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ABSTRACT

Adaptive filtering techniques are widely used to cope with the variations of system

parameters. In finite impulse response (FIR) adaptive filtering, the filter weights are

updated iteratively by minimizing the mean-square-error (MSE) of the difference

between the desired response of the adaptive filter and its output. However, most

of the existing adaptive filters experience many difficulties; fixed-step size which

provides poor performance in highly correlated environments, high computational

complexity, stability due to the inversion of the autocorrelation matrix, tracking

ability in non-stationary and impulsive noise environments.

The novelty of this work resides in the derivation of a new FIR recursive inverse

(RI) adaptive filtering algorithm. This algorithm has been proposed to overcome

some of the difficulties experienced with the existing adaptive filtering techniques.

The approach uses a variable step-size and the instantaneous value of the autocor-

relation matrix in the coefficient update equation that leads to an improved perfor-

mance. Avoiding the use of the inverse autocorrelation matrix, as the case of the

recursive-least-squares (RLS) algorithm, would provide more stable performance.

Convergence analysis of the algorithm has been presented. The ensemble-average

learning curve of the RI algorithm is derived and compared with those of the RLS

and least-mean-square (LMS) algorithms. A general fast implementation technique,

which significantly reduces the computational complexity, of the RI algorithm is

presented. A robust version of the RI algorithm, which leads to an improved per-

formance, in impulsive noise environments is presented. The effect of the forget-

ting factor on the performance of the RI algorithm is investigated. Also, a two-
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dimensional (2D) version of the RI algorithm is introduced. Finally, a second-order

version of the RI algorithm, which provides further improvement in the perfor-

mance, is derived.

The performance of the RI, fast RI, proposed robust RI (PRI), second order RI

and 2D RI algorithms is compared to those of the standard LMS, normalized LMS

(NLMS) , variable step size LMS (VSSLMS), discrete cosine transform LMS (DCT-

LMS), transform domain LMS with variable step-size (TDVSS), RLS, stabilized

fast transversal RLS (SFTRLS), robust RLS (RRLS) and proposed robust RLS al-

gorithms in additive white Gaussian noise (AWGN), correlated Gaussian noise and

white and correlated impulsive noise, in noise cancellation, system identification,

channel equalization, echo cancellation and image deconvolution setting, in sta-

tionary and non-stationary environments. Simulations show that the RI algorithm

and its variants outperform all the aforementioned algorithms as will be shown in

detail later.

Keywords: Adaptive Filters, LMS Algorithm, RLS Algorithm, RI Algorithm, Cor-

related Noise, Impulsive Noise.
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ÖZ

Uyarlanır süzgeçler, sistem parametrelerinin değişimine uyum sağlayabilmek amac-

ıyla kullanılmaktadır. Sonlu Dürtü Yanıtlı (SDY) uyarlanır süzgeçlerde, süzgeç

ağırlıkları özyineli olarak güncellenmekte ve istenilen tepki ile süzgecin çıktısındaki

Ortalama Karesel Hata (OKH) en aza indirgenmeye çalışılmaktadır. Uyarlanır süzg-

eçlerin uygulumalarında bir çok farklı sorun bulunmaktadır: ilintili ortamlarda sabit

katsayılı süzgeçler düşük başarım göstermekte, özilinti matrisinin tersinin alınmasın-

ı gerektiren algoritmalarda yakınsama ve yüksek işlem karmaşıklığı gözlemlenmekte

ve zamana göre değişen ortamlarda da izleme konusunda sorunlarla karşılaşılmakta-

dır.

Bu tezde Özyineli Ters (ÖT), özgün bir SDY uyarlanır süzgeç önerilmektedir. Algo-

ritma, değişken bir adım uzunluğu kullanmakta ve özilinti matrisinin anlık değerini

katsayıların güncellenmesi sırasında hesaplayarak daha yüksek başarım sağlamakta-

dır. RLS algoritmasının aksine özilinti matrisinin tersinin hesaplanmasına ihtiyaç

duyulmadığı için yakınsama daha başarılı bir şekilde dağlanmaktadır. ÖT algorit-

masının ortalama öğrenme eğrisi türetilerek RLS ve LMS algoritmalarınınkilerle

kıyaslanmıştır. Önerilen algoritma için hızlı bir hesaplama yöntemi de önerilmiştir.

Dürtün gürültüyü gidermek amacıyla ÖT algoritmasının gürbüz sürümü de önerilmi-

ştir. Unutma katsayısının ÖT başarımına etkisi araştırılmıştır. Ayrıca imge işleme

uygulamalarında kullanılmak üzere iki boyutlu ÖT algoritması kullanılmıştır. Son

olarak da ÖT algoritmasının ikinci dereceden kestirim yapan sürümü türetilmiş ve

başarımı gösterilmiştir.
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Başarım karşlaştırılmalarında farklı özelliklerinden dolayı LMS, NLMS, değişken

adımlı LMS, DCT LMS, TDVSS, RLS, SFTRLS ve RRLS algoritmaları kullanılmı-

ştır. Karşılaştırmalar, Gauss veya dürtün, ilintili veya beyaz gürültü ortamlarında

benzetimlerle gerçekleştirilmiştir. Ayrıca, zamanda değişen gürültü ortamlarda, sis-

tem tanımlaması ve yankı giderme uygulamalarında önerilen ÖT algoritmasının

daha yüksek OKH hata başarımına ve daha düşük işlem karmaşıklığına sahip olduğu

gösterilmiştir.

Anahtar Kelimeler: Uyarlanır süzgeç, LMS Algorima, RLS Algorima, dürtün

gürültü, ilintili gürültü.
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Chapter 1

INTRODUCTION

1.1. Introduction

During the last decades, adaptive filtering techniques have attracted the attention of

many researchers due to their properties of self-designing [1]-[4]. In applications

where some a priori information about the statistics of the data is available, an op-

timal filter for that application can be designed in advance (i.e. the Wiener Filter

that minimizes the mean-square-error (mse) between the output of the filter and a

certain desired response) [1]. In the absence of this a priori information, adaptive

filtering techniques possesses the ability to adapt the filter coefficients to the statis-

tics of the signal involved. As a consequence, adaptive filters have been applied to

diverse fields such as signal processing [1], communications [5], control [3], etc.

Adaptive filtering consists of two basic operations; the filtering process which gen-

erates an output signal from an input data signal, and the adaptation process; which

adjusts the filter coefficients in a way to minimize a desired cost function. Basi-

cally, there is a large number of filter structures and algorithms that have been used

in adaptive filtering applications.

Adaptive filters can be classified into two main categories according to their impulse

response: adaptive finite impulse response (FIR) [6]; whose impulse response is of a

finite duration because it settles to zero in finite time, and adaptive infinite impulse

1



response (IIR) filters [6]; which have internal feedback and may continue to re-

spond indefinitely (usually decaying). IIR filters are beyond the scope of this thesis.

Adaptive FIR filters have many structures, to mention a few, adaptive transversal fil-

ters, the lattice predictor, the systolic array, etc [1]. The adaptive transversal filters

structure (which will be our main concern) is shown in Fig. 1.1.

The vector of tap inputs at time k is denoted by x(k), and the corresponding estimate

of the desired response at the filter output is denoted by d̂(k|Xk), where Xk is the

space spanned by the tap inputs x(k), x(k − 1), . . . , x(k − N + 1). By comparing

this with the actual desired response d(k), we produce an estimation error denoted

by e(k) = d(k)− d̂(k|Xk).

Control
Mechanism

+

-

1Z − 1Z − 1Z −

Σ Σ Σ

Σ

Σ

*
0w *

1w
*
2w *

2Nw −

*
1Nw −

( )y k

ˆ( )kd k X

( )d k

( )e k

( 1)x k N− +( 2)x k N− +( 2)x k −( 1)x k −( )x k

Figure 1.1. Structure of the adaptive transversal filter, [1].

1.2. Our Contributions

In this work, we propose a new FIR adaptive filtering algorithm to overcome some

of the difficulties experienced with the adaptive filtering algorithms available; some

of these difficulties are:

2



(a) Fixed-step size [7]: in highly correlated signals, the step size should be selected

very small in order to follow up the changes in the environment.

(b) High computational complexity [8]: which is the number of add./sub. and

mul./div. in each update iteration of the tap-weight vector.

(c) Stability [8]: adaptive algorithms that use the inverse autocorrelation matrix in

it filter-tap update equation, may face stability problems because of this inverse

estimate of the autocorrelation matrix.

(d) Tracking ability [9]: in non-stationary environments, adaptive algorithms are

required to track the statistical variations in the environment. This would be

difficult, if not impossible, in adaptive algorithms when the step-size or the

forgetting factor are relatively large.

The proposed approach uses a variable step-size and the instantaneous value of the

autocorrelation matrix in the coefficient update equation. This will be shown to

lead to improved performance compared with the conventional approaches. Con-

vergence analysis of the algorithm has been presented, where its shown that the

proposed algorithm converges in the mean and mean square sense. The ensemble-

average learning curve of the proposed algorithm is derived and compared with

those of the recursive-least-squares (RLS) [1] and least-mean-square (LMS) [1],

[10] algorithms. Several versions of the RI algorithm have been developed as fol-

lows:

1. A general fast implementation technique, which significantly reduces the com-

putational complexity, for the proposed algorithm is presented.
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2. A robust version of the algorithm, which leads to an improved performance

in impulsive noise environments is presented.

3. A two-dimensional (2D) version of the algorithm is introduced.

4. A second-order version of the proposed approach, which provides further im-

provement in the performance, is proposed.

Also, the effect of the forgetting factor on the tracking ability of the algorithm is

investigated.

The performance of the proposed algorithm, its fast implemented version, its ro-

bust version, its second order version and its 2D version is compared to following

adaptive filtering algorithms that take place in the literature (see Chapter 2):

(a) The standard LMS

(b) The normalized LMS (NLMS) [1]

(c) The variable step size LMS (VSSLMS) [11]

(d) The discrete cosine transform LMS (DCTLMS) [12]

(e) The transform domain LMS with variable step-size (TDVSS) [13], [14]

(f) The RLS [1]

(g) The stabilized fast transversal RLS (SFTRLS) [15]

(h) The robust RLS (RRLS) [16]

(i) The proposed robust RLS [17]
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in the following noise types:

(a) Additive white Gaussian noise (AWGN)

(b) Correlated Gaussian noise

(c) White impulsive noise [18]

(d) Correlated impulsive noise

in the settings of:

(a) Noise cancellation [19]

(b) System identification [20]

(c) Channel equalization [20]

(d) Echo cancellation [21]

(e) Image deconvolution [22]

in stationary and non-stationary environments [23]. Simulations show that the pro-

posed algorithm and its variants outperform all the aforementioned algorithms as

will be shown in detail in Chapter 4.

1.3. Overview of this Thesis

The contents of this thesis are organized as follows. Following the general intro-

duction, and our contributions in Chapter 1, Chapter 2 provides a summary of some

well-known adaptive filters that will be compared with the proposed techniques.
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Chapter 3 introduces the proposed recursive algorithm, the full derivation of the

convergence analysis of the algorithm, the derivation the ensemble-average learn-

ing curve of the algorithm, a fast implementation technique, that reduces the com-

putational complexity, of the proposed algorithm, a new robust version of the algo-

rithm in impulsive noise environments, the effect of the forgetting factor (β) on the

tracking ability of the proposed technique, a two-dimensional (2D) version of the

algorithm is introduced and, finally, a second-order (2nd) version of the proposed

algorithm, which provides further improvement in the performance, is derived.

In Chapter 4, the performance of the proposed techniques is compared with those

of the standard LMS, NLMS, VSSLMS, DCTLMS, TDVSS, RLS, SFTRLS, RRLS

and PRRLS algorithms. Simulations were performed to investigate the perfor-

mances of these algorithms in AWGN, correlated Gaussian noise and white and

correlated impulsive noise in:

(a) Noise cancellation

(b) System identification

(c) Channel equalization

(d) Echo cancellation

(e) Image deconvolution

in stationary and non-stationary environments. It is shown that the proposed tech-

niques outperform all the aforementioned algorithms in the experimental settings
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used. Finally, Chapter 5 summarizes the important findings of this work and con-

cludes the thesis.
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Chapter 2

ADAPTIVE FILTERS

2.1. Introduction

Adaptive filtering techniques are widely used to cope with the variations of sys-

tem parameters [4]. In finite impulse response (FIR) adaptive filtering, the filter

weights are updated iteratively by minimizing the MSE of the difference between

the desired response of the adaptive filter and its output. Here, a summary of some

well-known adaptive filtering algorithms, that will be handled during this thesis,

will be provided.

2.2. Least-Mean-Square Algorithm

The well-known least-mean-square (LMS) adaptive algorithm has been used in

many application areas, such as channel equalization [24], system identification

[25], adaptive array processing [26], adaptive noise cancellation [4], etc. The LMS

algorithm is not only simple in its filter weight updating and hardware implementa-

tion but also reasonably fast in convergence if the optimal step-size is used [1]. A

summary of the algorithm is shown in Table 2.1.

2.3. Normalized Least Mean Square Algorithm

In LMS algorithm, selecting the step-size is an obstacle in many of the applications

where the LMS algorithm is employed and when the input x(k) is large, the algo-

rithm suffers from a gradient noise amplification problem. To overcome these prob-

lems, the normalized least-mean-square (NLMS) is proposed [27]-[30]. In NLMS,
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Table 2.1 Summary of the LMS algorithm.

1. Filter Output.

y(k) = ŵH(k)x(k)

2. Estimation Error.

e(k) = d(k)− y(k)

3. Tap−Weight Adaptation.

ŵ(k + 1) = ŵ(k) + µe∗(k)x(k)

where x(k) is the tap− input vector and d(k) is the desired filter output.

the step-size µ is normalized by the energy of the data vector. Normalization has

several interpretations [4]:

1. Corresponds to the 2nd-order convergence bound.

2. Makes the algorithm independent of signal scaling.

3. Adjusts w(k + 1) to give zero error with current input.

Table 2.2 Summary of the NLMS algorithm.

1. Filter Output.

y(k) = ŵH(k)x(k)

2. Estimation Error.

e(k) = d(k)− y(k)

3. Tap−Weight Adaptation.

ŵ(k + 1) = ŵ(k) + µe∗(k)x(k)
ε+xH(k)x(k)

where ε is a very small value to avoid dividing by zero.
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So, a summary of the NLMS algorithm is given in Table 2.2.

The NLMS algorithm usually converges much more quickly than LMS at very little

extra cost; NLMS is very commonly used in some applications such as acoustic

echo cancelation problems [7].

