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Effect of sources on the inner horizon of black holes
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A single pulse of null dust and colliding null dust both transform a regular horizon into a spacelike singu-
larity in the space of colliding waves. The local isometry between such space-times and black holes extrapo-
lates these results to the realm of black holes. However, the inclusion of particular scalar fields instead of null
dust creates null singularities rather than spacelike ones on the inner horizons of black holes.
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[. INTRODUCTION metric to the Kerr BH. CX’s solution supports our conclu-
sion applied to the KN BH, because the presence of charge is
In this paper we show, witrexact solutions, that the trivial. We point out that the introduction of coupling in our
Cauchy horizon(CH) has an indeterminate character with case is entirely different from the one in CX.
respect to different perturbing potentials and in some cases The second is a scalar field in between the horizons. We
the CH can be Space”ke Singu|ar and in others it can be nuﬁhOW that such a field effects the inner horizon differently
singular. The first signs of this sort of indeterminacy of char-from the above case and the singularity it creates turns out to
acter for the CH were seen in the outcome of Chandrasekh&e null. In other words our two sorts of coupling show the
and Xanthopou|0$cx) [1] and Yurtsever’iZ] ana|ysi3 of inner horizon of a BH does not have a Unique character in its
the stability of the horizotfor quasiregular singularifyof the ~ singularity structure and this character depends on the per-
Bell-SzekeregBS) [3] space-time. These authors used per.turbing potential. The instabilities of these CHs occurring in
turbation methods in their work. In Ref4] it has been CPW space-times and those of corresponding BH space-
shown that there is a similar inner horizon instability for times have dual character.
black holes(BHs) and the horizons change to spacelike sin- We also make some comments about the Helliwell-
gularities. On the other hand, d&] found the horizon of a Konkowski (HK) [11] conjecture. HK conjecture was

Kerr BH changes to a null singularity. All of these works thought to enable us to predict the instability of a horizon
used perturbation methods. and the sort of singularity it changes to. However, our con-

This lack of consensus for the instability of colliding clusion that inner horizons have dual character shows that
plane wavesiCPW) and BH horizons has attracted much HK conjecture cannot uniquely determine the sort of the out-
interest and effort. Burkp6,7] confirmed Ori’s findings of a  coming singularity, hence it should be used with caution.

regular horizon changing to a null singularity when he ap- This paper is organized as follows. In Sec. Il we review
plied a scalar field to a Reissner-NordsiréRN) BH. His ~ the connection between the CX and the KN space-times. In

work was done using numerical methods. Sec. lll we consider null dust as a test field in the CX space-
As an alternative to Burko’s approach we have app“ed théime. Section IV follows with an exact back-reaction solution
local isometry between CPW and the region between the twép the foregoing section. Section V exposes the role of scalar
(event and Cauchyhorizons of BHs. This enables us to fields leading to the null singularities in the KN BH space-
couple scalar and other fields to CPWSs, where there are anime. We conclude the paper with a discussion in Sec. VI.
lytically tractable solutions, and then to transform our results
to BH cases. This approach was first introduced by Yurtsever Il. CHANDRASEKHAR-XANTHOPOULOS
[8]. Yurtsever concluded that the instabilities of the CHs in AND KERR-NEWMAN METRICS
Kerr and RN BHs turns the CH to a spacelike curvature
singularity. Yurtsever’'s comments were indications of certain
possibilities but they remained unsupported.
We exploit the isometry analogy and we consider two
sorts of sources in the CX CPY@] space-time. The first is d? do? X v
null propagating dustwith their mutual collision. We con- dSZZX(T_ T) —Aévdyz— i(dx—qZGdy)z,
centrate on the CX space-time because it has a nonsingular o)
horizon and it is locally isometric to the Kerr-NewmégN)

BH, enabling us to transform through isometry to the BH\yhere the coordinatesr(o) are given in terms of the null

