35�. To attain this goal we define the null vector l� out of the geodesics equation.
Unfortunately, in contrast to the BH case the choice �=�o=constant which used to simplify the
problem significantly, remains ineffective. By this analysis we obtain a set of Kinnersley-type
tetrad as follows:

l� =
	F

�
�k�S,0,F,− ao ,

2n� =
1

k2F	ZS2
�k�S,0,− F,ao ,

	2m� =
F

1
4

	Z
3
4 S
�0,− S	Z

F
,− iao,i� , �38�

where S=Z−1/2�F−ao
2�

1
2 .
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In the limit ao=0, this tetrad reduces to �35�, as it should. This fact that our space-time is not
type-D reflects in the computation of the spin coefficients since none turn out to vanish.

In conclusion, we state that colliding cross-polarized EMD space-time obtained from the
five-dimensional MPBH through the KK reduction procedure turns out to be nonsingular in spite
of all its complication. This reflects the highly transcendental coupling between the dilaton and the
other fields. Linear polarization limit removes all complication and we obtain a much simpler
space-time structure.

IV. CPW SOLUTIONS FROM BLACK p-BRANES

A class of black p-brane solutions in d-dimensions of the action

S =� d�d+p�x	− g�R −
2

�d − p�!
F�d−2�

2 � �39�

with

F�d−2� =
1

�d − 2�!
F�1¯��d−2�

dx�1 ∧ ¯ ∧ dx�d−2

is given by the metric.20

ds�d+p�
2 = AdBd

�1−p�/�1+p�dt2 − �AdBd�−1 dr2 − Bd
2/�p+1�dy dy − r2 d��d−2�

2 �40�

in which

Ad = 1 − � r+

r
�d−3

,

Bd = 1 − � r−

r
�d−3

.

We consider here only the nonextremal case r+�r−, where the region r−	r	r+ enables us to
construct nonsingular CPW solutions. As examples we shall present solutions for p=1, p=6, and
p→�, however, our procedure applies for any p�1. In particular, the six-dimensional magneti-
cally charged metric �40� becomes

ds6
2 = A5 dt2 − �A5B5�−1 dr2 − B5 dy2 − r2 d��3�

2 ,

F�3� = Q�3, �41�

where �3 is the volume form on the 3-sphere and Q2=2�r+r−�2. By the KK reduction procedure the
six-dimensional action is reduced to the five-dimensional one

S =� d5x	− g�R − 2����2 −
1

3
e−2c�F�3�

2 � , �42�

where c=	2
3 and the metric, dilaton and 3-form fields are

ds5
2 = B5

1
3 �A5 dt2 − �A5B5�−1 dr2 − B5 dy2 − r2 d��3�

2 � ,

ec� = B5
− 1

3 ,
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F�3� = 	2�r+r−��3. �43�

The corresponding CPW solutions are obtained by the transformation

r2 = 1
2 �ao + bo�� ,

cos � = � ,

t = 2x ,

� = z ,

� = w , �44�

in which we have adopted the representation for d��3�
2 and introduced the abbreviations

ao = r+
2 + r−

2 ,

�45�
bo = r+

2 − r−
2 .

The resulting CPW metric, dilaton and the 3-form fields are

ds5
2 = �1 + �

k + �
�1/3��k + ���2 du dv − dz2 − dw2 + 2� dz dw −

1 − �

k + �
dx2�� ,

ec� = �1 + �

k + �
�−1/3

,

�46�
F�3�uzw = Qa��u�	 ,

F�3�vzw = − Qb��v�	 ,

where Q= �1/	2��k2−1� and k=ao /bo�1. Our notation for �, �, and  are as in the preceding
sections and in transforming �43� into �46� we used the freedom of rescaling of x and ds2. This
metric has the scalar curvature �for u�0, v�0�

R =
4

3

ab�k − 1�
�1 + ��4/3�k + ��5/3 �47�

which is regular in the interaction region. The colliding 3-form metric corresponding to �41�
becomes

ds6
2 = �k + ���2 du dv − dz2 − dw2 + 2� dz dw� −

1

k + �
��1 − ��dx2 + �1 + ��dy2� , �48�

whereas the 3-form field preserves its form. This metric represents the collision of 2-form fields in
flat background. The 3-form field is obviously obtained from the 2-form potential by

F�3� = dA�2�, �49�

where

A�2� = 1
2Azw dz ∧ dw ,
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Azw = Q sin�au��u� − bv��v�� .