The NLMS algorithm introduces a problem, that is; when the tap-input vector x(k)

is small, numerical difficulties may arise because then we have to divide by a small

value for the squared norm ‖x(k)‖2.

2.4. Variable Step-Size LMS

A number of LMS variations have been proposed to overcome the disadvantages

of a fixed step-size parameter and numerical difficulties introduced by the LMS

and NLMS algorithms by employing variable step-size [31], [32] or automatic gain

control schemes. The variable step size LMS (VSSLMS) algorithm [11] is one of

these algorithms. A summary of the algorithm is shown in Table 2.3.

However, the LMS algorithm and its variants fail or perform poorly in some envi-

ronments, especially, when the input signal is highly correlated or the additive noise

is impulsive.

2.5. Transform Domain LMS Algorithms

The transform domain adaptive filtering algorithms [12], [33] - [34], [13] such as

the transform domain LMS with variable step-size (TDVSS) [13] and discrete co-

sine transform LMS (DCTLMS) [12] are effective in correlated noise environments.

These types of algorithms usually apply an orthogonal transformation on the input

signal that diagonalize the autocorrelation matrix of the input signal.
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Table 2.3 Summary of the VSSLMS algorithm.

1. Filter Output.

y(k) = ŵH(k)x(k)

2. Estimation Error.

e(k) = d(k)− y(k)

3. Tap−Weight Adaptation.

ŵ(k + 1) = ŵ(k) + µ(k)e∗(k)x(k)

where µ(k + 1) =





µmax, if αµ(k) + γe2(k) > µmax

µmin, if αµ(k) + γe2(k) < µmin

αµ(k) + γe2(k), otherwise

where 0 < α < 1; γ > 0; 0 < µmin < µmax; and µmax = µ0.

2.5.1. Discrete Cosine Transform LMS

In DCTLMS algorithm [12], DCT is firstly applied to the tap-input vector x(k).

This transformation leads to an enhanced performance (as will be shown in Chapter

4) in terms of MSE compared to the algorithms mentioned in Sections 2.2, 2.3 and

2.4. A summary of the algorithm is shown in Table 2.4.

Although the DCTLMS algorithm provides better performance than the algorithms

in Sections 2.2, 2.3 and 2.4, it suffers from its high computational complexity, due

to the transformation process, and slow convergence rate.

2.5.2. Transform Domain LMS with Variable Step-Size

With a comparable computational complexity to that of the DCTLMS algorithm the

TDVSS algorithm is recently proposed by Bilc, Kuosmanen and Egiazarian [13] to

provide much faster convergence rate. The algorithm uses the output error to update
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Table 2.4 Summary of the DCTLMS algorithm.

1. Discrete Cosine Transform.

uk(i) =
N−1∑
l=0

√
2
N

Kicos
(

i(l+1/2)π
N

)
x(k − l); where i = 0, . . . , N − 1

with Ki = 1√
2

for i = 0 and 1 otherwise.

2. Power Normalization.

vk(i) = uk(i)√
Pk(i)+ε

; where i = 0, . . . , N − 1

where ε is a small constant.

Pk(i) = γPk−1(i) + (1− γ) u2
k(i); where i = 0, . . . , N − 1

where γ ∈]0, 1] is generally chosen close to 1.

3. LMS Filtering.

ŵ(k + 1) = ŵ(k) + µe(k)v∗(k)

where e(k) = d(k)− ŵH(k)v(k).

the step-size of the transform domain LMS algorithms. A summary of the algorithm

is shown in Table 2.5.

Even though the TDVSS algorithm outperforms the DCTLMS, also it suffers from

its high computational complexity due to the transformation process, and has many

parameters to be carefully selected.

2.6. Recursive-Least-Squares Algorithm

The recursive-least-squares (RLS) algorithm [1], [35]-[36] was proposed to offer

superior performance compared to that of the LMS algorithm and its variants [37]-

[42], with few parameters to be predefined compared to the DCTLMS and TDVSS

algorithms; especially in highly correlated environments. In the RLS algorithm,

an estimate of the autocorrelation matrix is used to decorrelate the current input
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data. Also, the quality of the steady-state solution keeps on improving over time,

eventually leading to an optimal solution. A summary of the algorithm is shown in

Table 2.6.

Although the RLS algorithm provides good performance in such environments, it

suffers from relatively high computational complexity O(N2). In the RLS algo-

rithm, the forgetting factor (β) has to be chosen such that its value is very close to

unity to ensure the stability and convergence of the algorithm. However, this poses

a limitation for the use of the algorithm since small values of β may be required for

signal tracking in non-stationary environments [8], [43].

2.7. Stabilized Fast Transversal RLS Algorithm

The stabilized fast transversal RLS (SFTRLS) [37], [38], [44]-[45] algorithm has

been proposed to reduce the computational complexity of the RLS algorithm to an

order of O(N) [44]. A summary of the algorithm is shown in Table 2.7.

The disadvantage of the SFTRLS algorithm is its high MSE even if the signal-to-

noise ratio (SNR) is relatively low and requires many parameters to be defined. In

addition to that, the RLS algorithm and its variants may face numerical stability

problems due to the update of the inverse autocorrelation matrix [8], [46].

2.8. Robust RLS Algorithm

The robust RLS (RRLS) [16] algorithm was proposed to provide better performance

than the RLS algorithm. The algorithm uses a variable forgetting factor that leads

to a faster tracking ability. A summary of the algorithm is shown in Table 2.8.

Even though the RRLS algorithm provides better performance than the aforemen-

tioned algorithms, it suffers from its very high computational complexity (O(N3)).
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Also, the performance of all the previously mentioned algorithms is poor in impul-

sive noise environments.

2.9. Proposed Robust RLS Algorithm

Several robust versions of the RLS algorithm for impulsive noise environments have

been proposed, [17], [47]-[49]. One example is the recently proposed robust RLS

algorithm [17]. A summary of the algorithm is shown in Table 2.9.

All of the RLS algorithm and its variants suffer from their high computational com-

plexity, and stability problems due to the estimate of the inverse of the autocorrela-

tion matrix [8].

Due to all of the aforementioned reasons, a new recursive inverse (RI) algorithm

has been introduced [50]-[53] to overcome some of the difficulties experienced.
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Table 2.5 Summary of the TDVSS algorithm.

1. Discrete Cosine Transform.

uk(i) =
N−1∑
l=0

√
2
N

Kicos
(

i(l+1/2)π
N

)
x(k − l); where i = 0, . . . , N − 1

with Ki = 1√
2

for i = 0 and 1 otherwise.

2. Filtering Process.

ŵi(k + 1) = ŵi(k) + µ(k)

ε+σ2
i (k)

e(k)u∗i (k)

where

e(k) = d(k)− ŵH(k)u(k),

σ2
i (k) is the power estimate of the ith transform coefficient ui(k),

ŵi(k) is the ith coefficient of the adaptive filter,

ε is a small constant that eliminates the overflow when the values

of σ2
i (k) are small,

σ2
i (k) = βσ2

i (k − 1) + (1− β)|ui(k)|2, where β ∈ [0, 1] is the

forgetting factor

µ(k + 1) =





A(k), if k = nL, and A(k) ∈ (µmax, µmin)

µmax, if k = nL, and A(k) ≥ µmax

µmin, if k = nL, and A(k) ≤ µmin)

µ(k), if k 6= nL

where A(k) = αµ(k) + γ
L

k∑
i=k−L+1

e2(i), where k = 1, 2, . . .

α, γ, L, µmin, µmax are predifined parameters.
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Table 2.6 Summary of the RLS algorithm.

Initialize the algorithm by setting,

ŵ(0) = 0

P(0) = δ−1I

and

δ =





small positive constant for high SNR

large positive constant for low SNR.

for each instant of time, k = 1, 2, . . . compute

S(k) = P(k − 1)x(k)

k(k) = S(k)
β+xH(k)S(k)

ξ(k) = d(k)− ŵH(k − 1)x(k)

ŵ(k) = ŵ(k − 1) + k(k)ξ∗(k)

and

P(k) = β−1P(k − 1)− β−1k(k)xH(k)P(k − 1).
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Table 2.7 Summary of the SFTRLS algorithm

1. Initialization

wf (−1, N) = wb(−1, N) = w(−1, N) = 0

φ̂(−1, N) = 0, γ(−1, N, 3) = 1

ξd
bmin

(−1, N) = ξd
fmin

(−1, N) = ε a small positive constant

κ1 = 1.5, κ2 = 2.5, κ3 = 1.

2. Prediction Part

for each instant of time, k = 1, 2, . . .

ef (k, N) = xT (k,N + 1)




1

−wf (k − 1, N)




εf (k,N) = ef (k, N)γ(k − 1, N, 3)

φ̂(k, N + 1) =




0

φ̂(k − 1, N)


 + 1

βξd
fmin

(k−1,N)




1

−wf (k − 1, N)


 ef (k,N)

γ−1(k, N + 1, 1) = γ−1(k − 1, N, 3) + φ0(k, N + 1)ef (k, N)

[
ξd
fmin

(k, N)
]−1

= β−1
[
ξd
fmin

(k − 1, N)
]−1 − γ(k, N + 1, 1)φ̂2

0(k, N + 1)

wf (k, N) = wf (k − 1, N) + φ̂(k − 1, N)ε(k,N)

eb(k, N, 1) = βξd
bmin

(k − 1, N)φ̂N+1(k,N + 1)

eb(k, N, 2) =
[
wT

b (k − 1, N), 1
]

x(k, N + 1)

eb,i(k, N, 3) = eb(k,N, 2)κi + eb(k,N, 1) [1− κi] for i = 1, 2, 3

γ−1(k, N, 2) = γ−1(k,N + 1, 1)− φ̂N+1(k,N + 1)eb,3(k, N, 3)

εb, j(k,N, 3) = eb,j(k, N, 3)γ(k, N, 2) for j = 1, 2

ξd
bmin

(k, N) = βξd
bmin

(k − 1, N) + ξb,2(k,N, 3)eb,2(k, N, 3)


φ̂(k,N)

0


 = φ̂(k, N + 1)− φ̂N+1(k, N + 1)



−wb(k − 1, N)

1



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Table 2.7 Summary of the SFTRLS algorithm (Continued).

wb(k,N) = wb(k − 1, N) + φ̂(k, N)εb,1(k, N, 3)

γ−1(k, N, 3) = 1 + φ̂T (k, N)x(k, N)

3. Joint− Process Estimation

e(k, N) = d(k)− wT (k − 1, N)x(k, N)

ε(k, N) = e(k, N)γ(k, N, 3)

w(k,N) = w(k − 1, N) + φ̂(k, N)ε(k, N)

Table 2.8 Summary of the RRLS algorithm.

Initialize the algorithm by setting,

ŵ(0) = 0

P(0) = cI, c > 1

for each instant of time, k = 1, 2, . . . compute

P(k + 1) = P(k) + P(k)P(k)
γ2 − P(k)x(k+1)xT (k+1)P(k)

1+xT (k+1)P(k)x(k+1)

e(k + 1) = d(k + 1)− xT (k + 1)ŵ(k)

ŵ(k + 1) =
[
I + P(k)

γ2

]
ŵ(k) + P(k + 1)x(k + 1)e(k)

where γ > 0.

Table 2.9 Summary of the PRRLS algorithm.

for each instant of time, k = 1, 2, . . . compute

P(k) = 1
β

[
P(k − 1) + P(k−1)x(k)xT (k)P(k−1)

β
δk

+xT (k)P(k−1)x(k)

]

ŵ(k) = ŵ(k − 1) + P(k−1)x(k)e(k)
β
δk

+xT (k)P(k−1)x(k)

e(k) = d(k)− xT (k)ŵ(k − 1)

where δk = min
(
1, 1

‖x(k)e(k)‖1

)
.
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Chapter 3

THE RECURSIVE INVERSE ADAPTIVE FILTERING

ALGORITHM

3.1. Introduction

As mentioned before, the well-known RLS algorithm offers a superior speed of

convergence compared to the LMS algorithm and its variants [54], [9], [39], espe-

cially in highly correlated and nonstationary environments. On the other hand the

RLS algorithm suffers from its high computational complexity and tracking ability

when the filter length (N ) and the forgetting factor (β) [55], [56] are high. Hence,

we propose a new recursive algorithm with performance comparable to the RLS

algorithm, but with much lower complexity.

This chapter will be organized as follows. In section 3.2, the new recursive al-

gorithm is derived. In Section 3.3, the convergence analysis of the algorithm is

presented. In section 3.4, a comparison between the LMS and the recursive inverse

(RI) algorithms is made. In section 3.5, the ensemble-average learning curve of the

RI algorithm is derived. In section 3.6, a fast implementation technique, which con-

siderably decreases the computational burden of the RI algorithm, is introduced. In

section 3.7, a robust version of the RI algorithm in impulsive noise environments is

presented. In section 3.8, the effect of the forgetting factor (β) on the performance

of the RI algorithm is investigated. In section 3.9, a two-dimensional (2D) ver-

sion of the RI algorithm, for image processing applications, is introduced. Finally,
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in section 3.10, a second-order (2nd) version of the RI algorithm, which provides

further improvement in the performance, is derived.

3.2. The Recursive Inverse (RI) Algorithm

In this section, the recursive update equations for the correlation matrices [37]

which are used in the Newton-LMS [57]-[61] and the RLS [54]-[56] algorithms

will first be presented. The derivation of the RI algorithm will then follow. It is

known that the Wiener-Hopf equation [1] leads to the optimum solution for the FIR

filter coefficients. The coefficients are given by

w(k) = R−1(k)p(k), (3.1)

where k is the time parameter (k = 1, 2, . . .), w(k) is the filter weight vector calcu-

lated at time k, R(k) is the estimate of the tap-input vector autocorrelation matrix,

and p(k) is the estimate of the cross-correlation vector between the desired output

signal and the tap-input vector. The solution of (3.1) is required at each iteration

where the filter coefficients are updated. As an additional requirement, the autocor-

relation matrix should be nonsingular at each iteration, [1].

Reconsidering (3.1) where the correlations are estimated recursively [37] as;

R(k) = βR(k − 1) + x(k)xT (k), (3.2)

and

p(k) = βp(k − 1) + d(k)x(k), (3.3)
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where β is the forgetting factor which is usually very close to one.