CX have found a colliding wave solution in the Einstein-
Maxwell (EM) theory which is locally isometric to the KN
BH solution[9]. CX metric is given by

space-time. We find that propagatidor collision of null coordinates ,v) by
dusts in the CX space-time convert the inner horizon to a
spacelike singularity. This conclusion is supported by CX r=uv1—v2+vJ1—U2

[10] for the Einstein-vacuum problem which is locally iso-

o=U\1-v%—v1—-U?
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The metric functions are
1
X=—[(1- ap7)?+ a?q?o?],
o

Y=1—p27'2—q20'2,

qé 1+a’—2apr

——— 2
pa2 1_p272_q20_2 ( )

02e=

in which the constants, p, andg must satisfy

o<a<l,

pP+g’=1. (3)

The metric(1) transforms into the Boyer-Lindquist form of

the KN, if the following transformation is used:

m-—r
t=max, y=p¢, 7=-——=——, 0=C0SH
m2_a,2_Q
4
with
ym?—a?—Q? a
- - < - = 20421 02

so thatQ?=(1— «?)m? holds. Note thatx=1 removes the

charge and reduces the problem from KN to Kerr and in

particular the limita=0 yields the Reissner-Mdstran case.
With these substitutions the line elemém} may be written
in the form

a’m?ds?=(1-p 2w)dt?
—sir? 9[A+w(1+ap ?sir? 6)]d¢?
—2awp ?sirf dtdg—p?(A~1dr2+de?)
(6)
with the standard notation
A=r2—2mr+a?+Q%=(r—r_)(r—r,),
p?=r2+a’cog 4,

w=2mr—Q?,

in which a and Q stand, respectively, for the constants of

rotation and electric charge. Note that here is different
from theA of the CX metric. The roots &k, r,, andr_ are
known as the event and Caucfigner horizon, respectively.
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equivalently null fields moving in the isometric region of the
KN space-time. Such null dust@and the following exact
solution suffice to expose the nonlinear effect of the back-
ground as well as the disturbance of the backgrdiued the
back reaction This is provided by appealing to the null
geodesics of the KN and transforming back via Eg$.and

(5) to the CX metric. For simplicity we choose=0 in CX

(or #=m/2 in KN) to obtain the first integrals of the null
geodesics as

. E(r’+a?)

i ¢=—3 '-E (7)

in the KN geometry, and the corresponding first integrals of
the CX geometry are

- E - gE

™ map’ Y= map(l—rz),

. E

X=— —m3a3p 1- {m?[(1—ap7)?
+(1-a®p?)]-Q%. (8)

In both casef is the energy constant and dot represents the
appropriate parameter for the null geodesics. We insert two
null dust congruences with finite densitipsand p,, propa-
gating along the null vectors, andn,, . In other words the
total test energy-momentum tensor is

TMV:p|IMIV+pnn,unV' (9)

where

[(1-apr)?+a®d?] q )
le=|1— ol
( a?p(1-17) 7

nﬂz(ly[(l—apr)zwzqz] g

azp(l— 72) 1—72
(10)
in which we have scaled
£ =1 11
map L (11

The nontrivial scalafT,, T#” of the criss-crossing null test
dust is given by

(1—apn)?

T TH'=8pipn———
M plpna4(1_7_2)2

(12

Therefore the colliding wave solution due to CX is locally Which diverges forr—1. This corresponds to a divergence

isometric to the KN metric in between the two horizons.

IIl. TEST NULL DUST IN THE CX SPACETIME

for r—r_ in the KN black hole. As a prediction of the HK

conjecture any exact back-reaction solution that is imitated
by the foregoing test dust must destroy the horizon. In the
next section we present a new exact back-reaction solution

