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Effect of sources on the inner horizon of black holes
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A single pulse of null dust and colliding null dust both transform a regular horizon into a spacelike singu-
larity in the space of colliding waves. The local isometry between such space-times and black holes extrapo-
lates these results to the realm of black holes. However, the inclusion of particular scalar fields instead of null
dust creates null singularities rather than spacelike ones on the inner horizons of black holes.
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I. INTRODUCTION

In this paper we show, withexact solutions, that the
Cauchy horizon~CH! has an indeterminate character wi
respect to different perturbing potentials and in some ca
the CH can be spacelike singular and in others it can be
singular. The first signs of this sort of indeterminacy of ch
acter for the CH were seen in the outcome of Chandrase
and Xanthopoulos~CX! @1# and Yurtsever’s@2# analysis of
the stability of the horizon~or quasiregular singularity! of the
Bell-Szekeres~BS! @3# space-time. These authors used p
turbation methods in their work. In Ref.@4# it has been
shown that there is a similar inner horizon instability f
black holes~BHs! and the horizons change to spacelike s
gularities. On the other hand, Ori@5# found the horizon of a
Kerr BH changes to a null singularity. All of these work
used perturbation methods.

This lack of consensus for the instability of collidin
plane waves~CPW! and BH horizons has attracted muc
interest and effort. Burko@6,7# confirmed Ori’s findings of a
regular horizon changing to a null singularity when he a
plied a scalar field to a Reissner-Nordstro¨m ~RN! BH. His
work was done using numerical methods.

As an alternative to Burko’s approach we have applied
local isometry between CPW and the region between the
~event and Cauchy! horizons of BHs. This enables us t
couple scalar and other fields to CPWs, where there are
lytically tractable solutions, and then to transform our resu
to BH cases. This approach was first introduced by Yurtse
@8#. Yurtsever concluded that the instabilities of the CHs
Kerr and RN BHs turns the CH to a spacelike curvatu
singularity. Yurtsever’s comments were indications of cert
possibilities but they remained unsupported.

We exploit the isometry analogy and we consider t
sorts of sources in the CX CPW@9# space-time. The first is
null propagating dust~with their mutual collision!. We con-
centrate on the CX space-time because it has a nonsing
horizon and it is locally isometric to the Kerr-Newman~KN!
BH, enabling us to transform through isometry to the B
space-time. We find that propagation~or collision! of null
dusts in the CX space-time convert the inner horizon t
spacelike singularity. This conclusion is supported by C
@10# for the Einstein-vacuum problem which is locally is
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metric to the Kerr BH. CX’s solution supports our concl
sion applied to the KN BH, because the presence of charg
trivial. We point out that the introduction of coupling in ou
case is entirely different from the one in CX.

The second is a scalar field in between the horizons.
show that such a field effects the inner horizon differen
from the above case and the singularity it creates turns ou
be null. In other words our two sorts of coupling show t
inner horizon of a BH does not have a unique character in
singularity structure and this character depends on the
turbing potential. The instabilities of these CHs occurring
CPW space-times and those of corresponding BH spa
times have dual character.

We also make some comments about the Helliwe
Konkowski ~HK! @11# conjecture. HK conjecture wa
thought to enable us to predict the instability of a horiz
and the sort of singularity it changes to. However, our co
clusion that inner horizons have dual character shows
HK conjecture cannot uniquely determine the sort of the o
coming singularity, hence it should be used with caution.

This paper is organized as follows. In Sec. II we revie
the connection between the CX and the KN space-times
Sec. III we consider null dust as a test field in the CX spa
time. Section IV follows with an exact back-reaction solutio
to the foregoing section. Section V exposes the role of sc
fields leading to the null singularities in the KN BH spac
time. We conclude the paper with a discussion in Sec. V

II. CHANDRASEKHAR-XANTHOPOULOS
AND KERR-NEWMAN METRICS

CX have found a colliding wave solution in the Einstei
Maxwell ~EM! theory which is locally isometric to the KN
BH solution @9#. CX metric is given by

ds25XS dt2

D
2

ds2

d D2Dd
X

Y
dy22

Y

X
~dx2q2e dy!2,

~1!