The estimate in (3.2) would be definitely singular for k < N , (N is the filter

length), and therefore, equation (3.1) can not be applied. The estimate becomes

nonsingular for k ≥ N . Under this condition substituting (3.2) and (3.3) in (3.1)

yields,

w(k) = {βR(k − 1) + x(k)xT (k)}−1[βp(k − 1) + d(k)x(k)], (3.4)

by using the matrix inversion lemma [62] (see appendix), equation (3.4) becomes

w(k) =
1

β

[
R−1(k − 1)− R−1(k − 1)x(k)xT (k)R−1(k − 1)

β + xT (k)R−1(k − 1)x(k)

]

× (βp(k − 1) + d(k)x(k))

=

[
I− R−1(k − 1)x(k)xT (k)

β + xT (k)R−1(k − 1)x(k)

]
w(k − 1)

+
1

β

[
I{β + xT (k)R−1(k − 1)x(k)}R−1(k − 1)x(k)

β + xT (k)R−1(k − 1)x(k)

]
d(k)

+
1

β

[
R−1(k − 1)x(k)xT (k)R−1(k − 1)x(k)

β + xT (k)R−1(k − 1)x(k)

]
d(k). (3.5)

Rearranging (3.5);

w(k) =

[
I− R−1(k − 1)x(k)xT (k)

β + xT (k)R−1(k − 1)x(k)

]
w(k − 1)

+

[
R−1(k − 1)x(k)

β + xT (k)R−1(k − 1)x(k)

]
d(k)

= w(k − 1) + µ(k)R−1(k − 1)x(k)e(k) (3.6)

The update equation in (3.6) is the Newton-LMS [57]-[61] algorithm where the
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a-priori filtering error is,

e(k) = d(k)− xT (k)w(k − 1), (3.7)

and the variable step-size is

µ(k) =
1

β + xT (k)R−1(k − 1)x(k)
.

Newton-LMS [57]-[61] is equivalent to the Wiener solution with exponential-forgetting

window estimation of the autocorrelation and cross-correlation. However, Newton-

LMS requires the inverse of the autocorrelation matrix. In the RI algorithm, which

will be derived, this is avoided.

The RLS algorithm is similar to Newton-LMS, except that the updating of the cor-

relations are not performed directly using (3.2) and (3.3). Instead, the inverse au-

tocorrelation matrix is updated to avoid inverting it at each step [1]. The basic idea

behind the RI algorithm is the iterative solution of the Wiener equation (3.1) at each

time step k. Specifically, the following iteration converges to the Wiener Solution,

wn+1(k) = [I− µR(k)]wn(k) + µp(k), n = 0, 1, 2, . . . (3.8)

if µ satisfies the convergence criterion [1];

µ <
2

λmax(R(k))
. (3.9)

Considering the update equations for the correlations, and taking the expectation of
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R(k) in (3.2) we get;

R̄(k + 1) = βR̄(k) + Rxx, (3.10)

where Rxx = E
{

x(k)xT (k)
}

and R̄(k) = E{R(k)}. Solving (3.10) yields,

R̄(k) =
1− βk

1− β
Rxx, (3.11)

and as k →∞ (see appendix)

R̄(∞) =
1

1− β
Rxx. (3.12)

Equation (3.11) implies that the eigenvalues of the estimated autocorrelation matrix

increase exponentially, and in the limit become 1
1−β

times that of the original matrix.

The implication is that since µ must be chosen to satisfy (3.9) in the limit as well,

we get:

µ <
2(1− β)

λmax(Rxx)
, (3.13)

equation (3.13) restricts µ to values much smaller than the one required in (3.8)

if Rxx was used instead of R(k). Hence, it would be advantageous to make the

step-size µ variable so that,

µ(k) <
2

λmax(R(k))
=

(
1− β

1− βk

)(
2

λmax(Rxx)

)
=

µmax

1− βk
, (3.14)

or equivalently,
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µ(k) =
µ0

1− βk
where µ0 < µmax. (3.15)

The iteration in (3.8) has a high computational cost. Therefore, with the variable

step-size, only one iteration at each time step may be sufficient. Finally, the weight

update equation for the proposed RI algorithm becomes:

w(k) = [I− µ(k)R(k)]w(k − 1) + µ(k)p(k). (3.16)

The RI algorithm has a major advantage compared to the RLS algorithm in that

it does not require the updating of the inverse autocorrelation matrix. Also, its

computational complexity is much less than that of the RLS as will be shown later.

Due to the update of the inverse autocorrelation matrix, RLS type algorithms may

face numerical stability problems [37], which is not the case for the RI algorithm.

The essence of the RI algorithm is the recursive inversion of the autocorrelation

matrix, simultaneously, with its recursive estimation. For the convergence of the

filter weight vector w(k), the correlations in (3.2) and (3.3) must converge, and

this convergence is a slow process since beta is close to unity. This means that the

iterative inversion of R(k) in (3.8) need not be carried until convergence (for large

n), since the iteration will be continued in the next time step with slight changes

in the correlation estimates. It should be noted here that, if the iteration in (3.8) is

continued till convergence, then the RI algorithm’s convergence rate becomes the

same as that of RLS. The main difference between the two algorithms is in how the
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inverse of the autocorrelation matrix estimate at time step k is calculated. In the

RLS, this is obtained from a recursion in terms of the inverse, and in the RI, it is

obtained from an iterative scheme (as in (3.8)) which does not involve the inverse.

It is expected that, with the updating of the correlations in (3.2) and (3.3) being

sufficiently slow, the iterative inversion of the autocorrelation matrix will approach

the true inverse in a small number of time steps, and will track it closely afterwards.

3.3. Convergence Analysis of the RI Algorithm

By solving (3.2) we get;

Rk =
k∑

i=0

βk−ix(i)xT (i), (3.17)

Substituting (3.17) in (3.16);

wk =

[
I− µk

k∑
i=0

βk−ix(i)xT (i)

]
wk−1 + µkpk, (3.18)

where

x(i)xT (i) = Rxx + δR(i), (3.19)

where δR(i) is the random part of the autocorrelation matrix. Substituting (3.19) in

(3.17) gives,

Rk =
k∑

i=0

βk−iRxx +
k∑

i=0

βk−iδR(i)

=

(
1− βk+1

1− β

)
Rxx +

k∑
i=0

βk−iδR(i), (3.20)
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Letting,

µk =

(
µ0(1− β)

1− βk+1

)
,

and multiplying both sides of (3.20) by µk yields,

µkRk = µ0Rxx +

(
µ0(1− β)

1− βk+1

) k∑
i=0

βk−iδR(i), (3.21)

Defining,

δÃk =

(
µ0(1− β)

1− βk+1

) k∑
i=0

βk−iδR(i)

and Ak ≡ µkRk,

Ak = µ0Rxx + δÃk. (3.22)

Following the same procedure for the cross-correlation vector, results in

µkpk = µ0p̄ + δp̃k. (3.23)

Now, substituting (3.22) and (3.23) in (3.18) yields,

wk =
[
I−

(
µ0Rxx + δÃk

)]
wk−1 + µ0p̄ + δp̃k. (3.24)

Let
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wk = w̄k + δw̃k, (3.25)

where w̄k = E{wk} and δw̃k is the stochastic part of wk. By substituting (3.25) in

(3.24),

w̄k + δw̃k = [I− µ0Rxx] (w̄k−1 + δw̃k−1)− δÃk (w̄k−1 + δw̃k−1) + µ0p̄ + δp̃k,(3.26)

Subdividing (3.26) into deterministic and stochastic components,

w̄k = [I− µ0Rxx] w̄k−1 + µ0p̄, (3.27)

and

δw̃k =
[
I−

(
µ0Rxx + δÃk

)]
δw̃k−1 + δp̃k − δÃkw̄k−1, (3.28)

are obtained. Now, let

w̄k = w0 + ∆wk, (3.29)

where w0 is the optimum solution of wk. Keeping in mind that,

p̄ = Rxxw0, (3.30)

substituting (3.29) and (3.30) in (3.27),
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w0 + ∆wk = [I− µ0Rxx] (w0 + ∆wk−1) + µ0p̄

= w0 − µ0Rxxw0 + [I− µ0Rxx] ∆wk−1 + µ0Rxxw0. (3.31)

Rearranging (3.31),

∆wk = [I− µ0Rxx] ∆wk−1 (3.32)

is obtained. Equation (3.32) is a linear time-invariant equation and its solution is,

∆wk = [I− µ0Rxx]
k ∆w(0). (3.33)

From (3.33) we notice that ∆wk → 0 as k → ∞ if |λ (I− µ0Rxx) | < 1, which

shows that the coefficients converge to their optimum solution in the mean sense.

Now, by rearranging (3.28) we can write,

δw̃k = [I− µ0Rxx] δw̃k−1 − δÃkwk−1 + δp̃k, (3.34)

Let us consider the last two terms of the right hand side of (3.34),

−δÃkwk−1 + δp̃k = −µk

k∑
i=0

βk−iδR(i)wk−1 + µk

k∑
i=0

βk−iδp(i), (3.35)

Substituting (3.20), (3.23), (3.25) and (3.29) in (3.35) gives,
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−δÃkwk−1 + δp̃k = −µk

k∑
i=0

βk−i
(
x(i)xT (i)− Rxx

)
(w0 + ∆wk−1 + δw̃k−1)

+ µk

[
k∑

i=0

βk−i (x(i)d(i)− p̄)

]

= µk

k∑
i=0

βk−ix(i)
(
d(i)− xT (i)w0

)

− µk

k∑
i=0

βk−ip̄ + µk

k∑
i=0

βk−iRxxw0

+ µk

k∑
i=0

βk−iRxx (∆wk−1 + δw̃k−1)

− µk

k∑
i=0

βk−ix(i)xT (i) (∆wk−1 + δw̃k−1)

= µk

k∑
i=0

βk−ix(i)e0(i)

− µk

k∑
i=0

βk−iδR(i) (∆wk−1 + δw̃k−1) . (3.36)

The second term in the right-hand-side of equation (3.36), is weighted time averag-

ing and by the ergodicity assumption is equal to its expected value. Furthermore,

this term can be neglected based on the independence assumption used in the anal-

ysis of the LMS algorithm [1]. Now, defining the error to be;

e0 = d(i)− xT (i)w0,

and by the orthogonality property between x(k) and e0(k), the result of the first term

in equation (3.36), which is a weighted time averaging and is equal to the expecta-

tion for an ergodic process, becomes zero. (The necessary and sufficient condition

for the cost function to attain its minimum value is for the corresponding value of
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the estimation error e0(k) to be orthogonal to each input sample that enters into the

estimation of the desired response at time k), [1]. Therefore, (3.34) becomes,

δw̃k = [I− µ0Rxx] δw̃k−1, (3.37)

In order to find the covariance matrix of δw̃k,

E
{

δw̃kδw̃T
k

}
= [I− µ0Rxx] E

{
δw̃k−1δw̃T

k−1

}
[I− µ0Rxx] (3.38)

is obtained. Defining Qk = E
{

δw̃kδw̃T
k

}
,

Qk = [I− µ0Rxx] Qk−1 [I− µ0Rxx] . (3.39)

Solving (3.39) yields,

Qk = [I− µ0Rxx]
k Q0 [I− µ0Rxx]

k . (3.40)

It can be observed that Qk → 0 as k → ∞ if |λ (I− µ0Rxx) | < 1. Along with

the previous result of ∆wk → 0 as k → ∞, if |λ (I− µ0Rxx) | < 1 this assures

convergence in the mean square sense. It should be noted here that the result in

(3.40), which implies that the steady state covariance of the weight vector error is

zero, is the consequence of the simplification used in obtaining (3.37). A more

accurate result for this variance can be obtained by avoiding this simplification.

However, the derivation in this case becomes, if not impossible, extremely difficult.

A consequence of this result is that the excess MSE of the algorithm turns out to
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be zero, as is shown in Section 3.5. This result, however, has been verified through

simulations, indicating that the approximations are valid.

3.4. Discussion

Before we proceed further with the analysis of the RI algorithm, it is important to

compare the LMS and the RI algorithms in terms of their respective update equa-

tions. This sheds light on the superior performance of the RI algorithm.

The filter tap update equation of the LMS algorithm as defined in [1] is,

w(k) = w(k − 1) + µe(k)x(k), (3.41)

where e(k) is given in (3.7)

Substituting (3.7) in (3.41) gives,

w(k) =
[
I− µx(k)xT (k)

]
w(k − 1) + µx(k)d(k), (3.42)

where,

x(k)d(k) = p̄ + δp(k), (3.43)

where p̄ = E {x(k)d(k)}.

Now, substituting (3.25), (3.19) and (3.43) in (3.42) gives,

w̄k + δw̃k = [I− µRxx − µδR(k)] (w̄k−1 + δw̃k−1) + µp̄ + µδp(k). (3.44)
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Separating (3.44) into its deterministic and stochastic parts, respectively, results,

w̄k = [I− µRxx] w̄k−1 + µp̄, (3.45)

and

δw̃k =
[
I− µx(k)xT (k)

]
δw̃k−1 + µ [δp(k)− δR(k)w̄k−1] . (3.46)

Now, let us rearrange (3.45) and (3.46), and compare them with (3.27) and (3.28)

as shown in Table 3.1.

Table 3.1. Comparison of the stochastic update equations of the RI and LMS

algorithms

LMS algorithm RI algorithm

w̄k = [I− µRxx] w̄k−1 + µp̄ w̄k = [I− µ0Rxx] w̄k−1 + µ0p̄

δw̃k = [I− µ (Rxx + δRk)] δw̃k−1 δw̃k =
[
I− µ0

(
Rxx + 1

µ0
δÃk

)]
δw̃k−1

+µ [δpk − δRkw̄k−1] +
[
δp̃k − δÃkw̄k−1

]

Observations:

1. In the equation of the random part of wk, δÃk is a low-pass filtered version of

the covariance matrix random part δRk (with a small cut-off frequency). This

implies that, the eigenvalues of the instantaneous estimate of the covariance

matrix, xkxT
k = Rxx + δRk, vary in a much wider range than those of Rxx +

1
µ0

δÃk; i.e. λmax(k) of xkxT
k is expected to be much larger than λmax(k) of
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Rxx + 1
µ0

δÃk. Therefore, step-size µ should be chosen much smaller than µ0

(i.e. convergence of the equation of w̄k is much slower in the LMS algorithm).

2. The forcing term in the equation of δw̃k in the RI algorithm is again a low-

pass filtered version of that in the LMS algorithm. Hence, the fluctuations

of δw̃k may be expected to be much smaller than those of δw̃k in the LMS

algorithm.

3. The update equations for the mean weight vector are identical. However, as

pointed out in observation 1, the possibility of choosing a much larger value

of the step-size in the RI algorithm is a major advantage over the LMS al-

gorithm. Although the convergence of the RI algorithm is also dependent on

the eigenvalue spread of the autocorrelation matrix, the facts pointed out in

observation 1 imply that the situation is much worse in the LMS algorithm

because of the larger fluctuations of the eigenvalues. Another important fact

that must be kept in mind is that even with an eigenvalue spread approaching

unity, the RLS algorithm cannot converge very fast because of the slowness of

the recursions for the correlations in (3.2) and (3.3) unless β is considerably

smaller than unity; a case in which the performance of the RLS deteriorates.