We consider now two null test dusts moving in oppositewhich represents a solution of colliding Einstein-Maxwell-
directions in the interaction region of the CX metric or null dust that exhibits a spacelike singularity fer-1. The
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new solution incorporates a regular conformal fadiguch The collision of these shells in the background of CX
that it does not diverge as—1) and therefore leaves all space-time modifies the background in the sense that the
Weyl scalars invariant and regular. curvature scalar, which was zero in the case of CX is now
nonzero and becomes divergent as we approach the horizon.
IV. A NEW EXACT BACK-REACTION SOLUTION The method employed here should not be confused with the

characteristic initial value problem. Extending the solution to

Our aim now is to present an exact solution which in-the incoming regions to see the waves that participate in the
volves collision of Einstein-Maxwell fields coupled with null collision is possible.
shells. The relations between the mathematical theory of To find the wave profiles in the incoming regions for ex-
BHs and of colliding waves allows us to find exact solutionsample in region Il (>0y=<0), we substitutey =0 in the
which describe the region where two plane waves interaciobtained metric function, U, V, andW, and using Ricci
Then, by a suitable extension it becomes possible to give and curvature scalars given in Appendix A, we obtain
complete picture of the incoming space-time before the col-
lision. In this section, we have used this fact to obtain a new a?(1—a?)
solution to the EM fields coupled with null shells. The shells 20 = —p
are added as a conformal factor and our method can be sum- (1=au)
marized as follows. _

Let ds represent the CX metril) which is isometric to ¥4=Vaex,
the KN. Then, the new metricl 2]

o(u)+ azaoé(u),

D o= Pgp=P1;=A=0. (15
d52=—ds§. (13) Similarly in region Ill (v>0,u<0), the nonvanishing Ricci
2 and Weyl scalars are
Verification of the metriq13), follows from the substitution _a(1-a?) 2
. . o . 2 00——0(U)+a ,305(0),
of the following into the Ricci scalar&ee the Appendix of (1—av)*
Ref.[13])
Vo=(Vo)cx,
M=My+2In g, 0= (Wolex
© o= P=P1;=A=0. (16)
U=Uy+2Ing,
The continuity of the metric functions across the null bound-
V=V,, ariesu=0,0 =0 makes these scalars continuous across the
null boundary too.
W=W,, (14 As we can see from the incoming waves, in addition to

gravitational and electromagnetic fields a matsdrel) field

where Mo,Uy,Vo,W,) correspond to the metric functions represented by_ an impulsive component is coupled to the
of the CX solution andé=1+ agud(u)+ Bev 6(v), with system. (_Zhoosmg_yoz,BO:O removes the mat_ter field and
(ag,Bo) positive constants and standing for the step func- the resultlng_solutpn representeq by the fT‘e@ﬁ) reduces
tion. Equation(13) represents colliding Einstein-Maxwell to CX solution. S|r_1cg the m(.et.r|¢13} satisfies all these
fields coupled with null shells. This metric has some advan_boun'dary anq continuity conditions .'t. must be the correct
tages over the back-reaction solution of CX. First, whilePhysical solutions to the present collision problem.

Ricci components and scalar curvatuifeany) are affected As a second advantage we point out that the metric

by inclusion of the conformal factor the Weyl scalars remain
invariant (becauseM —U=M,— U, is the combination that
arises in those scalars.e., they are finite on the horizon. It

ds?= (14 agu+ Bov) 2(2du dv—dx?—dy?) (17

represents the de Sitter space with scalar curvature and cos-

turns out as shown in Appendlx A exphcmy that the SCal""r_mologic::ll constant as the only nonzero physical quantities
curvature and some Ricci components diverge on the hort13] The transformation

zon. Thus it is misleading to judge the behavior of a horizon
by looking only at the Weyl scalars. Our approach gives the 1+ aou+ B =€M,
clue: it is more reliable to investigate the behavior of the
scalar curvature and the Ricci components. In this sense the
solution adopted in Eq.13) as the exact version of the test
null dust is strongefand simpler than the implication of the  tgkes this metric into
source added CX solutidi®].
The acceptability of the inclusion of this conformal factor ds?=dt?—e M (dx*+ dy?+dZ) (19
is shown by checking the null and dominant energy condi-
tions of the new solution. The details are given in Appendixwhich is identified as the de Sitter metric. Similarly by the
B. choice of the conformal factor and transformation