where the coordinates (t,s) are given in terms of the nul
coordinates (u,v) by

t5uA12v21vA12u2,

s5uA12v22vA12u2,

andD512t2 ,d512s2.
©2001 The American Physical Society23-1
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The metric functions are

X5
1

a2
@~12apt!21a2q2s2#,

Y512p2t22q2s2,

q2e52
qd

pa2

11a222apt

12p2t22q2s2
~2!

in which the constantsa, p, andq must satisfy

0,a<1,

p21q251. ~3!

The metric~1! transforms into the Boyer-Lindquist form o
the KN, if the following transformation is used:

t5max, y5pf, t5
m2r

Am22a22Q2
, s5cosu

~4!

with

p5
Am22a22Q2

ma
, q52

a

ma
, ~m2.a21Q2! ~5!

so thatQ25(12a2)m2 holds. Note thata51 removes the
charge and reduces the problem from KN to Kerr and
particular the limita50 yields the Reissner-No¨rdström case.
With these substitutions the line element~1! may be written
in the form

a2m2 ds25~12r22v!dt2

2sin2 u@D1v~11a2r22 sin2 u!#df2

22avr22 sin2 u dt df2r2~D21 dr21du2!

~6!

with the standard notation

D5r 222mr1a21Q2[~r 2r 2!~r 2r 1!,

r25r 21a2 cos2 u,

v52mr2Q2,

in which a and Q stand, respectively, for the constants
rotation and electric charge. Note thatD here is different
from theD of the CX metric. The roots ofD, r 1, andr 2 are
known as the event and Cauchy~inner! horizon, respectively.
Therefore the colliding wave solution due to CX is loca
isometric to the KN metric in between the two horizons.

III. TEST NULL DUST IN THE CX SPACETIME

We consider now two null test dusts moving in oppos
directions in the interaction region of the CX metric
08402
n

equivalently null fields moving in the isometric region of th
KN space-time. Such null dusts~and the following exact
solution! suffice to expose the nonlinear effect of the bac
ground as well as the disturbance of the background~i.e., the
back reaction!. This is provided by appealing to the nu
geodesics of the KN and transforming back via Eqs.~4! and
~5! to the CX metric. For simplicity we chooses50 in CX
~or u5p/2 in KN! to obtain the first integrals of the nu
geodesics as

ṫ5
E~r 21a2!

D
, ḟ52

aE

D
, ṙ 5E ~7!

in the KN geometry, and the corresponding first integrals
the CX geometry are

ṫ5
E

map
, ẏ5

qE

map~12t2!
,

ẋ52
E

m3a3p2~12t2!
$m2@~12apt!2

1~12a2p2!#2Q2%. ~8!

In both casesE is the energy constant and dot represents
appropriate parameter for the null geodesics. We insert
null dust congruences with finite densitiesr l andrn propa-
gating along the null vectorsl m andnm . In other words the
total test energy-momentum tensor is

Tmn5r l l ml n1rnnmnn , ~9!

where

l m5S 1,2
@~12apt!21a2q2#

a2p~12t2!
,

q

12t2
,0D ,

nm5S 1,
@~12apt!21a2q2#

a2p~12t2!
,2

q

12t2
,0D

~10!

in which we have scaled

E

map
51. ~11!

The nontrivial scalarTmnTmn of the criss-crossing null tes
dust is given by

TmnTmn58r lrn

~12apt!4

a4~12t2!2
~12!

which diverges fort→1. This corresponds to a divergenc
for r→r 2 in the KN black hole. As a prediction of the HK
conjecture any exact back-reaction solution that is imita
by the foregoing test dust must destroy the horizon. In
next section we present a new exact back-reaction solu
which represents a solution of colliding Einstein-Maxwe
null dust that exhibits a spacelike singularity fort→1. The
3-2
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EFFECT OF SOURCES ON THE INNER HORIZON OF . . . PHYSICAL REVIEW D 64 084023
new solution incorporates a regular conformal factor~such
that it does not diverge ast→1) and therefore leaves a
Weyl scalars invariant and regular.