This means that an eigenvalue spread to some degree is allowable; such that

convergence of the slowest mode of the weight vector is not slower than the

convergence of the correlations. To show this, let the slowest mode be ex-

pressed as:

vs(k) = (1− µ0λmin)k , (3.47)
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where µ0 is chosen to satisfy the stability criterion
(
µ0 < 2

λmax(Rxx)

)
. Letting

µ0λmax = 2η, where η < 1, and χ (Rxx) = λmax

λmin
, then the slowest mode

becomes

vs(k) =

(
1− 2η

χ (Rxx)

)k

. (3.48)

On the other hand, the convergence of the correlations is determined by the

factor βk. Therefore, the mean weights will converge faster than the correla-

tions if

∣∣∣∣1−
2η

χ (Rxx)

∣∣∣∣ < β < 1. (3.49)

For a large eigenvalue spread (χ (Rxx)) and η of the order of 1, β will be

slightly less than unity, which is in agreement with the usual choice in the

RLS algorithm.

3.5. The Ensemble - Average Learning Curve of the RI Algorithm

The computation of the ensemble-average learning curve of the RI algorithm is

based on the a priori estimation error e(k). Now, define:

J(k) = E
{|e(k)|2} , (3.50)

where J(k) is the mean-square-error value of e(k), and e(k) is the a priori filtering

error given by (3.7).

The desired signal d(k) can be modeled as [1]:

d(k) = e0(k) + wT
o x(k), (3.51)
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where e0(k) is the measurement noise.

Now, substituting (3.51) in (3.7) yields;

e(k) = e0(k) + [wo − w(k − 1)]T x(k)

= e0(k) + εT (k − 1)x(k), (3.52)

where ε(k − 1) is the undisturbed estimation error and is equal to;

ε(k − 1) = wo − w(k − 1). (3.53)

Substituting (3.52) in (3.50) gives:

J(k) = E{[e0(k) + εT (k − 1)x(k)
] [

e0(k) + εT (k − 1)x(k)
]T}.

Simplification of the above equation yields

J(k) = E
{|e0(k)|2} + E

{
e0(k)xT (k)ε(k − 1)

}
+ E

{
e0(k)εT (k − 1)x(k)

}

+ E
{
εT (k − 1)x(k)xT (k)ε(k − 1)

}
. (3.54)

The second and third terms of (3.54) are equal to zero for two reasons. First, the

undisturbed estimation error (weight-error vector) ε(k − 1) depends on the past

values of the input vector x(k) and the measurement noise e0(k). Second, x(k) and

e0(k) are statistically independent and e0(k) has a zero mean. Hence,
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E
{
e0(k)xT (k)ε(k − 1)

}
= E

{
e0(k)εT (k − 1)x(k)

}

= 0. (3.55)

Assuming that e0(k) is a white noise process with zero mean and variance σ2
0 , the

first term of (3.54) becomes:

E
{|e0(k)|2} = E {e0(i)e

∗
0(j)} =





σ2
0, i = j

0, i 6= j.

(3.56)

Now, consider the last term in (3.54),

E
{
εT (k − 1)x(k)xT (k)ε(k − 1)

}
= E

{
tr

[
x(k)xT (k)ε(k − 1)εT (k − 1)

]}

= tr
[
E

{
x(k)xT (k)ε(k − 1)εT (k − 1)

}]
.(3.57)

Assuming that the fluctuations in the weight-error vector ε(k) are slower com-

pared with those of the input signal vector x(k) [1, p.449], and by using the di-

rect averaging method (The direct averaging technique described in [83] means that

the term x(k)xT (k) is substituted with the expectation over the ensemble. Hence,

x(k)xT (k) = E
[
x(k)xT (k)

]
= Rxx), (3.57) can be rewritten as:

tr
[
E

{
x(k)xT (k)ε(k − 1)εT (k − 1)

}] ≈ tr
[
E

{
x(k)xT (k)

}
E

{
ε(k − 1)εT (k − 1)

}]

= tr [RxxK(k − 1)] , (3.58)

where
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K(k) = E
{
ε(k)εT (k)

}
. (3.59)

Now, substituting (3.53) in (3.59) gives:

K(k) = E
{

[w(k)− wo] [w(k)− wo]
T
}

, (3.60)

Substituting (3.25) and (3.29) in (3.60) gives:

K(k) = E
{

[∆w(k) + δw̃(k)] [∆w(k) + δw̃(k)]T
}

= E
{
∆w(k)∆wT (k)

}
+ E

{
∆w(k)δw̃T (k)

}

+ E
{
δw̃(k)∆wT (k)

}
+ E

{
δw̃(k)δw̃T (k)

}
, (3.61)

The second and third terms of (3.61) are zero by virtue of independence between

∆w(k) and δw̃(k), and by the definition of δw̃(k) as a zero mean perturbation,

(E {δw̃(k)} = 0).

Now, taking the first term of (3.61) and by using the result of (3.32), yields,

E
{
∆w(k)∆wT (k)

}
= E

{
[I− µ0Rxx]

k ∆w(0)∆wT (0) [I− µ0Rxx]
k
}

= [I− µ0Rxx]
k Z0 [I− µ0Rxx]

k , (3.62)

where Z0 = E
{
∆w(0)∆wT (0)

}
.

Now, substituting (3.40) and (3.62), in (3.61) gives:
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K(k) = [I− µ0Rxx]
k K0 [I− µ0Rxx]

k , (3.63)

where K0 = E
{

[∆w(0) + δw̃(0)] [∆w(0) + δw̃(0)]T
}

= Z0+Q0 = E
{

wowT
o

}
=

wowT
o . By using the eigenvalue decomposition (EVD) of Rxx, Rxx = SΛST , in

(3.63),

K(k) = S [I− µ0Λ]k ST K0S [I− µ0Λ]k ST , (3.64)

where Λ and S are matrices having the eigenvalues and eigenvectors of Rxx, respec-

tively.

Substituting (3.64) in (3.58) and by diagonalizing Rxx;

tr [RxxK(k − 1)] = tr
[
SΛST S [I− µ0Λ]k ST K0S [I− µ0Λ]k ST

]

= tr
[
Λ [I− µ0Λ]k ST K0S [I− µ0Λ]k

]
, (3.65)

where the facts that ST S = I and tr(AB) = tr(BA) are used. Substituting this

result in (3.65);

tr [RxxK(k − 1)] = tr
[
ST K0S [I− µ0Λ]2k Λ

]

=
N∑

i=1

ζi [1− µ0λi]
2k λi. (3.66)

where ζi are the diagonal elements of the matrix ST K0S. Substituting (3.56) and

(3.66) in (3.54),
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Figure 3.1. The MSE learning curves of the RI, RLS and LMS algorithms.

J(k) = σ2
0 +

N∑
i=1

ζiλi [1− µ0λi]
2k . (3.67)

In equation (3.67), with a proper selection of µ0 based on the discussions in section

3.4, the second term can be made to vanish in a number of time steps comparable to

that of RLS, and much smaller than that of LMS. Equation (3.67) implies that the

excess MSE of the RI algorithm is zero. Fig. 3.1 shows that, for the system identifi-

cation problem described in Chapter 4 Section 4.3, the theoretical and experimental

MSE curves for the RI algorithm are in good agreement. The differences between

the two MSE curves are the consequence of the approximations made in deriving

(3.67). Keeping the same MSE constant for the other algorithms, it also shows that

the RI algorithm converges almost at the same time as the RLS algorithm and much

faster than that of the LMS algorithm.
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3.6. Fast Implementation Issues of the RI Algorithm

From equations (3.2), (3.3) and (3.16), it is noted that the RI algorithm requires

5
2
N2 + 7

2
N floating point multiplications and divisions, and 2N2 + N floating point

additions and subtractions. Even though the number of computations is less than

that of the RLS algorithm, it can be reduced even further.

The main idea is to obtain a Toeplitz approximation of R(k) (see appendix) and

apply transform techniques to carry out the multiplication R(k)w(k − 1) in the

update equation. Now, considering (3.2), the elements of R(k) can be updated

using,

ri,j(k) = βri,j(k − 1) + xi(k)xj(k), (3.68)

where i = 1, 2, . . . , N − q, j = i + q and q = 0, 1, . . . , N − 1. The correlations

in the qth diagonal of the autocorrelation estimate, with q = 0 corresponding to the

main diagonal, can be averaged using (3.68) as:

rq(k) = βrq(k − 1) +
1

N − q

N−q∑
i=1

xi(k)xj(k), (3.69)

where,

rq(k) =
1

N − q

N−q∑
i=1

ri,j(k).

By (3.69) the symmetric sequence gq(k) can be constructed as:
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gq(k)=





rq, 0 ≤ q ≤ (N − 1)

r∗q , −(N − 1) ≤ q < 0

(3.70)

where r∗q = r−q.

The nth element of the vector wf (k) = R(k)w(k) can be written as:

wf,n(k) =
N∑

m=1

rn,mwm−1(k), n = 1, 2, . . . , N. (3.71)

Rewriting (3.71) in terms of the sequence in (3.70) gives

wf,n(k) =
N−1∑
m=0

gn−m−1wm(k), n = 1, 2, . . . , N, (3.72)

Equation (3.72) represents the convolution sum. Now, taking (2N − 1)-point DFT

of both sides of (3.72) at time k

Wfe(l) = G(l)We(l), l = 1, 2, . . . , 2N − 1, (3.73)

where Wfe(l) is the DFT of the zero-padded sequence {wfe,n(k); n = 1, 2, . . . , 2N−

1}:

wfe,n(k)=





wf,n(k), n = 1, 2, . . . , N

0, n = N + 1, . . . , 2N − 1,

(3.74)

and We(l) is the DFT of we(k) = [0
¯

w(k)] where 0
¯

is an (N − 1)-dimensional zero

vector. The sequence {wf,n(k); n = 1, 2, . . . , N} can now be recovered from the
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inverse DFT of Wfe(l).

By applying this method, the computational complexity of the RI algorithm will

be significantly reduced as shown in Table 3.2 and Fig. 3.2. It can be observed

here that the RI, Fast RI and the RLS algorithms all have complexity O(N2). But

Fig. 3.2 shows that as the filter length increases the difference in computational

complexity becomes more prominent.

Table 3.2. Computational Complexity of RI, fast RI, 2nd order RI, RLS and

SFTRLS algorithms.

Mult./Div. Add./Sub.

RI 5
2
N2 + 7

2
N 2N2 + N

RIfast
1
2
N2 + N

(
11
2

+ 3 log2 N
)− 1 1

2
N2 + N

(
3
2

+ 9 log2 N
)

+ 1

2nd order RI 5
2
N2 + 7

2
N 5

2
N2 + 2N

RLS 3N2 + 11N + 9 3N2 + 7N + 4

SFTRLS 9N + 13 9N + 1

3.7. Robust RI Algorithm in Impulsive Noise

Randomness of the input signal of adaptive filters is one of the factors that critically

affect their convergence performance [15]. The randomness of the input signal

caused by impulsive noise can cause the performance of the adaptive filter to dete-

riorate [8]. The RLS algorithm [1] has shown good performance, even in impulsive

noise environments. However, the RLS algorithm suffers from its high computa-

tional complexity, stability problems when the forgetting factor is relatively low,

and tracking capability when the forgetting factor is relatively high. The RI algo-

rithm [50]-[53], was proposed to overcome these problems. However, the RLS and

RI algorithms both provide a poor performance in impulsive noise environments
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Figure 3.2. The Computational Complexity of the fast RI, RI, 2nd order RI, RLS

and SFTRLS algorithms.

when the signal-to-noise (SNR) is low. Several robust versions of the RLS algo-

rithm for impulsive noise environments have been proposed, [17], [47]-[49]. These

algorithms suffer from their high computational complexity, and stability problems

due to the estimate of the inverse of the autocorrelation matrix [8].

In this section, we propose a new RI algorithm that is robust to impulsive noise and

provides better mean-square-error (MSE) performance than the recently proposed

Robust RLS algorithm [17], with a considerable reduction in the computational

complexity [50] [51] as shown in Table 3.2. The proposed method employs the

technique introduced in [17].

Now, let us consider estimating the autocorrelation matrix and cross-correlation

vector as [17] instead of those in (3.2) and (3.3),

R(k) = βR(k − 1) + δ(k)x(k)xT (k), (3.75)
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and

p(k) = βp(k − 1) + δ(k)d(k)x(k), (3.76)

where δ(k) is a nonnegative scalar given by,

δ(k) =
1

‖x(k)e(k)‖1

. (3.77)

After convergence, e(k) may become arbitrarily close to zero (within the precision

of the simulation software), yet the algorithm does not diverge. It is also observed

that, δ(k) can be greater than unity which would affect the convergence performance

of the adaptive filter. To overcome this problem [17], δ(k) is modified as

δ(k) = min

(
1,

1

‖x(k)e(k)‖1

)
, (3.78)

The L1 norm of the gain vector, p(k)−βp(k− 1), in impulsive noise environments

which is given by

‖p(k)− βp(k − 1)‖1 = ‖δ(k)d(k)x(k)‖1 , (3.79)

increases suddenly when d(k) is corrupted by impulsive noise. Hence, the L1 norm

of p(k) also increases, and this, in turn, would increase the L1 norm of w(k) in

(3.16). The effect of this impulsive noise can be suppressed by δ(k) which imposes

a time-varying upper bound on the L1 norm of the gain vector in (3.79).
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With δ(k) = 1, the update equations in (3.75) and (3.76) become identical to

those of the original RI algorithm given in (3.2) and (3.3). Also, as it can be seen

from (3.75), δ(k) bounds the L1 norm of the gain matrix, R(k)− βR(k − 1), as

‖R(k)− βR(k − 1)‖1 =
∥∥δ(k)x(k)xT (k)

∥∥
1

= min

(
‖x(k)‖∞ ‖x(k)‖1 ,

‖x(k)‖∞
|e(k)|

)
. (3.80)

Equations (3.78) and (3.80) prevent e(k) from affecting δ(k) and then the L1 norm

of the gain matrix. It can be further deduced from (3.80) that, the L1 norm of the

gain matrix would be reduced. Since the probability of having δ(k) = 1 is high in

the transient state and the convergence of the RI algorithm is fast, the convergence

of the proposed robust RI algorithm will also be fast.