aou_Bol):)\Z (18)
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1+ agu— B =\Z, whereM is any EM solution and
U+ Bou =\t (20) TU,=2¢g,
our metric becomes I,U,=2¢2. (26)
dszzé(dtz—dxz—dyz—dzz), (21) ;I;]k; integrability conditions for the latter equations imply

which is the anti—de Sitter metric. In both cases the constant (U, =, U)(2¢y,—Uyd,—U,¢,)=0. (27
\ is defined byh=2ayBy in which @y>0,8,>0. Now
instead of the flat metric by substituting the CX metig it
can be interpreted as colliding Einstein-Maxwell fields in a
de Sitter background. This is the alternative interpretation Py $2

that our metric admits when we remove the step functions in =2 _“du+2f “Ydv. (28
the conformal factor. By this interpretatidiand of course Uy U,

through the isometpyit says that a KN BH endowed with a . .
de Sitter background in between the horizons gives rise to g\s_an EM solution, we use thg metr(CL.) obtained by CX
divergent scalar curvature besides some of the Ricci’s. IHVh'Ch was shqwn to pe locally isometric to the KN BH that
turn according the HK conjecture such a horizon convertd/S€ST:o coordinates instead af,v. .

into a singularity. This singularity is necessarily spacelike In_t_erms of 7,0 th? scalar field equatio24) and the
since a normal vector to the horizon tumns out to be timelike SONdition(26) are equivalent to
As a final advantage we recall that in the CX metric the null

Now any solution of the scalar equatid@4) helps us to
construct the extra metric functidn by the line integral

_ 2 B =
fields are added to the vacuum problem whereas in our case (A=) ] 1(170%) ¢0lo=0 (29)
we make the addition to the electrovacuum problem. Such and
extension was a missing link in the study of CX.
202 ,=2A68 2+T—(s 2_2
V. NULL SINGULARITIES IN THE PRESENCE (=o', Tt N Pem200:0,

OF SCALAR FIELDS

Recently, we have shown the existence of null singulari- P N , OA
ties in the CPW space-time for a class of linearly polarized (o= )= ZAS( TPt 7¢7_27¢7¢”)’
metrics[14]. Our main objective in this section is to inves- (30
tigate the singularity structure of the CHs that exist in
charged spinning BHs, namely, KN BH in the presence offespectively. For the present problem we choose the scalar
scalar fields. This is achieved through the isometry existindi€ld ¢ as
between CPW space-times and BH space-times.

The space-time line element we adopted to describe the b= ﬁln 1+7 an Y 31)
collision of plane waves with nonparallel polarization is 2 1-r 2 1-0
given by

in which k; andk, are constant parameters. Using E§S),
ds’=2e Mdudv—e Y[(e¥dx*+e Vdy?)coshw the metric functionl’, due to the scalar field is found as

—2 sinhW dx dyj. (22 eF:A*kisfkg(7-+g)(kﬁkz)z(q-—g)(krkz)z, (32)

The complete set of partial differential equations for the met- . . - . .
fic functions is given elsewhergl5]. The u,u dependent The new metric that describes the collision of EMS fields is

massless scalar field equation expressed by

dr? do? X Y
9,(9""\g¢,)=0 (23 —Xe | ——2 | = A= dy?—< (dx— 2
(9%"Vgd ds’=Xe A 5| A0 dy 5 (dx—gzedy)?,
reads as (33
2¢u,=Uyd, +U, by, (24)  WwhereX, Y, A, &, andqy, are given in Eq.(2). It is well

known that the CX solution is a regular solution. However
where ¢ is the scalar field. Given any EM solution we can coupling a.scalar.fielctﬁ tran;forms the CH into a scalar
generate an Einstein-Maxwell-scaldgMS) solution in ac-  curvature singularitySCS. This can be seen from the scalar

cordance with the shift. -
~ M=
M—M+T, (25) AT = Aox

(AK5— 5k3) (34)
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and asT—1 it becomes divergent; hence it is a SCS. TheThe curvature scalar due to this scalar field is
interesting property of this new solution is that the type of

the singularity is null rather than spacelike. This can be jus- a2e’
tified as follows 4nTh=——(725-a?A). (43

The singular(or horizon surface is described by

S(r)=1-7 (85  The metric functionl’ and curvature scalar remains regular
) ) . as the horizon is approached. The Weyl scalars are also
(in which we have assumed an equatorial plane, naneely, checked and found that as—1, the space-time remains

=0, in the transformed BHs space-tim&Ve compute the regular. This is another justification of the indeterminate
normal vector to this surface character of CHs.