IV. A NEW EXACT BACK-REACTION SOLUTION

Our aim now is to present an exact solution which
volves collision of Einstein-Maxwell fields coupled with nu
shells. The relations between the mathematical theory
BHs and of colliding waves allows us to find exact solutio
which describe the region where two plane waves inter
Then, by a suitable extension it becomes possible to giv
complete picture of the incoming space-time before the c
lision. In this section, we have used this fact to obtain a n
solution to the EM fields coupled with null shells. The she
are added as a conformal factor and our method can be s
marized as follows.

Let ds0
2 represent the CX metric~1! which is isometric to

the KN. Then, the new metric@12#

ds25
1

f2
ds0

2 . ~13!

Verification of the metric~13!, follows from the substitution
of the following into the Ricci scalars~see the Appendix of
Ref. @13#!

M5M012 lnf,

U5U012 lnf,

V5V0 ,

W5W0 , ~14!

where (M0 ,U0 ,V0 ,W0) correspond to the metric function
of the CX solution andf511a0uu(u)1b0vu(v), with
(a0 ,b0) positive constants andu standing for the step func
tion. Equation ~13! represents colliding Einstein-Maxwe
fields coupled with null shells. This metric has some adv
tages over the back-reaction solution of CX. First, wh
Ricci components and scalar curvature~if any! are affected
by inclusion of the conformal factor the Weyl scalars rem
invariant ~becauseM2U5M02U0 is the combination tha
arises in those scalars!, i.e., they are finite on the horizon.
turns out as shown in Appendix A explicitly that the sca
curvature and some Ricci components diverge on the h
zon. Thus it is misleading to judge the behavior of a horiz
by looking only at the Weyl scalars. Our approach gives
clue: it is more reliable to investigate the behavior of t
scalar curvature and the Ricci components. In this sense
solution adopted in Eq.~13! as the exact version of the te
null dust is stronger~and simpler! than the implication of the
source added CX solution@9#.

The acceptability of the inclusion of this conformal fact
is shown by checking the null and dominant energy con
tions of the new solution. The details are given in Appen
B.
08402
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The collision of these shells in the background of C
space-time modifies the background in the sense that
curvature scalar, which was zero in the case of CX is n
nonzero and becomes divergent as we approach the hor
The method employed here should not be confused with
characteristic initial value problem. Extending the solution
the incoming regions to see the waves that participate in
collision is possible.

To find the wave profiles in the incoming regions for e
ample in region II (u.0,v<0), we substitutev50 in the
obtained metric functionsM, U, V, andW, and using Ricci
and curvature scalars given in Appendix A, we obtain

2F225
a2~12a2!

~12au!4
u~u!1a2a0d~u!,

C45~C4!CX ,

F005F025F115L50. ~15!

Similarly in region III (v.0,u<0), the nonvanishing Ricc
and Weyl scalars are

2F005
a2~12a2!

~12av !4
u~v !1a2b0d~v !,

C05~C0!CX ,

F225F025F115L50. ~16!

The continuity of the metric functions across the null boun
aries u50,v50 makes these scalars continuous across
null boundary too.

As we can see from the incoming waves, in addition
gravitational and electromagnetic fields a matter~shell! field
represented by an impulsive component is coupled to
system. Choosinga05b050 removes the matter field an
the resulting solution represented by the metric~13! reduces
to CX solution. Since the metric~13! satisfies all these
boundary and continuity conditions it must be the corr
physical solutions to the present collision problem.