When an impulsive noise-corrupted e(k) occurs, we obtain |d(k)| ≈ |e(k)| and

δ(k) = 1
‖x(k)e(k)‖1 which would enforce the L1 norm of the gain vector in (3.79)

and the L1 norm of the gain matrix in (3.80) to be bounded by unity and ‖x(k)‖∞
|e(k)| ,

respectively. Hence the L1 norm of the coefficient vector in (3.16) would also be

bounded.

The differential coefficient vector of the RI algorithm is given by

∆w(k) = w(k)− w(k − 1)

= −µ(k)R(k)w(k − 1) + µ(k)p(k). (3.81)

In the steady state, assuming that p(k) = R(k)w(k), then substituting (3.2) and

(3.3) in (3.81) and rearranging yields
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∆w(k) = µ(k)x(k)
(
d(k)− xT (k)w(k − 1)

)
. (3.82)

Substituting (3.7) in (3.82) gives

∆w(k) = µ(k)x(k)e(k). (3.83)

The L1 norm of the differential coefficient vector of the RI algorithm is

‖∆w(k)‖1 = |µ(k)| ‖x(k)e(k)‖1 . (3.84)

It is seen from (3.84) that, the L1 norm of the differential coefficient vector of the RI

algorithm may increase abruptly in the steady state for an impulsive-noise-corrupted

e(k). Similarly, using (3.75) and (3.76), we get the L1 norm of the differential

coefficient vector of the proposed robust RI algorithm as

‖∆w(k)‖1 = |µ(k)| |δ(k)| ‖x(k)e(k)‖1 . (3.85)

Substituting (3.77) in (3.85) gives

‖∆w(k)‖1 = |µ(k)| . (3.86)

In other words, the proposed robust RI algorithm provides robust performance with

respect to a long burst of impulsive noise. Using the well known vector-norm in-

equality
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1√
N
‖∆w(k)‖1 ≤ ‖∆w(k)‖2 ≤ ‖∆w(k)‖1 , (3.87)

we note that the L2 norm of the differential-coefficient vector would also remain

bounded and hence the norm of w(k) in the proposed robust RI algorithm would

also be robust with respect to the impulsive-noise-corrupted e(k).

3.8. The Effect of the Forgetting Factor on the RI Adaptive
Algorithm in System Identification

In the RLS algorithm, the forgetting factor is chosen between zero and unity. How-

ever, there is a compromise between the performance criteria depending on the

value of this forgetting factor [64]: When the forgetting factor is very close to unity,

the RLS algorithm achieves good stability, whereas its tracking capabilities are re-

duced. A smaller value of the forgetting factor improves the tracking capabilities of

the RLS algorithm but it decreases its probability of being stable [1].

Let us consider a system identification setting [1] as shown in Fig. 3.3. The output

of the unknown system is assumed to be corrupted by an additive white Gaussian

noise (AWGN). In this scenario, the aim of the adaptive filter is to recover the

system noise from the error signal after it converges to the true solution. However

the error signal must not go to zero, since this may introduce noise in the adaptive

filter. Moreover, the RLS algorithm has a feature which makes the problem even

more complicated. Under some conditions, it is able to cancel the error of the

adaptive filter even in the presence of system noise. In other words, the system noise

leaks into the output of the adaptive filter, which of course may lead to an incorrect
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Figure 3.3. Block diagram of adaptive system identification.

solution to the problem. This leakage depends on the values of the forgetting factor

and the length of the adaptive filter [43].

In this section, we analyze this leakage phenomenon for the RI algorithm [65],

and give a theoretical estimation of it in terms of the forgetting factor β and the

filter length N . These findings will be compared with those of the RLS algorithm

introduced in [43].

3.8.1. The Leakage Phenomenon

3.8.1.1. System Identification - Ideal Behavior. In the system identification setting

shown in Fig. 3.3, our objective is to estimate the unknown system coefficients

using an adaptive filter, both driven by the same input signal x(k). The unknown

and the adaptive systems are assumed to be, both, Finite-Impulse-Response (FIR)

filters of length N , defined by the tap-weight vectors

w = [w0 w1 . . . wN−1]
T ,
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and

ŵ(k) = [ŵ0(k) ŵ1(k) . . . ŵN−1(k)]T ,

As seen from Fig. 3.2, y(k), the output of the unknown system is given by

y(k) = xT (k)w, (3.88)

where x(k) is the tap-input vector that contains the N most recent samples of the

input signal given as,

x(k) = [x(k) x(k − 1) . . . x(k −N + 1)]T .

The desired response d(k) is defined as,

d(k) = y(k) + ν(k) = xT (k)w + ν(k), (3.89)

where ν(k) is the system (measurement) noise that corrupts the output of the un-

known system, y(k).

According to the block diagram in Fig. 3.2, the error signal e(k) is

e(k) = [y(k)− ŷ(k)] + ν(k). (3.90)

From (1),
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Rŵ = p, (3.91)

where R and p are the expected values of the autocorrelation matrix of the tap-

input vector and cross-correlation vector between the desired output signal and the

tap-input vector, respectively, and given by

R = E
{

x(k)xT (k)
}

, (3.92)

p = E {x(k)d(k)} . (3.93)

Substituting (3.89) in (3.93) gives

p = E {x(k)d(k)}

= E {x(k) [y(k) + ν(k)]}

= E {x(k)y(k)}+ E {x(k)ν(k)} , (3.94)

assuming that the input x(k) and the system noise ν(k) are statistically independent,

then the second term of (3.94) will be eliminated and, therefore, substituting (3.88)

in (3.94) gives

p = E {x(k)y(k)}

= E
{

x(k)xT (k)w
}

= Rw. (3.95)
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According to (3.91)

ŵ = w, (3.96)

and

ŷ(k) = xT (k)ŵ = xT (k)w = y(k). (3.97)

Substituting the result of (3.97) in (3.90) yields,

e(k) = ν(k). (3.98)

Or in other words, y(k) and ν(k) are correctly separated.

3.8.1.2. System Identification - RI Algorithm. In the case of the RI algorithm, (3.92)

and (3.93) are replaced by the recursive estimates of the instantaneous correlations

given in (3.2) and (3.3).

Reconsidering (3.90),

e(k) = d(k)− ŷ(k) = xT (k)w + ν(k)− xT (k)w(k)

= xT (k) [w− w(k)] + ν(k), (3.99)

where w(k) is the recursive estimate of w given by (3.16) [50]-[53]:

As k →∞,
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w(k) = w0 + δw̃(k), (3.100)

where w and δw̃(k) are the optimum solution and the stochastic part of w(k), re-

spectively.

Substituting (3.100) in (3.99) yields

e(k) = −xT (k)δw̃(k) + ν(k), (3.101)

For a good estimate of the unknown system, the difference between the output of the

adaptive filter, ŷ(k), and the output of the unknown system, y(k), should approach

zero in the steady state,

ŷ(k)− y(k) = ŷ(k)− d(k) + ν(k)

= ŷ(k)− (e(k) + ŷ(k)) + ν(k)

= ν(k)− e(k) = xT (k)δw̃(k). (3.102)

As a result of (3.102),

ŷ(k) = y(k) + xT (k)δw̃(k). (3.103)

where δw̃(k) [50] is given by

δw̃(k) = [I− µ0Rxx] δw̃(k − 1) + µ(k)
k∑

i=0

βk−ix(i)ν(i). (3.104)
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From (3.103) and (3.104), we note that, in a system identification setting, the output

of the adaptive filter, ŷ(k), always contains a component which is proportional to

the system noise, ν(k). This phenomenon is a leakage of the system noise, ν(k), in

the output of the adaptive filter, ŷ(k).

By (3.103), this leakage value is given as,

r(k) = xT (k)δw̃(k). (3.105)

A normalized residual parameter [43], ρ(k), may be defined as

ρ(k) =

∣∣∣∣
ν(k)− r(k)

ν(k)

∣∣∣∣ . (3.106)

When total leakage occurs, then ν(k) = r(k) and ρ(k) = 0. This usually occurs

at low values of the forgetting factor and high values of the filter length, as will be

demonstrated in Chapter 4.

3.9. A 2-Dimensional (2D) RI Algorithm

Adaptive filtering techniques are very efficient in classical signal processing prob-

lems such as noise removal, channel estimation and system identification. Due to

increased use of digital imaging and video in consumer electronics and multimedia

applications, 2D adaptive filtering techniques gained more significance.

Approximately two decades ago, the LMS adaptive algorithm was extended from

1D to 2D [66], [67]. However, these algorithms update the filter coefficients only

along the horizontal direction on a 2D plane. Consequently, these algorithms can
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not sufficiently exploit information in 2D signals. This restriction is not a serious

problem for stationary input signals, but it is serious for non-stationary input signals.

For example, these algorithms result in degradations by the anisotropic processing

when they process image signals [68].

Different types of 2D LMS adaptive algorithms, which can update the filter coef-

ficients both along the horizontal and the vertical directions on a 2D plane were

later developed, and applied to reduce noise in image signals [68]. One of the most

efficient algorithms that has shown high performance in image noise removal and

image deconvolution is the 2-D RLS algorithm [69], [70].

In this section, we propose a new 2D RI adaptive filtering technique [82] which

provides a better performance than the 2D RLS algorithm [69], [70] in terms of

Search Results peak signal-to-noise ratio (PSNR) [71] with reduced computational

complexity.

3.9.1. Derivation of the 2D RI algorithm

Equation (3.16) describes the filter tap vector update equation of the RI algorithm.

It can be generalized into its 2D form as:

wk(m1,m2) = [I− µkRk]wk−1(m1, m2) + µkpk, (3.107)

Where wk(m1,m2) is the 2D tap-weight vector with dimensions N × N , where

m1 = 0, 1, . . . , N − 1 and m2 = 0, 1, . . . , N − 1, Rk and pk are the instantaneous

autocorrelation and cross-correlation matrices, respectively. They are estimated re-

cursively as:
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Rk = βRk−1 + x(n1, n2)xT (n1, n2), (3.108)

and

pk = βpk−1 + d(n1, n2)x(n1, n2). (3.109)

Where d(n1, n2) is the desired output, x(n1, n2) is the filter input. The filter input

(x(n1, n2)) and tap-weight vector (wk(m1,m2)) can be defined using the following

column-ordered vectors,

x(n1, n2) =




x(n1, n2)

...

x(n1, n2 −N + 1)

...

x(n1 −N + 1, n2)

...

x(n1 −N + 1, n2 −N + 1),




(3.110)
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wk(m1, m2) =




wk(0, 0)

...

wk(0, N − 1)

...

wk(N − 1, 0)

...

wk(N − 1, N − 1),




(3.111)

For 2D applications, there can be a number of ways that data can be reused [72].

One possible way is shown in Fig. 3.4. In this scheme, as shown in Fig. 3.4 (b), we

consider a mask of 3×3 pixels which move horizontally to the right by one column

at a time until the end of each row. Afterwards, the same process is repeated with

the next row below until the last 9 pixels of the image are reached. At the end of

each process of the mask, the data is reshaped as shown in Fig. 3.4 (a), starting from

the last pixel in the lower right corner. The filter output is given by the following

2D convolution:

y(n1, n2) =
N−1∑
m1=0

N−1∑
m2=0

w(m1,m2)x(n1 −m1, n2 −m2). (3.112)

3.10. RI Adaptive Filter with Second Order Estimation of
Autocorrelation Matrix

Even though the RI algorithm has a similar or better performance than the RLS al-

gorithm most of the time, it should be noted that this performance may be improved

further, with slight increment in the number of Add./Sub, by using the second order

recursive updating of the correlations as i [73]
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Figure 3.4. Rectangular Configuration of Data-Reusing in 2D.

R(k) = β1R(k − 1) + β2R(k − 2) + x(k)xT (k), (3.113)

and

p(k) = β1p(k − 1) + β2p(k − 2) + d(k)x(k), (3.114)

The number of multiplications in the second order equations will not be increased

compared with the first order updating equations if the coefficients in (3.113) and

(3.114) are chosen to be equal, i.e. β1 = β2 = 1
2
β.

Taking the expectation of (3.113) gives

R̄(k) =
1

2
βR̄(k − 1) +

1

2
βR̄(k − 2) + Rxx, (3.115)

where Rxx = E
{

x(k)xT (k)
}

and R̄(k) = E{R(k)}.

57



Poles of the system in (3.115) are:

z1 =
1

4

(
β −

√
β2 + 8β

)

z2 =
1

4

(
β +

√
β2 + 8β

)

(3.116)

which have magnitudes less than unity if β < 1. Solving (3.115) with the initial

conditions R̄(−2) = R̄(−1) = R̄(0) = 0 yields,

R̄(k) =

(
1

β − 1
+ α1z

k
1 + α2z

k
2

)
Rxx, (3.117)

where

α1 =
β − z2

(1− β) (z2 − z1)

α2 =
β − z1

(1− β) (z2 − z1)
.

(3.118)

Letting,

γ(k) =
1

β − 1
+ α1z

k
1 + α2z

k
2 , (3.119)

then, in the RI algorithm, the variable step-size is chosen as:

µ(k) =
µ0

γ(k)
. (3.120)

The update equation of the tap weight vector will remain the same as in (3.16).
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Chapter 4

SIMULATION RESULTS

4.1. Introduction

The performance of the RI algorithm and its variants mentioned in Chapter 3, is

discussed in detail in this chapter.

In order to study the effect of noise distribution, we will discuss the Gaussian and

the impulsive noise models used in this thesis when it is necessary. In the case

of impulsive noise channels, increasing the impulsive component strength, or the

probability of the outliers, will increase the noise power. This increment will affect

the transmitted signal more.

In this thesis MATLAB Software Package is used for the simulation of the standard

LMS, NLMS, VSSLMS, DCTLMS, TDVSS, RLS, SFTRLS, RRLS, PRRLS, PRI,

fast RI, 2nd order RI and 2D RI algorithms. Simulations are performed to investi-

gate the performances of these algorithms in AWGN, correlated Gaussian noise and

white and correlated impulsive noise for the following settings:

1. noise cancellation

2. system identification

3. channel equalization

4. echo cancellation
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5. image deconvolution

in stationary and non-stationary environments.

4.2. Noise Cancellation

In this section, the performance of the Fast RI algorithm is compared to those of the

RLS, VSSLMS and DCTLMS algorithms in a noise cancellation setting shown in

Fig. 4.1. All the algorithms were implemented using an SNR = 10log10

(
Psignal

Pnoise

)
=

30dB. The received signal was generated using [13]:

x(k) = 1.79x(k − 1)− 1.85x(k − 2) + 1.27x(k − 3)− 0.41x(k − 4) + v0(k).(4.1)

where v0(k) is a Gaussian process with zero mean and variance σ2 = 0.3849.