(1-2)e" asz(k§+k§)(1_ 72)1—k§

VS 2_ 7'7'82:
(V9"=07S; X (1-par)?

VI. DISCUSSION

(36) It is known that the relations between the mathematical
theory of BHs and that of CPW space-time requires that the
Since we are interested in the limit as—1, for k interior of every standard BH solution is locally isometric to
<1, (VS)?=0 which indicates a null property. The blow-up the interaction region of CPW space-time.
of the curvature scalar provides a generic null singularity on In this paper, we have used this fact to investigate the
this surface. The existing isometry can provide us with a nullsingularity structure of the charged spinning BH namely the

singularity in the corresponding BH problem. KN. In our analysis, we have coupled matteull shell§ and
Using the transformations given in Eggl) and (5) the  scalar fields to the geometry of CPW space-time and using
metric (33) transforms into the isometry, we transformed the resulting metric to the BH
- o ) geometry and investigated the effect of these fields on the
a’m? ds’=(1-p ?w)dt CH. Since our analysis is based on a completely analytic

exact solutions, we believe that it reflects the real character

o 2 —2qj 2
Sin? 6[A+w(1+a%p 2 sin’ 6)]d¢ of the Killing CHs of CPW and BH space-times.

—2awp ?sir? 6dt de First, a pair of test null dust is inserted in the CX colliding
P, 5 wave space-time. Since the energy-momentum scalar di-
—pe (A Tdro+ded), (37 verges then we conclude that the CH is unstable and an exact

. ) ) . back reaction solution must yield a scalar curvature singular-
wherep, , andA are given in Eq(6). This metric repre- iy The exact solution which we present involves a regular
sents the KN BH coupled with the particular scalar field conformal factor as a source so that all Weyl scalars remain

which reads in the equatorial plane finite while some Ricci's(and scalar curvatuyediverge on
the horizon. Inclusion of the conformal factor is equivalent
¢=ﬁln r+—r>. (39) energetically to the de Sitter background and through the
2 \r—r_ isometry it makes it possible for us to embed a BH in a de
Sitter (or anti—de Sitter background. Although we have in-
In the same plane we have serted a matter field as a regular conformal factor, the slight-
s 5 est effect of the sourcéhrough the scalar curvature or cos-
- _el m-r 2k rko) mological constantof such a background suffices to destroy
e=[(ry=—r)(r—=r)] " \/mz:QZ (39  the inner horizon and converts it into a spacelike curvature

singularity. Second, we have inserted scalar fields to the ge-
ometry of CX CPW solution. Inclusion of particular scalar
fields was shown to create null singularities rather than
S(r)=r—r_ (40) spacelike ones both in the space of _colliding waves and that
of corresponding BH space-times. With these particular exact
results in ¥'S)2=0 asr—r_. This result retains the null solutions, we may conclude that the Kiling CH of CPW

singularity formation on the corresponding BH problem. space-times and the in_ner horizon of_ BHs .have dual charac-
Note that, the scalar field in E€31) is singular asr—1. ter when they are subjected to the inclusion of matter and

Let us now choose the following scalar field which is regular,Sc@lar fields. It remains an open question whether this null
in the limit 7— 1 singularity is an intermediate stage between the horizon and

spacelike curvature singularity.

