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Nonsingular colliding wave solutions in Einstein-Maxwell-dilaton-axion theory
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The local isometry between black holes and colliding plane waves is employed to derive new colliding wave
solutions in the Einstein-Maxwell-dilaton-axion theory. The technique is applied to the asymptotically nonflat
linear dilaton black holes. We obtain two new metrics which we ldfsem the language of black holeas
Kerr and Newman-Unti-TamburinNUT) types. The NUT type turns out to be tyfewhile the Kerr type
belongs to the general class. Both types share the common feature that, instead of an all encompassing generic
singularity, Cauchy horizons develop in the process of collision.
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I. INTRODUCTION mostly to doom the interaction region of CPWs, are replaced
here by extendable Cauchy horizons. By standard solution
Chandrasekhar and Xanthopoul@X) first observed that generation techniques, new solutions in the EMDA theory
a particular metric of colliding plane wavé€PWS9 trans- ~ can be obtained, but singularity-free solutions are not guar-
forms into the trapped region between horizons of the Keranteed12,13. Finally, we wish to comment that we can add
black hole(BH) [1]. The reason for this local isometry is massless scalar fields to the already existing dilaton, axion,
simple: in that region the Kerr black hole admits two space-and em fields by using a method which we have developed
like Killing vectors, the same as required by the space ofecently[14,15.
CPWs. A coordinate transformation maps the one problem The organization of the paper is as follows. In Sec. Il we
into the other provided the boundary conditions are satisfiedeview the linear dilatonic BH and its extension to stationary
By this it is meant that continuous matching of the differentform. Section Ill covers the derivation of our CPW metrics
wave regions holds, such that no source currents arise at thighose details are tabulated in Appendixes B and C. We con-
boundaries. A special case covers naturally the Schwarzlude the paper in Section IV with a conclusion and discus-
schild BH where forr <2m (i.e., inside the horizonit ad- ~ sion.
mits two spacelike Killing vectors and the corresponding
CPW spacetime can easily be deri&d. Extension of the [l. LINEAR DILATON BLACK HOLES
Kerr BH to the Kerr-Newman case and the associated CPW
metric in Einstein-Maxwel(EM) theory was also given by
CX [3]. The same idea of local isometry has also been use
to obtain CPW solutions in Einstein-dilaton-axigEDA) 1 1
theory[4]. More recently, we have given an example of the S= —f d4x|g|1’2{—R+ 2(Vp)2+-e*(Vk)?
CPW metric in the Einstein-Maxwell-dilaton-axiggEMDA) 16m 2
theory in the limit of zero dilaton field, which also employs _
an isometry between the throat region of extremal BHs and —e‘z"’FWF‘”— kF , F*Y
CPWs[5]. This example suggests that the local isometry in

question has a larger scope than envisaged. In a separg{fiere ¢ is the dilaton,« is the (pseudoscalaraxion, and
work we showed the exact equivalence of the near honzorr;w stands for the em field tensor. The dual field tensor is

geometry of extremal BHs and CPWs in the EM the[@y . ~ o 11— 12 v . .

All BH solutions alluded to so far share the common featuredglfgfd by F# —§_|'g| Zer B'.:aﬁ in-which we choose
that they are asymptotically flat. A new type of BH in the e"™=+1. In addition to the Einstein equations

linear dilaton gravity has been introduced, on the other hand, G =—8aT )
which fails to satisfy asymptotic flatne§g—11]. Since the r r

space of CPWs also shares this latter condition, the locahe remaining EMDA field equations are

isometry between such BHs and CPW spacetimes must be

The field equations in the EMDA theory can be generated
Hom the action

@

expected in a more natural way. In addition to the linear a |9 2?F++ kFr7)]=0, 3
dilaton, these asymptotically non-flat BHs admit electromag-

netic (em) and axion fields, which enable us in this paper to 20¢=e**(Vk)?+e 2%F , Fr,

obtain new CPW metrics in the EMDA theory. From the

physics standpoint our solutions are important since they are lg| _1/23M(|9|1/2"3‘4¢9WK,V) =_ FWT:W’

free of physical singularities. Singularities, which used
in which [J stands for the covariant Laplacian. In Appendix
A we give the total energy-momentum tengoy, in terms of
*Electronic address: elif.halilsoy@emu.edu.tr both the fields and the tetrad scalars. The following diagonal
"Electronic address: mustafa.halilsoy@emu.edu.tr metric solves the EMDA equations without the axi@i:
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M) .2 ro) 2 D
d52=(1—7)dt —<1—T) dr e 2¢Fi 4 «Fli= E”kuk, 9)
2h
—Zl—r—_ d 6%+ sirf 6d ¢? 4 i i SR i At
r = ( sin“6d¢°). (4 in which a subscript implies a partial derivative. Further, a
twist potentialy is introduced through the differential rela-
The dilaton and Maxwell two-formR=dA) are tion (for details we refer to Ref9])
2¢_ 26 r- f2 .
er=ere 1_T ! Xi+vui_UUi:_ThijGJklwiyk. (10)
h
Qe??= . .
F= dr/\dt, (5)  Thus the six potentials, namely,x, u, v, ¢, andx param-
r2 etrize overall the target space apt for the EMDA theory. The