4.2.1. Additive White Gaussian Noise

In this experiment, the signal is assumed to be corrupted with an Additive White

Gaussian Noise (AWGN) process, with an overall eigenvalue spread χ(R) = 230.75;

in all the experiments done, χ(R) is measured experimentally. Simulations were

done with the following parameters: For the Fast RI algorithm: β = 0.993 and

µ0 = 0.00146, where µ0 is selected to be less than 2
λmax

. As a result of property 8

[[1], p. 816], λmax can be assumed to be less than or equal to the maximum power

spectral density of the input signal (λmax ≤ Smax). Therefore, the maximum eigen-

value of the autocorrelation matrix can be estimated by computing the periodogram

of the input signal. For the RLS algorithm: β = 0.993. For the VSSLMS algo-

rithm: γ = 0.00048, α = 0.97, µmin = 0.0047 and µmax = 0.05. For the DCTLMS

algorithm: γ = 0.002, β = 0.993, ε = 8 × 10−4, µ = 0.02 and M = 10. Fig.
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Figure 4.1. Block diagram of noise cancellation.

4.2 shows that the Fast RI and RLS algorithms converge to the same MSE almost

at the same time, whereas the VSSLMS and DCTLMS algorithms converge to the

same MSE but at a much slower rate than that of the Fast RI and RLS algorithms.

This result indicates that, in the RI algorithm, with a proper choice of the step-size

µ0, as pointed out in chapter 3 section 3.5, the convergence rate can be made to

approach that of the RLS algorithm, despite the very large eigenvalue spread of the

autocorrelation matrix of the input signal.

It should be noted that the performance of the RI algorithm deteriorates when the

eigenvalue spread is extremely large. To show the performance of the RI algorithm

compared to those of the RLS, normalized LMS (NLMS) and LMS algorithms, let

us consider an AR(1) process as follows:

x(k) = ρx(k − 1) + 0.4359r(k). (4.2)

where ρ is the correlation coefficient and r(k) is an AWGN process. When ρ = 0.99

the eigenvalue spread of the autocorrelation matrix is computed as χ(R) = 4130 on
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the average, which is extremely high. Note that the theoretical eigenvalue spread is

not valid in real-time due to the fluctuations of the estimated autocorrelation matrix.

The algorithms were simulated with the following parameters: For the RI algorithm:

β = 0.993 and µ0 = 0.00001. For the RLS algorithm: β = 0.993. For the NLMS

algorithm: µ = 0.04. For the LMS algorithm: µ = 0.00009. Fig. 4.3 shows that

the RI algorithm performance is worse than those of the RLS and NLMS algorithm

and almost similar to that of LMS algorithm. This is due to the fact that, because of

the very large eigenvalue ratio in (3.49) β is forced to be extremely close to unity,

in which case the convergence of the correlations would be extremely slow. Hence

if beta in the RI algorithm is chosen to be equal to that in RLS, the condition in

(3.49) would be violated and the convergence behavior of the RI algorithm would

be dominated by the eigenvalue ratio. In order to show that the convergence rate

of the RI algorithm approaches that of RLS, we consider the same system with

ρ = 0.87 (measured χ(R) = 172), and the algorithms were implemented with
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the parameters: For the RI algorithm: β = 0.993 and µ0 = 0.0005. For the RLS

algorithm: β = 0.993. For the NLMS algorithm: µ = 0.04. For the LMS algorithm:

µ = 0.009. Fig. 4.4 shows that the RI algorithm performs approximately the same

as the RLS and much better than the NLMS and LMS algorithms. The advantage

of the algorithm over the RLS algorithm is in terms of computational complexity.

It should be noted that the performance the RLS is sensitive to the forgetting factor β

(β should be selected very close to unity) as mentioned before, where this is not the

case in the RI algorithm. Taking ρ = 0.90 (measured χ(R) = 399), the algorithms

were simulated with the following parameters: For the RI algorithm: β = 0.97

and µ0 = 0.0007. For the RLS algorithm: β = 0.97. For the NLMS algorithm:

µ = 0.04. For the LMS algorithm: µ = 0.009. Fig. 4.5 shows that the RI algorithm

converges to a lower MSE than that of the RLS algorithm (approximately 6 dB

better) and converges faster than the NLMS and LMS algorithms.
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Figure 4.4. The ensemble MSE for the RI, RLS, NLMS and LMS in AWGN.
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Figure 4.5. The ensemble MSE for the RI, RLS, NLMS and LMS in AWGN.
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4.2.2. Additive Correlated Gaussian Noise

In this experiment, the signal is assumed to be corrupted with an Additive Cor-

related Gaussian Noise (ACGN) process, giving an overall χ(R) = 229.33. A

correlated Gaussian noise process is generated by using the first-order autoregres-

sive model (AR(1)), v(k + 1) = ρv(k) + v0(k), where v0(k) is a white Gaus-

sian noise process and ρ is the correlation parameter (ρ = 0.7). Simulations were

done with the following parameters: For the Fast RI algorithm: β = 0.993 and

µ0 = 0.0009. For the RLS algorithm: β = 0.993. For the VSSLMS algorithm:

γ = 0.00048, α = 0.97, µmin = 0.0047 and µmax = 0.05. For the DCTLMS

algorithm: γ = 0.002, β = 0.993, ε = 8 × 10−4, µ = 0.02 and M = 10. Fig.

4.6 shows that the Fast RI and RLS algorithms converge to the same MSE almost

at the same time, whereas the VSSLMS and DCTLMS algorithms converge to the

same MSE but at a much slower rate than the Fast RI and RLS algorithms. Even

though the RLS and the fast RI algorithms have similar performances in AWGN and

ACGN noise environments, the computational complexity of the Fast RI algorithm

is considerably lower as shown in Fig. 3.2 and Table 3.2

4.2.3. Additive White Impulsive Noise

Due to man-made noise [74], underwater acoustic noise [75], atmospheric noise

[76], etc, the noise added to the received signal can not be modeled using the Gaus-

sian distribution. This type of noise which has a heavy-tailed distribution is char-

acterized by outliers and may be better modeled using a Gaussian mixture model.

In order to study the effects of the impulsive components (outliers) of the noise

process in the noise cancellation setting, an impulsive noise process is generated by

the probability density function [18]: f = (1− ε) G (0, σ2
n)+εG (0, κσ2

n) with vari-
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Figure 4.6. The ensemble MSE for the fast RI, RLS, VSSLMS and DCTLMS in

ACGN.

ance σ2
f given as: σ2

f = (1− ε) σ2
n+εκσ2

n, where G (0, σ2
n) is a Gaussian probability

density function with zero mean and variance σ2
n that represents the nominal back-

ground noise. G (0, κσ2
n) represents the impulsive component of the noise model,

where ε is the probability and κ ≥ 1 is the strength of the impulsive components,

respectively. The signal is assumed to be corrupted with an Additive White Impul-

sive Noise (AWIN) process. The white impulsive noise process is generated with

the parameters: ε = 0.2 and κ = 100. Simulations were done with the following

parameters: For the Fast RI algorithm: β = 0.993 and µ0 = 0.0009. For the RLS

algorithm: β = 0.993. For the VSSLMS algorithm: γ = 0.00048, α = 0.97,

µmin = 0.0047 and µmax = 0.05. For the DCTLMS algorithm: γ = 0.002,

β = 0.993, ε = 8 × 10−4, µ = 0.02 and M = 10. Fig. 4.7 shows that the

fast RI and RLS algorithms converge to the same MSE at the same time, whereas

the VSSLMS and DCTLMS algorithms converge to the same MSE but at a much

slower rate than the Fast RI and RLS algorithms.
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Figure 4.7. The ensemble MSE for the fast RI, RLS, VSSLMS and DCTLMS in

AWIN.

4.2.4. Additive Correlated Impulsive Noise

In this part, the signal is assumed to be corrupted with an Additive Correlated Im-

pulsive Noise (ACIN) process. A correlated Gaussian noise process is generated by

using the AR(1) model described in section 4.2.2, where v0(k) here is a white impul-

sive noise process described in section 4.2.3 with the same parameters. Simulations

were done with the following parameters: For the Fast RI algorithm: β = 0.993

and µ0 = 0.0009. For the RLS algorithm: β = 0.993. For the VSSLMS algorithm:

γ = 0.00048, α = 0.97, µmin = 0.0047 and µmax = 0.05. For the DCTLMS algo-

rithm: γ = 0.002, β = 0.993, ε = 8× 10−4, µ = 0.02 and M = 10. Fig. 4.8 shows

that, initially RI is converging slightly faster than the RLS algorithm. This may be

due to the better robustness of the RI algorithm, which is the result of using the

autocorrelation matrix estimate, unlike the RLS which uses the inverse autocorre-

lation matrix. The VSSLMS and DCTLMS algorithms converge to the same MSE

but at a much slower rate than the other algorithms.
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Figure 4.8. The ensemble MSE for the fast RI, RLS, VSSLMS and DCTLMS in

ACIN.

4.3. System Identification

In the system identification problem [13], [14] with the block diagram shown in

Fig. 4.9, the MSE is considered as E {(y(k)− ŷ(k))2}. Due to the sensitivity of

this MSE to the Toeplitz approximation used in the fast RI algorithm, this algorithm

does not perform as good as the RI algorithm in the system identification setting.

Hence, the performances of the 2nd order RI and the 1st order RI algorithms are

compared with those of the RLS, SFTRLS and TDVSS algorithms. All the algo-

rithms, in this section, were implemented using a filter length of N = 16 taps,

eigenvalue spread χ(R) = 244.38 and the simulations were obtained by averag-

ing 100 Monte-Carlo independent runs. The input signal (x(k) in Fig. 4.9) was

generated using (4.1). The unknown system coefficients are given in (4.3).

h(k) = 10−3[−1 −2 10 20 − 35 − 65 130 450 450

130 −65 − 35 20 10 − 2 − 1]T . (4.3)
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Figure 4.9. Block diagram of system identification.

4.3.1. Additive White Gaussian Noise

To test the performance of the algorithms, the input signal x(k) is assumed to be

corrupted with an AWGN process with zero mean and variance (σ2
v = 0.000225).

Simulations were done with the following parameters: For the 2nd order RI algo-

rithm, β = 0.997, µ0 = 0.15. For the RI algorithm, β = 0.991, µ0 = 0.00146. For

the RLS algorithm, β = 0.991. For the SFTRLS algorithm: λ = 0.991, κ1 = 1.5,

κ2 = 2.5 and κ3 = 1, [15]. For the TDVSS algorithm, α = 0.99, β = 0.9,

ε = 0.025, µmin = 0.0047, µmax = 0.05, γ = 0.001, L = 10. Fig.4.10 (which pro-

vides the performance of the algorithms when the unknown system is a lowpass fil-

ter) shows that even though the RLS algorithm initially converges faster, the RI and

the RLS algorithms converge finally to the same mean-square error (MSE=−50dB)

at approximately 400 iterations. Also, the 2nd order RI algorithm converges with

them to a much lower MSE (MSE=−59dB), which shows the advantage of the 2nd

order RI algorithm over the other algorithms. The SFTRLS and TDVSS algorithms
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Figure 4.10. The ensemble MSE for 2nd Order RI, RI, RLS, SFTRLS and TDVSS

in AWGN.

converge to a relatively higher MSE compared with that of the other algorithms

(MSE=−15dB, −40dB, respectively). Another important point here is that it is not

possible for the other algorithms to achieve such a low MSE, whatever parameters

are chosen. Additionally, it should be noted that the computational complexity of

the 2nd order RI algorithm is lower than that of the RLS algorithm and very compa-

rable with that of the RI algorithm.

Fig. 4.11 shows the performance of the algorithms with the same parameters when

the unknown system is the bandpass filter given by (4.4). It is noted that the per-

formance of the 1st and 2nd order RI algorithms is slowed down. However, the 1st

order RI algorithm converges to a lower MSE (1 dB better) than the RLS algorithm

and the 2nd order RI algorithm converges with to a much lower MSE (10dB better)

than the RLS algorithm.
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Figure 4.11. The ensemble MSE for 2nd Order RI, RI, RLS, SFTRLS and TDVSS

in AWGN (hbp(k) given by (4.4)).

hbp(k) = 10−4[−468 −248 312 1085 1121 − 223 − 2804 2785 2802

−2226 −1116 1080 − 315 − 244 470 − 1]T . (4.4)

4.3.2. Additive Correlated Gaussian Noise

In order to test the robustness of the algorithms mentioned above against changes in

the environment, the input signal x(k) is assumed to be corrupted by an ACGN. A

correlated Gaussian noise process is generated by using the first-order autoregres-

sive model (AR(1)) described in section 4.2.2 with v(k) being a white Gaussian

noise process with zero mean and variance (σ2
v = 0.000576). Simulations were

done with the following parameters: For the 2nd order RI algorithm, β = 0.997,

µ0 = 0.15. For the RI algorithm, β = 0.991, µ0 = 0.00146. For the RLS algo-

rithm, β = 0.991. For the SFTRLS algorithm: λ = 0.991, κ1 = 1.5, κ2 = 2.5 and

κ3 = 1. For the TDVSS algorithm, α = 0.99, β = 0.9, ε = 0.025, µmin = 0.0047,
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Figure 4.12. The ensemble MSE for 2nd Order RI, RI, RLS, SFTRLS and TDVSS

in ACGN.

µmax = 0.05, γ = 0.001, L = 10. Fig.4.12 shows that the RLS algorithm is

converging faster at the beginning, but the RI and the RLS algorithms converge fi-

nally to the same mean-square error (MSE=−40dB) at approximately 400 iterations.

Also, the 2nd order RI algorithm converges to a much lower MSE (MSE=−49dB).

This shows that the 2nd order RI algorithm is less affected by the noise type than the

other algorithms. The SFTRLS and TDVSS algorithms converge to a higher MSE

compared to that of the other algorithms (MSE=−9.5dB, −34dB, respectively).

In order to study the robustness of the proposed algorithm in impulsive noise en-

vironments, its performance is compared to those of the conventional RLS and the

Robust RLS [17] algorithms in a system identification setting. The unknown system

was an Finite-Impulse-Response (FIR) filter which was obtained using the MAT-

LAB commands h = fir1(M − 1, ωn) and wopt = h/norm(h, 2) with M = 37 and

ωn = 0.3. All the algorithms were implemented using a filter length of N = 37
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Figure 4.13. The ensemble MSE for the Robust RI, conventional RLS, and Robust

RLS algorithms in AWIN (ε = 0.01, κ = 10000).

taps and SNR= 0dB. The input signal was generated using (4.1). All results are

obtained by averaging 1000 independent runs.