Similar analysis on the singular surface

¢=ag70, (41

. . . APPENDIX A: THE RICCI AND CURVATURE SCALARS
whereag is any constant parameter. The metric functiors
obtained as The nonzero Ricci and curvature scalars of the collision
of Einstein-Maxwell fields coupled with null shellén the
el = gol 7+ o (1=7)] (42)  same null tetrad employed by @Xre found as follows:
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eM 1. Null energy condition (NEC)
(DZZZ((DZZ)CWL“OE[&(UH OIM, ], (AL) The required condition for the NEC is

oM T,.k*k"=0, (B1)
q)ooz(q)OO)CXJr’BOE[ﬁ(UH 0(v)Mu], A2} herek® is a null vector tangent to the null geodesics. For

the sake of simplicity, we consider the diagonal case of the
eM new solution(13), that represents null shells in the RN ge-
<I>02=(<Doz)cx—ﬁ{ao[vv coshW—iW,]6(u) ometry. The null tetrads are
+ B[V, coshW—iW,]6(v)}, (A3) N @
I,lL_ = [ 1010 [l
\/E l-art’'l-ar
M
b= —————[Bout+agr]b(u)b(v),
T (1t p?) P nﬂ:i( £ = ,o,o),
(A4) \/E l-ar’ l1—-ar
eM [EOLH'O(OU] 1 mﬂ:_i(oo_(l_aﬂ fa )
AT T2g | (1o pr) TR0l WO). V2 aVh 51— ar)
(A5)
—, 1 0.0 (1—a7) i
H m = = Iy ' .
In these expressionsb(,)cx, (Pog)cx, and @g,)cx refer 2 aA Jo(1—a7)
to the CX quantities which are all finite on the horizon. Simi- (B2)

larly all Weyl scalars are same as in the CX metric, namely
regular on the horizon. The other functiolls V, andW are |t is found that
given by the following expressions.
Tﬂyl Y= Cboo,

Y
eV coshW= ——, T,,n*n"=0,,, (B3)
X\/A_5 o 22
where
XJAS Yo
e—VcoshW=T—l— \/qz_e& © a2(1—a2)+aeM[5( ML)
X = u L O(u) ],
0 o1—ant @
A PLAC LY N LT
1—U2 1_1)2 22— 2(1-&7’)4 ¢ [ (U) u (U)],
(B4)
¢=1+a0u0(u)+,8000(v). (AG)

which are positive and therefore satisfy NEC.

Since (1-u?—v?)=\1- 71— ¢? for ¢=0 and7—1 (on
the horizon the divergence of the scalar curvatuke and
®,, is clearly manifest. A detailed calculation reveals that The DEC is defined as

®, is also divergent whileb ;o and®d,, remain finite on the

inner horizon. Let us note that suppressing one of the incom- TO=|T2Y, (BS)
ing shells but retaining the other, still the above components . . )
diverge. This amounts to colliding Einstein-Maxwell wave I-€., for eacha,b, in the orthonormal basis the energy domi-
from one side with an Einstein-Maxwell-null shell from the nates the other componehy,. The orthonormal vectors for
other side. However this form can not be interpreted as a dé&e diagonal case of the new solution are

Sitter background in the corresponding black-hole problem.

2. Dominant energy condition(DEC)

el = ( %,o,o,o) , (B6)

APPENDIX B: ENERGY CONDITIONS

It should be noted that the inclusion of the matter field is
acceptable if it satisfies some physical conditions such as the e\ =| 0~ -—,00],
null and dominant energy conditions. n N
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1-ar 1
ef‘z): O,O,—\/K,O , T11:§[¢00+¢22_2(¢11+3A)]1
o
. (ooo “ ) 1
ef5=10,0,0 ——].
®) Jo(1—ar) Tzzzﬂ[‘boo"‘@ll_:‘m]-
The nonzero energy-momentum tensors in orthonormal
frames are
1
1 Tag= 7 —[P11= Pop=3A],
Too= g[q)oo‘F Dyt 2(P 11 +3A)], (B7) m
To—T :i[q) ~ Dy where the expressions fdryy, ®,,, @11, Py, andA are
o1 10T gt 22 ood given in Appendix A.
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