As a second advantage we point out that the metric

ds25~11a0u1b0v !22~2 du dv2dx22dy2! ~17!

represents the de Sitter space with scalar curvature and
mological constant as the only nonzero physical quanti
@13#. The transformation

11a0u1b0v5elt,

a0u2b0v5lz ~18!

takes this metric into

ds25dt22e22lt~dx21dy21dz2! ~19!

which is identified as the de Sitter metric. Similarly by th
choice of the conformal factor and transformation
3-3
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11a0u2b0v5lz,

a0u1b0v5lt, ~20!

our metric becomes

ds25
1

l2z2
~dt22dx22dy22dz2!, ~21!

which is the anti–de Sitter metric. In both cases the cons
l is defined byl5A2a0b0 in which a0.0,b0.0. Now
instead of the flat metric by substituting the CX metric~1! it
can be interpreted as colliding Einstein-Maxwell fields in
de Sitter background. This is the alternative interpretat
that our metric admits when we remove the step function
the conformal factor. By this interpretation~and of course
through the isometry! it says that a KN BH endowed with
de Sitter background in between the horizons gives rise
divergent scalar curvature besides some of the Ricci’s
turn according the HK conjecture such a horizon conve
into a singularity. This singularity is necessarily spacel
since a normal vector to the horizon turns out to be timeli
As a final advantage we recall that in the CX metric the n
fields are added to the vacuum problem whereas in our
we make the addition to the electrovacuum problem. Such
extension was a missing link in the study of CX.

V. NULL SINGULARITIES IN THE PRESENCE
OF SCALAR FIELDS

Recently, we have shown the existence of null singula
ties in the CPW space-time for a class of linearly polariz
metrics@14#. Our main objective in this section is to inve
tigate the singularity structure of the CHs that exist
charged spinning BHs, namely, KN BH in the presence
scalar fields. This is achieved through the isometry exist
between CPW space-times and BH space-times.

The space-time line element we adopted to describe
collision of plane waves with nonparallel polarization
given by

ds252e2M du dv2e2U@~eV dx21e2V dy2!coshW

22 sinhW dx dy#. ~22!

The complete set of partial differential equations for the m
ric functions is given elsewhere@15#. The u,v dependent
massless scalar field equation

]m~gmnAgfn!50 ~23!

reads as

2fuv5Uufv1Uvfu , ~24!

wheref is the scalar field. Given any EM solution we ca
generate an Einstein-Maxwell-scalar~EMS! solution in ac-
cordance with the shift.

M→M̃1G, ~25!
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whereM̃ is any EM solution and

GuUu52fu
2 ,

GvUv52fv
2 . ~26!

The integrability conditions for the latter equations imp
that

~fuUv2fvUu!~2fuv2Uufv2Uvfu!50. ~27!

Now any solution of the scalar equation~24! helps us to
construct the extra metric functionG by the line integral

G52E fu
2

Uu
du12E fv

2

Uv
dv. ~28!

As an EM solution, we use the metric~1! obtained by CX
which was shown to be locally isometric to the KN BH th
usest,s coordinates instead ofu,v.

In terms of t,s the scalar field equation~24! and the
condition ~26! are equivalent to

@~12t2!ft#t2@~12s2!fs#s50 ~29!

and

~t22s2!Gt52DdS tft
21

td

D
fs

222sftfsD
~s22t2!Gs52DdS sfs

21
sD

d
ft

222tftfsD ,

~30!

respectively. For the present problem we choose the sc
field f as

f5
k1

2
ln

11t

12t
1

k2

2
ln

11s

12s
~31!

in which k1 andk2 are constant parameters. Using Eqs.~30!,
the metric functionG, due to the scalar field is found as

eG5D2k1
2
d2k2

2
~t1s!(k11k2)2

~t2s!(k12k2)2
. ~32!

The new metric that describes the collision of EMS fields
expressed by

ds25Xe2GS dt2

D
2

ds2

d D2Dd
X

Y
dy22

Y

X
~dx2q2e dy!2,

~33!

whereX, Y, D, d, and q2e are given in Eq.~2!. It is well
known that the CX solution is a regular solution. Howev
coupling a scalar fieldf transforms the CH into a scala
curvature singularity~SCS!. This can be seen from the scal

4pTm
m5

eG

DdX
~Dk2

22dk1
2! ~34!
3-4
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and ast→1 it becomes divergent; hence it is a SCS. T
interesting property of this new solution is that the type
the singularity is null rather than spacelike. This can be j
tified as follows

The singular~or horizon! surface is described by

S~t!512t ~35!