4.3.3. Additive White Impulsive Noise

In this experiment, an AWIN process is generated by the model described in Section

4.2.3. The white impulsive noise process is generated with ε = 0.01, κ = 10000.

Simulations were done with the following parameters: For the proposed RRI algo-

rithm: β = 0.993, µ0 = 0.006. For the conventional RLS algorithm: β = 0.993.

For the PRRLS algorithm [17]: λ = 0.993. Fig. 4.13 shows that the conventional

RLS algorithm fails to converge, whereas the Robust RI and Robust RLS algorithms

converge approximately at the same time (1400 iterations), but the proposed algo-

rithm converges to a lower MSE (MSE=−19dB for Robust RI and MSE=−17dB for

Robust RLS). Fig. 4.14 shows the performance gain of the proposed RRI algorithm

relative to that of the PRRLS algorithm in impulsive noise.
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Figure 4.14. The ensemble MSE for the Robust RI and Robust RLS algorithms in

AWIN for different SNR’s (ε = 0.01, κ = 10000).

On the other hand, in order to observe the effects of the impulsive components

(outliers) of the noise process more prominently, a white impulsive noise process

is generated with ε = 0.2, κ = 100. These parameters are used to model severely

impulsive noise [18]. All other parameters are kept the same as before. Fig. 4.15

shows that the proposed RRI converges to a relatively lower MSE (MSE=−17dB)

than the conventional RLS (MSE=3dB) and PRRLS (MSE=−11dB) algorithms.

By comparing Fig. 4.13 and Fig. 4.15, it is important to note that the heavier

outliers in the noise process has decreased the performance of the PRRLS algorithm

significantly (approximately by 7dB). However, the proposed RRI is more robust to

impulsive noise with a performance decrease of 2dB only.

4.3.4. Additive Correlated Impulsive Noise

In this experiment, the signal created by (4.1) is assumed to be corrupted with an

ACIN process. A correlated impulsive noise process is generated by using the first-

order autoregressive model (AR(1)), v(k + 1) = ρv(k) + n0(k), where n0(k) is a
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Figure 4.15. The ensemble MSE for the Robust RI, conventional RLS, and Robust

RLS algorithms in AWIN (ε = 0.2, κ = 100).

white impulsive noise process created as described in Section 4.2.3 and ρ is the cor-

relation parameter (ρ = 0.7). Simulations were done with the following parameters:

For the proposed RRI algorithm: β = 0.993, µ0 = 0.006. For the conventional RLS

algorithm: β = 0.993. For the PRRLS algorithm [17]: λ = 0.993. Fig. 4.16 shows

that the conventional RLS algorithm again fails to converge. On the other hand, the

RRI and PRRLS algorithms both converge at the same time (1500 iterations) with

the MSE of the proposed algorithm 1dB lower than that of the PRRLS algorithm.

4.3.5. Nonstationary Additive White Gaussian Noise Environment

In this section, to show the robustness of the proposed algorithms in nonstationary

environments, the input signal x(k) given in (4.1) is assumed to be corrupted with

AWGN with zero mean and variance (σ2
v = 0.000225). The impulse response given

in (4.3) is abruptly corrupted by AWGN with zero mean and variance (σ2
n = 0.0025)

after iteration k = 104.
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Figure 4.16. The ensemble MSE for the Robust RI, conventional RLS, and Robust

RLS algorithms in ACIN (ε = 0.01, κ = 10000).

Simulations were done with the following parameters: For the 2nd order RI algo-

rithm, β = 0.995, µ0 = 0.18. For the RI algorithm, β = 0.995, µ0 = 0.00075.

For the RLS algorithm, β = 0.995. For LMS, µ = 0.0075 Fig.4.17 shows that

both RI algorithms converge at the same time with 1dB lower MSE for 2nd order

RI. However, even the RLS algorithm converges slightly faster than RI and 2nd or-

der RI algorithms, but its MSE is worse by 3dB compared to that of the RI and

4dB compared to that of the 2nd order RI algorithm. The LMS algorithm converges

much slower than all the others to a higher MSE.

4.4. Channel Equalization

In this section, the channel equalization model of a linear dispersive communication

channel is described. The block diagram of the model is depicted in Fig. 4.18. The

two random-number generators (1 and 2) in the model are used to generate the

transmitted signal xn and the additive noise at the receiver input, respectively. The

sequence xn is a Bernoulli sequence with xn = ±1; the random variable xn has a
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Figure 4.17. The ensemble MSE for 2nd Order RI, RI, RLS and LMS in

nonstationary AWGN environment.
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Figure 4.18. Block diagram of the adaptive equalization model.

zero mean and variance 1, and v(n) has a zero mean and variance dependent on the

desired SNR. The impulse response of the channel is defined by:

h(n)=





1
2

[
1 + cos

(
2π
W

(n− 2)
)]

, n = 1, 2, 3,

0, otherwise

(4.5)

where W controls the eigenvalue spread of the autocorrelation matrix. In the sim-

ulations of this section, the performance of the Fast RI algorithm is compared to
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those of the RLS and SFTRLS algorithms in the channel equalization problem de-

scribed above. All the experiments were done with the parameters: filter length of

N = 11 taps, SNR= 30dB, W = 3.3 and delay of ∆ = 7.

4.4.1. Additive White Gaussian Noise

In this experiment, the input signal xn is assumed to be corrupted with an AWGN

process after passing through the channel. Simulations were done with the follow-

ing parameters: For the Fast RI algorithm: β = 0.985, µ0 = 0.004. For the RLS

algorithm: β = 0.985. For the SFTRLS algorithm, [15]: λ = 0.991, κ1 = 1.5,

κ2 = 2.5 and κ3 = 1. Fig. 4.19 shows that the Fast RI and RLS algorithms con-

verge approximately at the same time but the Fast RI algorithm converges to a lower

mse (mse=−28dB for Fast RI and mse=−24dB for RLS), whereas, the SFTRLS al-

gorithm converges to a much higher mse of −9dB. Furthermore, it should be noted

that the Fast RI algorithm does not require the inversion of the autocorrelation ma-

trix which will ensure its numerical stability. However, the RLS algorithm may

face numerical stability problems due to the loss of Hermitian symmetry and loss

of positive definiteness of the inverse autocorrelation matrix, [8].

4.4.2. Additive Correlated Gaussian Noise

The signal is assumed to be corrupted with an ACGN process. A correlated Gaus-

sian noise process is generated by using the model described in Section 4.2.2 with a

correlation parameter (ρ = 0.7). Simulations were done with the following param-

eters: For the Fast RI algorithm: β = 0.985, µ0 = 0.004. For the RLS algorithm:

β = 0.985. For the SFTRLS algorithm, [15]: λ = 0.991, κ1 = 1.5, κ2 = 2.5 and

κ3 = 1. Fig. 4.20 shows that the Fast RI and RLS algorithms converges approxi-

mately at the same time but the Fast RI algorithm converges to a slightly lower mse

78



0 500 1000 1500 2000 2500 3000
10

−3

10
−2

10
−1

10
0

10
1

Iteration

M
S

E

SFTRLS

RLS fast RI

Figure 4.19. The ensemble MSE for Fast RI, RLS and SFTRLS in AWGN.
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Figure 4.20. The ensemble MSE for Fast RI, RLS and SFTRLS in ACGN.
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(mse=−29dB for Fast RI). Even though the SFTRLS algorithm has computational

complexity O(N), it converges to a much higher mse of −9dB and slower than the

Fast RI and the RLS algorithms. Additionally, the forgetting factors λ in SFTRLS

algorithm and β in RLS algorithm, has to to be chosen such that their values are

very close to 1. However, this poses a limitation for the algorithms since small val-

ues of these parameters may be required in non-stationary environments. On the

other hand, in the case of the Fast RI algorithm, there is no restriction on β (In the

current experiment, it is selected to be the same as the one in the RLS algorithm).

In the case of the SFTRLS algorithm, with λ < 0.991, the algorithm faces stability

problems.

4.4.3. Additive White Impulsive Noise

In this section, an impulsive noise process is generated by the model described

in Section 4.2.3. The white impulsive noise process is generated with ε = 0.2,

κ = 100. Simulations were done with the following parameters: For the Fast RI

algorithm: β = 0.985, µ0 = 0.004. For the RLS algorithm: β = 0.985. For

the SFTRLS algorithm: λ = 0.991, κ1 = 1.5, κ2 = 2.5 and κ3 = 1. Fig. 4.21

shows that the Fast RI and RLS algorithms converges approximately at the same

time but the Fast RI algorithm converges to a lower mse (mse=−27dB for Fast RI

and mse=−21dB for RLS), whereas, the SFTRLS algorithm converges to a much

higher mse of −9dB.

4.4.4. Additive Correlated Impulsive Noise

A correlated impulsive noise process is generated by using the first-order autore-

gressive model (AR(1)), v(k + 1) = ρv(k) + v0(k), where v0(k) is a white impul-

sive noise process created by the process described in Section 4.2.3 with ε = 0.2,
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Figure 4.21. The ensemble MSE for Fast RI, RLS and SFTRLS in AWIN.

κ = 100, and ρ is the correlation parameter (ρ = 0.7). Simulations were done with

the following parameters: For the Fast RI algorithm: β = 0.985, µ0 = 0.004. For

the RLS algorithm: β = 0.985. For the SFTRLS algorithm: λ = 0.991, κ1 = 1.5,

κ2 = 2.5 and κ3 = 1. Fig. 4.22 shows that the Fast RI and RLS algorithms

converges approximately at the same time but the Fast RI algorithm converges to

a lower mse (mse=−27dB for Fasr RI and mse=−21dB for RLS), whereas, the

SFTRLS algorithm converges to a much higher mse of −9dB.

4.5. Acoustic Echo Cancellation

Acoustic Echo Cancellation (AEC) is one of the most important research topics in

acoustic signal processing. It is mainly motivated by the increasing demand for

hands-free speech communication [21]. A classical AEC scenario is shown in Fig.

4.23. A speech signal x(k) from the far-end side is broadcasted in an acoustic

room by means of a loudspeaker. A microphone is present in the room for record-

ing a local signal v(k) (near-end speech signal) which is to be transmitted back

to the far-end side. An acoustic echo path exists between the loudspeaker and the
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Figure 4.22. The ensemble MSE for Fast RI, RLS and SFTRLS in ACIN.

microphone such that the recorded microphone signal s(k) = u(k) + v(k) con-

tains an undesired echo component u(k) in addition to the near-end speech signal

component v(k). If the echo path transfer function is modelled as an FIR filter

f(k), then the echo component can be considered as a filtered version of the loud-

speaker signal, (u(k) = x(k) ∗ f(k)). The main objective in an AEC is to identify

the unknown room impulse response f(k) and hence to subtract an estimate of the

echo signal from the microphone signal. In this way, a signal without any echoes,

d(k) = s(k)− x(k) ∗w(k), is sent to the far-end side, where w(k) is an estimate of

f(k), [77].

In the simulations, the performance of the RI algorithm is compared to that of the

RLS algorithm in an AEC problem [78]. Both algorithms were implemented using

a filter length of N = 100 taps. The performance is measured in terms of ERLE as

given below:
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Figure 4.23. Block Diagram of a Typical Acoustic Echo Canceller.

ERLE = 10log10

(
Pd

Pe

)
. (4.6)

where Pd is the power of the difference between the actual speech signal and the

predicted one, and Pe is the power of the error signal.

As shown in Fig. 4.23, the far end signal comes to the microphone at near end user

in the acoustic room after passing some echo paths forming the unwanted echo sig-

nal. These echo paths are assumed to be forming the impulse response, f(k), in Fig.

4.23. In this experiment, this impulse response is assumed to have the magnitude

response shown in Fig. 4.24. Simulations were done with these parameters: For

RI algorithm: µ0 = 0.00146 and β = 0.998. For RLS algorithm: β = 0.998. Fig.

4.25 shows that the RLS algorithm is better than the RI algorithm at the beginning

in terms of ERLE. After a while the RI algorithm outperforms the RLS algorithm

and at the end of iterations the RI outperforms the RLS algorithm by 13dB. Also, It

should be noted that the computational complexity of the RI algorithm is much less
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Figure 4.24. The magnitude response of the acoustic room.

than that of the RLS algorithm because the filter length N , here, is relatively high.

4.6. Image Processing Applications

4.6.1. Image Deconvolution

Blind image deconvolution [22], [79]-[81] refers to the problem of reconstructing

the original from a degraded observation without knowing either the true image or

the degradation process. Mathematically, this can be represented as [22]:

g(x, y) = f(x, y) ∗ h(x, y), (4.7)

where ∗ stands for the 2D convolution operation, g(x, y) is the blurred image,

f(x, y) is the true image and h(x, y) is the Point Spread Function (PSF) given in

(4.8).

h(x, y) =




−0.035 −0.65 −0.35

0.45 0.09 0.45

0.13 −0.65 0.13




(4.8)
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Figure 4.25. The ERLE for RI and RLS.

The performance of the proposed 2D RI algorithm is compared to that of the 2D

RLS algorithm in the image deconvolution problem described above. Both algo-

rithms were implemented using a 2D FIR filter of size 3×3 taps (using a 4×4 filter

size does not provide any extra significant performance of the algorithms as shown

in Table 4.1). For the 2-D RI algorithm: µ0 = 0.000146, β = 0.999. For the 2-D

RLS algorithm: β = 0.999.

Fig. 4.26(a) shows the original image ‘Lena’, Fig. 4.26(b) shows the degraded

image which is created by convolving the original image with the PSF in (4.8).

Fig. 4.26(c) shows the image restored by the proposed 2D RI algorithm and Fig.

4.26(d) shows the image restored by the 2D RLS algorithm. By inspection, it can

be seen that the image restored by the proposed algorithm has sharper edges than

that recovered by the 2D RLS algorithm. In terms of PSNR, the resulting image

of the proposed algorithm gives 25.64 dB whereas the 2D RLS algorithm provides
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25.04 dB. Also, unlike the 2D RLS algorithm, the proposed algorithm does not re-

quire the update of the inverse autocorrelation matrix which provides a more stable

performance.

Table 4.1. Performance of RI and RLS Algorithms with Different Filter Sizes.

PSNR (dB)

PPPPPPPPPalgorithm

filter size 3× 3 4× 4

RI 25.64 25.65

RLS 25.04 25.04

4.6.2. 2D Adaptive Line Enhancer

In this section, the proposed algorithm [82] is applied to a 2D adaptive line en-

hancer (ALE) in [66]. Fig.4.27 shows the block diagram of the ALE. In Fig.4.27

x(n1, n2) is the original image with noise, u(n1, n2) is the delayed signal of the

desired response.