By a similar analysis we obtain the collision of these 3-form fields in 11-dimensional space.
The result is

ds11
2 = �k + ���2 du dv − dz2 − dw2 + 2� dz dw� − �1 + �

k + �
� 2

7 �
i=1

6

�dyi�2 − �1 − �

k + �
��1 + �

k + �
�−5/7

dx2

�50�

which has the regular scalar curvature,

R = −
5

7

ab�k2 − 1�
�k + ��3 . �51�

The KK reduction of this 11-dimensional metric to the fifth dimension is expressed by

ds2 = �1 + �

k + �
� 4

7��k + ���2 du dv − dz2 − dw2 + 2� dz dw�

− �1 − �

k + �
��1 + �

k + �
� −5

7
dx2 � ,

�52�

ec� = �1 + �

k + �
�−4/7

,

and F�3� components are as in �49�.

V. COLLIDING EM WAVE SOLUTION IN ANY HIGHER DIMENSION

The action for the �4+ p�-branes is given by

S =� d�4+p�x	− g�R − F�2�
2 � , �53�

in which F�2� stands for the EM 2-form.
Solution is given by20

ds4+p
2 = AB�1−p�/�1+p� dt2 − B2/�p+1�dy dy − �AB�−1 dr2 − r2 d��2�

2 , �54�

where

A = 1 −
r+

r
,

B = 1 −
r−

r
,

and

F = Q�2.

Now, the transformation �with r+=ao+bo and r−=ao−bo�

r = ao + bo� ,

cos � = � ,
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� = z ,

t = x , �55�

yields the CPW metric,

ds4+p
2 = �k + ��2�2 du dv −  dz2� − �1 + �

k + �
�2/�p+1�

�
i=1

p

�dyi�2 − �1 − �

k + �
��1 + �

k + �
��1−p�/�1+p�

dx2

�56�

in which we have introduced k=ao /bo�1, and rescaled the coordinates. The EM potential 1-form
is given by

A = − Q sin�au��u� − bv��v��dz .

So that the nonzero field 2-form components are

Fuz = − Qa��u�	 ,

�57�
Fvz = Qb��v�	 .

It is observed now, that it is a simple matter to obtain the CPW metrics for an arbitrary p
�1. In particular, for p=1 and p=7 we have

ds5
2 = �k + ��2�2 du dv −  dz2� −

1

k + �
��1 + ��dy2 + �1 − ��dx2� �58�

and

ds11
2 = �k + ��2�2 du dv −  dz2� − �1 + �

k + �
� 1

4 �
i=1

7

�dyi�2 − �1 − �

k + �
��1 + �

k + �
�−3/4

dx2, �59�

respectively. By letting p→�, we can easily obtain also the colliding EM wave solutions in the
�-brane world. The KK reduction to the fourth dimension for an arbitrary p-brane is

ds4
2 = �1 + �

k + �
�p/�p+1���k + ��2�2 du dv −  dz2� − �1 − �

k + �
��1 + �

k + �
��1−p�/�1+p�

dx2� �60�

with

ec� = �1 + �

k + �
�−p/�2�p+1��

,

c =	 p

p + 2
,

Fuz = − Qa��u�	 ,
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Fvz = Qb��v�	 ,

Q2 =
1

2
�k2 − 1�� p + 2

p + 1
� .

This metric describes the collision of dilaton coupled EM waves in four dimensions.

VI. COLLIDING „p+2…-FORMS IN „p+4…-DIMENSION

In Sec. V we have constructed CPW solutions for the 2-form fields in �p+4�-dimension. By
applying the duality principle we can obtain �p+2�-form fields and consider their collision at equal
ease. We define the duality

F̃�1¯�k =

g
−1/2

�n − k�!
��1¯�k�k+1¯�nF�k+1¯�n

, �61�

where �n�k� and F�k+1¯�n
is assumed known.