Kerr Newman-Unti-TamburingNUT) extension of the static
respectively, where., is the asymptotic value of the dilaton metric (7) is obtained accordingly as
and the masgM) and electric charg€Q) of the BH are

A —aZsir?g
M—lr dSZZT(dI—Wd(ﬁ)Z
_E + 1
2 ~ .
N -r dTr+d62+~ALn20d¢2 (12)
Q=e %= > (6) A A—a’sirte

In the string frame the dilaton is a linear function of distance,(W& note that we put a tilde oveX in order to avoid any
and in the near horizon limit this solution of EMD theory confusion with theA that we shall be using in the next sec-
transforms into tion). The dilaton, axion, andu,v) potentials are

r—b fo 24 2+ (N+acos)?
dSzZr—dtz— mdrz—ror(d02+sin20d¢2) (7) er= T ’
. =
with ro N(r—M)—aM cosé
r K= —
eZ¢:r_' M r2+(N+aco9?
0
1 r?+(N+acosf)?
F= dr/\dt. v= T '
\/Ero

The new constants andr that arise in the near horizon u= fo N(r—M)-aM COSH,
geometry are related to the mads=2M) and the electric M r

charge Q= rO/\/E) of the BH. The distinctive feature of this )

BH, as can be observed easily, is that it fails to satisfy theVherea andN are the Kerrrotation) and NUT parameters,

asymptotic flatness. respectively, while other abbreviations are as follows:
Stationary generalization of this BH in the EMDA theory _

is achieved through the sigma model representd@ol1]. A=r2—2Mr+a®—N?,

In this method the metric ansatz is taken as

(12

r
f —fw; Fzmo(Mr+N2+aNcost9),
= 1 8
9y —fw; _?hij"’fWin ) B
ro NA cosf+a(Mr +N?)sirf6
w=—— — .
The em vector potentid , is parametrized by the potentials M A—a’sire
v (electrig andu (magneti¢ in accordance with (13
1 It is observed that the diagonal met(i® is asymptotic to the
Fio=——v;, off-diagonal ong11). This implies that in the limit — o the
\/5 metric (11) goes to(7) in which the axion no longer exists.
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IIl. CPW SOLUTIONS FROM LINEAR DILATON BH

The general metric for CPWs is represented by

2 2
d_T_d%) —(YdR+Zdy?+2Wdxdy (14)

ds?=X =

whereA=1-72, §=1—¢?, and the metric functions de-
pend only on the variablesr(c). Next, by introducing null
coordinates ,v) through

r=sin(au+bv),
o=sin(au—bwv)

(a,b=cons}, (15

we observe that the line element is cast into the standard
form suitable for CPWs. The colliding wave formulation of

the problem follows by the substitutions—ué(u), v

—v0(v), whered is the Heaviside unit step function. The
problem of local isometry requires that the Kerr-NUT metric
(11) and (12) be transformed into the form of CPWSs such
thatX>0, Y=0, andZ=0 necessarily. Vanishing of metric
functions signals singularities of the coordinate type or ge-

neric curvature singularities. We observe that thgd) sec-

tor of the BH metriq(11) can consistently be mapped into the

(7,0) form provided

dr?
I(r)
N2—a2+2Mr —r

dr? do?
a2l = -
5 de )—F(I’(T))( A 5 )

(16)
is satisfied. Beside identifying = cos#é this tantamounts to

Jr dr
JNZ—aZ+2Mr —r2

=+sin 17 (17

or equivalently, by choosing one of the signs,

r=M+VN2+M?2-a?r.

