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PP-WAVES IN THE GENERALIZED EINSTEINTHEORIES
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We presentpp-wavesolutionsto thegeneralizedEinstein—Maxwellfield theoryintroducedby Horndeskiandto Mansouri-
Changtheoryof gravitation.

In generalrelativity a plane-frontedwavewith paral- tionsto thetwo recenttheoriesof gravitationwhich
lel rays(pp-wave)is describedby the fundamental.form involve certainmodificationsto theusualEinstein’s
[1] theoryof generalrelativity. Oneof thesetheoriesis

2 — 2 dueto Horndeski[4] who hasshownthat in four di-ds =2dudv-fdzdz —2V(u,x,y)du , (1) mensionstheEinstein—Maxwell field theory(EMFT)
wherez = x + iy anda bar denotescomplexconjuga- is notthe only vector—tensorfield theoryof electro-
tion. The componentsof this metric tensoris of the magnetismandgravitation.He showedthatany second
Kerr—Schildform [2] order,source-free,vector—tensorfield theoryof elec-

tromagnetismandgravitationmaybeexpressedas:

g~= — 2Vn,~n~, (2)
GMv =

87r(TMV + X) 8ir r~, (7)
where is theusualMinkowski metricandn~is a
null vectorwith respectto both and~ Further- and
more,n satisfies

F.~ +~XF~.~ *~*7(~ = 0, (8)
(3)

wherestardenotesduality, A is anarbitraryconstant,
and

TMv = (1/41T) (F,~°~F~— * g~F~F~), (9a)
(4)

and
The correspondingRicci tensoris givenby

A,~= (lI8~)(*F,~~*F~ ~ (9b)
R~,=n~n~DV, (5)

This theory,which is calledthegeneralizedEinstein—
where Maxwell field theory (GEMFT), is derivablefrom a

variationalprincipleandis consistentwith thenotion
D = ~fl) (6) of chargeconservation.Furthermoreit is compatible

with Maxwell’s equationsin flat space—timeandis in
Gravitationalandelectromagneticpp-wavesolutions agreementwith Einstein’stheoryin the absenceof an
havebeenexaminedsometimeagoby severalauthors electromagneticfield. However,in contrastto EMFT,
(e.g. refs. [1, 3]). Here we presentthepp-wavesolu- thesolutionsto theGEMFTinvolve somefeatures
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which‘are not shared by the solutions of EMFT. For 
example in Minkowski space-time in the vicinity of 
point charges the energy momentum tensor predicts 
regions of negative energy [5] and magnetic monopole 
solutions are obtained when the space-time geometry 
possesses spherical symmetry [6]. Since the total en- 
ergy momentum tensor has a non-zero trace the theory 
is not conformally invariant. In this note, we shall 
point out another property of CEMFT which is ab- 
sent in EMFT: In GEMFT vanishing of the total en- 
ergy momentum tensor TV does not imply the vanish- 
ing of the field strength tensor FP,*’ . We start with 
metric (2) and take the electromagnetic vector poten- 
tial as A, = n,,@(u, x,y). Hence we have 

FP,,=nPkv -n k 
v Ir’ 

with 

(10) 

k,, = a,,@, (11) 

which yields by virtue of the Maxwell’s equation 

D$=o.L (12) 

For our special metric the curvature couplings in the 
field equations (7) and (8) vanish as in the flat space- 
time. The total electromagnetic energy momentum 
tensor reduces to 

7 cw = (1/87r) (*A q J/ + 2Jl)nPnv, 

where 

(13) 

I// = kfikCL = qPv($,~) (a,@). (14) 

By virtue of (lo), (11) and (12) the field equation (8) 
is identically satisfied. Using (5) and (13) the field 
equation (7) becomes 

q V=~X+2$. (15) 

Hence, any simultaneous solution of (12) and (15) de- 
scribes the space-time geometry and gives the field 
strength FPv. All possible solutions of Q are of the form 

*’ G.W. Horndeski has kindly informed us that he has found 
a solution for 7 Irv = 0 where the resulting space-time is of 
Petrov type III. 

4~ = MuIRe f(z), (16) 

where h(u) is an arbitrary function of u and f(z) is an 
analytic function of z. Hence, any choice of f(z) leads 
us to a solution for V. In particular, choosing 

f(z) = z-a, (17) 

where (Y is an arbitrary real constant, yields the solu- 
tion 

v_ h2G4 1 + 2h2 
4p2~ ( ) - ’ 

P2 
(18) 

with 

p2=,2 ty2. (19) 

The only non-vanishing Weyl spinor component G4 is 
singular at p = 0 and p = 00 (depending on the choice 
of o) which are true singularities. For this particular 
solution and for cr > 0 the total energy momentum 
tensor becomes negative in the vicinity of the singu- 
larity p = 0 provided X < 0. In EMFT vanishing of the 
energy momentum tensor implies the vanishing of elec- 
tromagnetic field tensor F,,,,, but in GEMFT vanishing 
of rcw in (13) does not require F,,,, to be zero. As an 
example for such a solution we take (12) and (13). 
with 

*AOJ/+2$=0, (20) 

to be satisfied simultaneously. A particular solution is 

6 = A(u) eNx cos [ecu + P(u)1 , (21) 

where A(u) and p(u) are arbitrary functions of u and 
the real parameter I_( is given by 

/.I2 + l/X = 0. (22) 

Hence, for X < 0 we have solutions with r,,,, = 0. Here 
the space-time metric is the vacuum gravitational pp- 
metric with 

q v=o. (23) 

Since there is no contribution of the geometry in 
eqs. (12) and (20), any solution to these equations are 
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also thesolutionsof GEMFTin flat space—timewith pendinguponthe signof Q andthe integrationcon-
= 0. stantsmustbe treatedas functionsof u. Herewe re-

In arecentwork MansouriandChang [7] (MC) markthat thefirst andthe secondtermsin Vbehave
haveproposeda newtheoryof gravitationwherethe like masslessandmassivescalarfieldsrespectively.It
totalactionemergesasthe sumof theusualEinstein’s may beeasilyseenthat in contrastto theeinsteinian
and Yang’sactions[8]. The Einstein’stheoryis ob. solutions,thereare no non-einsteiniansolutionsof
tamedwhenthe socalled“bundle parameter”Q is set MC fields equationswhich describelinearlypolarized
to zero.Pavelle [9] examinedthe solutionsof the gravitational plane-waves*2~

vacuumMC field equationsandobservedthat thepre-
dictionsof this theoryare indistinguishablefrom those We wishto thankR. GüvenandG.W. Horndeskifor
of Einstein’stheory. Themetric formsthatwere used stimulatingdiscussions.
in this work did not resultin a non-einsteiniansolu-
tion of MC theory. Herewe give anexampleto such *2 For definitionof linearly polarizedplanewavesseeref. [1].

a solutionby using theKerr—Schild form of the pp-
wave metric.Using(5) as theRicci tensor,vacuum
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