~in which we have assumed an equatorial plane, namels
50, in the transformed BHs space-time!. We compute the
normal vector to this surface

~¹S!25gttSt
25

~12t2!eG

X
5

a2t2(k1
2
1k2

2)~12t2!12k1
2

~12pat!2
.

~36!

Since we are interested in the limit ast→1, for k1
2

,1, (¹S)250 which indicates a null property. The blow-u
of the curvature scalar provides a generic null singularity
this surface. The existing isometry can provide us with a n
singularity in the corresponding BH problem.

Using the transformations given in Eqs.~4! and ~5! the
metric ~33! transforms into

a2m2 ds25~12r22v!dt2

2sin2 u@D1v~11a2r22 sin2 u!#df2

22avr22 sin2 u dt df

2r2e2G~D21 dr21du2!, ~37!

wherer, v, andD are given in Eq.~6!. This metric repre-
sents the KN BH coupled with the particular scalar fie
which reads in the equatorial plane

f5
k1

2
lnS r 12r

r 2r 2
D . ~38!

In the same plane we have

eG5@~r 12r !~r 2r 2!#2k1
2S m2r

Am22Q2D 2(k1
2
1k2

2)

. ~39!

Similar analysis on the singular surface

S~r !5r 2r 2 ~40!

results in (¹S)250 as r→r 2 . This result retains the nul
singularity formation on the corresponding BH problem.

Note that, the scalar field in Eq.~31! is singular ast→1.
Let us now choose the following scalar field which is regul
in the limit t→1,

f5a0ts, ~41!

wherea0 is any constant parameter. The metric functionG is
obtained as

eG5ea0[ t21s2(12t2)] . ~42!
08402
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The curvature scalar due to this scalar field is

4pTm
m5

a0
2eG

X
~t2d2s2D!. ~43!

The metric functionG and curvature scalar remains regul
as the horizon is approached. The Weyl scalars are
checked and found that ast→1, the space-time remain
regular. This is another justification of the indetermina
character of CHs.

VI. DISCUSSION

It is known that the relations between the mathemati
theory of BHs and that of CPW space-time requires that
interior of every standard BH solution is locally isometric
the interaction region of CPW space-time.

In this paper, we have used this fact to investigate
singularity structure of the charged spinning BH namely
KN. In our analysis, we have coupled matter~null shells! and
scalar fields to the geometry of CPW space-time and us
the isometry, we transformed the resulting metric to the B
geometry and investigated the effect of these fields on
CH. Since our analysis is based on a completely anal
exact solutions, we believe that it reflects the real chara
of the Killing CHs of CPW and BH space-times.

First, a pair of test null dust is inserted in the CX collidin
wave space-time. Since the energy-momentum scalar
verges then we conclude that the CH is unstable and an e
back reaction solution must yield a scalar curvature singu
ity. The exact solution which we present involves a regu
conformal factor as a source so that all Weyl scalars rem
finite while some Ricci’s~and scalar curvature! diverge on
the horizon. Inclusion of the conformal factor is equivale
energetically to the de Sitter background and through
isometry it makes it possible for us to embed a BH in a
Sitter ~or anti–de Sitter! background. Although we have in
serted a matter field as a regular conformal factor, the slig
est effect of the source~through the scalar curvature or co
mological constant! of such a background suffices to destr
the inner horizon and converts it into a spacelike curvat
singularity. Second, we have inserted scalar fields to the
ometry of CX CPW solution. Inclusion of particular scal
fields was shown to create null singularities rather th
spacelike ones both in the space of colliding waves and
of corresponding BH space-times. With these particular ex
solutions, we may conclude that the Killing CH of CPW
space-times and the inner horizon of BHs have dual cha
ter when they are subjected to the inclusion of matter a
scalar fields. It remains an open question whether this
singularity is an intermediate stage between the horizon
spacelike curvature singularity.