Here, the advantage of the proposed algorithm appears more because the image

used (Checker Board) is more correlated than Lena’s image. Both algorithms were

implemented using a 2D FIR filter of size 3 × 3 taps. For the 2D RI algorithm:

µ0 = 0.000146, β = 0.995 for Fig. 4.28(c) and β = 0.9995 for Fig. 4.28(e). For

the 2-D RLS algorithm: β = 0.995 for Fig. 4.28(d) and β = 0.9995 for Fig. 4.28(f).

The noise is white Gaussian with PSNR= 12 dB.

Fig. 4.28(a) shows the original image ‘Checker Board’, Fig. 4.28(b) shows the

image with noise. Fig. 4.28(c) shows the restored image by the proposed 2D RI

algorithm with β = 0.995 and Fig. 4.28(d) shows the restored image by the 2D
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Figure 4.26. (a) Original image, (b) Blurred image, (c) Restored image using the

2D RI algorithm, and (d) Restored image using the 2D RLS algorithm.
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Figure 4.27. The block diagram of a 2D adaptive line enhancer.
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Figure 4.28. (a) Original image, (b) Image with noise, (c) Restored image using

the 2D RI (β = 0.995), (d) Restored image using the 2D RLS (β = 0.995), (d)

Restored image using the 2D RI algorithm (β = 0.9995), and (f) Restored image

using the 2D RLS algorithm (β = 0.9995).

RLS algorithm with β = 0.995. We note that the RLS algorithm diverges with

relatively low values of β whereas the RI algorithm converges at the same value of

β. Fig. 4.28(e) shows the restored image by the proposed 2D RI algorithm with

β = 0.9995 and Fig. 4.28(f) shows the restored image by the 2D RLS algorithm

with β = 0.9995. Even though both algorithms converge, it is clear that the image

restored by the proposed algorithm has sharper edges than that recovered by the 2D

RLS algorithm even by inspection. For Figs. 4.28(e) and (f), in terms of PSNR the

proposed algorithm provides 27.1 dB whereas the 2D RLS algorithm provides 25.4

dB.
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Figure 4.29. The ensemble MSE for the RI algorithm in AWGN with different

values of µ0.

4.7. Effect of the Filter Parameters on the MSE

4.7.1. Effect of the Forgetting Factor, Step-Size and Filter Length on

Steady-State MSE

In order to study the effect of changing the filter parameters, µ0 and β have been

changed while all the other parameters of the RI algorithm were kept the same. Fig.

4.29 shows the steady-state MSE with different values of µ0. Fig. 4.29 shows that

reducing the value of µ0 slows the convergence of the RI algorithm to the steady-

state, but the algorithm converges to the same MSE in all the cases, as expected.

Secondly, β has been varied while all the other parameters of the RI algorithm were

kept the same. Fig. 4.30 shows the steady-state MSE with different values of β.

In Fig. 4.30 we note that increasing the value of β leads to a better performance in

terms of MSE but to a certain value. After that value, increasing β will not reduce

the MSE, but it will result in an unstable performance of the algorithm as shown in

Fig. 4.30 at β = 0.9929.
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Figure 4.30. The ensemble MSE for the RI algorithm in AWGN with different

values of β.

To study the effect of changing the filter length, N was changed while all the other

parameters of the RI algorithm were kept the same. Fig. 4.31 shows the steady-

state MSE with respect to different tap-lengths. It is clear from Fig. 4.31 that after

a certain value of tap-length (In this case N = 16), changing the filter length will

not affect the steady-state MSE. However, increasing N will increase the number

of computations needed for updating the tap-weight vector as shown in Fig. 3.2.

4.7.2. Effect of the Forgetting Factor on the RI Adaptive Algorithm in System

Identification

In this section, we simulate the system identification problem shown in Fig. 4.9.

The input signal was generated using (4.1) [13]. The system noise ν(k) is assumed

to be AWGN with zero mean and variance (σ2
ν = 0.015).

Fig. 4.32 shows the normalized residual parameter estimate given in (3.106) of the

RI and RLS algorithms for different values of the filter length, N . This term was
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Figure 4.31. The curve of steady-state MSE with respect to the tap-length.

averaged over the last 500 samples of the steady-state of both algorithms. It is seen

that, when the filter length is relatively small (8-32 taps) the RI algorithm is less

sensitive to the changes in the forgetting factor, β, and the filter length, N , than

the RLS algorithm. On the other hand, when the filter length is relatively high (i.e.

N = 128 taps), the RI algorithm becomes sensitive to the value of β (the larger the

N the larger the β should be).

In order to investigate the leakage phenomenon, two separate experiments were

done. In order to study the effect of the forgetting factor β on the leakage phe-

nomenon, the filter length is held constant (N = 32) and the forgetting factor, β,

is assigned different values (i.e. β = 0.9, 0.99, 0.999). The recovered signal (e(k))

and the residual error (er(k) = e(k) − ν(k)) were plotted for each value of β for

both, the RI and the RLS, algorithms. It can be seen from Fig. 4.33 and Fig. 4.34

that the leakage in the RI algorithm case is much less than that of the RLS algo-

rithm, especially, when the forgetting factor β is relatively small (i.e β = 0.9, 0.99).
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Figure 4.32. Normalized residual parameter ρ for different values of the forgetting

factor β and the filter length N .

Also, to observe this leakage in the frequency domain, we repeat the previous ex-

periments and plot the power spectral density (PSD) of both, e(k) and er(k) in Fig.

4.35 and Fig. 4.36. The conclusions are, almost, the same as those in the time do-

main; the recovered signal is strongly attenuated when the value of β is relatively

small for the RLS algorithm. However, in the case of the RI algorithm, this attenua-

tion become much less especially when the forgetting factor and/or the filter length

are relatively small.

In order to study the effect of the filter length on the leakage phenomenon, now, the

forgetting factor, β, is held constant (β = 0.99) and the filter length is assigned dif-

ferent values (i.e. N = 8, 32, 64 taps). The recovered signal (e(k)) and the residual

error (er(k)) are plotted for each value of N for the RI and the RLS algorithms. Fig.

4.37 and Fig. 4.38 show that the leakage in the RI algorithm case is much less than

that of the RLS algorithm, especially, when the filter length N is relatively small
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Figure 4.33. The leakage phenomenon of The RI algorithm in time domain

N = 32 and different values of β.
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Figure 4.34. The leakage phenomenon of The RLS algorithm in time domain

N = 32 and different values of β.
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Figure 4.35. Power Spectral Density of Fig. 4.33.
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Figure 4.36. Power Spectral Density of Fig. 4.34.
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Figure 4.37. The leakage phenomenon of the RI algorithm in time domain

β = 0.99 and different values of N .

(i.e N = 8, 32 taps).
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Figure 4.38. The leakage phenomenon of the RLS algorithm in time domain

β = 0.99 and different values of N .
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Chapter 5

CONCLUSIONS AND FUTURE WORK

5.1. Conclusions

In this work, a new FIR RI adaptive filtering algorithm is introduced. This algo-

rithm has been proposed to overcome some of the difficulties experienced with the

above-mentioned adaptive filters. The approach uses a variable step-size and the

instantaneous value of the autocorrelation matrix in the coefficient update equation

that leads to an improved performance. Convergence analysis of the algorithm has

been presented. The ensemble-average learning curve of the RI algorithm is derived

and compared with those of the RLS and LMS algorithms. A general fast imple-

mentation technique, which significantly reduces the computational complexity, of

the RI algorithm is presented. A robust version of the RI algorithm, which leads to

an improved performance in impulsive noise environments is presented. The effect

of the forgetting factor on the performance of the RI algorithm is derived. Also, a

2D version of the RI algorithm is introduced. Finally, a second-order version of the

RI algorithm, which provides further improvement in the performance, is derived.

Following are some of the conclusions which are drawn from the work carried out:

• It is shown that the RI and the fast RI algorithms outperform the conventional

adaptive filtering algorithms in stationary AWGN, ACGN, AWIN and ACIN

environments of noise cancellation and system identification settings. Also,
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it is shown that in a non-stationary AWGN environment of a system identifi-

cation setting, both RI algorithms converge at the same time with a slightly

better MSE for the 2nd order RI. However, even the RLS algorithm converges

slightly faster than RI and 2nd order RI algorithms, but its MSE is worse than

those of the RI and 2nd order RI algorithms. The LMS algorithm converges

much slower than all the others to a higher MSE. With the improved version,

the second-order RI, it is shown that at the expense of a slight increase in the

computational burden, it becomes possible to attain low MSE levels that do

not seem possible with the other algorithms. This is made possible by using

the autocorrelation matrix in the update equation of the RI algorithm directly,

and not its inverse. On the other hand, using a second order updating of the

correlations in the RLS algorithm seems almost impossible. This feature of

the RI algorithm may be considered to be a significant contribution to the

adaptive filtering field.

• For impulsive noise environments, a robust RI adaptive filtering algorithm

that outperforms the robust RLS algorithm in impulsive noise has been pro-

posed. The proposed algorithm employs the L1 norm of the gain factor of

the cross-correlation vector to achieve robust performance. Simulation re-

sults show that the proposed algorithm is robust against white and correlated

impulsive noise and provides better performance compared to those of the

conventional and robust RLS algorithms.

• In system identification setting, the existence of a leakage phenomenon is an

obstacle in some adaptive algorithms. We theoretically proved that this leak-

age is proportional to the system noise, and highly dependent on the values
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of the forgetting factor and the filter length. Simulation results validate the

theoretical results, and they show that for a relatively small forgetting fac-

tor and/or a relatively large filter length, this leakage is high or total in some

cases. However, simulations show that the RI algorithm is much less sensitive

to these parameters (β and N ) than the RLS algorithm. Both the theoretical

and experimental results lead to the conclusion that the leakage phenomenon

can be avoided when the value of β is very close to unity, in both algorithms.

• Also, the performance of the RI algorithm is compared to that of the RLS

algorithm in the AEC problem. Under the same conditions, the RI algorithm

has a performance better than RLS in terms of ERLE with a considerable

reduction in computational complexity.

• Finally, simulations show that the proposed 2D RI algorithm leads to an im-

proved performance over that of the 2D RLS algorithm in an image decon-

volution problem. In an ALE problem, the advantage of the 2D RI is more

pronounced. After both algorithms converge, simulation results show that the

proposed 2D RI algorithm leads to an improved performance over that of the

2D RLS algorithm.

5.2. Future Work

The RI algorithm has shown superior performance compared to a large group of

adaptive algorithm in AWGN, ACGN, AWIN, ACIN stationary and non-stationary

environments in noise cancellation and system identification settings. However,

future work may include:

• Although the RI algorithm uses a variable step-size, an initial step-size µ0
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should be selected carefully. A better way of selecting this initial step-size

may be investigated.

• Also, performance analysis of the RI algorithm in non-stationary environ-

ments may be derived.

• Finally, performance of the RI algorithm in communication fading channels

may be investigated.
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APPENDIX A

.1. Matrix Inversion Lemma

The Matrix Inversion Lemma is given by

(
A− BD−1C

)−1
= A−1 + A−1B

(
D− CA−1B

)−1 CA−1, (1)

To prove (1), let us construct the augmented matrix A, B, C, and D and its inverse,




A B

C D




−1

=




E F

G H


 , (2)

now, construct the two products




A B

C D


 ·




E F

G H


 =




AE + BG AF + BH

CE + DG CF + DH


 =




I 0

0 I


 , (3)

and




E F

G H


 ·




A B

C D


 =




EA + FC EB + FD

GA + HC GB + HD


 =




I 0

0 I


 , (4)

Submatrices in (refeqA3) and (refeqA3) are broken out to form eight matrix equa-

tions:

AE + BG = I (5)

AF + BH = 0 (6)

CE + DG = 0 (7)

CF + DH = I (8)
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EA + FC = I (9)

EB + FD = 0 (10)

GA + HC = 0 (11)

GB + HD = I (12)

Combining (5) through (12) in various orders produces two sets of equations for

E, F, G, and H from A, B, C, and D:

E =
(
A− BD−1C

)−1 (13)

F = − (
A− BD−1C

)−1 BD−1 (14)

G = −D−1C
(
A− BD−1C

)−1 (15)

H = D−1 + D−1C
(
A− BD−1C

)−1 BD−1 (16)

H =
(
D− CA−1B

)−1 (17)

G = − (
D− CA−1B

)−1 CA−1 (18)

F = −A−1B
(
D− CA−1B

)−1 (19)

E = A−1 + A−1B
(
D− CA−1B

)−1 CA−1 (20)

The proof is completed by combining either (13) and (17) or (16) and (20). Condi-

tions are that all the involved inverses exist.
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.2. Toeplitz Matrix Properties

We say that a square matrix is Toeplitz if:

1. All the elements on its main diagonal are equal.

2. The elements on any other diagonal parallel to the main diagonal are also

equal.

It is important to recognize that the Toeplitz property of the autocorrelation matrix R

is a direct consequence of the assumption that the discrete-time stochastic process

represented by the observation vector x(k) is wide-sense stationary. Indeed, we

may state that if the discrete-time stochastic process is wide-sense stationary, then

its autocorrelation matrix R must be Toeplitz; and, conversely, if the autocorrelation

matrix R is Toeplitz, then the discrete-time stochastic process must be wide-sense

stationary.

.3. Time-Domain Solution of State Equations

In general, a discrete-time system can be represented by the state equations

x[k + 1] = Ax[k] + Bf[k] (21)

y[k] = Cx[k] + Df[k] (22)

From (21) it follows that

x[k] = Ax[k − 1] + Bf[k − 1] (23)

and
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x[k − 1] = Ax[k − 2] + Bf[k − 2] (24)

x[k − 2] = Ax[k − 3] + Bf[k − 3] (25)

(26)

Substituting (24) in (23), we obtain

x[k] = A2x[k − 2] + ABf[k − 2] + Bf[k − 1] (27)

Substituting (25) in (27), we obtain

x[k] = A3x[k − 3] + A2Bf[k − 3] + ABf[k − 2] + Bf[k − 1] (28)

Continuing this way (knowing that x[1] = Ax[0] + Bf[0]), we obtain

x[k] = Akx[0] + Ak−1Bf[0] + Ak−2Bf[1] + Bf[k − 1]

= Akx[0] +
k−1∑
j=0

Ak−1−jBf[j] (29)

This is the desired solution. The first term on the right-hand side represents x(k)

when the input f(k) = 0. Hence, it is the zero-input component. The second term,

by a similar argument, is seen to be the zero-state component.

By using the same procedure, we obtain

y[k] = CAkx[0] +
k−1∑
j=0

CAk−1−jBf[j] + Df
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