We note that an analytic expression ofn terms ofr may

(18)
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By imposing appropriate scaling of the coordinai@dapting

M=ry=1) and definingg=a (or g=N) with a related pa-

rameterp=1 such that
p*—qg®=1, (20)

we obtain the following metrics of CPWs in the EMDA

theory. For completeness we consider also separately as a

third class the case of the EMD metric of CPWs correspond-

ing toa=0=N.
(1) The Kerr-type CPW metricN=0, g=a)
dr? do? q 2 A
_ - L A2
ds’=(p+1) 5 5(dy T+pdx) 7_erdx.
(21)

The dilaton, axion, and em potential one-form are

(7+p)°+0°0?
T p

e2h—

_qa-

K= -
(r+p)*+q°a?
1

V2

Now substitution of Eq(15) and insertion of the step func-
tions with the null coordinates we obtain the interactiool-
lision) region(region IV) of our metric. The incoming region
(region ll) for v <0 becomes

(r+p)*+20?

dx+qgdody|. (22

T+p

. qdx |2
ds’ =(p+sinau)| 4abdud — coau dy—m
cogau 42 -
p+sinau @3

(and a similar metric withds, with au—bu for region Ill).
Foru<0, v<0, we get the flat metri¢region )

1 2
d512=4abpdud)—6dx2—p(dy— %dx) (24)

not be available in all problems where we demand identifi-

cations such as Eq16). In a large class of problems, how-

expressed in a scaled coordinate system. The dilaton, axion,

ever, including BHs in higher dimensions, de Sitter cosmol-2nd em fields can also be easily obtained in the incoming
ogy, and quintessence problems, our prescription work&€dions. B_y. inverting th.e problem, this qurmatlor_l consti-
perfectly, implying that a corresponding CPW metric can petutes our initial data which naturally all vanish, as it should

found. The linear dilaton BH solutiofill) now transforms
into CPWs by employing the transformation

o =C0S4,

F= M+ NZT M a7,

x=t,

y=e. (19

in the flat regionu<0, v<<0. In Appendix B we give the
nonzero curvature and Ricci components of this spacetime.
The interesting property is that it is not singular. All Weyl
scalars are regular and the singularitiesratl(oc=1) are
spurious coordinate singularities. Another interesting prop-
erty is that in contrast to the Kerr metric our Kerr-type metric
(21) is not typeD. This becomes evident after we compute

q°5A

VoW, —9Wi=———
16(7+ p)6

#0. (25

124021-3



E. HALILSOY AND M. HALILSOY PHYSICAL REVIEW D 69, 124021 (2004

In the limitq—0 (p— 1), which corresponds to the CPW The coordinate transformation toward our CPW metric is
generated from the static dilaton metri@), it becomes accomplished by this condition and=cos6, x=t, andy

type D. =¢. The resulting metric is(lup to an overall constant
(2) The NUT-type CPW metricd=0,0=N+#0) rescaling
ds?= 0797 saye|- - (dxt qody)? ds?=(1 9797y
=(p+ )| ——5 —ddy _pTr( x+qody)*. =+ 1) (aot for)| =~ —5 —ddy
26
(29 1-7 )
The dilaton, axion, and Maxwell potential one-form are as gt ﬁonX ’ (33
follows:
5 whereag=r,+r_andBy=r,—r_. This is the CPW met-
Q26 p(l+79)+27 ric corresponding to a more general EMD theory without the
B T+p ' axion. In the extremal case we chogdg=0 and(after res-
caling thex coordinaté we obtain
k= L, d7? do? 5 )
p(1+7)+27 ds’=(1+17) Ny Oy - (1-nde (39
1 [p(1+7%)+27 pgoA This is precisely the limiting casepé&1,0=0) of both the
A= J2p +p dx— +p dyl. (27 Kerr(21) and NUT(26) type (a=0=N) metrics for CPWs.
P The metric(33) describes collision of waves in EMD theory,

In the incoming region®<<0) (region Il) our metric takes which is both regular and type.

the form[with u=ué(u)]
IV. CONCLUSION AND DISCUSSION

dsj = (p+sinau)[4abdud - cosaudy’] The local equivalence between the inner horizon region of

BHs and the spacetime of CPWs has been fruitful in the
(dx+qsinaudy)? (28 generation of physically significant solutions in the colliding
EMDA theory. For sample BHs we have chosen Kerr-NUT-
type BHs in a linear dilaton background. As expected, the
initial data for dilaton, axion, and em fields cannot be arbi-
trary but are dictated by the original BH solution. The free-
1 dom to eliminate the axion reduces the metric to diagonal
ds?=p(4abdud —dy?) — —dx2. (299  and it leads to a regular CPW solution in the EMD theory.
p The incoming plane wave@.e., a holographic boundary in
o ) ) ) ) the string languageconsisting of a mixture of dilaton, axion,
The initial data for our incoming fields can also easily begnq em waves extend smoothly into the interaction region.
found from Eq.(27). We present the details of this metric in \ye realize once mortas in Ref[5]) that the axion survives
Appendix C. The Weyl scalars suggest that, similar to th&yithin the second polarization context of the colliding
Kerr-type metrio21), the NUT-type metrid¢26) is also regu-  \aves. We add, finally, that our technique applies also in
lar. 7=1 (0=1) are coordinate singularities that can be re-higher dimensional BHs and colliding branes. One signaling
moved. The significant difference between the NUT and Ke”problem in higher dimensions, however, is that the plane
types is that the NUT type turns out to be typeThe Weyl  \aves may propagate in lower dimensional backgrounds. It
curvatures(Appendix Q in the interaction regionu>0v  yemains to be seen whether this feature may lead to the cre-