APPENDIX A: THE RICCI AND CURVATURE SCALARS

The nonzero Ricci and curvature scalars of the collis
of Einstein-Maxwell fields coupled with null shells~in the
same null tetrad employed by CX! are found as follows:
3-5
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F225~F22!CX1a0

eM

f
@d~u!1u~u!M v#, ~A1!

F005~F00!CX1b0

eM

f
@d~v !1u~v !Mu#, ~A2!

F025~F02!CX2
eM

2f
$a0@Vv coshW2 iWv#u~u!

1b0@Vu coshW2 iWu#u~v !%, ~A3!

F115
eM

2f~12u22v2!
@b0u1a0v#u~u!u~v !,

~A4!

L5
eM

12f H @b0u1a0v#

~12u22v2!
112a0b0f21J u~u!u~v !.

~A5!

In these expressions (F22)CX , (F00)CX , and (F02)CX refer
to the CX quantities which are all finite on the horizon. Sim
larly all Weyl scalars are same as in the CX metric, nam
regular on the horizon. The other functionsM, V, andW are
given by the following expressions.

eV coshW5
Y

XADd
,

e2V coshW5
XADd

Y
1

Yq2e
2

XADd
,

e2M5
2X

A12u2A12v2
,

f511a0uu~u!1b0vu~v !. ~A6!

Since (12u22v2)5A12t2A12s2 for s50 andt→1 ~on
the horizon! the divergence of the scalar curvatureL and
F11 is clearly manifest. A detailed calculation reveals th
F02 is also divergent whileF00 andF22 remain finite on the
inner horizon. Let us note that suppressing one of the inc
ing shells but retaining the other, still the above compone
diverge. This amounts to colliding Einstein-Maxwell wav
from one side with an Einstein-Maxwell-null shell from th
other side. However this form can not be interpreted as a
Sitter background in the corresponding black-hole proble

APPENDIX B: ENERGY CONDITIONS

It should be noted that the inclusion of the matter field
acceptable if it satisfies some physical conditions such as
null and dominant energy conditions.
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1. Null energy condition „NEC…

The required condition for the NEC is

Tmnkmkn>0, ~B1!

wherekm is a null vector tangent to the null geodesics. F
the sake of simplicity, we consider the diagonal case of
new solution~13!, that represents null shells in the RN g
ometry. The null tetrads are

l m5
1

A2
S a

12at
,

a

12at
,0,0D ,

nm5
1

A2
S a

12at
,2

a

12at
,0,0D ,

mm52
1

A2
S 0,0,2

~12at!

aAD
,

ia

Ad~12at!
D ,

m̄m52
1

A2
S 0,0,2

~12at!

aAD
,2

ia

Ad~12at!
D .

~B2!

It is found that

Tmnl ml n5F00,

Tmnnmnn5F22, ~B3!

where

F005
a2~12a2!

2~12at!4
1

aeM

f
@d~u!1M vu~u!#,

F225
a2~12a2!

2~12at!4
1

beM

f
@d~v !1Muu~v !#,

~B4!

which are positive and therefore satisfy NEC.

2. Dominant energy condition„DEC…

The DEC is defined as

T00>uTabu, ~B5!

i.e., for eacha,b, in the orthonormal basis the energy dom
nates the other componentTab . The orthonormal vectors fo
the diagonal case of the new solution are

e(0)
m 5S 1

AX
,0,0,0D , ~B6!

e(1)
m 5S 0,2

1

AX
,0,0D ,
3-6
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e(2)
m 5S 0,0,

12at

aAD
,0D ,

e(3)
m 5S 0,0,0,2

a

Ad~12at!
D .

The nonzero energy-momentum tensors in orthonor
frames are

T005
1

8p
@F001F2212~F1113L!#, ~B7!

T015T105
1

8p
@F222F00#,
o

y,
.

08402
al

T115
1

8p
@F001F2222~F1113L!#,

T225
1

4p
@F001F1123L#,

T335
1

4p
@F112F0223L#,

where the expressions forF00, F22, F11, F02, andL are
given in Appendix A.
on-

on-

.
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