The permutation symbol ��1¯�n satisfies21

��1¯�n
��1¯�n = �− 1�ln ! , �62�

where l�number of minus signs in g��. Since we have readily available 2-form at hand we define
its dual

F̃�1¯�p+2 =
1

2!

gp+4
−1/2��1¯�p+4F�p+3�p+4

�63�

in �p+4�-dimension. The action of �gravity +F̃p+2� is taken as

S =� d4+px	g�R −
2

�p + 2�!
F̃p+2

2 � �64�

with the field equations

R�� =
2

�p + 2�!�F̃��1¯�p+1
F̃�

�p¯�p+1 −
�p + 1�
�p + 2�2g��F̃2�

�65�
���
gp+4
1/2F̃��1¯�p+1� = 0,

where F̃2= F̃�1¯�p+2
F̃�p¯�p+2.

We proceed with two particular examples, p=1 and p=6.

�i� p=1 case. The 3-form field F̃3 is from the metric �58� and Fuz=−Qa��u�	, Fvz

=−Qb��v�	. It is given by

F̃3 =
Q	�

�k + ��2 �a��u�du + b��v�dv� ∧ dx ∧ dy �66�

which can be associated through F̃3=dÃ2 to the 2-form potential

Ã2 = −
Q

�k + ��
dx ∧ dy . �67�

The incoming region �II� metric and 3-form fields can also be expressed in the Brinkmann
form since they are given here in the Rosen form. For this we define new coordinates
�U ,V ,X ,Y ,Z� as follows:
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U =� �k + sin au�2 du ,

X = A�u�x, Y = B�u�y, Z = C�u�z ,

V = v +
x2

2
AAu +

y2

2
BBu +

z2

2
CCu,

where

A2�u� =
1 − sin au�

k + sin au�
,

B2�u� =
1 + sin au�

k + sin au�
,

C = �k + sin au��cos au� . �68�

The relation between U and u can be chosen as

U =
3

2
u +

2

a
�1 − cos au� −

1

4a
sin 2au , �69�

so that u=0 and U=0 coincide. Further, the graph of U�u� reveals that in the interval 0	au
	
 /2, u�0 implies that U�0. However, as it is observed we cannot invert u in terms of U, and
this enforces us to keep the Brinkman form in an implicit form. We have ultimately

ds2 = 2 dU dV − dX2 − dY2 − dZ2 − 2H�u�U�,X,Y,Z�dU2,

where

H�u�U�,X,Y,Z� =
a

2
�U��Y2 − X2 +

1

k
�2Z2 − X2 − Y2�� +

a2��U�
4�k + sin au�2 ��k + 1��3 − k + 2 sin au�X2

− �k − 1��3 + k − 2 sin au�Y2 − �k + sin au��k + 4 sin au�Z2� . �70�

We recall that a general class of metrics given by

ds2 = 2 dU dV − ��
i,j

Aij�U�XiXj�du2 − �
i

�dXi�2,

where Aij =constant, is known as Cahen-Wallach space.22

It is clear that we have �2H�0 in our case, indicating the presence of energy momentum for
the 3-form field as it should. The 3-form field, in the Brinkman form for region II is

F̃3 =
aQ��U�

�k + sin au�3dU ∧ dX ∧ dY , �71�

where the inversion of the expression �69� is implied.

�ii� p=6 case. The 8-form field F̃8 is found from the metric �56�,

F̃8 = F̃uxy1
¯y6 du ∧ dx ∧ dy1 ∧ ¯ ∧ dy6 + F̃vxy1

¯y6 dv ∧ dx ∧ dy1 ∧ ¯ ∧ dy6, �72�

where
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F̃uxy1
¯y6

=
Qb��v�	


g10
1/2 ,

F̃vxy1
¯y6

=
Qa��u�	


g10
1/2

and we have chosen �uvzxy1
¯y6

= +1. The corresponding 7-form potential is

Ã7 =
− Q

k + �
dx ∧ dy1 ∧ ¯ ∧ dy6 �73�

which derives F̃8 through F̃8=dÃ7.
It is seen that the collision problem of these 8-form fields is automatically solved with well-

defined incoming states. The solutions, as we stated earlier are regular but our procedure does not
allow at the moment to obtain the collision problem of arbitrary n-form fields. Our procedure
limits itself only with the 2�3�-form fields and their duals. Different authors addressed themselves
to the more general problem but they obtained only perturbative and singular solutions.23,24