cosau
p+sinau

and a similar form(by au«bv) follows for the region Il
incoming metric. Folu<0, v<0 we obtain the flat metric

>0) satisfy ation of extra dimensions via colliding waves.
2__
IWe=WoWs. (30 APPENDIX A
(3) The general static EMD metric was given in Hg). The total energy-momentum tensor is given by

We wish now to obtain the corresponding CPW in this case

as well. For this purpose we identify 1 )
47TT/.LV: d),u,d)v_ Egp,v(vqs)

ar age=07 97" (31)
r—r Vr—r \ =TA T T o 1 1
(r=r_)(r—ry) A 5 +Ze4¢ . EgMV(VK)Z)
which leads to the relation 1
—2¢ @ af
2r:r++r,+(r+—r,)7’. (32) +e F,uDIFV+ 4g;LVFaBF ) (Al)
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In terms of the null tetrad formalism of Newman and Pen- 1
rose(NP), the energy-momentum is expressed as follows: K= [2(1+ 7p)+ 028+ (7+p)(7+3iqo)]
_ (r+p)°
WTMV: ¢OOnMnV+ ¢22| p,l V+ ¢02m,u,mv+ ¢20m,umv
— $on,M,— d10N,M,— b1 ,m,— ol ,m, and G;=\, and F;=—o,, Where the spin coefficients
and o are
+(ppt3A)(1,n,+n,l,) 7
+ (13— 3A)(m,m,+m,m,). (A2) 1 1ipr o i
A= +—=(p+7)—iqVd|,
APPENDIX B 2\2(r+p)¥2[ VA s
The null tetrad basis one-forms for the Kerr-type metric
(21) are 1 o1+ pr o
+—=(pr =gV,

(B3)

o -7 AL

2 \/pT( d(f) APPENDIX C
= T

NN
\/_m—l\/ 2 dx+\/6(p+ 7)

(26) are

qdx
dy— —]J.
y p+7

o

The nonzero NP Ricci and Weyl scalars are

¢ ——3A—W(A— 25)MM — dr do
. rp® van- pﬂ(ﬁijs)’
o abﬁ(u)e(v)(l 9202
02— P20— +
4 2 A
(7+p) (7+p) V2m=s(p+ rdy+i \/ dx+ qody). (C1
b26(v) q°a?
=——| 7+3p+ )
8(7+p)? (7+p) The nonzero NP scalars are
a26(u) . q%o?
= | r+3p+ : b6(u) 6
8(7+p)? Tep (+p) ¢11:—3A=wp2A,
16(7'-i—p)3
abo(u)o(v)
V,+2A=———(7+p+iqo)?
8(r+p)° abe(u)e(v)(l qza2)
= o= +
~ abé(u)6(v) Poz™ P20 4(m+p) (1+p)?
=1
- b20(v)K B b26(v) ( N q20'2
Wy =bGy(u)8(v)+ ——, P2 o TP )
B a?o(u)K
Wo=aFy(v)o(u)+—;—, (B2) a2g(u) o
o0~ |7
with 8(7+p)? (7+p)
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_abﬁ(u)ﬁ(v)

PP [(1+p7+ia)®+(pr+1)(1+ig)],
TP

b26(v)
————[—p?A+3(1+p7)(1+ig)],
4(p-|—7')3

V,=bGy(u)d(v)+

a%o(u)
———[—p?A+3(1+p7)(1+ig)],
4(p+ 7')3

\I’o: an(U)é(u) +
(C2

where the impulsive components are

PHYSICAL REVIEW D 69, 124021 (2004
GZZ)\U and F2: — Oy,

in which the spin coefficients are

1 1+pr 0'( i \/K
A= +—=(p+7)+i ,
22rtp® Na  Ne o
1 1+pr o
—— — —(p+7)+igVAl.
e &

(C3)
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