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the perturbation from the first solvent layer.
These calculations then suggest that the vibration-
al dephasing is mainly determined by the average
force field that the excited molecules experience
from the fluctuating number of nearest neighbors.
Also in agreement with this picture is the increse
in the correlation time (Table I) with increasing
molecular interaction. "
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We formulate the problem of colliding plane gravitational waves with two polarizations
as the harmonic mappings of Riemannian manifolds and construct an exact solution of the
vacuum Einstein field equations describing the interaction of colliding impulsive gravita-
tional waves which in the limit of collinear polarization reduces to the solution of Khan
and. Penrose.

In this Letter we adopt an approach to the Ein-
stein field equations of gravitation which is based
on the theory of Eells and Sampson of harmonic
mappings of Riemannian manifolds. ' We had
earlier pointed out the connection bebveen these
problems" and it seems worthwile to remark
that the theory of harmonic mappings of Riemann-
ian manifolds is also applicable to a wide variety
of problems in other branches of physics. In
particular, we can readily recognize the Nambu
string, solitons, nonlinear 0 model, and the
Heisenberg ferromanget in the expression of
Eells and Sampson for their invariant functionals
of the mapping. The formulation of a problem in
terms of harmonic mappings provides us with a
powerful formalism for the discussion of a num-

ber of questions. ranging from the construction
of exact solutions to considerations of topology
related to the index of the mapping, and its ad-
vantage lies in the direct geometrical insight it
brings into the problem. We shall now present a
new exact solution of the vacuum Einstein equa-
tions which is of physical interest and which was
obtained by the use of these techniques.

Penrose has introduced the notion of impulsive
gravitational waves where space-time is flat
everywhere except along a hypersurface with the
Riemann tensor suffering a &-function discontinui-
ty at this surface. Here we shall be concerned
with the case where the discontinuity surface is a
null plane and the impulsive wave is then a famili-
ar p pwave. s For p-urely impulsive gravitational
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waves the surface of discontinuity is shear-free;
however, when two impulsive waves collide they
produce shear and the mutual focusing and back-
scattering of these waves results in a space-time
singularity. This picture emerges from the exact
solution of Khan and Penrose' which describes
colliding impulsive plane gravitational waves with
collinear polarization. It illustrates the necessity
of working with exact solutions of the Einstein
field equations since, as Szekeres"' has shown,
arbitrarily weak incoming gravitational waves
inevitably produce a space-time singularity. In
this Letter we shall present an exact solution of
the vacuum Einstein field equations which enables
us to study the geometry of space-time resulting
from the collision of bvo linearly polarized impul-
sive waves with arbitrary relative polarization.
We find that in the interaction region the solution
is no longer linearly polarized and the focusing
properties' of the waves result inthe development

!
of an angular-momentum as well as a mass as-

H(x', y') = —,(x"-y") cosn +x'y' sina, (2)

where & is a constant which measures the angle
of polarization. In Eq. (2) H has been scaled by
a constant factor to set the amplitude of the wave
equal to unity. This can be accomplished without.
loss of generality since such a constant can al-
ways be restored by a coordinate transformation.
The coordinate patch used in writing the metric
(1) has the advantage of manifestly displaying the
Minkowski form of the metric on both sides of
the discontinuity surface, but for reasons which
are discussed in detail by Szekeres it is inap-
propriate for the colliding waves problem. For
this purpose we transform to the Bosen form

pect, but once again the collision produces a
spacelike curvature singularity on the space-time
manif old.

Impulsive gravitational plane waves are des-
cribed by the metric for P-P waves

ds =2du'dv'-dx'2 —dy'2-2H(x', y')5(u')du', (1)

ds'=2e" dudv -e u(e coshWdx' —2sinhWdxdy+e "coshWdy'),

which has two mutually nonorthogonal Killing vectors $„and $, and where the metric coefficients are C'-
differentiable functions of the null coordinates u, n. The transformation which accomplishes this task
is given by

x = [1.+ue(u) coso.]x+[uS(u) sino. ]y,
y' = [1-u8(u)cosn]y +[u8(u) sinn]x,

M =Q
7

v' =v + [~z(cosa) (x' -y') + (sinn)xy] 0 (u) + a(x'+y')u&(u),

(4)

where 0 is the Heaviside unit step function. Now
it can be readily verified that the metric (1) is
in the form of Eq. (3) with

eU1p2

2v (1 +2p cosQ+p )
(1 —2p coso. +p') '

sinhW= —2p sinn/(1 —p'),

M=0,

with the conventional definition

p =u6(u).

In the region II the metric for the incoming gravi-
tational wave will be given by Eqs. (3) and (5).
There will be a similar expression for the metric
in region III if we replace all the p's in Eq. (5)

with

q =v8(v),
and the polarization angle & by another angle
which will be called P. In this situation the waves
in regions II and III are linearly polarized but
their polarizations differ by the angle u —P. The
collision problem is then formulated as follows:
We consider two gravitational waves traveling in
+z and -~ directions. Before the collision, the
region between them (I) is a Minkowski space
and for impulsive waves region II ju &0, v &Oj
and region III (u&0, v&0j are flat as well. The
junction conditions between regions I and II, and
between I and III, are the usual impulsive wave
conditions. In region IV the two waves collide
head-on and their interaction is determined by
the Einstein field equations for the metric (3)
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with the requirement that the solution reduces to
the known solutions in regions II and III [cf. Eq.
(5)], as well as satisfying the necessary junction
conditions across the various regions. The Ricci
tensor will be zero throughout. The Einstein
field equations for this problem are well known,
but we shall now present a new formulation of
these equations using the theory of harmonic map-
pings of Riemannian manifolds which brings an
element of simplicity into the problem.