VII. CONCLUSIONS

In this paper we have concentrated first on two five-dimensional BHs, namely Myers-Perry
�MP� and Reissner-Nordstrom �RN�. These are both extensions of the five-dimensional Schwarzs-
child BH, MP with rotation while RN with electric charge. The inherent isometry between the BHs
and colliding plane waves �CPWs� yields regular, horizon forming solutions to the latter. By
regular, throughout the paper we imply a Cauchy-Horizon �CH� forming space-time with finite
curvature invariants. We have not attempted to extend our space-time beyond CH. Once this is
done by Chandrasekhar and Xanthopoulos,1 we may face various singularities ranging from time-
like to spacelike ones or no singularities at all. Another issue that we have not addressed ourselves
in the paper is the stability of the CH formed in the collision. There are strong arguments that
under certain perturbations the CHs of the CPWs transform into curvature singularities.25 Defi-
nitely this matter is far from being conclusive and requires further investigation. We note also that
beside the BHs the more general Weyl solutions can be employed in the generating of CPWs.26

Our particular cross-polarized dilatonic non-type-D metric with CH provides an example to be
taken into account other than the singular ones used in string theory.27,28 Our procedure is extend-
ible to higher dimensional BHs provided technical matters are overcome. One such problem is to
find representation for the n-dimensional spherical line element which admits �n−1�-dimensional
Abelian subspace. Equation �2� performs just this for the three-dimensional sphere. Although we
obtain colliding 2�3�-form fields by our procedure through, employing five-dimensional BHs, we
can dualize our forms and obtain colliding �p+1�- and �p+2�-form fields in �p+4�-dimensions.
Extension of our work to arbitrary form fields will be the next stage of our study. Presumably all
these metrics will find application in higher dimensional space-times and low energy limit of the
string theory.

APPENDIX A

The nonzero components of the metric �6� are given below

R̃uvuv = − 2a2b2k2��u���v� ,

R̃uvyz = − 2abkao
2��u���v� ,
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R̃uvzx = 2abkao��u���v� ,

R̃uyvy = abk2ao
2��u���v� ,

R̃uyvx = abk2ao
2��u���v� = R̃uxvy ,

R̃uzvy = abkao
2��u���v� = − R̃uyvz,

R̃uzvz = − abao
2��u���v� ,

R̃uzvx = abkao��u���v� = − R̃uxvz,

R̃uxvx = abk2��u���v� ,

R̃yzyz = − � 1
2 + 2ao

4���u���v� ,

R̃yzzx = 2ao
3��u���v� ,

R̃yxyx = 1
2k2��u���v� ,

R̃zxzx = �k2 − 1
2���u���v� ,

R̃uyuy = − a2��u�Y1 + a�u�cos�bv��v��Y2,

R̃vyvy = − b2��v�Y1 + b�v�cos�au��u��Y2,

R̃uxux = − 2a2��u�Y3 −
2ak

D2 �u�cos�bv��v�� ,

R̃vxvx = − 2b2��v�Y3 −
2bk

D2 �v�cos�au��u�� ,

R̃uyux = − a2ao��u�Y4 −
2aaok

D2 �u�cos�bv��v�� ,

R̃vyvx = − b2ao��v�Y4 −
2baok

D2 �v�cos�au��u�� ,

R̃uzuz = a2��u�Y5 + a�u�cos�bv��v��Y6,

R̃vzvz = b2��v�Y5 + b�v�cos�au��u��Y6,

012502-16 E. Halilsoy, M. Halilsoy, and O. Unver J. Math. Phys. 47, 012502 �2006�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

