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We present pp-wave solutions to the generalized Einstein—Maxwell field theory introduced by Horndeski and to Mansouri-

Chang theory of gravitation.

In general relativity a plane-fronted wave with paral-
lel rays (pp-wave) is described by the fundamental form

(1]
ds? = 2dudv + dzdZ — 2¥(u,x,y) du?, (1)
where z = x + iy and a bar denotes complex conjuga-

tion. The components of this metric tensor is of the
Kerr—Schild form [2]

8 =Ny =2V, @)
where 71, is the usual Minkowski metric and n,, is a

null vector with respect to both 8,y and . Further-
more, 1, satisfies

n,= a#u, 3)
and
Pz =My, = O @

The corresponding Ricci tensor is given by

R‘w = nﬂnvDV, k )
where
O=1"19,3,. (6)

Gravitational and electromagnetic pp-wave solutions
have been examined some time ago by several authors
(e.g. refs. [1, 3]). Here we present the pp-wave solu-
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tions to the two recent theories of gravitation which
involve certain modifications to the usual Einstein’s
theory of general relativity. One of these theories is
due to Horndeski [4] who has shown that in four di-
mensions the Einstein—Maxwell field theory (EMFT)
is not the only vector—tensor field theory of electro-
magnetism and gravitation. He showed that any second
order, source-free, vector—tensor field theory of elec-
tromagnetism and gravitation may be expressed as:

G, = 811(TW + )\“p) =8n7,, N
and

v 1 *p* yap _
Fl , +INF, R =0, ®)

where star denotes duality, A is an arbitrary constant,
= . _ 1 of
T, = (1/4n) (F,°F,, —% 8, F*F,), (92)
and
= *roog* T* R * mewp
Alw (1/8m) ( Fu Fuﬁ;a +Fa7F6 R ). (9b)

This theory, which is called the generalized Einstein—
Maxwell field theory (GEMFT), is derivable from a
variational principle and is consistent with the notion
of charge conservation. Furthermore it is compatible
with Maxwell’s equations in flat space—time and is in
agreement with Einstein’s theory in the absence of an
electromagnetic field. However, in contrast to EMFT,
the solutions to the GEMFT involve some features
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which are not shared by the solutions of EMFT. For
example in Minkowski space—time in the vicinity of"
point charges the energy momentum tensor predicts
regions of negative energy [5] and magnetic monopole
solutions are obtained when the space—time geometry
possesses spherical symmetry [6]. Since the total en-
ergy momentum tensor has a non-zero trace the theory
is not conformally invariant. In this note, we shall
point out another property of GEMFT which is ab-
sent in EMFT: In GEMFT vanishing of the total en-
ergy momentum tensor 7,,, does not imply the vanish-
ing of the field strength tensor F uv“ . We start with
metric (2) and take the electromagnetic vector poten-
tialas 4, =n ”cb(u, x,y). Hence we have

F=nk,—nk, (10)
with
k, =09, (11)

which yields by virtue of the Maxwell’s equation
O¢=0.+ 12)

For our special metric the curvature couplings in the
field equations (7) and (8) vanish as in the flat space—
time. The total electromagnetic energy momentum
tensor reduces to

7, = (1/8m) GOy +2y) nn,, (13)
where
Y=k k" =0 ¢) (3,9). (14)

By virtue of (10), (11) and (12) the field equation (8)
is identically satisfied. Using (5) and (13) the field
equation (7) becomes

OV =4x+2y. 15)

Hence, any simultaneous solution of (12) and (15) de-
scribes the space—time geometry and gives the field
strength F,,,. All possible solutions of ¢ are of the form

*1 G.W. Horndeski has kindly informed us that he has found
a solution for 7, = 0 where the resulting space—time is of
Petrov type III.
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¢ = h(u)Re f(z), (16)
where h(x) is an arbitrary function of « and f(z) is an

analytic function of z. Hence, any choice of f(z) leads
us to a solution for V. In particular, choosing

f@)=z"1, a7

where « is an arbitrary real constant, yields the solu-
tion ‘

2 2
@ (2 a9
4p2a p2
with
p?=x2+y2, (19)

The only non-vanishing Weyl spinor component ¢ is
singular at p =0 and p = <= (depending on the choice
of a) which are true singularities. For this particular
solution and for a > 0 the total energy momentum
tensor becomes negative in the vicinity of the singu-
larity p = 0 provided A < 0. In EMFT vanishing of the
energy momentum tensor implies the vanishing of elec-
tromagnetic field tensor F, > but in GEMFT vanishing
of 7, in (13) does not require F,, to be zero. As an
example for such a solution we take (12) and (13)
with

IOy +2¢ =0, (20)
to be satisfied simultaneously. A particular solution is
¢ = A(u) e** cos[uy +B)], 2n

where A(u) and B(u) are arbitrary functions of u and
the real parameter u is given by

y*+1/A=0. (22)

Hence, for A < 0 we have solutions with Ty = 0. Here
the space—time metric is the vacuum gravitational pp-
metric with

av=o. (23)

Since there is no contribution of the geometry in
egs. (12) and (20), any solution to these equations are
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also the solutions of GEMFT in flat space—time with
Ty =0.

In a recent work Mansouri and Chang [7] (MC)
have proposed a new theory of gravitation where the
total action emerges as the sum of the usual Einstein’s
and Yang’s actions [8]. The Einstein’s theory is ob-
tained when the so called “bundle parameter” Q is set
to zero. Pavelle [9] examined the solutions of the
vacuum MC field equations and observed that the pre-
dictions of this theory are indistinguishable from those
of Einstein’s theory. The metric forms that were used
in this work did not result in a non-einsteinian solu-
tion of MC theory. Here we give an example to such
a solution by using the Kerr—Schild form of the pp-
wave metric. Using (5) as the Ricci tensor, vacuum
field equations reduce to

O@eavV + V) =0. (24)
Choosing
V=Reg(u,z) +qu,x,y), (25)

where g(u, z) is a complex analytic function of z then
eq. (24) reduces to the following equation for g(u, x,

»y):
Qux T4y, +(1/40) q = 0. (26)

The general solution of (26) may be expressed [10] in
terms of trigonometric or hyperbolic functions de-
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pending upon the sign of Q and the integration con-
stants must be treated as functions of u. Here we re-
mark that the first and the second terms in V behave
like massless and massive scalar fields respectively. It
may be easily seen that in contrast to the einsteinian
solutions, there are no non-einsteinian solutions of
MC fields equations which describe linearly polarized
gravitational plane-waves*2.

We wish to thank R. Giiven and G.W. Horndeski for
stimulating discussions.

*2 For definition of linearly polarized plane waves see ref. [1].
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