We consider two Riemannian manifolds (M, g)
and (M', g') with a mapping f:M -M'. An invari-
ant functional of this mapping is the trace with re-
spect to the metric g of the induced metric f*g'
on M. The integral of this quantity over the vol-
ume ofI is the Eells-Sampson energy functional
E(f). In local coordinates it is given by

AgB
E(f) = "g (8)

and those maps for which the first variation van-
ishes,

5E(f) =0,

are called harmonic. The Einstein field equations
for the metric in Eq. (3) are obtained as harmon-
ic maps if we consider the following bvo Riemann-
ian manifolds: LetIbe a flat two-dimensional
manifold with the metric

ds2 =2' dv

cosh+ = cosh' coshW,

cosv =(1+sinh'Vcoth'W) ' ',
(12)

and pass on to Klein's representation of the space
of constant curvature by defining

Riemannian manifolds is essentially a "mini-su-
perspace"' approach; indeed, it grew out of
many stimulating conversations with Professor
C. W. Misner. It is helpful in constructing exact
solutions because the requirement that the map-
ping f:M-M' be harmonic is an invariant state-
ment which is not affected by any choice of coordi-
nates on M and I'. Thus by performing coordi-
nate transformations on M and M' we can obtain
all possible forms of the Einstein field equations
which respect the choices made earlier about
the Killing directions in the space-time mani-
fold. They will furthermore be consistent with
the freedom inherited from general covariance
and the arbitrariness available in choosing any
Ansatz about the form of the nonvanishing metric
coefficients in the original space-time metric. It
is therefore natural to look for coordinate trans-
formations on M and M' such that the partial dif-
ferential equations resulting from the require-
ment of harmonic mapping are simple. To this
end we first note that the last two terms in Eq. (1)
describe a space of constant negative curvature
but the line element is not in the canonical form.
So we transform to new coordinates v, ~ such that

and consider M' to be endowed with the metric g =e" tanh &&. (13)

ds' =e (2dMdU+dU -dW —cosh2W dV ).
(11)

It should be noted tha, t the metrics (10) and (11)
are given known metrics, and even though we
wrote them using particular coordinate patches,
it is evident that their significance is not tied to
any coordinate system. Now, if we form the en-
ergy functional (8) using the metrics (10) and (11),
we obtain the Hilbert action principle specialized
to the metric (3) and the condition for the map-
ping to be harmonic is equivalent to satisfaction
of the Einstein field equations.

The formulation of the Einstein field equations
a,s the problem of the harmonic mappings of

[

On I, it is convenient to choose new coordinates
by the transformation

T =g (I v2)~~2 yv (I g~)&~2

v=8(l —v ) v(l Q )

(14)

which up to a conformal factor brings the line
element (10) to a form similar to the standard
expression in prolate spheroidal coordinates. "
The conformal factor itself is irrelevant because
it washes out of the energy functional (8) when M
is iwo dimensional. In the variables (13) and the
coordinates (14) the solution is very straight-
forward. The space-time metric for two colliding
impulsive waves is then given by

= 2 dudv —[(1 ——k)dx +i(1+k)dy] [(1 -k)dx —i(1 +k)dy],
1-kk t

t~so 1-kk
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where bars denote complex conjugation and we
have used the definitions

t =1-p —q2, r2=1, -pa, to2=1 —q2,

k =e'"pu+e'aqr.

We note that in regions II and III Eg. (15) reduces
to the desired form [cf. Egs. (5)j and for o.'=p =0
the results of Ref. 6 are obtained. The solution
has a curvature singularity on the open interval
$t'=0;u&0, o&0). We have also found new exact
solutions for colliding gravitational waves which
in the limit of collinear polarization reduce to the
Szekeres family. ' These will be published else-
where, .
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Using the molecular-dynamics technique, we establish solitonlike properties of heat
pulses in a lattice-dynamic model when the ambient temperature is in the second-sound
regime.

In this Letter we report on molecular-dynamics
results in which we have observed propagation
of heat pulses under conditions in which soliton-
like properties are established. Recently, con-
siderable effort has been devoted to the study of
strong anharmonicity, and a variety of interest-
ing effects are predicted, ' ' including optic-mode
second sound. '

Our present study is performed in a regime

where the equilibrium system exhibits second
sound, and we use the heat-pulse method. We
consider an incompressible model system, where
acoustic modes are absent. It belongs to the fam-
ily of models which have been used with remark-
able success to elucidate the critical properties
associated with distortive phase transitions. '

In this Letter, we first define the model; then
we describe our heat-pulse technique and the
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