193.140.40.145 On: Fri, 22 Jan 2016 11:58:01



R̃uzux = − a2ao��u�Y7 − 2aao
�1 + 2k��

D2 �u�cos�bv��v�� ,

R̃vzvx = b2ao��v�Y7 + 2bao
�1 + 2k��

D2 �v�cos�au��u�� ,

R̃uyuz = − a2��u�Y8 − a�u�cos�bv��v��Y9,

R̃vyvz = b2��v�Y8 + b�v�cos�au��u��Y9,

where we have used the following abbreviations:

D = 1 + k� ,

Y1 =
1

D3 �4�1 + k� − ao
2� − k2��3�1 + ao

2� + k��� ,

Y2 =
k2

D3 ���k2 + 2� + k�1 + 3�2 + k�3�� ,

Y3 =
ao

2 − k2�

D3 ,

Y4 =
1

D3 �2�1 + k�� − 3k2�� ,

Y5 =
1

D3 �− 4�1 + k� − ao
2� + ��ao

2�11 + 12k2�2� + k��7 − 6k2� − 3�1 − 2k2�� ,

Y6 =
1

D3 �k + ��3 − 10ao
2� + k�2�3 − 16ao

2� + k2�3�1 − 8ao
2�� ,

Y7 =
1

D3 �2�k + �� − k��5 + 6k��� ,

Y8 =
1

D3 �4�k + ��1 − ao
2�� + k��k2� − 5 − ao

2 − 3k��1 + 2ao
2��� ,

Y9 =
1

D3 ��2 − k2��1 + 3k�� + k2�2�5 + k� − 2k2�� .

APPENDIX B

The nonzero Riemann components of the metric �26� are with the step functions inserted as
follows:
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R̃uvuv =
− 2la2b2

C
�l + ����u���v� ,

R̃uxux = −
a2��u�

C4 �3l2 + 2l� − 1� −
2a

C3�u�cos�bv��v���l + �� ,

R̃uxvx =
ab

C4��u���v��2l2 + l� − 1� ,

R̃uyuy = −
a2��u�

4C
�3l2 + 4l� + 1� + a�u�l cos�bv��v�� ,

R̃uyuz = −
a2��u��

4C
�3l2 + 4l� + 1� + a�u�cos�bv��v�� ,

R̃uyvy =
ab

4C
�1 − l2���u���v� ,

R̃uyvz =
ab�

4C
�1 − l2���u���v� ,

R̃uzuz = −
a2��u�

4C
�3l2 + 4l� + 1� + a�u�l cos�bv��v�� ,

R̃uzvz =
ab

4C
�1 − l2���u���v� ,

R̃vxvx = −
b2��v�

C4 �3l2 + 2l� − 1� −
2b

C3�v� cos�au��u���1 + �� ,

R̃vyvy = −
b2��v�

4C
�3l2 + 4l� + 1� + b�v�l cos�au��u�� ,

R̃vyvz = −
b2��v��

4C
�3l2 + 4l� + 1� − b�v�cos�au��u�� ,

R̃vzvz = −
b2��v�

4C
�3l2 + 4l� + 1� + b�v�lcos�au��u�� ,

R̃xyxy =
l�

2C4��u���v��l + �� ,

R̃xyxz =
l��

2C4 ��u���v��l + �� ,
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R̃xzxz =
l�

2C4��u���v��l + �� ,

R̃yzyz =
− ��u���v�

4C
�1 + 2l� + l2� ,

where we have used C=1+ l�.

APPENDIX C

The nonzero NP quantities for the metric �31� are

�2 =
1

8
ab��u���v�

�5 + ��

�1 + ��
5
2

,

�4 = −
3

8
a2��u�

�5 + ��

�1 + ��
5
2

+
a

4

�u�
cos bv���v��

�3 + ��
�1 + ��3/2 ,

�0 = −
3

8
b2��v�

�5 + ��

�1 + ��
5
2

+
b

4

�v�
cos au���u��

�3 + ��
�1 + ��3/2 ,

�22 =
1

16
a2��u�

�7 + ��

�1 + ��
5
2

,

�00 =
1

16
b2��v�

�7 + ��

�1 + ��
5
2

,

�02 = −
1

4

ab��u���v�

�1 + ��
3
2

,

�11 =
3

32
ab��u���v�

�1 − ��

�1 + ��
5
2

= − 3� .
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